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Abstract
One of the main problems in probabilistic gram-
matical inference consists in inferring a stochas-
tic language, i.e. a probability distribution,
in some class of probabilistic models, from a
sample of strings independently drawn accord-
ing to a fixed unknown target distribution p.
Here, we consider the class of rational stochas-
tic languages composed of stochastic languages
that can be computed by multiplicity automata,
which can be viewed as a generalization of prob-
abilistic automata. Rational stochastic languages
p have a useful algebraic characterization: all the
mappings u̇p : v → p(uv) lie in a finite dimen-
sional vector subspace V ∗p of the vector space
R〈〈Σ〉〉 composed of all real-valued functions
defined over Σ∗. Hence, a first step in the gram-
matical inference process can consist in identify-
ing the subspace V ∗p . In this paper, we study the
possibility of using Principal Component Anal-
ysis to achieve this task. We provide an infer-
ence algorithm which computes an estimate of
this space and then build a multiplicity automa-
ton which computes an estimate of the target dis-
tribution. We prove some theoretical properties
of this algorithm and we provide results from nu-
merical simulations that confirm the relevance of
our approach.

1. Introduction
A stochastic language over the finite alphabet Σ is a prob-
ability distribution defined on the set of strings Σ∗, i.e. a
mapping p : Σ∗ → R which satisfies (i) 0 ≤ p(u) ≤ 1
for any string u and (ii)

∑
u∈Σ∗ p(u) = 1. Given a set of

strings independently drawn according to a fixed unknown
stochastic language p, a usual goal in grammatical infer-
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ence is to infer an estimate of p in some class of proba-
bilistic models (Carrasco & Oncina, 1994; Thollard et al.,
2000). Here, we consider the class of rational stochas-
tic languages composed of stochastic languages that can
be computed by a multiplicity automaton (Beimel et al.,
2000; Denis & Esposito, 2008). A multiplicity automaton
(MA) is a tuple 〈Σ, Q, ι, τ, ϕ〉 where Q is a set of states,
ι : Q → R is an initialization function, τ : Q → R is a
termination function and ϕ : Q × Σ × Q → R is a tran-
sition function. The class of rational stochastic languages
(Srat(Σ)) strictly encompasses the set of stochastic lan-
guages that can be defined by probabilistic automata, or
equivalently, Hidden Markov Models. The main interest in
considering rational stochastic languages relies in the fact
that they have an algebraic characterization which proves to
be useful for inference purpose (Denis et al., 2006). For any
string u and any stochastic language p, let us denote by u̇p
the function defined by u̇p(v) = p(uv). Then, a stochastic
language p is rational if and only if the set {u̇p|u ∈ Σ∗}
spans a finite dimensional vector subspace V ∗p of the vec-
tor space R〈〈Σ〉〉 composed of all real-valued functions de-
fined over Σ∗. The dimension of V ∗p is called the rank of p.
It coincides with the minimal number of states needed by
a multiplicity automaton to compute p. Hence, a first step
in the grammatical inference process can consists in iden-
tifying the subspace {u̇p|u ∈ Σ∗}. In this paper, we study
the possibility to use Principal Component Analysis (PCA)
techniques to achieve this task (see (Clark et al., 2006) for
another use of PCA in the field of Grammatical Inference).

Next section (Section 2) gives a high level overview of the
results presented in this work. Preliminaries on rational
stochastic languages are given in Section 3. The main in-
ference algorithm is described in Section 4. Consistency
properties are proved in Section 5, which also contains the
method to infer the rank of the target. Some experiments
are provided in Section 6.

2. Overview of Results
The class of rational stochastic languages is included in
the Hilbert space l2(Σ∗) composed of all real valued func-
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tions r such that the sum
∑
u r(u)2 is convergent and

equipped with the corresponding dot product. Given a sam-
ple of strings S drawn according to an unknown stochas-
tic language p and a dimension parameter k, we build the
k-dimensional subspace V ∗S,k of R〈〈Σ〉〉 that minimizes∑
u ||u̇pS − ΠV ∗S,k

u̇pS ||2 where pS denotes the empirical
distribution induced by S and where ΠV denotes the or-
thogonal projection of the subspace V . Then, we use the
linear dependencies between the projections on V ∗S,k of the
elements u̇pS to build a multiplicity automaton AS . The
method is consistent: if pS = p, the space V ∗S,k is equal
to the space spanned by the set {u̇p|u ∈ Σ∗}, and the au-
tomaton AS computes the target p. And we prove that if
k is equal to the rank of the target, the linear dependencies
computed in the inferred space V ∗S,k converge to the cor-
rect ones with a rate of convergence equal to O(|S|−1/2).
Lastly, we show that the dimension d of the target p can be
inferred from the sample S: in order to build the subspace
V ∗S,k, using PCA techniques, we compute the eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0 of a positive semi-definite
matrix N and we show that the sum

∑
i>d λi of the last

m − d eigen values tends to 0 as the size of the sample S
increases. This property provides an algorithm to infer the
dimension d.

3. Preliminaries
Let Σ∗ be the set of strings on the finite alphabet Σ. The
empty string is denoted by ε, and the length of a string u is
denoted by |u|. For any integer k, we denote by Σk the set
{u ∈ Σ∗ | |u| = k} and by Σ≥k the set {u ∈ Σ∗ | |u| ≥ k}.
Let L ⊆ Σ∗. We denote by pref(L) (resp. suf(L)) the set
{u ∈ Σ∗|∃v ∈ Σ∗uv ∈ L} (resp. {u ∈ Σ∗|∃v ∈ Σ∗vu ∈
L}).

A formal power series is a mapping r from Σ∗ to R. The
set of all formal power series is denoted by R 〈〈Σ〉〉. It is
an R-vector space. For any series r and any string u ∈ Σ∗,
we denote by u̇r the series defined by u̇r(w) = r(uw).

A multiplicity automaton (MA) is a tuple 〈Σ, Q, ϕ, ι, τ〉
where Q is a finite set of states, ϕ : Q×Σ×Q→ R is the
transition function, ι : Q→ R is the initialization function
and τ : Q → R is the termination function. We extend
the transition function ϕ to Q×Σ∗ ×Q by ϕ(q, wx, q′) =∑
q′′∈Q ϕ(q, w, q′′)ϕ(q′′, x, q′) and ϕ(q, ε, q′) = 1 if q =

q′ and 0 otherwise, for any q, q′ ∈ Q, x ∈ Σ and w ∈ Σ∗.
For any MAA = 〈Σ, Q, ϕ, ι, τ〉, we define the series rA by
rA(w) =

∑
q,q′∈Q ι(q)ϕ(q, w, q′)τ(q′). A series r is ratio-

nal if it can be computed by a multiplicity automaton. It
can be proved that a series r is rational iff the vector sub-
space of R 〈〈Σ〉〉 spanned by the set {u̇r|u ∈ Σ∗} has a
finite dimension, which is called the rank of r. This dimen-
sion coincides with the minimal number of states needed
for a MA to compute r. The family of all rational series is

denoted by Rrat 〈〈Σ〉〉.

A stochastic language is a formal series p which only takes
non negative values and such that

∑
u∈Σ∗ p(u) = 1. A

stochastic language defines a probability distribution over
Σ∗. A rational stochastic language (Denis & Esposito,
2008) is a stochastic language which can be computed by a
multiplicity automaton. The set of all stochastic languages
(resp. rational stochastic languages) defined on Σ∗ is de-
noted by S(Σ) (resp. Srat(Σ)). It can be shown that
all probability distributions computed by Hidden Markov
Models (or equivalently, probabilistic automata) are ratio-
nal stochastic languages but the converse is false.

The values of a rational stochastic language decrease expo-
nentially fast. It can be shown that for any p ∈ Srat(Σ),
there exists 0 < ρ < 1 such that for any integer n ≥ 0,
p(Σ≥n) = O(ρn). Let A = 〈Σ, Q, ϕA, ιA, τA〉 be an
MA that computes the rational stochastic language p and
suppose that A has a minimal number of states d (equal
to the dimension of the space spanned by {u̇p|u ∈ Σ∗}).
Let B = 〈Σ, Q, ϕB , ιB , τB〉 be another MA defined on the
same set of states asA. It can be shown (Denis et al., 2006)
that if the parameters of B converge to the parameters of
A, then, the series computed by B converges to the series
computed by A for the norm || · ||1. More precisely, for any
ε > 0, there exists α > 0 such that if |ιA(q)− ιB(q)| < α,
|τA(q) − τB(q)| < α, |ϕA(q, x, q′) − ϕB(q, x, q′)| < α
for any states q, q′ and any letter x then

∑
u∈Σ∗ |p(u) −

rB(u)| < ε. As a first consequence, if the parameters of B
are sufficiently close to the parameters of A, then the series
computed byB is absolutely convergent and

∑
u∈Σ∗ rB(u)

is arbitrarily close to 1. A second consequence is that the
absolutely convergent series rB can be used to compute a
stochastic language prB which approximates p (see algo-
rithm 1). It can be shown that if

∑
u∈Σ∗ |p(u)−rB(u)| < ε

then,
∑
u∈Σ∗ |prB (u) − rB(u)| < ε(3+ε)

1−ε and therefore,∑
u∈Σ∗ |p(u)− prB (u)| = O(ε).

We consider the Hilbert space l2(Σ∗) composed of the ra-
tional series r ∈ R〈〈Σ〉〉 such that

∑
w∈Σ∗ r(w)2 < ∞

and where the inner product 〈·, ·〉 is defined by 〈r, s〉 =∑
w∈Σ∗ r(w)s(w). Hence, ||r|| =

(∑
w∈Σ∗ r(w)2

)1/2
.

Clearly, Srat(Σ∗) ⊆ l2(Σ∗) and if r ∈ l2(Σ∗) then
u̇r ∈ l2(Σ∗). Given a vector subspace V of l2(Σ∗), we
denote by ΠV the orthogonal projection on V .

4. Principle of the algorithm
Let p ∈ Srat(Σ) be a rational stochastic language, let
V ∗p be the vector space spanned by {u̇p|u ∈ Σ∗} and let
d = dim(V ∗p ). Let S be a sample independently drawn ac-
cording to p and let pS be the empirical distribution defined
from S. We first build an estimate VS of V ∗p from S. Then,
we show that VS can be used to build a MA AV whose as-
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Algorithm 1 RandomDraw. Defines a stochastic language
pr such that for any string u, pr(u) = 0 if r(u) ≤ 0 and
pr(u) ≤ r(u)/r(Σ∗) otherwise.
Data : An absolutely convergent rational series r s.t.∑

u∈Σ∗ r(u) > 0.
Result : A string u drawn randomly
X = {ε} ∪ Σ
For x ∈ Σ, let px = max(0, ẋr(Σ∗))
Let pε = max(0, r(ε).
Let s =

∑
x∈X px

Draw an element z of X according to the multinomial
model (px/s)x∈X
if z = ε then

return ε
else

return z+RandomDraw(żr)
end if

sociated rational series approximates the target p. In this
section, we shall implictly suppose that the dimension d of
V ∗p is known. We will show in the next section how it may
be estimated from the data.

4.1. Estimating the target space

Let k ≥ 0 be an integer. The first step consists in finding
the k-dimensional vector subspace V ∗S,k of l2(Σ∗) which
minimizes the distance to {u̇pS |u ∈ Σ∗}:

V ∗S,k = Argmindim(V )=k

∑
u∈Σ∗

||u̇pS −ΠV u̇pS ||2.

Since the support of pS is finite, V ∗S,k can be computed by
using PCA. Let v1, . . . , vm be an enumeration of suf(S).
For any u ∈ pref(S), let xu be the vector of Rm defined
by xu[i] = u̇pS(vi) − 1

Card(suf(S))

∑
v∈suf(S) u̇pS(v).

Let XS be the matrix containing the vectors xu as rows.
The matrix MS = X ′SXS is positive semi-definite and
the eigenvectors (q1, . . . , qk) corresponding to the k largest
(positive) eigenvalues form an orthogonal basis of V ∗S,k.

4.2. Building the automaton

Now, let V be a k-dimensional vector subspace of
l2(Σ∗) and let B = {q1, . . . , qk} be a basis of
V . We define the multiplicity automaton AS,B =
〈Σ, QS,B , ϕS,B , ιS,B , τS,B〉 by

• QS,B = {q1, . . . , qk},

• ϕS,B(qi, x, qj) = αji,x where αji,x is the j-th compo-
nent of ΠV (ẋqi) in the basis (q1, . . . , qk)

• ιS,B(qi) = ιi where ιi is the i-th component of
ΠV (pS) in the basis (q1, . . . , qk),

• τS,B = qi(ε).

The automatonAS,B computes a rational series which only
depends on S and V . Indeed, let us define the linear oper-
ator ψ : Σ∗ → L(R 〈〈Σ〉〉) by

ψ(u) =
{

ΠV if u = ε
ΠV ◦ ẋ ◦ ψ(v) if u = xv

Let r be the series computed by AS,B . The following
proposition shows that r(u) = ψ(u)(pS)(ε), which does
not depend on B.

Proposition 1. For any string u, r(u) = ψ(u)(pS)(ε).

Proof. It can easily be shown, by induction on the length
of u, that

∑
q′∈B ϕ(q, u, q′)q′ = ψ(u)(q). Then, we have:

r(u) =
∑
q,q′

ι(q)ϕ(q, u, q′)τ(q′)

=

∑
q

ι(q)
∑
q′

ϕ(q, u, q′)q′

 (ε)

=

(∑
q

ι(q)ψ(u)(q)

)
(ε)

= ψ(u)(
∑
q

ι(q)q(ε)

= ψ(u)(pS)(ε).

Note that if we take V = V ∗p and if we set ι(q) to the
i-th component of ΠV ∗p

(p) in the basis (q1, . . . , qk), then
ψ(u) = u̇ΠV ∗p

and r = p: the automaton computes the
target p, which can be seen as a weak consistency property
of the algorithm.

4.3. The algorithm

Algorithm 4.3 takes a sample S and an estimate of the rank
d of the target space as input and outputs a multiplicity au-
tomaton. It first computes the space V ∗S,k, then it computes
an automaton AS,B from S and a basis of V ∗S,k, which de-
fines a rational series that only depends on S and d.

4.4. Example

Let us consider the stochastic language p defined by the
probabilistic automaton described on Figure 1 and let S be
a sample composed of 1000 examples independently drawn
according to p. Table 1 shows the beginning of the array
XS (before centering).
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Algorithm 2 Building an automaton corresponding to a
sample S and a dimension d
Data : A sample S = {si ∈ Σ∗, 1 ≤ i ≤ |S|} i.i.d.

according to a distribution p, a dimension d
Result : A Multiplicity Automaton A

W = {wi, 1 ≤ i ≤ |W |} ← prefixes of S
U = {ui, 1 ≤ i ≤ |U |} ← suffixes of S
X ← a |W | × |U | matrix
Xi,j ← ẇipS(uj)− 1

|U |
∑
v∈U u̇pS(v)

N = X ′X
(λi, qi) ← eigenvalues of N in decreasing order, and
corresponding eigenvectors
B ← (q1, . . . , qd)
/*ΠB = orth. proj. on the vector subspace spanned by
B*/
for i from 1 to d do
ι(qi)← the i-th coordinate of ΠB(pS) in B
τ(qi)← qi(ε)
for each x ∈ Σ do

for j from 1 to d do
ϕ(qi, x, qj)← the j-th coordinate of ΠB(ẋqi) in
B

end for
end for

end for
return A = 〈Σ, {q1, . . . , qn}, ϕ, ι, τ〉

Table 1. First rows and columns of XS (before centering).

XS ε a b aa ab ba bb . . .
ε 0.0 0.091 0.08 0.027 0.026 0.074 0.058
a 0.091 0.027 0.026 0.009 0.01 0.008 0.007
b 0.08 0.074 0.058 0.016 0.026 0.055 0.052

. . .

The 3 largest eigenvalues of the matrix MS = X ′SXS are
(in decreasing order) 7.71 · 10−1, 2.14 · 10−1, 5.98 · 10−3.

Figure 1 shows the automaton output by the learning algo-
rithm for d = 1 and d = 2. The quadratic distance between
the target and the learned automaton is 1.758 · 10−2 for
the first automaton (d = 1), 1.487 · 10−4 for the second
(d = 2) and 2.325 · 10−4 for d = 3 (the automaton is not
represented). We can remark that the distance is minimal
when the number of states is correct. Table 2 shows the first
values computed by the target and the learned automaton.

5. Consistency
5.1. Consistency when the rank of the target is known

We show that the solution computed by the algorithm con-
verges to the target as the size of the sample S increases.

Table 2. The first values computed with the target automaton A
(Fig. 1 (a)), the first learned MA A1 (Fig. 1 (b)), the second
learned MA A2 (Fig. 1 (c)) and the stochastic language prA2

de-
rived from A2 by using algorithm RandomDraw.

ε a b aa ab ba bb
pA 0.0 0.083 0.083 0.028 0.028 0.069 0.069
rA1 0.057 0.021 0.041 0.007 0.015 0.015 0.030
rA2 0.000 0.092 0.080 0.025 0.028 0.071 0.066
prA2

0.000 0.10 0.086 0.028 0.030 0.077 0.072

(a) p0
1

b,1/2

p1

a,1/3
b,1/3

1/3
a,1/4
b,1/4

(b) p0
0.17

a,0.36
b,0.72

0.33

(c) p1
0.17

a,0.36
b,0.72

0.33

p2

a,0.04
b,0.36

-0.91

0.06

a,-0.41
b,-0.23

a,-0.08
b,0.11

Figure 1. A target stochastic language defined by the probabilistic
automaton (a). The learned automaton with d = 1 (b) and d = 2
(c). The parameters have been trunked after the second decimal.
The quadratic distance between the target (a) and the learned au-
tomaton is 1.76 · 10−2 for the first automaton (b) and 1.49 · 10−4

for the second (c).

Proposition 2. Let S be a sample i.i.d. according to
a rational stochastic language p with rank d. Then
E[‖ΠV ∗S,d

(ẇpS)− ẇp‖]→ 0 uniformly wrt w as the size of
S increases.

Proof. Let w ∈ Σ∗. As pS(w) is a binomial dis-
tribution with parameters |S| and p(w), V[pS(w)] =
p(w)(1−p(w))

|S| ≤ p(w)
|S| . Thus, E[‖ẇpS − ẇp‖2] ≤∑

u E[pS(wu) − p(wu)]2 ≤
∑
u
p(wu)
|S| = p(wΣ∗)

|S| . There-
fore, E[‖ẇpS − ẇp‖2] tends to 0 as the size of S increases.

We have ‖ẇpS −ΠV ∗p
(ẇpS)‖ ≤ ‖ẇpS − ẇp‖ since ẇp ∈

V ∗p . Furthermore,
∑
w E[‖ẇpS − ẇp‖2] ≤

∑
w
p(wΣ∗)
|S| =∑

n∈N
p(Σ≥n)
|S| ≤

∑
n∈N

O(ρn)
|S| = O(1/|S|) for some 0 <

ρ < 1.

Therefore, (E[‖ẇpS − ΠV ∗p
(ẇpS)‖])2 ≤ (E[‖ẇpS −
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ẇp‖])2 ≤ E[‖ẇpS − ẇp‖2] ≤
∑
w E[‖ẇpS − ẇp‖2] =

O(1/|S|) which proves that E[‖ΠV ∗S,d
(ẇpS) − ẇp‖] ≤

E[‖ẇpS −ΠV ∗p (ẇpS)‖+ ‖ẇpS − ẇp‖] ≤ O(|S|−1/2).

That is, E[‖ΠV ∗S,d
(ẇpS) − ẇp‖] → 0 uniformly wrt w as

the size of S increases.

It can easily be deduced from Proposition 2 that if
u̇1p, . . . , u̇pp form a basis of V ∗p , if v̇p =

∑d
i=1 αiu̇ip

and if ΠV ∗S,d
(v̇pS) =

∑d
i=1 α̂iΠV ∗S,d

(u̇ipS), then
E[Max(‖αi − α̂i‖)] = O(|S|−1/2).

In particular, linear relations between residuals are exactly
identified in the limit.

5.2. Convergence of eigenvalues

We will use two results about eigenvalues:

Lemma 1 (Shawe-Taylor et al. (2001)). Let M be the
variance-covariance matrix of the set {ẇp, w ∈ W}, with
|W | = m. Let {λi, 1 ≤ i ≤ m} be the set of eigen-
values of M . Let V ∗d be the d-dimension vector subspace
wich minimizes

∑
w∈W ‖ẇp − ΠV ∗d

(ẇp)‖2. Then, ∀d s.t.
1 ≤ d ≤ m,

• λd = maxdim(V )=d minv∈V \{0}
∑
w∈W ‖Πv(ẇp)‖2;

•
∑
d+1≤i≤m λi =

∑
w∈W ‖ẇp−ΠV ∗d

(ẇp)‖2.

Proposition 3. Let S be a sample i.i.d. according to a ra-
tional stochastic language p with rank d, and pS the empir-
ical distribution deduced from S. Let ΠV be the orthogonal
projection on V . Let V ∗S be the d-dimension vector sub-
space wich minimizes

∑
w∈pref(S) ‖ẇpS − ΠV ∗S

(ẇpS)‖2,
V ∗ = Res(p). Let {λi, 1 ≤ i ≤ m} be the set of eigen-
values of the variance-covariance matrix of {ẇpS , w ∈
pref(S)}, with m = |pref(S)|.

Then E[
∑
d+1≤i≤m λi] tends to 0 as the size of S increases.

Proof. E[
∑
d+1≤i≤|pref(S)| λi] =

∑
w∈pref(S) ‖ẇpS −

ΠV ∗S
(ẇpS)‖2 ≤ M

|S| , with M = max{|w|, w ∈ pref(S)}.
This tends to 0 as |S| tends to infinity.

Proposition 4. Let S be an infinite sample i.i.d. according
to a rational stochastic language p with rank d, and Sn the
n first elements. Let pS the empirical distribution deduced
from S, and pS the one deduced from Sn. Let

λk = max
dim(V )=k

min
v∈V \{0}

∑
w∈Σ∗

‖ΠV (ẇp)‖2

λk,n = max
dim(V )=k

min
v∈V \{0}

∑
w∈Σ∗

‖ΠV (ẇpSn)‖2

Then lim infn→∞ λk,n ≥ λk.

Proof. Let ε > 0. There exists Wk,ε ⊂ Σ∗, |Wk,ε| < ∞
such that

λk − ε/2 ≤ max
dim(V )=k

min
v∈V \{0}

X
w∈Wk,ε

‖ΠV (ẇp)‖2 = λ′k,ε

We have also λ′k,ε ≤ λk (
∑
w∈Wk,ε

‖ΠV (ẇp)‖2 ≤∑
w∈Σ∗ ‖ΠV (ẇp)‖2 since Wk,ε ⊂ Σ∗).

There existsNε such that ∀w ∈Wk,ε,∀v ∈ RΣ∗ ,∀n > Nε,
‖Πv(ẇp)‖2 − ‖Πv(ẇpSn)‖2 ≤ ε

2|Wk,ε| because Πv is 1-
lipschitz. Let

λ′′k,ε = max
dim(V )=k

min
v∈V \{0}

∑
w∈Σ∗

‖ΠV (ẇpSNε )‖
2 ≤ λk,Nε

We have:

λk,Nε ≥ λ′′k,ε ≥ λ′k,ε + ε/2 ≥ λk + ε

This is true for every ε, and we have the conclusion.

Algorithm 3 first finds a lower bound of the rank with the
method we just described, then it detects the point (greater
than the bound previously found) on the curve of the log-
arithm of the eigenvalues that corresponds to the highest
second order slope (see the last loop of the algorithm).

6. Numerical Simulations
We carry out two types of simulations: first we focus on the
ability of our algorithm to retrieve the structure and coeffi-
cients of a specific automaton, and then we perform exper-
iments on randomly drawn automata.

We intend to study the possibility of determining the rank
of the target p from a finite sample S i.i.d. according to p.

Comparison with other methods to find the structure (or
the number of states) of a statistical model from a learning
sample are not carried out here and are left for future work.
However, we would like to stress that existing inference
algorithms either provide models of far lower expressive-
ness (such as PDFA), or are designed to work in an asymp-
totic way, and still need be tuned to obtain an efficient im-
plementation (such as DEES). We therefore anticipate our
method to provide more conclusive empirical results.

6.1. Rank Estimation Procedures

We propose four criteria to estimate the target rank.

Eigenvalue-based Test We use the algorithm described
before, based on eigenvalues, but we don’t take the value
Lmax
|S| as bound, we use instead annother value. Let
p′(w) = pS(w) + 1

|S| be a smoothing of pS . Variance of

p(w) is estimated with V′(w) = p′(w)(1−p′(w))
|S| . Finally:
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Algorithm 3 Finding the rank d
Data : A sample S = {si, 1 ≤ i ≤ |S|} i.i.d. according

to a distribution p
Result : A dimension d

W = {wi, 1 ≤ i ≤ |W |} ← prefixes of S
U = {ui, 1 ≤ i ≤ |U |} ← suffixes of S
Lmax ← max{|si|, si ∈ S}
M ← a (|W |, |U |) matrix
Mi,j ← ẇipS(uj) = |{sk=wiuj ,sk∈S}|

|S|
N = MMT

(λi)1≤i≤|U | ← eigenvalues of N in decreasing order
d← |U |
sum← 0
while sum < Lmax

|S| and d > 0 do
sum← sum+ λd
d← d− 1

end while
d← d+ 1
e← d
δ′′ ← λdλd+2

λ2
d+1

while e < |U | − 2 do
e← e+ 1
if δ′′ ≤ λeλe+2

λ2
e+1

then
d← e

end if
end while
return d

L′max =
∑

u∈W,v∈W

(
pS(uv) +

√
V′(uv)

)

We then estimate the ”elbow” position by maximizing the
second order slope of the eigenvalues logarithm curve,
that is, if {λ1, . . . , λn} are the eigenvalues, computing
arg maxi

λiλi+2

λ2
i+1

for i greater than the dimension previ-
ously found.

Distance to Test Sample For each target automaton, we
build automata for rank d from 1 to 11. We want to check
here if it is possible to infer the rank by minimizing the
distance beetween each of the eleven automata and a test
sample.

The inferred automata do not, in general, compute a prob-
ability distribution. We simulate one from each inferred
automaton with Algorithm 1. We then compute here an ap-
proximation of the distance beetween the target probability
p and each inferred probability pn for 1 ≤ n ≤ 11, only for
strings of length lower than 10. The distances considered

are l1 and l2 distances, and KL-divergence.

D =
∑

w∈Σ≤10

d(p(w), pn(w))

6.2. Single case study

We start with the case of a single 5-state automaton on the
alphabet Σ = {0, 1} described on Fig. 2. Fig. 3 represents
the eigenvalues curves, in log scale, for a sample size of
1000, 5000, 20000 and 100000 strings.

FIG. 5 – L’automate A FIG. 6 – n=100 FIG. 7 – n=30000

FIG. 8 – n=50000 FIG. 9 – n=3000000 FIG. 10 – n=100×500

Fig. 5). Les automates suivants sont ceux calculés par notre programme pour un paramètre
δ = 0.1, sur des échantillons Sn constitués des n premiers mots de notre échantillon de départ.
L’automate de la Fig. 10 a été réalisé à partir d’un échantillon S′100×500 constitué des 100
premiers mots de S dupliqués 500 fois. L’automate de la Fig. 13 a été réalisé à partir d’un
échantillon S′1000×5000 constitué des 1000 premiers mots de S dupliqués 5000 fois, celui de la
Fig. 14 à partir d’un échantillon S′10000×500 constitué des 10000 premiers mots de S dupliqués
500 fois. Les nombre entre parenthèses représentent l’erreur théorique commise sur le coef-
ficient, par la méthode de calcul décrite au-dessus. L’absence de valeur signifie que le calcul
n’a pu aboutir : (1−‖M−1

k ‖‖Mk−M‖)≤ 0.
Plusieurs remarques peuvent être faites concernant ces résultats. La première concerne la

rapidité avec laquelle l’algorithme trouve le bon nombre d’états. L’étendue (1) de l’intervalle
de confiance ne joue pas un grand rôle dans l’estimation des coefficients. Elle joue par contre
un rôle dans la mesure de la précision du calcul des coefficients, et dans l’estimation du
nombre d’états de l’automate. L’étendue (1) de l’intervalle de confiance est grande comparée
à ce qu’on pourrait en attendre.

FIG. 11 – n=5000000 FIG. 12 – n=7000000 FIG. 13 – n=1000×5000

14

Figure 2. The 5-states automaton

One can see the eigenvalues decrease exponentially, so the
sum from the i-th eigenvalue to the last one is close to the
i-th eigenvalue. Considering this, the eigenvalues-based al-
gorithm identifies the highest second order slope point un-
der the horizontal line, representing the value L′max/|S|:

With a sample size of 1000, the retained dimension is 3
while for larger sizes the correct dimension is identified.

In the case of the l1 distance, the correct rank is found for
all samples.
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Figure 3. Curves of Eigenvalues (in logarithm scale) for sam-
ple size of 1000, 5000, 20000 and 100000 strings, from left to
right and top to down. The horizontal line represents the value
L′max/|S|.

6.3. General case study

We implement the following protocol. We first randomly
generate 500 probabilistic 4-state automata on the alphabet
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Σ = {0, 1} and we generate for each of them one sam-
ple of 1000, 5000, 20000 and 100000 strings. From each
sample, we generate a data matrix on which we perform
a PCA. The test for the dimension is a first estimation of
the target rank. We generate weighted automata for dimen-
sions from 1 to 11, and we compute the l1, l2-distances and
the KL-divergence between each target automaton and its
aproximations of ranks from 1 to 11. This gives three other
estimations of the target rank.

Randomly generated automata Each coefficient of the
initial vector and final vector is uniformly generated be-
tween 0 and 1. Each coefficient of the transition matrices is
uniformly generated with probability 1/3, and is equal to 0
with probability 2/3.

We first divide the initial vector’s coordinates by their sum.
Then, for every state, we do the sum of final coefficient and
all the outgoing transitions. This must sum up to 1, so we
divide each term by the sum to normalize.

We obtain this way a weighted automaton wich computes
a probability distribution over Σ∗.

Data Matrix We do not consider the whole data ma-
trix but the one formed with the prefixes and suffixes of
length lower or equal than 4, in lexicographic order. Let us
call this set W = {ε, 0, 1, 00, 01, 10, 11, . . . , 1110, 1111}.
|W | = 31. The matrix XS is defined by: XSi,j =
pS(wiwj).

After performing the PCA, we obtain 31 eigenvalues and
eigenvectors.

The Fig.4 represents the curve of the average eigenvalues
computed by the algorithm for each sample size. One can
see clearly the ”elbow” at position 5 with a sample size
greater than 20000. The horizontal line represents the value
L′max/|S|.

The Fig. 5, 6, 7 and 8 represents the compared dimen-
sions obtained by the eigenvalues-based algorithm, l1 and
l2-distance minimization, and KL-divergence minimiza-
tion.

Results From our experiments of rank prediction, one
can observe that:

• The KL-divergence criterion performances decrease
with the sample size.

• l1 and l2 minimization criteria slowly increase with
the sample size.

We chose to compute distances with the real target distri-
bution, in order to have a convenient way to compare re-
sults. In reality, one only knows the empirical distribution
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Figure 4. Curves of the average eigenvalues (in logarithm scale)
for sample size of 1000, 5000, 20000 and 100000 strings, from
left to right and top to down. The horizontal line represents the
average value L′max/|S|.

deduced from learning sample, and this should decrease
performances of those three criteria.

• The eigenvalues criterion performances seem to in-
crease faster than the others when the size of the sam-
ple increases.

7. Conclusion
We introduce a new approach in probabilistic grammati-
cal inference which differs from previous one on several
aspects. Most classical inference algorithms used in the
field of probabilistic grammatical build an automaton or a
grammar iteratively from a sample S; starting from an au-
tomaton composed of only one state, they have to decide
whether a new state must be added to the structure. This
iterative decision relies on a statistical test with a known
drawback: as the structure grows, the test relies on less
and less examples. Instead of this iterative approach, we
tackle the problem globally and our algorithm computes in
one step the space needed to build the output automaton.
That is, we have reduced the problem set in the classical
probabilistic grammatical inference framework into a clas-
sical optimization problem. We now need to experimen-
tally compare our approach to existing ones on real data:
this is a work in progress. A further consequence of our ap-
proach is that it will be possible to introduce non linearity
via the kernel PCA technique developed in (Shawe-Taylor
et al., 2001) and by the Hilbert space embedding of distri-
butions proposed in (Smola et al., 2007).
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Figure 5. Estimated rank with the four methods |S| = 1000.
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Figure 6. Estimated rank with the four methods |S| = 5000.
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