
Learning Non-Redundant Codebooks for Classifying Complex Objects

Wei Zhang* WEI.ZHANG22@HP.COM
Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304, United States
Akshat Surve SURVEA@EECS.OREGONSTATE.EDU
Xiaoli Fern XFERN@EECS.OREGONSTATE.EDU
Thomas Dietterich TGD@EECS.OREGONSTATE.EDU
Oregon State University, 1148 Kelley Engineering Center, Corvallis, Oregon 97331, United States

Abstract

1. Introduction

Codebook-based representations are widely em-
ployed in the classification of complex objects
such as images and documents. Most previous
codebook-based methods construct a single co-
debook via clustering that maps a bag of low-
level features into a fixed-length histogram that
describes the distribution of these features. This
paper describes a simple yet effective framework
for learning multiple non-redundant codebooks
that produces surprisingly good results. In this
framework, each codebook is learned in se-
quence to extract discriminative information that
was not captured by preceding codebooks and
their corresponding classifiers. We apply this
framework to two application domains: visual
object categorization and document classifica-
tion. Experiments on large classification tasks
show substantial improvements in performance
compared to a single codebook or codebooks
learned in a bagging style.

Codebook based methods have been widely applied in
many application domains for representing complex ob-
jects. In visual object categorization, local interest region
detectors (Mikolajczyk et al., 2005) and descriptors
(Lowe, 2004) are computed to robustly represent images
that are subject to noise and deformations. Each image is
thus represented as a bag of interest region descriptors. In
such tasks, the visual object categorization problem re-
duces to the problem of classifying a bag of low-level
features (interest region descriptors) into one or a subset

—————
Appearing in Proceedings of the 26th International Conference on Ma-
chine Learning, Montreal, Canada, 2009. Copyright 2009 by the au-
thor(s)/owner(s).
* The work was performed when the first author was graduate student at
Oregon State University.

of the possible object classes. This is an example of the
Multiple-Instance problem first proposed by Dietterich,
Lathrop & Lozano-Perez (1997).

Codebooks provide a way of mapping a bag of low-level
features (descriptors) to a fixed-length attribute vector, to
which standard classifiers can be directly applied. Many
previous methods construct a codebook by pooling all
low-level features from the training images and applying
an unsupervised clustering algorithm such as K-means in
Csurka et al. (2004), Gaussian mixture modeling in Dorko
& Schmid (2005) or on-line clustering with mean-shift in
Jurie & Triggs (2005). Each cluster is treated as a code-
word in the codebook. Once a codebook is constructed,
the bag of low-level features is mapped into a fixed-
length attribute vector according to the codebook using
strategies such as the histogram of occurrences method
(e.g., Csurka et al., 2004; Jurie & Triggs, 2005). Standard
learning algorithms, including Naïve Bayes (Csurka et al.,
2004) and SVMs (Csurka et al., 2004; Jurie & Triggs,
2005; Perronnin et al., 2006), have been applied to these
attribute vectors to train the final classifier. Such code-
book based methods have shown good performance on
various visual object categorization tasks.

Similarly, document classification has also seen success-
ful applications of codebook-based methods. In document
classification, each document is represented as a bag of
words (BOW). The BOW representation typically in-
volves a very large dictionary, leading to computational
and over-fitting issues in the classification stage. Code-
book-based methods are applied to address this issue by
clustering the words into word clusters, where each word
cluster can be viewed as a composite codeword (Baker &
McCallum, 1998; Slonim & Tishby, 2001; Bekkerman et
al., 2003; Dhillon et al., 2003). The representation of a
given document using a codebook (i.e., a set of word clus-
ters) is created by introducing one attribute for each word
cluster as the number of times the words of that cluster
appear in the document. This produces a more compact
representation of the documents, which has been shown to
achieve better classification accuracy with various stan-

Learning Non-Redundant Codebooks for Classifying Complex Objects

dard classifiers such as Naïve Bayes and SVMs (Baker &
McCallum, 1998; Slonim & Tishby, 2001; Dhillon et al.,
2003), especially when the classification task has high
complexity (Bekkerman et al., 2003).

All the codebook learning methods introduced above
build one codebook by performing a single clustering on
the low-level features. But in practice, data can be
represented in many different ways; and oftentimes a sin-
gle codebook is not enough to fully describe the different
structures of the data. In this paper, we propose a simple
framework for learning multiple non-redundant code-
books that produces surprisingly good results. The basic
idea is to wrap the codebook construction process inside a
boosting procedure. Each iteration of boosting begins by
learning a codebook according to the weights assigned
by the previous boosting iteration. The resulting code-
book is then applied to encode the training examples; a
new classifier is learned; and new weights are computed.
We apply the proposed non-redundant codebook learning
framework on both visual object categorization and doc-
ument classification tasks. The resulting methods give
very substantial performance gains over the baseline of
learning a single codebook of equivalent size. For image
classification, we obtain a 77% reduction in error on a
challenging 9-class object recognition task. For document
classification, we obtain error reductions of 18% and 38%
on two difficult document classification tasks.

2. Related Work

Codebook learning has been a very active research area in
the vision community. Recently, some researchers have
begun to introduce discriminative mechanisms into the
codebook learning process. Winn et al. (2005) first apply
unsupervised learning to construct a very large codebook
and then apply the information bottleneck principle to
merge the codebook entries. Similarly, Perronnin et al.
(2006) first learn a universal codebook and then employ
MAP estimation to adapt the universal codebook to class-
specific data. The framework proposed in this paper seeks
to advance the state-of-the-art of codebook learning in an
orthogonal direction in the sense that any new advanced
codebook learning algorithm can be employed in this
framework to further improve its performance.

Our framework is inspired by the successful application
of multi-view clustering algorithms (Cui et al, 2007; Jain
et al., 2008) for exploratory data analysis. Non-redundant
clustering is motivated by the fact that real-world data are
complex and may contain more than one interesting form
of structure. The goal of non-redundant clustering is to
extract multiple structures from data that are different
from one another; each is then presented to the user as a
possible view of the underlying structure of the data. In
principle, the non-redundant clustering techniques devel-
oped by Cui et al. (2007) and Jain et al. (2008) can be
directly applied to learn multiple clusterings of the low-

level features and create codebooks that are non-
redundant to each other. However, such an approach is
fundamentally unsupervised and will not necessarily lead
to more accurate classifiers. In contrast, our framework
learns codebooks that are non-redundant in the sense that
they complement each other in their discriminative power.

There are a few recent developments in the vision com-
munity that are related to our framework. Moosmann et
al. (2007) learn multiple, independent randomized deci-
sion trees to partition the low-level feature space. The
leaves of the decision trees define the codewords. Note
that this work can also be used to generate multiple code-
books, each from a single decision tree (in their work the
multiple codebooks are concatenated to form a single
large one). However, they do not produce codebooks of
complementary discriminative power. More recently,
Yang et al. (2008) proposed a codebook learning frame-
work that is integrated with classifier learning. In their
work, the visual codebooks have a restricted form as a
sequence of visual bits. Each visual bit is a linear classifi-
er that maps the low-level features to a binary bit for clas-
sification. The learning is performed in a sequential man-
ner, where the performance of the classifier using pre-
vious visual bits is used to extract the next set of visual
bits. In comparison, the method proposed in this paper
shares the same basic boosting principle of sequential
learning of codebooks; yet our framework is much more
general and can be applied with any form of visual code-
books and classifiers.

3. Methodology

The overall framework of our non-redundant codebook
learning method is illustrated in Figure 1.

Given a base codebook learner and a classifier, we itera-
tively learn one codebook at a time and stop when reach-

Figure 1. Illustration of iterative non-redundant codebook
and classifier learning framework.

Learning Non-Redundant Codebooks for Classifying Complex Objects

ing the pre-defined T iterations. Each iteration consists of
following steps:

1. Codebook learning: The inputs to the base codebook
learner at iteration t are the training examples N

iiB 1}{ =
(where },,{ 1

i
M

i
i i

xxB = is the bag of features for
training example i) and a set of weights

N
i

t
i

t wW 1}{ == specifying the importance of each exam-
ple. The output is a codebook),...,(1

t
K

t
t ddD =

where t
kd is the k-th code word (cluster). In the first

iteration, the weights are initialized to be uniform
over the training examples.

2. Classifier learning: the training examples are mapped
to fixed-length attribute vectors N

i
t

it fF 1}{ == based on
the codebook tD such that the j-th attribute,),(jf t

i is
related to the number of features in Bi mapped to
code word t

jd : |}:{| t
jmim dxBx ∈ . A classifier Ct is

then learned from the attribute vectors Ft. The output
of Ct is the class label predictions Lt.

3. Weight updating: the predictions Lt are used to up-
date the training example weights as in AdaBoost
(Freund & Schapire, 1996) − the weights of the in-
correctly-classified examples are increased and the
weights of the correctly-classified examples are de-
creased. The updated weights, Wt+1, are provided to
the base codebook learner for the next iteration.

To classify a new example B, it will be mapped into T
fixed-length attribute vectors ,}{ 1

T
t

tf =
 and each tf will

then be classified by Ct. The outputs of the T classifiers
are combined to give the final class label prediction L via
the weighted voting scheme of AdaBoost.

We want to emphasize that the above framework can be
applied with any base codebook learner and any classifier.
Some codebook learners can be easily modified to take
the weights of the examples into consideration (as exem-
plified in Section 5). Incorporating the weights into others
may not be straightforward. For the latter case, as we will
show in Section 4, sampling can be employed to learn
codebooks from weighted examples effectively. In the
following sections, we will present two instantiations of
our framework for different application domains to dem-
onstrate the general applicability of our framework using
different codebook learning algorithms and classifiers.

4. Non-Redundant Codebook Learning for Con-
tinuous Low-Level Features

4.1 The Visual Object Categorization Problem

Recognizing objects in images is a fundamental problem
in computer vision. It is challenging for computers be-
cause of significant intra-class variations of the objects
and the variations in imaging conditions. Recently, signif-
icant advances have been achieved through the applica-
tion of interest region detectors that can reliably find sa-
lient regions sparsely distributed in images despite these
sources of variation. A comprehensive evaluation of the

state-of-the-art detectors is given in Mikolajczyk et al.
(2005). Each detected region is represented by a local
region descriptor. The most famous descriptor is Lowe’s
128-element SIFT descriptor (Lowe, 2004). So the origi-
nal image is represented as a bag of region descriptors,
which are the low-level features for codebook learning.

When learning with large scale visual object categoriza-
tion data sets, such as the Caltech data set (Dorko &
Schmid, 2005; Opelt et al., 2006), PASCAL dataset
(Yang et al., 2008) and Stoneflies dataset (Larios et al.,
2008), a practical challenge is computational efficiency.
In particular, we often need to learn from thousands of
images, and each image often contains hundreds or even
thousands of low-level interest region descriptors in order
to capture sufficient visual information for classification.
The huge number of low-level features requires our non-
redundant codebook learning algorithm to be highly effi-
cient. Below we present how we apply the general
framework described in Section 3 to learn a set of non-
redundant visual codebooks efficiently.

4.2 Non-Redundant Codebooks Learned by Boost-
Resampling

Below we describe the design of the critical components
of our framework.

Base Codebook learner. There are many options for base
codebook learners for visual object categorization, includ-
ing both unsupervised and supervised clustering methods.
In order to reduce the risk of overfitting the training data,
we choose to use unsupervised K-means clustering as our
base codebook learner (Csurka et al., 2004). K-means
clustering is also preferable because it is very efficient.
The more complex Gaussian Mixture Modeling algorithm
(Dorko & Schmid, 2005) was also tested on the Stonefly
recognition task and failed to outperform the simpler K-
means algorithm in our framework. The size of each co-
debook, K, is set to 100 empirically. According to our
experiments, different values of K had little effect on the
performance of the algorithm.

Feature mapping based on codebook. Previous work
(Csurka et al., 2004; Jurie & Triggs, 2005; Moosmann et
al., 2007; Larios et al., 2008) usually assign each of the
low-level features extracted from a new image to one of
the codewords (clusters); then the example is represented
by a normalized histogram f of occurrence counts for the
codewords. But this mapping method treats the code-
words as equally important without considering their dis-
tribution over different examples. In this paper, we use
the tf–idf weight (term frequency–inverse document fre-
quency) (Salton & Buckley, 1988) developed for informa-
tion retrieval and text mining. For image Bi, the j-th tf–idf
attribute fi(j) is given by:

 (1) 










∃
×







 ∈
=

∈ |}:{|
log

|}:{|
)(

jBxli

jmim
i dxB

N
M

dxBx
jf

l




Learning Non-Redundant Codebooks for Classifying Complex Objects

As in the document domain, the first term (tf) measures
the number of occurrences of the jth codeword in the ex-
ample divided by the total number of low-level features in
the example. This term is exactly the histogram of occur-
rences used in previous work. We will call it the tf map-
ping. The second term, idf, measures the (lack of) distinc-
tiveness of the jth codeword over different examples. A
codeword that appears in more examples has lower idf
value; while a codeword that is only found in one exam-
ple has the highest idf value. The tf–idf mapping method
improves the robustness of learning algorithms, especially
when the distribution of codewords is significantly unba-
lanced over different examples, which is the case in many
object categorization problems. In our initial experiments,
the tf–idf mapping systematically outperforms the tf map-
ping. Hence, we adopt tf–idf as the feature mapping me-
thod for the visual object categorization tasks.

Classifier learning. We employ an ensemble of 50 un-
pruned C4.5 decision trees (Quinlan, 1993) in each boost-
ing iteration. The trees are generated via bagging (Brei-
man, 1996). Learning more than 50 trees did not provide
superior performance in our experiments.

Weighted Sampling. Note that instead of directly using
the weights with K-means clustering, we adopt the Quasi-
Random Weighted Sampling (QWS) (Kalal et al., 2008)
approach to achieve improved efficiency. QWS creates a
smaller “active set” of the training images based on the
weights assigned to the examples such that the examples
with larger weights have higher probability of being se-
lected. As a result, the algorithm selects the data pool that
has not been well-represented and classified by previous
codebooks. Thus, the codebook learned on this pool is
encouraged to be different to the previous codebooks.

The principle of QWS is illustrated in Figure 2. The
weights are represented as intervals and arranged on the
unit line segment. The line segment is split into N equal
intervals, where N is the total number of training images.
Within each interval, a number (shown as a dot in the
figure) is generated uniformly at random, whose position
determines the index of the selected sample. Si represents
the number of occurrences of the ith example in the sam-
pled active set. As can be seen from the figure, an exam-
ple with larger weight (e.g., w3) is more likely to be sam-
pled; and an example may be selected multiple times

(e.g., S3=2). More details of QWS method is described in
Kalal (2008). QWS reduces the variance of weighted ran-
dom sampling and has worked well in previous work
(Moosmann et al., 2007; Kalal, et al., 2008).

The total number of codewords learned is: T × K (the
number of boosting iterations × the size of each code-
book). This number scales up to several thousands in our
experiments. But at each iteration, we only sample 20%
of the training data to form the active set. Therefore the
learning of the codebooks is memory and time efficient
because each clustering operation is performed on a small
subset of data. The Boost-Resampling algorithm can be
directly applied to problems with continuous high-
dimensional low-level features. Below we empirically
evaluate it using a large scale real-world object categori-
zation dataset.

4.3 Experiments on Stonefly Recognition

In order to test the performance of our Boost-Resampling
algorithm on complex object categorization problem, we
evaluate it on the stonefly larvae dataset supplied by the
Oregon State University insect ID group (Larios et al.,
2008). This dataset contains 3826 stonefly images belong-
ing to nine different species. Examples of stonefly images
are shown in Figure 3. Due to the biological nature of
stoneflies and the imaging process, these images exhibit
large intra-class variations and small inter-class differenc-
es. This poses a very challenging object categorization
problem even for expert biologists. As described by La-
rios et al. (2008), humans who have been trained to rec-
ognize images of two species of stoneflies – Cal and Dor
– achieved only 78.6% classification accuracy. We refer
this binary classification problem as STONEFLY2 (Cal,
Dor). A generative codebook learning algorithm (Larios,
2008) has previously been applied to this STONEFLY2
dataset and achieved performance slightly superior to

Figure 2. Illustration of Quasi-Random Weighted Sampling
(QWS) technique.

Figure 3. Example images from the nine categories of stoneflies
(top to bottom, left to right): Cal, Dor, Hes, Iso, Mos, Pte, Swe,
Yor and Zap.

Learning Non-Redundant Codebooks for Classifying Complex Objects

Table 1. Classification accuracies (%) of Boost-Resampling
algorithm and previously reported results on STONEFLY2 and
STONEFLY4 datasets.

DATA SET BOOST LARIOS08 OPELT06

STONEFLY2 97.85 79.37 70.10

STONEFLY4 98.21 82.42 N/A

humans. A similar 4-class dataset, STONEFLY4 (Cal,
Dor, Hes, Yor), has also be studied under the multi-way
classification setting. In this paper, we evaluate our Boost-
Resampling algorithm on the STONEFLY2 and STONE-
FLY4 datasets using the same 3-fold cross validation ex-
perimental setting as in Larios et al. (2008). For a fair
comparison we also employ the same interest region de-
tectors—the Hessian affine regions (Mikolajczyk &
Schmid, 2004), the Kadir’s salient regions (Kadir et al.,
2004) and the PCBR regions (Deng et al., 2007)—
described by SIFT descriptors (Lowe, 2004). Each detec-
tor generates approximately 300 SIFT vectors from each
image. A separate codebook (of size K = 100) is built for
each detector. For a new image, its low-level features
from each interest region detector are mapped according
to their corresponding codebooks to generate an attribute
vector for that particular region detector; and the three
attribute vectors are concatenated to form the 300-
dimensional attribute vector for classification. The num-
ber of boosting iterations T is set to 30 in our experiments.
The results are summarized in Table 1.

From Table 1, we can see that our non-redundant code-
book learning algorithm performs much better that the
previous work (Larios et al., 2008; Opelt et al., 2006). All
the improvements are statistically significant at a 95%
level using an unpaired test for the difference between
two proportions (Dietterich, 1998).

Figure 4 shows the performance of our Boost-Resampling
algorithm on the stonefly datasets versus the number of
boosting iterations. We can see that comparing to the
starting points of the curves (using a single codebook of
size K=100), the addition of non-redundant codebooks
significantly improves the discriminative power of the
recognition system. For all three tasks, the learning con-
verged within 25 iterations and showed no sign of overfit-
ting.

In order to test the value of building non-redundant code-
books and the value of weighted sampling, we compare
our Boost-Resampling algorithm with two baseline algo-
rithms. The first algorithm (referred as Single) learns only
a single codebook at each channel to represent the data.
This codebook is built by K-means clustering on the pool
of all training features from the channel. The size of the
codebook is set to T × K (the number of boosting itera-
tions × the size of each codebook) for fair comparison

Table 2. Classification accuracies (%) of Boost-Resampling
algorithm and two baselines on STONEFLY2, STONEFLY4
and STONEFLY9 datasets.

DATA SET BOOST SINGLE RANDOM

STONEFLY2 97.85 85.84 89.16

STONEFLY4 98.21 67.20 90.42

STONEFLY9 95.09 78.33 89.07

with non-redundant codebooks. The second baseline
(called Random), replaces QWS sampling with uniform
random sampling that neglects the boosting weights. This
comparison experiment is performed on STONEFLY2,
STONEFLY4 datasets and the complete STONEFLY9
dataset, which contains all the nine categories of stone-
flies as shown in Figure 3. The comparison results are
summarized in Table 2. Boost-Resampling outperforms
the two baselines on all the datasets, and the differences
are statistically significant at a 95% level. Comparing to
a single codebook of equivalent size, the proposed me-
thod was able to achieve error reductions of 94.5%,
84.8% and 77.3% respectively.

5. Non-Redundant Codebook Learning for Dis-
crete Low-Level Features

5.1 Document Classification Problem

In document classification, each document is represented
as a bag of words (BOW). In many document classifica-
tion tasks, the number of words in the dictionary can be
very large (tens of thousands or more), resulting in a very
high-dimensional representation of the documents. This
leads to both computational and over-fitting issues in the
classification stage. One way to address this issue is to
cluster the words into word clusters, where each word
cluster can be viewed as a composite codeword. To

Figure 4. The performance of Boost-Resampling algo-
rithm versus the number of boosting iterations.

Learning Non-Redundant Codebooks for Classifying Complex Objects

represent a given document using a set of word clusters,
we produce one attribute for each word cluster by count-
ing the number of times that the words of that cluster ap-
peared in the document. This produces a more compact
representation of the documents and has been shown to
achieve better classification accuracy (Baker and McCal-
lum, 1998; Slonim and Tishby, 2001; Dhillon et al., 2003;
Bekkerman et al., 2003). By applying non-redundant co-
debook learning to the document classification task, we
seek to generate multiple non-redundant clusterings of the
words to further improve document classification accura-
cy.

5.2 Non-Redundant Codebook Learned by Boosting-
Reweighing

Base codebook learner. In document classification, the
most successful word clustering algorithms to date are
discriminative in nature. They aim to produce word-
clusters that preserve information about the class labels.
Representative examples include the Information Bottle-
neck (IB) approach (Bekkerman et al., 2003) and the In-
formation-theoretic Divisive Clustering (IDC) approach
(Dhillon et al., 2003). In our work, we choose to use the
Information Bottleneck approach as our base learner for
generating the base codewords (i.e., word clusters). Note
that the IDC approach achieves very similar results. Be-
low we briefly highlight the crux of the IB method and
how it is applied within our framework.

Consider two categorical random variables X and Y,
whose co-occurrence distribution is made known through
a set of paired i.i.d observations (X,Y). IB seeks to extract
X', a compact representation of X, with minimal loss of
information regarding the relevant variable Y. This goal is
formalized as minimizing the following objective function:

);'()';(YXβIXXIL −= (2)

where β determines the tradeoff between compressing X
and extracting information regarding Y and I(· ; ·) denotes
the mutual information.

In the document classification task, X represents the
words and Y represents the class labels. In iteration t, the
relation between X and Y is summarized by the empirical
joint distribution table Pt(X, Y). Given K, the desired
number of clusters, IB learns Xt'={wct

1, wct
2 ,…,wct

K }, a
set of K word clusters, that compactly represent X and
preserve as much information as possible about the class
label Y. In our implementation, we used the sequential
Information Bottleneck (sIB) algorithm as described by
Slonim et al. (2002).

As in the visual object categorization task, we set K, the
size of each codebook to be 100. The parameter β is em-
pirically set to 100. (Note that a large β is essential in or-
der to balance the tradeoff between the two terms in the
objective function. This is because these two terms are

Table 3. The characteristics of the document data sets

DATA SET #classes #documents #words

NG10 10 5000 24246

ENRON10 10 6188 24812

upper-bounded by the entropy of X and Y respectively;
and the entropy of X is significantly larger than the entro-
py of Y).

Feature mapping based on the codebook. Once the K
word clusters are extracted, we follow the basic approach
of Dhillon et al. (2003) and Bekkerman et al. (2003) and
create one attribute)(jf t for each word cluster j by
counting the number of times the words of cluster j appear
in each document. This produces a fixed-length attribute
vector representation for each document.

Classifier learning. In each iteration, we build a Naïve
Bayes classifier Ct using the attribute vector induced with
the word clusters learned by IB. We choose Naïve Bayes
for its computational efficiency. SVMs and bagged deci-
sion trees have also been tested and yielded similar results
in terms of the effect of the proposed method.

Reweighing. The learned Naïve Bayes classifier Ct is
then applied to predict the class labels of the training doc-
uments. We then follow the scheme of AdaBoost and
update the training example weights according to their
prediction success: the weights of correct examples are
decreased and the weights of incorrect examples are in-
creased. The weights are then used to update the empirical
joint distribution table Pt+1(X, Y), which becomes the in-
put to the IB method for learning the next codebook.

Given a new document, it will be mapped to T different
attribute vectors .,...,1, Ttf t = , each is assigned a predic-
tion by its corresponding classifier Ct. The final prediction
is obtained by a weighted vote of all T classifiers.

5.3 Experimental Results

In this section, we evaluate the boosting-reweighting ap-
proach on two benchmark document classification data
sets: the Newsgroup data set and the Enron email classifi-
cation data set. For the Newsgroup dataset, we reduced
the dataset size by randomly selecting 10 of the classes
and for each class 500 documents are randomly selected.
We will refer to this as NG10. For the Enron data set, we
choose the ten largest folders among all users to be our
ten classes (containing 6188 emails). Below we refer to
this data set as Enron10.

We employ the Mallet package (McCallum, 2002) to pre-
process the documents. Stop words and the words appear-
ing in no more than three documents were removed. The
characteristics of the resulting data sets are summarized in
Table 3.

Learning Non-Redundant Codebooks for Classifying Complex Objects

Interestingly, we observed that the performance of our
approach converges very quickly as we increase the num-
ber of iterations, within the first five or six iterations. This
can be seen from Figure 5, which plots the accuracy of
our method on both data sets as we increase T from 1 to
20. This suggests that the complexity of the low-level
features may be significantly lower for the document clas-
sification task than for the visual object categorization
task. Hence, fewer non-redundant codebooks are needed
to capture all of those features’ discriminative power.

Based on this convergence behavior, in our following
comparisons with the baseline methods, we fix T to be
ten. We compare our approach to the same set of baseline
methods as in the previous section. The first baseline is
Single, in which only a single codebook is learned to
represent the data. This codebook is built by applying IB
to the original (un-weighted) empirical joint distribution
P1(X, Y). We examine two different codebook sizes: the
first is 100 (which is the same as the size of our individual
codebooks, referred to as S100), and the second is 1000
(which is the number of total codewords used by our non-
redundant codebooks, referred to as S1000). The second
baseline is called Random, in which ten bagged samples
of the original training corpus are created and each is used
to estimate an empirical joint distribution Pt(X, Y) and
learn a codebook using IB. Note that all training examples
are used to learn the classifiers and the bagged samples
are only used to produce the codebooks.

Table 4 reports the accuracy of our method and the base-
lines on NG10 and Enron10. For all experiments, we ran-
domly sample two thirds of the data for training and test
on the remaining examples. The testing examples are not
used in any part of the training process. Each of the re-
ported numbers is averaged across five random runs. The
standard deviations are also shown in the parentheses.

As shown by Table 4, the proposed boost-reweighing
method was able to significantly improve over both Single
and Random. The differences are all statistically signifi-
cant at a 95% level. This supports the conclusion that by

Table 4. Classification accuracies (%) of the Boost-
Reweighing algorithm and three baselines on document
datasets.

DATASET BOOST RANDOM S1000 S100

NG10 90.24
(.80)

85.43
(.53)

84.31
(.97)

79.88
(1.1)

ENRON10 84.44
(.22)

81.09
(.52)

80.90
(.61)

74.23
(1.1)

forcing the codebook learner to focus on the input space
that has not been well classified, our framework was able
to effectively capture additional discriminative informa-
tion. Note that we also applied boosted Naïve Bayes to a
single codebook (i.e., boosted Single). The results were
comparable to Random and inferior to the proposed me-
thod.

6. Conclusions and Future Work

This paper proposes a framework for learning non-
redundant codebooks for the categorization of complex
objects based on the bag-of-features representation. The
proposed framework is simplistic and highly general: it
can be easily applied with any codebook learner and clas-
sifier of choice. It is surprisingly effective: we evaluated
the proposed framework on both visual object categoriza-
tion and document classification domains, and obtained
performance substantially superior to existing work and to
the baseline methods

For future work, we will explore the application of
stronger non-redundancy constraints such as side informa-
tion (Chechik & Tishby, 2002). We will also work to fur-
ther improve the efficiency of our learning algorithm for
large-scale datasets.

Acknowledgments

We thank the colleagues in the Oregon State University
insect ID group for help on the stoneflies experiments.
We thank anonymous reviewers for useful comments on
this paper. The authors gratefully acknowledge the sup-
port of the NSF under grant number IIS-0705765.

References

Baker, L. D. & McCallum, A. K. (1998). Distributional
clustering of words for text classification. In Proc. SI-
GIR conf. Resear. and develo. infor. retriev., pp 96-103.

Bekkerman, R., El-yaniv, R., Tishby, N., Winter, Y.,
Guyon, I., & Elisseeff, A. (2003). Distributional word
clusters vs. words for text categorization, J. of Machine
Learning Research, Vol 3, pp 1183-1208.

Breiman, L. (1996). Bagging predictors. Machine Learn-
ing, 24 (2), pp 123-140.

Figure 5. The performance of Boost-Reweighting algorithm
versus the number of boosting iterations.

Learning Non-Redundant Codebooks for Classifying Complex Objects

Chechik, G. & Tishby, N. (2002). Extracting relevant
structures with side information. Proc. Advances in
Neural Information Processing Systems, pp 857-864.

Csurka, G., Dance, C. R., Fan L., Willamowski, J., &
Bray, C. (2004). Visual categorization with bags of
keypoints. Euro. Conf. Comput. Vision Workshop, pp
59-74.

Cui, Y., Fern, X. Z., & Dy, J. G. (2007). Non-redundant
Multi-view Clustering via Orthogonalization. IEEE Int’l
Conf. on Data Mining, pp 133-142.

Deng, H., Zhang W., Mortensen, E., Dietterich, T. &
Shapiro, L. (2007). Principal curvature-based region de-
tector for object recognition. Proc. IEEE Conf. Comput.
Vision Pattern Recognition, pp 1-8.

Dhillon, I., Mallela, S. & Kumar, R. (2003). A divisive
information-theoretic feature clustering algorithm for
text classification. J. of Machine Learning Re-
search, Vol 3, pp 1265-1287.

Dietterich, T. G., Lathrop, R. H., & Lozano-Perez, T.
(1997). Solving the multiple-instance problem with
axis-parallel rectangles. Artificial Intelligence, Vol 89,
pp 31-71.

Dietterich, T. G. (1998). Approximate statistical tests for
comparing supervised classification learning algorithms.
Neural Computation, pp 1895-1923.

Dorko, G. & Schmid, C. (2005). Object class recognition
using discriminative local features. Technical Report
RR-5497, INRIA-Rhone-Alpes.

Freund, Y. & Schapire, R. (1996). Experiments with a
new boosting algorithm. Proc. Int’l Conf. Machine
Learning, pp 148-156.

Jain, P., Meka R., & Dhillon I. S. (2008). Simultaneous
Unsupervised Learning of Disparate Clusterings. Statis-
tical Analysis and Data Mining. Vol 1, pp 195-210.

Jurie, F. & Triggs, B. (2005). Creating efficient code-
books for visual recognition. Proc. IEEE Int’l Conf.
Comput. Vision, Vol 1, pp 604-610.

Kadir, T., Zisserman A., & Brady, M. (2004). An affine
invariant salient region detector. Proc. Euro. Conf.
Comput. Vision, pp 228-241.

Kalal, Z., Matas, J., & Mikolajczyk K. (2008). Weighted
sampling for large-scale boosting. Proc. Brit. Machine
Vision Conf.

Larios, N. et al. (2008). Automated insect identification
through concatenated histograms of local appearance
features. Machine Vis. and App., 19(2), pp 105-123.

Lowe, D. (2004). Distinctive image features from scale-
invariant keypoints. Int. J. Comput. Vision., 2(60), pp
91-110.

McCallum, A. K. (2002). MALLET: A machine learning
for language toolkit. http://mallet.cs.umass.edu.

Mikolajczyk, K., & Schmid, C. (2004). Scale and affine
invariant interest point detectors. Int. J. Comput.
Vision., Vol 60, pp 63-86.

Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman,
A., Matas, J., Schaffalitzky, F., Kadir, T., & Van Gool,
L. (2005). A comparison of affine region detectors. Int.
J. Comput. Vision., Vol 65, pp 43-72.

Moosmann, F., Triggs, B. & Jurie, F. (2007). Fast discri-
minative visual codebooks using randomized clustering
forests. Proc. Advances in Neural Information
Processing Systems, pp 985-992.

Opelt, A, Pinz A, Fussenegger. M, & Auer P. (2006). Ge-
neric Object Recognition with Boosting. IEEE Trans.
Pattern Anal. Mach. Intell., 28(3), pp 416-431.

Perronnin, F., Dance, C., Csurka, G. & Bressan, M.
(2006). Adapted vocabularies for generic visual catego-
rization. Proc. Euro. Conf. Comput. Vision, pp 464-475.

Quinlan, J. R. (1993). C4.5: Programs for machine learn-
ing. Morgan Kaufmann Publishers Inc.

Salton, G. & Buckley, C. (1988). Term-weighting ap-
proaches in automatic text retrieval. Information
Processing & Management, 24(5), pp 513–523.

Slonim, N. & Tishby, N. (2001). The power of word clus-
ters for text classification. In Proc. Euro. Colloq. Infor-
mation Retrieval Research.

Slonim, N., Friedman, N., & Tishby, N. (2002). Unsuper-
vised document classification using sequential informa-
tion maximization. Proc. SIGIR conf. Resear. and deve-
lo. infor. retriev., pp 129-136.

Viola, P. & Jones, M. (2001). Rapid object detection us-
ing a boosted cascade of simple features. Proc. IEEE
Conf. Comput. Vision Pattern Recognition, pp 511-518.

Winn, J., Criminisi, A. & Minka, T. (2005). Object cate-
gorization by learned universal visual dictionary. Proc.
IEEE Int’l Conf. Comput. Vision, Vol 2, pp 1800-1807.

Yang, L., Jin, R., Sukthankar R., & Jurie, F. (2008). Un-
ifying discriminative visual codebook generation with
classifier training for object category recognition. Proc.
IEEE Conf. Comput. Vision Pattern Recognition, pp 1-
8.

	Learning Non-Redundant Codebooks for Classifying Complex Objects

