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Abstract 

1.  Introduction 

 
Codebook-based representations are widely em-
ployed in the classification of complex objects 
such as images and documents. Most previous 
codebook-based methods construct a single co-
debook via clustering that maps a bag of low-
level features into a fixed-length histogram that 
describes the distribution of these features. This 
paper describes a simple yet effective framework 
for learning multiple non-redundant codebooks 
that produces surprisingly good results. In this 
framework, each codebook is learned in se-
quence to extract discriminative information that 
was not captured by preceding codebooks and 
their corresponding classifiers. We apply this 
framework to two application domains: visual 
object categorization and document classifica-
tion. Experiments on large classification tasks 
show substantial improvements in performance 
compared to a single codebook or codebooks 
learned in a bagging style.  

Codebook based methods have been widely applied in 
many application domains for representing complex ob-
jects. In visual object categorization, local interest region 
detectors (Mikolajczyk et al., 2005) and descriptors 
(Lowe, 2004) are computed to robustly represent images 
that are subject to noise and deformations. Each image is 
thus represented as a bag of interest region descriptors. In 
such tasks, the visual object categorization problem re-
duces to the problem of classifying a bag of low-level 
features (interest region descriptors) into one or a subset 

————— 
Appearing in Proceedings of the 26th International Conference on Ma-
chine Learning, Montreal, Canada, 2009.  Copyright 2009 by the au-
thor(s)/owner(s). 
* The work was performed when the first author was graduate student at 
Oregon State University. 

of the possible object classes. This is an example of the 
Multiple-Instance problem first proposed by Dietterich, 
Lathrop & Lozano-Perez (1997).  

Codebooks provide a way of mapping a bag of low-level 
features (descriptors) to a fixed-length attribute vector, to 
which standard classifiers can be directly applied. Many 
previous methods construct a codebook by pooling all 
low-level features from the training images and applying 
an unsupervised clustering algorithm such as K-means in 
Csurka et al. (2004), Gaussian mixture modeling in Dorko 
& Schmid (2005) or on-line clustering with mean-shift in 
Jurie & Triggs (2005). Each cluster is treated as a code-
word in the codebook. Once a codebook is constructed, 
the bag of low-level features is mapped into a fixed-
length attribute vector according to the codebook using 
strategies such as the histogram of occurrences method 
(e.g., Csurka et al., 2004; Jurie & Triggs, 2005). Standard 
learning algorithms, including Naïve Bayes (Csurka et al., 
2004) and SVMs (Csurka et al., 2004; Jurie & Triggs, 
2005; Perronnin et al., 2006), have been applied to these 
attribute vectors to train the final classifier. Such code-
book based methods have shown good performance on 
various visual object categorization tasks.  

Similarly, document classification has also seen success-
ful applications of codebook-based methods. In document 
classification, each document is represented as a bag of 
words (BOW). The BOW representation typically in-
volves a very large dictionary, leading to computational 
and over-fitting issues in the classification stage. Code-
book-based methods are applied to address this issue by 
clustering the words into word clusters, where each word 
cluster can be viewed as a composite codeword (Baker & 
McCallum, 1998; Slonim & Tishby, 2001; Bekkerman et 
al., 2003; Dhillon et al., 2003). The representation of a 
given document using a codebook (i.e., a set of word clus-
ters) is created by introducing one attribute for each word 
cluster as the number of times the words of that cluster 
appear in the document. This produces a more compact 
representation of the documents, which has been shown to 
achieve better classification accuracy with various stan-
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dard classifiers such as Naïve Bayes and SVMs (Baker & 
McCallum, 1998; Slonim & Tishby, 2001; Dhillon et al., 
2003), especially when the classification task has high 
complexity (Bekkerman et al., 2003). 

All the codebook learning methods introduced above 
build one codebook by performing a single clustering on 
the low-level features. But in practice, data can be 
represented in many different ways; and oftentimes a sin-
gle codebook is not enough to fully describe the different 
structures of the data. In this paper, we propose a simple 
framework for learning multiple non-redundant code-
books that produces surprisingly good results.  The basic 
idea is to wrap the codebook construction process inside a 
boosting procedure.  Each iteration of boosting begins by 
learning a codebook according to the weights assigned 
by the previous boosting iteration.  The resulting code-
book is then applied to encode the training examples; a 
new classifier is learned; and new weights are computed.   
We apply the proposed non-redundant codebook learning 
framework on both visual object categorization and doc-
ument classification tasks. The resulting methods give 
very substantial performance gains over the baseline of 
learning a single codebook of equivalent size.  For image 
classification, we obtain a 77% reduction in error on a 
challenging 9-class object recognition task. For document 
classification, we obtain error reductions of 18% and 38% 
on two difficult document classification tasks. 

2.  Related Work 

Codebook learning has been a very active research area in 
the vision community. Recently, some researchers have 
begun to introduce discriminative mechanisms into the 
codebook learning process. Winn et al. (2005) first apply 
unsupervised learning to construct a very large codebook 
and then apply the information bottleneck principle to 
merge the codebook entries. Similarly, Perronnin et al. 
(2006) first learn a universal codebook and then employ 
MAP estimation to adapt the universal codebook to class-
specific data. The framework proposed in this paper seeks 
to advance the state-of-the-art of codebook learning in an 
orthogonal direction in the sense that any new advanced 
codebook learning algorithm can be employed in this 
framework to further improve its performance. 

Our framework is inspired by the successful application 
of multi-view clustering algorithms (Cui et al, 2007; Jain 
et al., 2008) for exploratory data analysis. Non-redundant 
clustering is motivated by the fact that real-world data are 
complex and may contain more than one interesting form 
of structure. The goal of non-redundant clustering is to 
extract multiple structures from data that are different 
from one another; each is then presented to the user as a 
possible view of the underlying structure of the data. In 
principle, the non-redundant clustering techniques devel-
oped by Cui et al. (2007) and Jain et al. (2008) can be 
directly applied to learn multiple clusterings of the low- 

 

 

 

 

 

 

 

 

 

 

 

level features and create codebooks that are non-
redundant to each other. However, such an approach is 
fundamentally unsupervised and will not necessarily lead 
to more accurate classifiers. In contrast, our framework 
learns codebooks that are non-redundant in the sense that 
they complement each other in their discriminative power. 

There are a few recent developments in the vision com-
munity that are related to our framework. Moosmann et 
al. (2007) learn multiple, independent randomized deci-
sion trees to partition the low-level feature space. The 
leaves of the decision trees define the codewords. Note 
that this work can also be used to generate multiple code-
books, each from a single decision tree (in their work the 
multiple codebooks are concatenated to form a single 
large one). However, they do not produce codebooks of 
complementary discriminative power. More recently, 
Yang et al. (2008) proposed a codebook learning frame-
work that is integrated with classifier learning. In their 
work, the visual codebooks have a restricted form as a 
sequence of visual bits. Each visual bit is a linear classifi-
er that maps the low-level features to a binary bit for clas-
sification. The learning is performed in a sequential man-
ner, where the performance of the classifier using pre-
vious visual bits is used to extract the next set of visual 
bits.  In comparison, the method proposed in this paper 
shares the same basic boosting principle of sequential 
learning of codebooks; yet our framework is much more 
general and can be applied with any form of visual code-
books and classifiers.  

3.  Methodology 

The overall framework of our non-redundant codebook 
learning method is illustrated in Figure 1.   

Given a base codebook learner and a classifier, we itera-
tively learn one codebook at a time and stop when reach-

Figure 1. Illustration of iterative non-redundant codebook 
and classifier learning framework.  
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ing the pre-defined T iterations. Each iteration consists of 
following steps: 

1. Codebook learning: The inputs to the base codebook 
learner at iteration t are the training examples N
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2. Classifier learning: the training examples are mapped 
to fixed-length attribute vectors N
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then learned from the attribute vectors Ft. The output 
of Ct is the class label predictions Lt. 

3. Weight updating: the predictions Lt are used to up-
date the training example weights as in AdaBoost 
(Freund & Schapire, 1996) − the weights of the in-
correctly-classified examples are increased and the 
weights of the correctly-classified examples are de-
creased. The updated weights, Wt+1, are provided to 
the base codebook learner for the next iteration.  

To classify a new example B, it will be mapped into T 
fixed-length attribute vectors ,}{ 1

T
t

tf =
 and each tf will 

then be classified by Ct. The outputs of the T classifiers 
are combined to give the final class label prediction L via 
the weighted voting scheme of AdaBoost.  

We want to emphasize that the above framework can be 
applied with any base codebook learner and any classifier. 
Some codebook learners can be easily modified to take 
the weights of the examples into consideration (as exem-
plified in Section 5). Incorporating the weights into others 
may not be straightforward. For the latter case, as we will 
show in Section 4, sampling can be employed to learn 
codebooks from weighted examples effectively. In the 
following sections, we will present two instantiations of 
our framework for different application domains to dem-
onstrate the general applicability of our framework using 
different codebook learning algorithms and classifiers. 

4.   Non-Redundant Codebook Learning for Con-
tinuous Low-Level Features 

4.1  The Visual Object Categorization Problem 

Recognizing objects in images is a fundamental problem 
in computer vision. It is challenging for computers be-
cause of significant intra-class variations of the objects 
and the variations in imaging conditions. Recently, signif-
icant advances have been achieved through the applica-
tion of interest region detectors that can reliably find sa-
lient regions sparsely distributed in images despite these 
sources of variation. A comprehensive evaluation of the 

state-of-the-art detectors is given in Mikolajczyk et al. 
(2005). Each detected region is represented by a local 
region descriptor. The most famous descriptor is Lowe’s 
128-element SIFT descriptor (Lowe, 2004). So the origi-
nal image is represented as a bag of region descriptors, 
which are the low-level features for codebook learning.   

When learning with large scale visual object categoriza-
tion data sets, such as the Caltech data set (Dorko & 
Schmid, 2005; Opelt et al., 2006), PASCAL dataset 
(Yang et al., 2008) and Stoneflies dataset (Larios et al., 
2008), a practical challenge is computational efficiency. 
In particular, we often need to learn from thousands of 
images, and each image often contains hundreds or even 
thousands of low-level interest region descriptors in order 
to capture sufficient visual information for classification.  
The huge number of low-level features requires our non-
redundant codebook learning algorithm to be highly effi-
cient. Below we present how we apply the general 
framework described in Section 3 to learn a set of non-
redundant visual codebooks efficiently. 

4.2  Non-Redundant Codebooks Learned by Boost-
Resampling 

Below we describe the design of the critical components 
of our framework.  

Base Codebook learner. There are many options for base 
codebook learners for visual object categorization, includ-
ing both unsupervised and supervised clustering methods. 
In order to reduce the risk of overfitting the training data, 
we choose to use unsupervised K-means clustering as our 
base codebook learner (Csurka et al., 2004). K-means 
clustering is also preferable because it is very efficient. 
The more complex Gaussian Mixture Modeling algorithm 
(Dorko & Schmid, 2005) was also tested on the Stonefly 
recognition task and failed to outperform the simpler K-
means algorithm in our framework. The size of each co-
debook, K, is set to 100 empirically. According to our 
experiments, different values of K had little effect on the 
performance of the algorithm.    

Feature mapping based on codebook.  Previous work 
(Csurka et al., 2004; Jurie & Triggs, 2005; Moosmann et 
al., 2007; Larios et al., 2008) usually assign each of the 
low-level features extracted from a new image to one of 
the codewords (clusters); then the example is represented 
by a normalized histogram f of occurrence counts for the 
codewords. But this mapping method treats the code-
words as equally important without considering their dis-
tribution over different examples. In this paper, we use 
the tf–idf weight (term frequency–inverse document fre-
quency) (Salton & Buckley, 1988) developed for informa-
tion retrieval and text mining. For image Bi, the j-th tf–idf 
attribute fi(j) is given by:   
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As in the document domain, the first term (tf) measures 
the number of occurrences of the jth codeword in the ex-
ample divided by the total number of low-level features in 
the example. This term is exactly the histogram of occur-
rences used in previous work. We will call it the tf map-
ping. The second term, idf, measures the (lack of) distinc-
tiveness of the jth codeword over different examples. A 
codeword that appears in more examples has lower idf 
value; while a codeword that is only found in one exam-
ple has the highest idf value. The tf–idf mapping method 
improves the robustness of learning algorithms, especially 
when the distribution of codewords is significantly unba-
lanced over different examples, which is the case in many 
object categorization problems. In our initial experiments, 
the tf–idf mapping systematically outperforms the tf map-
ping.  Hence, we adopt tf–idf as the feature mapping me-
thod for the visual object categorization tasks.  

Classifier learning. We employ an ensemble of 50 un-
pruned C4.5 decision trees (Quinlan, 1993) in each boost-
ing iteration.  The trees are generated via bagging (Brei-
man, 1996).  Learning more than 50 trees did not provide 
superior performance in our experiments. 

Weighted Sampling. Note that instead of directly using 
the weights with K-means clustering, we adopt the Quasi-
Random Weighted Sampling (QWS) (Kalal et al., 2008) 
approach to achieve improved efficiency. QWS creates a 
smaller “active set” of the training images based on the 
weights assigned to the examples such that the examples 
with larger weights have higher probability of being se-
lected. As a result, the algorithm selects the data pool that 
has not been well-represented and classified by previous 
codebooks. Thus, the codebook learned on this pool is 
encouraged to be different to the previous codebooks.  

The principle of QWS is illustrated in Figure 2. The 
weights are represented as intervals and arranged on the 
unit line segment. The line segment is split into N equal 
intervals, where N is the total number of training images. 
Within each interval, a number (shown as a dot in the 
figure) is generated uniformly at random, whose position 
determines the index of the selected sample.  Si represents 
the number of occurrences of the ith example in the sam-
pled active set. As can be seen from the figure, an exam-
ple with larger weight (e.g., w3) is more likely to be sam-
pled; and an example may be selected multiple times 

(e.g., S3=2). More details of QWS method is described in 
Kalal (2008). QWS reduces the variance of weighted ran-
dom sampling and has worked well in previous work 
(Moosmann et al., 2007; Kalal, et al., 2008).  

The total number of codewords learned is: T × K (the 
number of boosting iterations × the size of each code-
book). This number scales up to several thousands in our 
experiments. But at each iteration, we only sample 20% 
of the training data to form the active set. Therefore the 
learning of the codebooks is memory and time efficient 
because each clustering operation is performed on a small 
subset of data. The Boost-Resampling algorithm can be 
directly applied to problems with continuous high-
dimensional low-level features. Below we empirically 
evaluate it using a large scale real-world object categori-
zation dataset. 

4.3  Experiments on Stonefly Recognition 

In order to test the performance of our Boost-Resampling 
algorithm on complex object categorization problem, we 
evaluate it on the stonefly larvae dataset supplied by the 
Oregon State University insect ID group (Larios et al., 
2008). This dataset contains 3826 stonefly images belong-
ing to nine different species. Examples of stonefly images 
are shown in Figure 3. Due to the biological nature of 
stoneflies and the imaging process, these images exhibit 
large intra-class variations and small inter-class differenc-
es. This poses a very challenging object categorization 
problem even for expert biologists. As described by La-
rios et al. (2008), humans who have been trained to rec-
ognize images of two species of stoneflies – Cal and Dor 
– achieved only 78.6% classification accuracy. We refer 
this binary classification problem as STONEFLY2 (Cal, 
Dor).  A generative codebook learning algorithm (Larios, 
2008) has previously been applied to this STONEFLY2  
dataset and  achieved  performance  slightly superior to  

Figure 2. Illustration of Quasi-Random Weighted Sampling 
(QWS) technique.  

 

Figure 3. Example images from the nine categories of stoneflies 
(top to bottom, left to right): Cal, Dor, Hes, Iso, Mos, Pte, Swe, 
Yor and Zap. 
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Table 1. Classification accuracies (%) of Boost-Resampling 
algorithm and previously reported results on STONEFLY2 and 
STONEFLY4 datasets. 

DATA SET BOOST LARIOS08 OPELT06 

STONEFLY2 97.85 79.37 70.10 

STONEFLY4 98.21 82.42 N/A 
 

humans. A similar 4-class dataset, STONEFLY4 (Cal, 
Dor, Hes, Yor), has also be studied under the multi-way 
classification setting. In this paper, we evaluate our Boost-
Resampling algorithm on the STONEFLY2 and STONE-
FLY4 datasets using the same 3-fold cross validation ex-
perimental setting as in Larios et al. (2008). For a fair 
comparison we also employ the same interest region de-
tectors—the Hessian affine regions (Mikolajczyk & 
Schmid, 2004), the Kadir’s salient regions (Kadir et al., 
2004) and the PCBR regions (Deng et al., 2007)—
described by SIFT descriptors (Lowe, 2004). Each detec-
tor generates approximately 300 SIFT vectors from each 
image. A separate codebook (of size K = 100) is built for 
each detector. For a new image, its low-level features 
from each interest region detector are mapped according 
to their corresponding codebooks to generate an attribute 
vector for that particular region detector; and the three 
attribute vectors are concatenated to form the 300-
dimensional attribute vector for classification. The num-
ber of boosting iterations T is set to 30 in our experiments. 
The results are summarized in Table 1. 

From Table 1, we can see that our non-redundant code-
book learning algorithm performs much better that the 
previous work (Larios et al., 2008; Opelt et al., 2006). All 
the improvements are statistically significant at a 95% 
level using an unpaired test for the difference between 
two proportions (Dietterich, 1998).  

Figure 4 shows the performance of our Boost-Resampling 
algorithm on the stonefly datasets versus the number of 
boosting iterations. We can see that comparing to the 
starting points of the curves (using a single codebook of 
size K=100), the addition of non-redundant codebooks 
significantly improves the discriminative power of the 
recognition system. For all three tasks, the learning con-
verged within 25 iterations and showed no sign of overfit-
ting. 

In order to test the value of building non-redundant code-
books and the value of weighted sampling, we compare 
our Boost-Resampling algorithm with two baseline algo-
rithms. The first algorithm (referred as Single) learns only 
a single codebook at each channel to represent the data. 
This codebook is built by K-means clustering on the pool 
of all training features from the channel. The size of the 
codebook is set to T × K  (the number of boosting itera-
tions  ×  the size of each codebook)  for fair comparison  

 

Table 2. Classification accuracies (%) of Boost-Resampling 
algorithm and two baselines on STONEFLY2, STONEFLY4 
and STONEFLY9 datasets. 

DATA SET BOOST SINGLE RANDOM 

STONEFLY2 97.85 85.84 89.16 

STONEFLY4 98.21 67.20 90.42 

STONEFLY9 95.09 78.33 89.07 

 

with non-redundant codebooks. The second baseline 
(called Random), replaces QWS sampling with uniform 
random sampling that neglects the boosting weights. This 
comparison experiment is performed on STONEFLY2, 
STONEFLY4 datasets and the complete STONEFLY9 
dataset, which contains all the nine categories of stone-
flies as shown in Figure 3. The comparison results are 
summarized in Table 2. Boost-Resampling outperforms 
the two baselines on all the datasets, and the differences 
are statistically significant at a 95% level.  Comparing to 
a single codebook of equivalent size, the proposed me-
thod was able to achieve error reductions of 94.5%, 
84.8% and 77.3% respectively. 

5.  Non-Redundant Codebook Learning for Dis-
crete Low-Level Features 

5.1  Document Classification Problem 

In document classification, each document is represented 
as a bag of words (BOW).  In many document classifica-
tion tasks, the number of words in the dictionary can be 
very large (tens of thousands or more), resulting in a very 
high-dimensional representation of the documents. This 
leads to both computational and over-fitting issues in the 
classification stage. One way to address this issue is to 
cluster the words into word clusters, where each word 
cluster can be viewed as a composite codeword. To 

Figure 4. The performance of Boost-Resampling algo-
rithm versus the number of boosting iterations.  
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represent a given document using a set of word clusters, 
we produce one attribute for each word cluster by count-
ing the number of times that the words of that cluster ap-
peared in the document. This produces a more compact 
representation of the documents and has been shown to 
achieve better classification accuracy (Baker and McCal-
lum, 1998; Slonim and Tishby, 2001; Dhillon et al., 2003; 
Bekkerman et al., 2003). By applying non-redundant co-
debook learning to the document classification task, we 
seek to generate multiple non-redundant clusterings of the 
words to further improve document classification accura-
cy.  

5.2  Non-Redundant Codebook Learned by Boosting-
Reweighing  

Base codebook learner. In document classification, the 
most successful word clustering algorithms to date are 
discriminative in nature. They aim to produce word-
clusters that preserve information about the class labels. 
Representative examples include the Information Bottle-
neck (IB) approach (Bekkerman et al., 2003) and the In-
formation-theoretic Divisive Clustering (IDC) approach 
(Dhillon et al., 2003).  In our work, we choose to use the 
Information Bottleneck approach as our base learner for 
generating the base codewords (i.e., word clusters).  Note 
that the IDC approach achieves very similar results. Be-
low we briefly highlight the crux of the IB method and 
how it is applied within our framework. 

Consider two categorical random variables X and Y, 
whose co-occurrence distribution is made known through 
a set of paired i.i.d observations (X,Y). IB seeks to extract 
X', a compact representation of X, with minimal loss of 
information regarding the relevant variable Y. This goal is 
formalized as minimizing the following objective function: 

);'()';( YXβIXXIL −=                                  (2) 

where β determines the tradeoff between compressing X 
and extracting information regarding Y and I(· ; ·) denotes 
the mutual information.   

In the document classification task, X represents the 
words and Y represents the class labels. In iteration t, the 
relation between X and Y is summarized by the empirical 
joint distribution table Pt(X, Y). Given K, the desired 
number of clusters, IB learns Xt'={wct

1, wct
2 ,…,wct

K }, a 
set of K word clusters, that compactly represent X and 
preserve as much information as possible about the class 
label Y. In our implementation, we used the sequential 
Information Bottleneck (sIB) algorithm as described by 
Slonim et al. (2002).  

As in the visual object categorization task, we set K, the 
size of each codebook to be 100. The parameter β is em-
pirically set to 100. (Note that a large β is essential in or-
der to balance the tradeoff between the two terms in the 
objective function.  This is because these two terms are  

 

Table 3. The characteristics of the document data sets 

DATA SET #classes #documents #words 

NG10 10 5000 24246 

ENRON10 10 6188 24812 
 

upper-bounded by the entropy of X and Y respectively; 
and the entropy of X is significantly larger than the entro-
py of Y).   

Feature mapping based on the codebook. Once the K 
word clusters are extracted, we follow the basic approach 
of Dhillon et al. (2003) and Bekkerman et al. (2003) and 
create one attribute )( jf t for each word cluster j by 
counting the number of times the words of cluster j appear 
in each document. This produces a fixed-length attribute 
vector representation for each document. 

Classifier learning. In each iteration, we build a Naïve 
Bayes classifier Ct using the attribute vector induced with 
the word clusters learned by IB. We choose Naïve Bayes 
for its computational efficiency. SVMs and bagged deci-
sion trees have also been tested and yielded similar results 
in terms of the effect of the proposed method.  

Reweighing. The learned Naïve Bayes classifier Ct is 
then applied to predict the class labels of the training doc-
uments. We then follow the scheme of AdaBoost and 
update the training example weights according to their 
prediction success: the weights of correct examples are 
decreased and the weights of incorrect examples are in-
creased. The weights are then used to update the empirical 
joint distribution table Pt+1(X, Y), which becomes the in-
put to the IB method for learning the next codebook.  

Given a new document, it will be mapped to T different 
attribute vectors .,...,1, Ttf t = , each is assigned a predic-
tion by its corresponding classifier Ct. The final prediction 
is obtained by a weighted vote of all T classifiers. 

5.3  Experimental Results 

In this section, we evaluate the boosting-reweighting ap-
proach on two benchmark document classification data 
sets: the Newsgroup data set and the Enron email classifi-
cation data set. For the Newsgroup dataset, we reduced 
the dataset size by randomly selecting 10 of the classes 
and for each class 500 documents are randomly selected. 
We will refer to this as NG10.  For the Enron data set, we 
choose the ten largest folders among all users to be our 
ten classes (containing 6188 emails).  Below we refer to 
this data set as Enron10. 

We employ the Mallet package (McCallum, 2002) to pre-
process the documents. Stop words and the words appear-
ing in no more than three documents were removed. The 
characteristics of the resulting data sets are summarized in 
Table 3. 
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Interestingly, we observed that the performance of our 
approach converges very quickly as we increase the num-
ber of iterations, within the first five or six iterations. This 
can be seen from Figure 5, which plots the accuracy of 
our method on both data sets as we increase T from 1 to 
20. This suggests that the complexity of the low-level 
features may be significantly lower for the document clas-
sification task than for the visual object categorization 
task. Hence, fewer non-redundant codebooks are needed 
to capture all of those features’ discriminative power. 

Based on this convergence behavior, in our following 
comparisons with the baseline methods, we fix T to be 
ten. We compare our approach to the same set of baseline 
methods as in the previous section. The first baseline is 
Single, in which only a single codebook is learned to 
represent the data. This codebook is built by applying IB 
to the original (un-weighted) empirical joint distribution 
P1(X, Y). We examine two different codebook sizes: the 
first is 100 (which is the same as the size of our individual 
codebooks, referred to as S100), and the second is 1000 
(which is the number of total codewords used by our non-
redundant codebooks, referred to as S1000). The second 
baseline is called Random, in which ten bagged samples 
of the original training corpus are created and each is used 
to estimate an empirical joint distribution Pt(X, Y) and 
learn a codebook using IB. Note that all training examples 
are used to learn the classifiers and the bagged samples 
are only used to produce the codebooks.  

Table 4 reports the accuracy of our method and the base-
lines on NG10 and Enron10. For all experiments, we ran-
domly sample two thirds of the data for training and test 
on the remaining examples. The testing examples are not 
used in any part of the training process. Each of the re-
ported numbers is averaged across five random runs. The 
standard deviations are also shown in the parentheses. 

As shown by Table 4, the proposed boost-reweighing 
method was able to significantly improve over both Single 
and Random. The differences are all statistically signifi-
cant at a 95% level.  This supports the conclusion that by  

Table 4. Classification accuracies (%) of the Boost-
Reweighing algorithm and three baselines on document 
datasets. 

DATASET BOOST RANDOM S1000 S100 

NG10 90.24 
(.80) 

85.43 
(.53) 

84.31 
(.97) 

79.88 
(1.1) 

ENRON10 84.44 
(.22) 

81.09 
(.52) 

80.90 
(.61) 

74.23 
(1.1) 

 

forcing the codebook learner to focus on the input space 
that has not been well classified, our framework was able 
to effectively capture additional discriminative informa-
tion. Note that we also applied boosted Naïve Bayes to a 
single codebook (i.e., boosted Single). The results were 
comparable to Random and inferior to the proposed me-
thod. 

6.  Conclusions and Future Work 

This paper proposes a framework for learning non-
redundant codebooks for the categorization of complex 
objects based on the bag-of-features representation. The 
proposed framework is simplistic and highly general: it 
can be easily applied with any codebook learner and clas-
sifier of choice. It is surprisingly effective: we evaluated 
the proposed framework on both visual object categoriza-
tion and document classification domains, and obtained 
performance substantially superior to existing work and to 
the baseline methods 

For future work, we will explore the application of 
stronger non-redundancy constraints such as side informa-
tion (Chechik & Tishby, 2002). We will also work to fur-
ther improve the efficiency of our learning algorithm for 
large-scale datasets.  
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