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Abstract
We address the problem of learning classifiers us-
ing several kernel functions. On the contrary to
many contributions in the field of learning from
different sources of information using kernels,
we here do not assume that the kernels used are
positive definite. The learning problem that we
are interested in involves a misclassification loss
term and a regularization term that is expressed
by means of a mixed norm. The use of a mixed
norm allows us to enforce some sparsity struc-
ture, a particular case of which is, for instance,
the Group Lasso. We solve the convex prob-
lem by employing proximal minimization algo-
rithms, which can be viewed as refined versions
of gradient descent procedures capable of natu-
rally dealing with nondifferentiability. A numer-
ical simulation on a UCI dataset shows the mod-
ularity of our approach.

1. Introduction
Lately, there has been much attention paid to the problem
of learning from multiple sources. This amount of work has
been mainly spurred by new problems stemming from, e.g.,
bioinformatics or multimedia processing. The main line of
approaches for this situation of learning is that of Multiple
Kernel Learning (MKL) first initiated by Lanckriet et al.
(2004), where the information provided by each data source
at hand is encoded by means of a Mercer kernel.

We address the problem of learning multiple indefinite ker-
nel classifiers, where the kernels used to learn are not nec-
essarily Mercer kernels. Our main motivation is that if Mer-
cer kernels exhibit many interesting mathematical proper-
ties that make them particularly suitable to work with, en-
coding knowledge in terms of a positive definite kernels is
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not always possible. The idea of making use of several ker-
nels is to take advantage of many sources of information,
hoping a reliable algorithm can single out the useful ones.

Being able to identify the relevant information in terms
of data or kernels is also very important. To achieve this
task, we propose a formulation of the learning problem that
makes use of mixed norms as a regularizing tool. Mixed
norms allow us to impose some kind of structure on the
data and the kernels that we use, and we enforce our objec-
tive of automatically selecting the relevant information by
using nondifferentiable – but still convex – mixed norms.

Another way of viewing our approach is that of formaliz-
ing the problem of learning kernel classifiers as learning a
representation of data based on (data-dependent) dictionar-
ies. This is a common approach in the signal processing
community, where efficient algorithms exist to handle non-
differentiable minimization problems as those we consider.
We note that learning with several kernels is also closely
related to the popular idea from signal processing to find
representations of data from unions of dictionaries.

The contributions of the present work are: a setting to learn
multiple kernel classifiers with mixed norm regularization,
a data-dependent bound on the generalization ability of the
classifiers learned, a learning algorithm that instantiates the
idea of proximal optimization methods, which provides a
framework to build refined versions of gradient descent al-
gorithms capable of dealing with nondifferentiability.

The paper is organized as follows. Section 2 introduces the
setting of learning multiple kernel classifiers with mixed
norm regularization; insights as to why classifiers learned
from the proposed setting should generalize well are given.
Section 3 recalls the proximal optimization framework and
derives the minimization algorithm to solve our learning
problem. In Section 4, numerical simulations carried out
on a dataset from the UCI repository show how the mixed
norms can indeed induce desired sparsity. Section 5 dis-
cusses how our approach is related to other MKL strategies.
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2. MIKL and Mixed Norms
2.1. Notational Conventions

We use the following notation. Bold letters will usu-
ally denote column vectors. Let L ∈ N and M ∈
N; for a doubly indexed set of real coefficients (α`m),
with 1 ≤ ` ≤ L and 1 ≤ m ≤M , α•m is the column
vector α•m = [α1m · · ·αLm]>, α`• the column vector
α`• = [α`1 · · ·α`M ]> and α is the column vector α =
[α>•1 · · ·α>•M ]>.

I(p) is such that I(p) = 1 if p is true and I(p) = 0
otherwise. The hinge function is denoted as |u|+ =
(max(u, 0)) and for any real vector u, JuK2+ stands for
JuK2+ =

∑
k |uk|2+.

2.2. Setting

We focus on the problem of supervised binary classifi-
cation. We are interested in learning classifiers from a
training sample S = {(xi, yi)}ni=1 of n labeled pairs
(xi, yi) from the product space Z = X × Y , where
Y = {−1,+1} is the set of labels and X is the input
space. These pairs are the realizations of n independent
copies (X1, Y1), . . . , (Xn, Yn) of a random labeled vari-
able (X,Y ) distributed according to an unknown and fixed
distribution D on Z . With a slight abuse of notation S will
also denote the random sample {(Xi, Yi)}ni=1.

The classifiers that we consider are multiple kernel clas-
sifiers where the kernels used are not necessarily posi-
tive definite kernels: we consider the largest possible def-
inition and a kernel k is merely an element of RX×X .
Throughout the paper, we consider that we have at hand
a set K = {k1, . . . , kτ} of τ kernels and multiple ker-
nel classifiers are the signed versions of functions f from
the sample-dependent family FS defined for a training set
S = {(xi, yi)}ni=1 as 1

FS =

x 7→
n,τ∑
i,t=1

αitkt(xi,x) : α ∈ Rnτ , kt ∈ K

 .

(1)
Thus, the output predicted for x by f ∈ FS is sign(f(x)).

With this setting, learning a classifier from S comes down
to the problem of finding a vector α that entails a low gen-
eralization error. To this end, we propose to set α as the
solution of the following penalized optimization problem:

min
α∈Rnκ

n∑
i=1

∣∣1− yik>i α
∣∣2
+

+
λ

q
‖α‖qpq;r (2)

for λ > 0, p, q ∈ {1, 2} and r ∈ {1, 2}. Here, α is the

1A bias term is taken into account by adding a constant kernel
k0 to K such that k0(x,x

′) = 1, ∀x,x′ ∈ X .

column vector associated with the doubly indexed set of
coefficients (αit) 1≤i≤n

1≤t≤τ
and ki is the ith column of

K = [K1 . . .Kτ ]> ∈ Rnτ×n, (3)

where Kt is the matrix Kt = (kt(xi,xj))1≤i,j≤n associ-
ated with kernel kt. Mixed norm ‖ · ‖pq;1 is such that:

‖α‖pq;1 =

 n∑
i=1

[
τ∑
t=1

|αit|p
]q/p1/q

, (4)

and ‖ · ‖pq;2 such that:

‖α‖pq;2 =

 τ∑
t=1

[
n∑
i=1

|αit|p
]q/p1/q

, (5)

(note that the order of summation has changed). As we
discuss below, the choice for the values of p and q, if one is
set to 1, induces different sparsity structures for the solution
α of (2).

The left-hand side of objective function (2) is the squared
hinge loss, which is used by the 2-norm Support Vector
Machines (Boser et al., 1992; Cortes & Vapnik, 1995). This
loss is differentiable everywhere, a feature that will render
some parts of the optimization procedure easy to derive.
In addition, it is straightforward to see that the loss part is
convex with respect to α.

The second term is a regularization part, which allows us
to control the capacity of the class of classifiers considered.
For the set of values that we consider for p and q, namely
p, q ∈ {1, 2}, the regularization part, i.e. the mixed norm
to the qth is a convex function of α; the resulting objec-
tive function is henceforth convex in α, since λ > 0. Note
however that this objective function becomes nondifferen-
tiable as soon as p or q is equal to 1, which is the situation
of interest to us since such a choice induces sparsity on the
optimal α. This nondifferentiability is nicely handled by
the proximal minimization algorithm that we derive.

2.3. Expected Sparsity Structure

The minimization problems (2) that we focus on will use
mixed norms such that p = 1 or q = 1, whichever r. The
reason why we retain this setting is because it may induce
sparsity on the optimal α. Such sparsity is useful from two
different points of view. On the one hand, it may help iden-
tify which of the different kernels used are indeed informa-
tive for the problem at hand by, e.g., setting all the coef-
ficients of α related to a specific kernel kt to 0, in which
case α•t = 0, or by setting all the coefficients of α related
to one xi to 0, which corresponds to αi• = 0. On the other
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Figure 1. Expected sparsity structure of α for different norms ‖·‖pq;r used, where white squares in α correspond to 0 coefficients. When
r = 1 ((a) and (b)), the sparseness is defined with respect to the αi• vectors, which are indicated with one color; the corresponding
column ofK that are used by the resulting function are shown using the same colors. When r = 2 ((c) and (d)), the sparseness is defined
with respect to the kernels. See text for detailed explanations.

hand, sparseness, or more precisely, the use of a `1-like pe-
nalization (which is the case if p or q is equal to 1) is useful
to draw generalization bounds as we show just below.

The structure of the sparsity of α, depends not only on
which of p or q is equal to 1 but also on the value of r. We
may summarize the expected pattern of sparsity as follows.

If p = q = 1 then ‖α‖pq;1 = ‖α‖pq;2, for all α. A large
number of coefficients αit are expected to be 0, as with the
Lasso (Tibshirani, 1996).

If r = 1, the sparseness is related to the xi’s. If p = 1 and
q = 2, each xi only uses a limited number of kernels, or in
other words, the αi•’s are sparse (see Figure 1(a)). If p = 2
and q = 1, then we may expect several αi• to be zero,
meaning that the kernel expansion of the decision function
is based on few training vectors xi only; these vectors may
be thought of as ’support vectors’ (see Figure 1(b)).

If r = 2, the sparseness is related to the kernels used. If p =
1 and q = 2, then the vectors α•t are expected to be sparse
and only few xi’s are activated per kernel (see Figure 1(c)).
If p = 2 and q = 1 then some kernels are expected to
be discarded and not used in the decision function learned:
some vectors α•t are expected to be 0 (see Figure 1(d)).

For r ∈ {1, 2}, ‖ · ‖12;r is related to the Elitist-Lasso of
Kowalski and Torrésani (2008) while ‖ · ‖21;r is related to
the Group-Lasso of (Yuan & Lin, 2006).

2.4. A Data-Dependent Generalization Bound

Here, we give insights as to why a classifier learned
by solving (2) may generalize and we provide a data-
dependent bound on the generalization error for such a clas-
sifier. This bound relies on a recent and elegant result about
the generalization ability of classifiers drawn from sample-
dependent classes presented by Ben-David et al. (2008), a
particular case of which focuses on a generalized notion of
Rademacher complexity that we recall here.

Definition 1 (Ben-David et al. (2008)). The Rademacher

complexity R∗n(FS) of a sample-dependent hypothesis
class FS is defined as

R∗n(FS) = sup
S={(xi,yi)}ni=1

Eσ

[
sup
f∈FS

1
n

n∑
i=1

σif(xi)

]
,

where σ is a vector of n independent Rademacher vari-
ables, i.e. P(σi = 1) = P(σi = −1) = 1

2 , i = 1, . . . , n.

Ben-David et al. (2008) provide the following result.
Theorem 1. Assume that ∀S, S′ ∈ ∪∞i=1Zi, S ⊆ S′ ⇒
FS ⊆ FS′ . For all distributions D on Z , ∀n > 0, then
with probability at least 1 − δ over the random draw of
S = {(Xi, Yi)}ni=1 the following holds: ∀f ∈ FS ,

PD(Y f(X) ≤ 0) ≤ Ênφ(Y f(X))+16R∗2n(FS)+

r
log 1/δ

2n
,

where φ(γ) = min(|1 − γ|2+, 1) is the clipped squared
hinge loss and Ênφ(Y f(X)) = 1

n

∑n
i=1 φ(Y f(Xi)).

Note that we have slightly modified the result of Ben-David
et al. (2008) so that it takes into account the squared hinge
loss. To do that, we have used a structural result on the
Rademacher complexity of classes of composite functions
given by Bartlett and Mendelson (2002).

Let us now consider that p, q, r and τ are fixed. We define
the set An(κ) ⊆ Rnτ as

An(κ) = {α : α ∈ Rnτ , ‖α‖pq;r ≤ κ}

and the sample-dependent hypothesis class FS(κ) as, for
S = {(xi, yi)}ni=1

FS(κ) =

(
x 7→

n,τX
i,t=1

αitkt(xi,x),α ∈ An(κ)

)
.

Theorem 1 applies as soon as an upper bound on the
sample-dependent Rademacher complexity of the hypothe-
sis class under consideration can be computed. A bound on
R∗2n(FS(κ)) therefore suffices to bound the generalization
error of the classifier learned through (2). The following
proposition provides such a bound.
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Proposition 1. ∀κ > 0,∀n ∈ N,

R∗2n(FS(κ)) ≤ κ sup
S={(xi,yi)}2ni=1

Eσ
1

2n
‖KSσ‖p′q′;r ,

whereKS is defined as in (3) with respect to the 2n-sample
S and 1

p + 1
p′ = 1 and 1

q + 1
q′ = 1.

Proof. Assume that S is a fixed sample of size 2n and σ a
fixed vector of {−1,+1}2n. Then

sup
f∈FS(κ)

2nX
i=1

σif(xi) = sup
α∈A2n(κ)

2nX
j=1

τX
t=1

αjt

2nX
i=1

σikt(xi,xj)

= sup
α∈A2n(κ)

α>Kσ = sup
α:‖α‖pq;r≤κ/n

α>(Kσ)

≤ κ‖Kσ‖p′q′;r,

where Holder’s inequality has been used twice to get the
last line. Taking the expectation with respect to σ and then
the supremum over S ends the proof.

This allows us to state the following theorem.

Theorem 2. For all distributionsD onZ , ∀n > 0, ∀κ > 0,
with probability at least 1 − δ over the random draw of
S = {(Xi, Yi)}ni=1, ∀f ∈ FS(κ),

PD(Y f(X) ≤ 0) ≤ Ênφ(Y f(X))

+ 16κ sup
S′2n

Eσ
1

2n

‚‚‚KS′2n
σ
‚‚‚
p′q′;r

+

r
log 1/δ

2n
,

where S′2n denotes a sample of size 2n.

Proof. Straightforward using Theorem 1, Proposition 1
and noting that S ⊆ S′ ⇒ FS(κ) ⊆ FS′(κ).

This theorem is useful as soon as the kernels used imply
supS′2n Eσ

1
2n

∥∥KS′2n
σ
∥∥
p′q′;r

= O(n−β) for β > 0. The
following proposition gives an example of a simple con-
dition on the kernels used to be in that situation for some
values of p′, q′ and r.

Proposition 2. Let D be a distribution on Z . If ∃K∞ ∈ R
such that P(kt(X,X ′) ≤ K∞) = 1,∀t = 1, . . . , τ, then

sup
S2n

Eσ
1

2n
‖KS2nσ‖p′q′;r ≤ τK∞

√
ln 4n
n

,

for (p′, q′, r) ∈ {(∞,∞, 1), (∞,∞, 2), (∞, 2, 1), (2,∞, 2)},
i.e., for (p, q, r) ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 2)}.

Proof. We just give the proof for p′ = 2, q′ = ∞ and
r = 1, i.e., p = 2, q = 1 and r = 1. The other cases
can be obtained along the same lines.

Here, S2n denotes an i.i.d sample of size 2n. The di-
mensions of KS2n and σ follow accordingly. Noting that
‖α‖pq;1 =

[∑
i ‖αi•‖qp

]1/q
for any vector α, we have,

dropping the 2n subscript for sake of clarity:

‖Kσ‖2,∞;1 = sup
1≤i≤2n

‖[Kσ]i•‖2

≤ sup
1≤i≤2n

‖[Kσ]i•‖1 (‖α‖2 ≤ ‖α‖1, ∀α)

= sup
1≤i≤2n

τX
t=1

|[Kσ]it|

= sup
1≤i≤2n

τX
t=1

˛̨̨̨
˛

2nX
j=1

kt(xi,xj)σj

˛̨̨̨
˛

≤
τX
t=1

sup
1≤i≤2n

˛̨̨̨
˛

2nX
j=1

kt(xi,xj)σj

˛̨̨̨
˛ .

Now, for fixed t, we can apply Massart’s finite class lemma
(see appendix) to the 2n 2n-dimensional vectors vi =
[kt(xi,x1) · · · kt(xi,x2n)]> of length ‖vi‖ ≤ K∞

√
2n:

Eσ sup
i

˛̨̨̨
˛

2nX
j=1

kt(xi,xj)σj

˛̨̨̨
˛ ≤ K∞

r
ln 4n

n
,

which concludes the proof.

This proposition establishes a (simple) condition so that the
bound of Theorem 2 displays a 1/

√
n factor only for spe-

cific values of p, q and r. Finding a more general condition
for such a factor to be present in the bound for any com-
bination of p, q and r is the subject of ongoing research on
our part; Besov spaces are a possible direction.

3. Algorithms
3.1. Proximal algorithms

This section synthetically describes the proximal frame-
work used to solve problem (2). Proximal algorithms deal
with general problems taking the form of

min
α
f1(α) + f2(α) , (6)

where f1 and f2 are convex and lower semicontinuous
functions. Resolving such kind of problem relies on prox-
imity operators, introduced by Moreau (1965). More de-
tails on the proximal framework can be found in the work
of Combettes and Pesquet (2007).

Definition 2 (Proximity operator). Let ϕ : RP → R be
a lower semicontinuous, convex function. The proximity
operator proxϕ : RP → RP associated with ϕ is given by

proxϕ(u) = argmin
α∈RP

1
2
‖u−α‖22 + ϕ(α) .
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Algorithm 1 Forward-backward proximal algorithm
input Ky , γ, with γ < 2/β

initialize α(0) ∈ Rnτ (for instance 0)
repeat

α(s+1) = proxγf1

“
α(s) − γ∇αf2(α)

”
until convergence

When f1 is convex lower semicontinuous, and f2 is dif-
ferentiable with ∇f2 β-Lipschitz, then Problem (6) can be
solved with Algorithm 1. Combettes and Wajs (2005), and
more recently Combettes and Pesquet (2007), show that
this algorithm converges to a minimum of Problem (6).

3.2. Proximity operators

Here, we are interested in proximity operators related to
mixed norms (Kowalski, 2008). In Problem (6), the mixed
norm penalty f2(α) = q−1λ‖α‖qpq , with p, q ≥ 1, is a
convex lower semicontinuous function, nondifferentiable
in 0. Furthermore, ∇αf2(α) is only β-Lipschtiz when
p, q ∈ {1, 2}. We thus limit the study of proximity op-
erators for the norms ‖ · ‖1, ‖ · ‖2, ‖ · ‖12, ‖ · ‖21.

Proposition 3 (Proximity operators for mixed norms). Let
u ∈ RP be indexed by (`,m) and λ > 0. The proximity
operators for λ‖ · ‖pq , with p, q ∈ {1, 2}, defined by

α̂ = proxλ‖.‖qp,q (u) = argmin
α∈RP

1
2
‖u−α‖22 +

λ

q
‖α‖qp,q ,

are given coordinate-wise for each (`,m) by:

• when p = q = 1,

α̂`,m = sign(u`,m) ||u`,m| − λ|+ ,

which is the well-known soft-thresholding operator;

• when p = 2 and q = 2,

α̂`,m =
1

1 + λ
u`,m ;

• when p = 2 and q = 1,

α̂`,m = u`,m

∣∣∣∣1− λ

‖u`•‖2

∣∣∣∣
+

;

• when p = 1 and q = 2,

α̂`,m = sign(u`,m)

∣∣∣∣∣∣∣∣∣|u`,m| −
λ

M∑̀
m`=1

ǔ`,m`

(1 + λM`)‖u`•‖2

∣∣∣∣∣∣∣∣∣
+

,

Algorithm 2 Forward-backward for squared hinge loss

input Ky , λ, γ, with γ < 2/‖KT
y Ky‖

initialize α(0) ∈ Rnτ
repeat

α(s+1) = proxγλ‖.‖qpq

“
α(s) + γKT

y [1−Kyα]+

”
until convergence

where ǔ`,m` denotes the |u`,m` | ordered by descend-
ing order for fixed `, and the quantity M` is the num-
ber such that

ǔ`,M`+1 ≤ λ
M`+1∑
m`=1

(ǔ`,m` − ǔ`,M`+1) ,

and

ǔ`,M`
> λ

M∑̀
m`=1

(ǔ`,m` − ǔk,M`
) .

3.3. Solving Problem (2) with Proximal Optimization

The squared hinge loss can be restated in matrix form as
J1−KyαK2+, where Ky = diag([y1, . . . , yn])K>. In the
previous section, we have shown how to compute the prox-
imity operators for ‖ · ‖pq;r norms. Let us remind that
f1(α) = J1 − KyαK2+, is differentiable with gradient β-
Lipschitz, while f2(α) = q−1λ‖α‖qpq , with p, q ∈ {1, 2},
is a convex lower semicontinuous functions, nondifferen-
tiable in 0. Thus, we can use the forward-backward strat-
egy given in Algorithm 1 to solve Problem (2). To do so, it
suffices to compute ∇J1−KyαK2+ = −KT

y J1−KyαK+,
which is β-Lipschitz with β = ‖KT

y Ky‖. The resulting
procedure for Problem (6) is given in Algorithm 2.

4. The Good, the Bad, and the Ugly: a
Numerical Illustration

In this section, our aim is to exhibit the effects of regular-
ization when using a structure on kernels or data. The struc-
ture is introduced in Problem (2) by mixed norms ‖ · ‖pq;r,
with p, q ∈ {1, 2} as explained in section 2. An in-depth
study concerning the predictive performances using actual
indefinite kernels will be adressed in a longer version of
this paper.

Here, we compare Algorithm 2 for different regularization
terms, with regard to the sparsity behavior. The comparison
is done on the Titanic dataset, provided by Gunnar Rätsch. 2

This binary classification problem consists of 150 training
and 2051 test examples.

We have designed a global kernel matrix, composed of
three kernels, chosen so that a classifier obtains Good, Bad,

2
http://ida.first.fraunhofer.de/projects/bench/
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and Ugly performances, according to the state of the art.
More precisely, we have K = [KG,KB ,KU ], where:

• KG, a linear kernel, is the Good guy;

• KB , a Gaussian kernel of width 0.1, is the Bad guy;

• KU , a Gaussian kernel of width 100, is the Ugly guy.

As baseline performances, the lowest test errors achieved
with Algorithm 2, using the ‖ · ‖2 norm, with kernels KG,
KB and KU taken separately, are respectively 21.84%,
25.89% and 32.57%

In Figure 2, we compare the influence of the different regu-
larizations, with K = [KG,KB ,KU ]. Here, the parameter
λ has been chosen by a 5-fold cross-validation procedure,
between logarithmically spaced values varying from 1 to
105. The classification error rate, which is 22.92% for the
‖ · ‖21;1 norm, and 21.84% for the other norms, was com-
puted on the test set.

• The use of the norm ‖ · ‖2 does not single out either
of KG or KB . Ugly’s coefficients are all smoothed
towards zero. According to the nature of the ‖ · ‖2
penalization, there is no sparsity induced.

• Contrary to the ‖ · ‖2 regularization, the ‖ · ‖1 norm
introduces sparsity everywhere. The most influent co-
efficients belong to KG, and only few of them are
nonzero. Even if many coefficients related to the Ugly
kernel are nonzero, they still remain small in magni-
tude.

• The ‖ · ‖21;2 norm, which focuses on the kernel struc-
ture, identifies quite well the Good kernel, giving to
the corresponding coefficients values close to one.
Even though it is not discarded, an insignificant rel-
evance is assigned to the Ugly kernel.

• The ‖·‖12;2 penalization behaves similarly as the ‖·‖1
norm. However, one can see in the Bad kernel that
some coefficients have a higher importance, which is
consistent with the nature of the norm. Indeed, it is ex-
pected that within each relevant kernel, the penaliza-
tion puts more weight on the most relevant elements.

• The ‖·‖21;1 regularization is supposed to put emphasis
on the most relevant observations, whatever the ker-
nel, and to eliminate the others. In that sense, the
remaining coefficients can be envisioned as support
vectors. This is quite well illustrated on Figure 2.

• Finally, for all data, the ‖ · ‖12;1 norm identifies the
most significant kernels for the classification task. It
is worth noting that there are few contiguous lines: for
numerous observations, only one kernel is selected.

One can note that the Ugly kernel is involved in the solu-
tions related to the ‖ · ‖1 and ‖ · ‖21;2 norms, which could
appear inconsistent. An insight concerning the presence
of the Ugly kernel is that λ was chosen through cross-
validation based on the generalization error. As Leng et al.
(2004) showed for the Lasso, this might be not optimal in
terms of kernel selection. A slight increase of λ allowed us
to discard the Ugly kernel (when using the ‖ · ‖21;2 norm),
or to significantly reduce its influence (when using the ‖·‖1
norm).

5. Discussion
The formulation of the MKL problem by Bach et al. (2004)
may be seen as the kernelization of the Group-Lasso, con-
sidering penalties on elements ft from several RKHS Ht ,
in a standard SVM problem.Rakotomamonjy et al. (2007)
tackled the dual formulation. It consists of explicitly opti-
mizing a convex combination of kernels, which defines the
actual SVM kernel K(x,x′) =

∑τ
t=1 σtKt(x,x′), where

Kt is the reproducing kernel of Ht, and σt the coefficients
to be learned under a `1 constraint.

MKL involves a kernel which is a convex combination of
candidate kernels, where the coefficients of the less rele-
vant ones are shrinked towards zero. In that sense, using
‖ · ‖21;2 in Problem (2) is closely related to MKL, as it in-
duces sparsity in the kernels. We may note that MKL not
only enforces sparsity in kernels but also with respect to
data, since it essentially is a SVM problem and thus pro-
duces (few) support vectors. To achieve such a joint spar-
sity in our framework, we would have to sacrifice the con-
vexity of ‖ · ‖pq;r, by choosing p, q ≤ 1.

Another difference with MKL is that we do not have any
notion of ‘norm’ of f ; instead we control the (mixed) norm
of synthesis coefficients α`m in the frame generated by the
kernels. This perspective is closely related with the idea
of expansion with respect to a dictionary of ?-lets (such as
wavelets) in signal processing.

6. Conclusion and Further Work
We have proposed a mixed norm setting to learn multiple
kernel classifiers. On the contrary to a common assumption
on kernel positive definiteness, our framework is still valid
when using indefinite kernels. The learning problem that
tackle can be formulated as a convex optimization prob-
lem and the desired sparsity structure can be enforced by
the choice of the mixed norm used, at the price of render-
ing the optimization problem nondifferentiable. To cope
with this nondifferentiability, we derive an optimization al-
gorithm stemming from the proximal framework. Simula-
tions showing the modularity of our approach are provided.
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This work raises several open problems. First, we would
like to provide more extensive numerical simulations, es-
pecially with indefinite or nonsymmetric kernels. The pri-
mary application we have in mind is image categorization,
where the kernels are based on Kullback Leibler diver-
gences between probability density functions derived from
wavelet decompositions (Piro et al., 2008). We also plan
to investigate the possibility of analytically computing the
regularization path for λ. Finally, we have been working
on two extensions of our optimization procedure, namely
(a) a chunking strategy (Osuna & Girosi, 1997) to make a
better use of the resulting sparseness and (b) the adapta-
tion of latest advances in convex optimization introduced
by Nesterov (2007) to our learning problem.
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Appendix
Theorem 3 (Holder’s Inequality). Let p, q ≥ 1 and n ∈ N.
If 1
p + 1

q = 1 then

∀u,v ∈ Rn,
n∑
i=1

|uivi| ≤

[
n∑
i=1

|ui|p
] 1
p
[

n∑
i=1

|vi|q
] 1
q

.

Lemma 1 (Massart’s finite class lemma). Let A be a finite
subset of Rn with each vector x = [x1 · · ·xn]> inA having
norm bounded by r = max ‖x‖2. If σ is an n-dimensional
vector of independent Rademacher variables, then

Eσ

"
sup
x∈A

1

n

˛̨̨̨
˛
nX
i=1

xiσi

˛̨̨̨
˛
#
≤
r
p

2 ln 2|A|
n

.

(We have slightly changed the statement from its original
form to take the absolute value into account.)
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Figure 2. Relevance maps of α•t, with t ∈ {G,B,U}, for different norms. The coefficients have been normalized, so that αit ∈ [0, 1].
Top: no structure defined. Middle: structure defined with respect to the kernels. Bottom: structure defined with respect to the data.


