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Abstract

Virtually all methods of learning dynamic
systems from data start from the same ba-
sic assumption: that the learning algorithm
will be provided with a sequence, or trajec-
tory, of data generated from the dynamic sys-
tem. In this paper we consider the case where
the data is not sequenced. The learning algo-
rithm is presented a set of data points from
the system’s operation but with no tempo-
ral ordering. The data are simply drawn as
individual disconnected points.

While making this assumption may seem ab-
surd at first glance, we observe that many sci-
entific modeling tasks have exactly this prop-
erty. In this paper we restrict our atten-
tion to learning linear, discrete time models.
We propose several algorithms for learning
these models based on optimizing approxi-
mate likelihood functions and test the meth-
ods on several synthetic data sets.

1. Introduction

Learning dynamic systems from data is the traditional
topic of system identification in control theory and
many algorithms have been proposed. In the machine
learning literature, the learning of graphical models,
such as dynamic Bayesian networks, and the learning
of various types of Markov models have been studied
for the same problem, often with discrete state spaces.
Virtually all of these methods start from the same ba-
sic assumption: that the learning algorithm will be
provided with a sequence, or trajectory, of data gen-
erated from the dynamic system. Here we consider
the case where the data is not sequenced. The learn-
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ing algorithm is presented a set of data points from
the system’s operation but with no temporal ordering.
The data are simply drawn as individual disconnected
points, and usually come from many separate execu-
tions of the dynamic system.

Many scientific modeling tasks have exactly this prop-
erty. Consider the task of learning dynamic models of
galaxy or star evolution. The dynamics of these pro-
cesses are far too slow for us to collect successive data
points showing any meaningful changes. However, we
do have billions of single data points showing these
objects at various stages of their evolution.

At more modest time scales, the same problem arises in
the understanding of slow-moving human diseases such
as Alzheimer’s or Parkinson’s, which may progress
over a decade or more. It is feasible to follow pa-
tients over the full course of their disease and many
studies do exactly that. However, a scientist consid-
ering new hypotheses about the effects of previously
unmeasured proteins or genes would prefer to collect
data from their current pool of patients and assemble a
dynamic model immediately rather than wait a decade
for full trajectories of the disease to be collected.

At the other end of the spectrum, cellular or molecu-
lar biological processes may be too small or too fast to
permit collection of trajectories from the system. Of-
ten, the measurement techniques are destructive and
thus only one data point can be collected from each
sample even though a rough indication of the relative
timing between samples may be known.

In all of these applications, scientists would like to con-
struct a dynamic model using only unsequenced, indi-
vidual data points collected from the system of inter-
est. In this paper, we begin investigation of this topic
by considering fully observable, linear, continuous-
state, discrete-time systems. There is considerable op-
portunity for future work by relaxing or modifying any
combination of these assumptions.
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2. Learning Linear Dynamical Systems

We consider discrete-time linear dynamical systems,
for which the system equation is defined as the follow-
ing:

xt+1 = Axt + ε, (1)

where xt ∈ Rn is the state vector at time t, A ∈ Rn×n

is the state transition matrix, and ε is the noise vector.
We assume hereafter that ε ∼ N(0, σ2I), where I is
the identity matrix. The system also has a start state,
which we denote as x0. Thus, the linear dynamical
systems considered in this paper are fully characterized
by Θ = {A, σ2,x0}.

2.1. Learning from sequenced data

Before discussing our approach for non-sequenced
data, we observe that learning from sequenced data
can be done in a straightforward way. Suppose we have
collected N data points, x1, . . . ,xN , from a single exe-
cution of the system where the ith data point occurred
at time i. Then we can perform a standard regres-
sion to obtain estimates of the parameters. We form
an input matrix, X, with N − 1 rows containing the
observations x1, . . . ,xN−1 and a corresponding output
matrix, Y , with N−1 rows containing the observations
x2, . . . ,xN . Then A is estimated as (X

′

X)−1(X
′

Y ),
where X ′ is the transpose of X, and σ2 is estimated
by ‖Y − XA‖2F /(N − 1)/n as usual, where ‖ · ‖F is
the matrix Frobenius norm. If more than one trajec-
tory is observed, X and Y are assembled accordingly
such that each row contains pairs of state observations
at time t and t + 1. In fact, this approach does not
require long trajectories. It only needs enough pairs

of consecutive observations. However, as mentioned
in Section 1, with our target systems it is difficult to
collect even two consecutive observations at desirable
time intervals.

2.2. Learning from non-sequenced data

The problem without observed state sequences is much
more difficult. We assume that N executions of the
dynamic system (1) have taken place, and from each
execution we have observed a single data point drawn
uniformly at random from the sequence of states gener-
ated in that execution. The result is N data points, xi,
each from a different trajectory and having occurred
at an unknown point in time.

We focus on estimating A and σ2, and treat the start
state, x0, as a nuisance parameter. Let χ denote the
state space, and fθ(x) denote the state space density
induced by the underlying linear system parameter-
ized by θ ∈ Θ. To write down the likelihood, we first

consider a single observation xi. Given any point x in
the state space, the likelihood of xi coming from it can
be derived from (1) by having xt+1 = xi and xt = x.
But the true predecessor of xi is not observed, so we
take the expectation over the state space density at
the previous time point. Assuming that the N trajec-
tories are generated independently, we then have the
following likelihood l(θ):

N
∏

i=1,
t(xi)>0





∫

x∈χ

exp(− ‖xi−Ax‖2

2σ2 )

(2πσ2)
n
2

gθ(x, t(xi)− 1)dx



, (2)

where ‖ · ‖ is the vector two-norm, t(·) gives the time
stamp of a state vector, and

gθ(x, j) ≡
fθ(x)I(t(x) = j)

∫

y∈χ
fθ(y)I(t(y) = j)dy

(3)

is the state space density at time j, as shown by the
indicator function I(·). Since gθ(x, j) and the true
time stamp t(xi) are unknown, estimating A and σ2

might require maximizing (2) jointly over the param-
eter space and the missing information, which is com-
putationally formidable. We thus employ several ap-
proximations to (2) that lead to tractable estimation
procedures.

3. Approximate Likelihood Approaches

This section presents two approximate likelihood ap-
proaches to estimate A and σ2.

3.1. An Unordered Model

Maximizing (2) directly is difficult because we know
neither the time stamps of the data points, t(xi), nor
the state space density, gθ(x, j). We first remove the
problem of unknown time stamps by replacing gθ(x, j)
with fθ(x). This is equivalent to a generative model
where a random sample is chosen from fθ(x) and an
observation is created by applying (1) to it. No ex-
plicit consideration of t(xi) is necessary. This change
means we need an estimate of fθ(x). We simply use
the empirical density given by the samples we have.
This leads to the following approximate likelihood:

l̂1(X|θ) =
N
∏

i=1





∑

j 6=i

exp(−
‖xi−Axj‖

2

2σ2 )

(N − 1)(2πσ2)
n
2



 . (4)

where X is the matrix of N state observations. We
exclude the case that xi generates itself to avoid the
degenerate estimate A = I. Note that the correspond-
ing Y matrix (as in section 2.1) is not only unknown,



Learning Linear Dynamical Systems without Sequence Information

but does not even exist because the data does not con-
tain successive observations from the same trajectory.

Eq. (4) is a product of summations of Gaussian den-
sity functions. This structure is also shared by the
likelihood of Gaussian Mixture Models (GMM), for
which Expectation Maximization (EM) algorithms are
the common choice for estimation. Although (4) is
not a GMM, its similar structure allows us to derive
an EM procedure for estimation with analytical up-
date rules. We first introduce a latent variable ma-
trix Z ∈ {0, 1}N×N that indicates which observation
is generated by which:

Zij =

{

1 if xi is generated from xj

0 otherwise
, j 6= i, (5)

Zii = 0,
N
∑

j=1

Zij = 1. (6)

Note that here we have an additional approximation
that is not shared by EM for GMMs. In GMMs, we
assume each point really does come from a particu-
lar cluster, but we do not know which one it is. In
our problem, the true predecessor point does not exist
in the data at all and we make an approximation by
assuming that it does. An immediate consequence is
that σ2 in (4) now accounts for two types of errors:
the noise ε in the system (1) and the error introduced
by approximating the true state space density with the
empirical density. With Z, we can write the complete
log likelihood as

log l̂1(X,Z|θ)

= log

N
∏

i=1

N
∏

j=1

(

exp(−
‖xi−Axj‖

2

2σ2 )

(N − 1)(2πσ2)
n
2

)Zij

∝−

N
∑

i=1

N
∑

j=1

Zij

(

‖xi −Axj‖
2

2σ2
+

n

2
log(2πσ2)

)

. (7)

In the E-step, we compute the posterior mean Z̃ij :

Z̃ij = P (Zij = 1|X)

=











exp(−
‖xi−Axj‖2

2σ2
)

P

s6=i exp(−
‖xi−Axs‖2

2σ2
)
, i 6= j,

0, i = j.

(8)

In the M-step, we replace Zij by Z̃ij and maximize (7)
on A and σ2. The solution has a simple form:

A =





N
∑

i=1

N
∑

j=1

Z̃ijxix
′
j









N
∑

i=1

N
∑

j=1

Z̃ijxjx
′
j





−1

, (9)

σ2 =

∑N
i=1

∑N
j=1 Z̃ij‖xi −Axj‖

2

n
∑N

i=1

∑N
j=1 Z̃ij

, (10)

Algorithm 1 Expectation Maximization for (4)

Input: Data points x1, . . . ,xN

Initialize A0 and σ2
0 , set T = 0

repeat

Update Z̃T+1 by (8) with AT and σ2
T

Update AT+1 by (9) with Z̃T+1

Update σ2
T+1 by (10) with AT+1 and Z̃T+1

T ← T + 1
until The likelihood (4) does not increase

where x′
j is the transpose of xj . (10) is the maximum

likelihood estimator (MLE) for the variance of Gaus-
sians1. Combining (8), (9), and (10), we present an
EM procedure, Algorithm 1, to maximize (4). In the
empirical results section we will use a random initial-
ization at the first step.

Although (4) leads to simple and computationally ef-
ficient estimation, one may worry that ignoring the
need for directional consistency in the Zijs makes the
approximation too loose and results in poor estimates,
especially when the sample size is limited. We thus
propose a variant of (4) that incorporates additional
constraints in the next section.

3.2. A Partial-order Model

The Unordered Model approximates the state
space density without consideration of the order-
ing/directionality implicitly embedded in Z, and hopes
that as the sample size grows, the estimates of A and
σ2 converge to the truth and automatically recover
the ordering. In our second approach, we take into
account the ordering relation explicitly. Our second
approximate likelihood is as follows:

l̂2(θ) =

N
∏

i=1,
i/∈S

N
∑

j=1

(

exp(−
‖xi−Axj‖

2

2σ2 )

(2πσ2)
n
2

ωij

)

, (11)

in which S ≡ {i : t(xi) ≤ t(xj) ∀j} and

ωij ≡

{

0 i ∈ S,
I(t(xj)=t(xi)−1)

P

N
j′=1

I(t(x′
j)=t(xi)−1)

i /∈ S.
(12)

is the empirical frequency that xi is generated from
xj . The set S denotes the observations that are the
earliest in time (hence cannot be generated from other
observations), which can be viewed as rough estimates
of the start state. If the system does cycle through
the same states (such as rotation on a plane), the true

1For the case of a full covariance matrix, it is easy to
check that (9) is still valid and (10) should be replaced by
the MLE of a Gaussian covariance.
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start state may not be identifiable but A and σ2 still
may be. In that scenario, S is chosen arbitrarily and
the relative time offsets between points may still be
correct, thus leading to good estimates of A and σ2.

As mentioned before, the true time stamps t(xi) of ob-
servations are missing, and one may think of treating
them as latent variables. However, this turns the es-
timation into optimization over permutations, which
is computationally infeasible. We instead consider the
ωij as unknown parameters to be estimated, which we
interpret as decomposing the global sequence informa-
tion into parameters that indicate the relative order
in each pair of observations. As with the Unordered
Model, we again make an approximation by assuming
that the predecessor of each point exists in the data.

Similarly to (4), (11) is also a product of summations
of Gaussians. In the terminology of GMMs, (11) con-
siders the “mixture probabilities” ωij as unknown pa-
rameters, whereas (4) adopts fixed, uniform mixture
probabilities 1/(N − 1). One may thus suggest adding
an M-step in Algorithm 1 to estimate ωij . However,
due to the set S of estimated start states in (11), the
M-step for ωij may be difficult to derive analytically.
Moreover, typical EM procedures for mixture models
do not consider the directionality constraints embed-
ded in ωij . For instance, if xi is likely to be generated
from xj (ωij > 0) and xj is likely to be generated from
xk (ωjk > 0), then xk is unlikely to be generated from
xi (ωki ≈ 0). Formally speaking, we want ω, the ma-
trix with ωij as the (i, j)th entry, to have the following
two properties:

1. Each row of ω sums to one or zero.

2. As a weighted adjacency matrix, ω represents a
directed acyclic graph.

The first constraint simply restates (12), while the sec-
ond enforces a partial order among the observations.
Note that for both constraints to be satisfied, one or
more rows in ω must sum to zero, and the correspond-
ing data points form the set S.

With these two constraints, it becomes very difficult
to develop an EM procedure with compact update
rules. In particular, maximizing (11) on ω is hard,
since the aforementioned two constraints on ω do not
form a convex set. Moreover, Nicholson (1975) proved
that a weighted adjacency matrix M contains no cy-
cle if and only if permanent(M + I) = 1, and Valiant
(1979) showed that computing the matrix permanent
is #P-complete. We therefore employ further approx-
imations here. Instead of using the common technique
of relaxation to deal with complicated constraints, we
tighten the constraints to have the feasible region more

computationally amenable. The tighter version is the
following:

1. ω can only take values in {0, 1}, and each row
contains at most one positive entry.

2. As an adjacency matrix, ω forms a directed tree.

The new constraints turn the problem into a combina-
torial one, which, at first glance, seems even more dif-
ficult. As we will show later, the fact that the binary
version is more computable depends entirely on our
restricting the adjacency matrix to be a directed tree,
i.e, a directed acyclic graph where each node, other
than the root, has exactly one parent. Under the new
constraints, the set S has only one data point, which
is the root of the directed tree. Combining the afore-
mentioned directionality constraints with (11), we pro-
pose the following constrained maximization problem
for estimation:

max
A,σ2,ω,

r∈{1,...,N}

N
∑

i=1,
i6=r

log

N
∑

j=1

(

exp(−
‖xi−Axj‖

2

2σ2 )

(2πσ2)
n
2

ωij

)

(13)

s.t. ωij = {0, 1}, (14)

N
∑

j=1

ωij = 1, i 6= r,

N
∑

j=1

ωrj = 0, (15)

ω forms a tree with root xr. (16)

where r is the index of the point in S. With the con-
straints (14) and (15), the log-likelihood in (13) can
be simplified as the following:

N
∑

i=1,
i6=r

log
N
∑

j=1

(

exp(−
‖xi−Axj‖

2

2σ2 )

(2πσ2)
n
2

ωij

)

=

N
∑

i=1

log

N
∏

j=1

(

exp(−
‖xi−Axj‖

2

2σ2 )

(2πσ2)
n
2

)ωij

=−

N
∑

i=1

N
∑

j=1

ωij

(

‖xi −Axj‖
2

2σ2
+

n

2
log(2πσ2)

)

. (17)

Interestingly, this objective function is in the same
form as the complete log likelihood (7) of the Un-
ordered Model. One may also notice that ω in (13)
can be viewed as the latent variable Z in Section 3.1
plus some directionality constraints. However, there
is a subtle difference between the roles they play for
each model. For the Unordered Model, Z serves only
as a means to derive the two steps in the EM algo-
rithm, and it is not in the objective function (4) being
maximized nor is it in Algorithm 1, where it has been
replaced by the posterior mean Z̃. In contrast, ω ex-
plicitly appears in the optimization problem (13) as
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Algorithm 2 Alternate Maximization for (13)

Input: Data points x1, . . . ,xN .
Initialize A0 and σ2

0 , set T = 0
repeat

Construct WT by (20) with AT and σ2
T

ωT+1 ←OptimumBranch(WT )
Update AT+1 by (18) with ωT+1

Update σ2
T+1 by (19) with AT+1 and ωT+1

T ← T + 1
until The likelihood (17) does not increase

an unknown parameter to be estimated. To see how
introducing latent variables helps to maximize the like-
lihood, we refer the readers to Section 9.4 of (Bishop,
2006).

Next we discuss how to solve (13). Since (17) has the
same form as (7), the optimal A and σ2 under a fixed
ω have the same expression as (9) and (10):

A =





N
∑

i=1

N
∑

j=1

ωijxix
′
j









N
∑

i=1

N
∑

j=1

ωijxjx
′
j





−1

, (18)

σ2 =

∑N
i=1

∑N
j=1 ωij‖xi − Âxj‖

2

n
∑N

i=1

∑N
j=1 ωij

. (19)

When A and σ2 are fixed, maximizing (17) on ω sub-
ject to (14), (15), and (16) is equivalent to finding a
maximum spanning tree on a directed weighted graph,
in which each data point xi is a node, each pair of
nodes is connected in both directions, and the weight
on the edge (i, j) is

W (i, j) ≡ −

(

‖xi −Axj‖
2

2σ2
+

n

2
log(2πσ2)

)

. (20)

The problem of finding maximum spanning trees on di-
rected graphs is a special case of the optimum branch-

ings problem, which seeks a maximum or minimum
forest of rooted trees (branching) on a directed graph.
Chu and Liu (1965), Edmonds (1967), and Bock (1971)
independently developed efficient algorithms for the
optimum branchings problem. The ones by the former
two are virtually identical, and are usually referred to
as the Chu-Liu-Edmonds algorithm, for which Tarjan
(1977) gave an efficient implementation that runs in
O(N2) time, where N is the number of nodes, for
densely connected graphs. Camerini et al. (1979)
pointed out an error of Tarjan (1977) and provided
a remedy retaining the same time complexity.

With these results, we present an alternate maximiza-
tion procedure, Algorithm 2 for solving (13), where
OptimumBranch(·) taking an edge-weight matrix as

the input argument uses the implementation of Tarjan
(1977) and Camerini et al. (1979). Since Algorithm 2
always increases the likelihood (17), it converges to at
least a local maximum.

Recently in the Natural Language Processing com-
munity, researchers (Smith & Smith, 2007; Globerson
et al., 2007) have developed sum-product inference al-
gorithms for directed spanning trees. These methods
can be used to compute the posterior mean of Z in
Section 3.1 over all directed spanning trees, and thus
lead to an EM algorithm for tree structures. However,
the resulting E-step requires inverting a matrix of di-
mension N × N , which becomes difficult numerically
and computationally as N increases.

4. Experiments

The proposed methods are evaluated on several syn-
thetic data sets. We describe our experiment setting in
Section 4.1, discuss two evaluation criteria in Section
4.2, and report results and findings in Section 4.3.

4.1. Experiment Setting

Given a system matrix A ∈ Rn×n, a Gaussian noise
variance σ2, a starting state vector x0, the maximum
time Tmax, and the desired number N of sample points,
we use Algorithm 3 to sample from multiple trajecto-
ries. In all of the experiments, we set Tmax = 100. We
consider the following three linear dynamical systems.

A two-dimensional divergent system:

A2D =

[

1.01 0
0 1.05

]

, x0 =

[

50
50

]

.

A 200-point sample is shown in Figure 1.

Two three-dimensional divergent systems:

A3D-1 =





1.1882 0.3732 0.1660
−0.1971 0.8113 −0.0107
−0.1295 −0.1886 0.9628



, x0 =





10
10
10



,

A3D-2 =





1.0686 −0.0893 0.3098
0.4385 1.0091 −0.2884
−0.0730 0.0405 0.9625



, x0 =





10
10
10



.

We refer to them as 3D-1 and 3D-2, respectively. Al-
though not differing much in entry values, these two
systems have quite different dynamics, as indicated by
the gradients in Figures 3 and 4. The complex eigen-
values of 3D-1 have a larger absolute value than the
real one, but it is the opposite for 3D-2.

While the results presented here are all on divergent
systems, we also experimented with convergent sys-
tems and got similar results. We tested the proposed
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Algorithm 3 Sampling from multiple trajectories

Input: A, σ2, x0, Tmax, and N
for i = 1 to N do

Pick a random time stamp Ti from {1, . . . , Tmax}.
for t = 1 to Ti do

xt ← Axt−1 + ε, ε ∼ N(0, σ2I).
end for

Set xi = xTi .
end for

Output: A sample x1,x2, . . . ,xN .

methods under a variety of settings. For 2D, we gen-
erated 40 data sets, each containing 200 observations,
with σ2 = 0.2. For 3D-1 and 3D-2, we varied both the
sample sizes and σ2. For the small-sized experiments,
we generated 40 data sets, each containing 200 points,
with σ2 = 0.2, 0.4, 0.6 and 0.8. For the large-sized ex-
periments, we generated 20 data sets, each containing
2,000 points, with σ2 in the same range. We found
that larger values of σ2 overwhelmed the dynamics to
such an extent that no algorithm performed well. We
report the performances of the proposed methods in
Section 4.3

For both the Unordered Model and the Partial-order
Model, the estimates depend on the initializations of
the estimation procedures. Thus, for every data set
we ran Algorithms 1 and 2 each with M random ini-
tializations, and chose the one that gave the largest
likelihood ((4) and (13), respectively) as the final es-
timate. The entries of these random matrices were
sampled independently and uniformly from [0, 1]. We
set M to be 20 and 10 for the small-sized and the large-
sized experiments, respectively. Hereafter we refer to
the two models with random initializations as UM (the
Unordered model) and PM (the Partial-order Model).

In addition to random initializations, we also explored
the use of manifold learning techniques for finding ini-
tial estimates. The rationale is that, for sample points
generated by a linear system, there should be a one-
dimensional projection that indicates the correct or-
der in time. More specifically, we applied a manifold
learning technique to our data, and mapped the sam-
ple points to the most significant coordinate it found.
Then, we sorted the data points according to their one-
dimensional projections and fitted a linear dynamical
system by the technique in Section 2.1. The fitted sys-
tem itself is already an estimate, and can be used to
initialize Algorithms 1 and 2. In our experiments, we
found Maximum Variance Unfolding (MVU) by Wein-
berger et al. (2004) to be the best manifold learning
choice. Finally, to indicate the baseline performance,
we report results from randomly generated matrices.

50 60 70 80 90 100 110 120 130 140 150
0

1000

2000

3000

4000

5000

6000

7000

8000

50 60 70 80 90 100 110 120 130 140 150
0

1000

2000

3000

4000

5000

6000

7000

8000

Figure 1. Left: Sample points of 2D with σ
2 = 0.2. Right:

Gradients estimated by UM.

Table 1. Results on 2D with standard deviations, σ
2 = 0.2

Rand PM+MVU PM UM+MVU UM
ME1.57±0.19 0.06±0.03 0.05±0.06 0.06±0.01 0.05±0.02
CS 0.78±0.05 0.93±0.23 0.96±0.14 0.81±0.29 0.89±0.19

We used the same method and generate the same num-
ber, M , of random matrices as we did to initialize PM
and UM, and selected the one with the highest score.
We refer to this baseline as Rand.

4.2. Evaluation Criteria

One evaluation measure is the error ‖Â−A‖F between
the estimated system matrix Â and the true one A.
However, due to the lack of time stamps, the step size
of the system may not be identifiable from the data,
and the best possible estimate may have a step size
much smaller or larger than the true one. Another
identifiability issue is the direction: It may happen
that the reverse dynamics of a system, meaning go-
ing backward in time, explains the data equally well.
In those cases, even an estimate that successfully cap-
tures the dynamics may produce a large error. We
thus propose the following rate-adjusted matrix error:

ME(A, Â) ≡ min
t
‖A− Ât‖F , (21)

where Ât is Â raised to the power t. The mini-
mum in (21) is hard to solve, so we search for t in
{±1,±2, . . . ,±10,±1/2,±1/3, . . . ,±1/10} and choose
the one that minimizes (21). While (21) takes into
account the changing rate, it has the potential to over-
state the quality of an estimate since it optimizes for
the evaluation criterion. To have a more even eval-
uation, we consider another criterion that compares
system matrices based on gradients at the data points:

CS(A, Â) ≡
1

N

∣

∣

∣

∣

∣

N
∑

i=1

(Axi − xi)
′

(Âxi − xi)

‖Axi − xi‖‖Âxi − xi‖

∣

∣

∣

∣

∣

, (22)

which we refer to as the cosine score. This criterion
measures the similarity between the gradient Axi−xi

of the true system and that of the estimated system,
averaging over all the sample points; a higher score
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(a) 3D-1: matrix error
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(b) 3D-1: cosine score
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(c) 3D-2: matrix error
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(d) 3D-2: cosine score

Figure 2. Results on 3D-1 and 3D-2. The title of each diagram indicates the method and the sample size. For each noise
level, performance measures on different samples are presented in standard box plots with outliers marked as red crosses.

(22) thus means a better estimate. Note that cosine is
a normalized measure of similarity, and therefore alle-
viates the issue of different system step sizes. Also,
since (22) takes the absolute value after averaging,
going forward and backward in time are considered
equally good as long as they do so consistently.

Although our algorithms estimate σ2, the approxima-
tions we employ make the estimates biased. This is be-
cause the estimates effectively encapsulate error due to
the noise in the dynamic system plus error due to the
approximation of the continuous state distributions by
the data. Thus, the estimated σ2 values are much
higher than those from the system and the compari-
son of them is omitted. Development of an appropriate
unbiased estimate is a topic for future work.

4.3. Results and Findings

We tested the following methods: MVU, PM+MVU
(PM initialized by MVU), PM, UM+MVU (UM ini-
tialized by MVU), UM, and Rand. Results on 2D
are in Table 1; MVU is omitted due to space limi-
tation. For this baseline system, every approach per-
forms quite well. Figure 1 shows gradients (Âxi − xi)
given by UM in one of the 2D samples, which are quite
consistent with the true dynamics.

Results on the more complex systems, 3D-1 and 3D-2,
are in Figure 2. Since Rand is independent of data, we
only report its results on the small samples. We did

not apply MVU to the large-sized samples with 2,000
data points, since its underlying semidefinite program
requires a huge amount of time and memory. More-
over, MVU alone usually gave cosine scores as low as
Rand, and as an initialization, it provided little or no
improvement over random initialization in most cases
except UM in small-sized experiments for 3D-1. UM
was competitive with or better than PM in quite a
few cases. However, on the small samples of 3D-1, PM
performed much better than UM. We also see that as
the sample size grew, UM improved more significantly
than PM did. This suggests that imposing directional-
ity constraints may improve the estimation when sam-
ples are small, but it does so at the expense of intro-
ducing some bias to the estimate.

Regarding the effects of different noise levels, most
methods became worse as the noise level increased.
While UM was the most robust against noise in sev-
eral cases, it performed very badly on the large samples
of 3D-1 when σ2 = 0.2, but dramatically improved as
noise increased. We found that for the 20 large sam-
ples of 3D-1 generated with σ2 = 0.2, UM recovered
the true system matrix on nearly half of them, but to-
tally failed on the rest. When it failed, the estimated
A was always nearly diagonal and exhibited dynamics
as depicted in Figure 3(b). This suggests a potential
limitation of UM: Some combinations of dynamics and
noise generate samples on which UM finds more than
one type of estimates that are equally good. Estab-
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Figure 3. Gradients on 3D-1, 2000-points sample, σ
2 = 0.2.

For better visualization, only 1/3 of the points are plotted.

lishing concrete statements on the limitations of our
methods is thus an important future direction.

Finally, we present several gradient plots in Figures 3
and 4, which show arrows Axi − xi at sample points.
For 3D-1, we show a sample where PM succeeded but
UM failed. For 3D-2, PM and UM performed similarly
on most samples, so we present a typical result by PM.

5. Conclusions and Future Directions

We propose and study the problem of learning lin-
ear dynamical systems from non-sequenced data. This
problem is found in several disciplines, ranging from
Astronomy to Biology and Medicine. We propose two
models that approximate the true likelihood; one ig-
nores the hidden order relations between observations,
while the other employs partial order constraints. We
develop simple estimation algorithms for both, and
evaluate them on several synthetic data sets. There
are many interesting opportunities for future work in
developing corresponding methods for other dynamic
models (e.g. discrete state, partial observability, non-
linear dynamics, etc.). We plan to apply our methods
to real astronomical and medical data to assess their
ability of making meaningful scientific discoveries.
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Figure 4. Gradients by PM on 3D-2, 2000-points sample,
σ

2 = 0.2. Cosine score: 0.9574. For better visualization,
only 1/3 of the points are plotted.
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