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Abstract

This paper proposes an efficient sparse metric
learning algorithm in high dimensional space
via an ¢;-penalized log-determinant regular-
ization. Compare to the most existing dis-
tance metric learning algorithms, the pro-
posed algorithm exploits the sparsity nature
underlying the intrinsic high dimensional fea-
ture space. This sparsity prior of learning
distance metric serves to regularize the com-
plexity of the distance model especially in the
“less example number p and high dimension
d” setting. Theoretically, by analogy to the
covariance estimation problem, we find the
proposed distance learning algorithm has a

(m?1log d) /n>

to the target distance matrix with at most m
nonzeros per row. Moreover, from the imple-
mentation perspective, this ¢;-penalized log-
determinant formulation can be efficiently
optimized in a block coordinate descent fash-
ion which is much faster than the standard
semi-definite programming which has been
widely adopted in many other advanced dis-
tance learning algorithms. We compare this
algorithm with other state-of-the-art ones on
various datasets and competitive results are
obtained.

consistent result at rate O <

1. Introduction

An appropriate distance metric has become a fun-
damental tool in many supervised and unsupervised
Appearing in Proceedings of the 26" International Confer-

ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

learning algorithms, such as the nearest neighborhood
classification, kernel methods, k-means and many oth-
ers. Moreover, in a variety of applications such as im-
age retrieval and indexing (Hoi et al., 2008), a proper
distance metric plays an important role to measure the
relevance/irrelevance between different images. There-
fore, to apply a proper distance into these practical
uses, many distance learning algorithms have been
proposed to reveal the intrinsic metric revealing the
semantic meaning between different samples.

Although many existing algorithms for metric learning
have been shown to perform well in various applica-
tions, most of them do not explicitly deal with learn-
ing of a distance metric in a higher dimensional input
space with smaller sample size. This high-dimensional
problem exists in a wide range of applications from im-
age retrieval, face recognition and computational bi-
ology to natural language processing, where the di-
mension of feature space may be comparable to or
substantially larger than the sample size. It is well-
known that such “curse of dimensionality” problem
leads to serious breakdown in many algorithms with
an under-determined problem. In the absence of ad-
ditional model assumptions, it is not well conditioned
to obtain consistent procedures when the feature di-
mension is much larger compared to the sample size.
An effective way to overcome this problem is to im-
pose some restrictions or prior knowledge information
on the model, which regularizes the model complexity
so that it only requires a smaller number of examples
to learn a well posed metric from the perspective of
machine learning theory.

Recently, Euclidean metric prior has been widely used
in many metric learning literatures, such as (Davis
et al., 2007), (Schultz & Joachims, 2004) and (Xing
et al., 2003). It imposes a prior on the metric to be as
close as the Euclidean distance. For example, (Davis
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et al., 2007) employs an information-theoretic regular-
ization term to respect the Euclidean distance in the
input feature space by minimizing the Bregman diver-
gence between the Mahalanobis distance matrix and
the identity matrix corresponding to the Euclidean dis-
tance, subject to a set of linear constraints. By mini-
mizing Bregman divergence, the learned Mahalanobis
matrix usually tends to be as close as the identity ma-
trix. Since the off-diagonal elements of the identity
matrix are all zeros, the identity matrix itself is rather
sparse. But minimizing the Bregman divergence from
the identity matrix cannot guarantee the obtained Ma-
halanobis matrix to be sparse as well. We will show
a formulation of a sparse Mahalanobis matrix reflects
the intrinsic nature of sparsity underlying the input
(especially high dimensional) space from both practi-
cal and theoretical perspectives that serves as the key
prior in the proposed metric learning algorithm.

We motivate the proposed distance metric learning al-
gorithm from the following three aspects.

I We impose a sparse prior on the off-diagonal el-
ments of Mahalanobis matrix to learn a com-
pact distance metric in a high dimensional space.
This prior can be justified from three aspects.
First, from a practical perspective, a sparse Ma-
halanobis matrix with only a small portion of
off-diagonal elements nonzero complies with the
fact that in high dimensional input spaces, the
off-diagonal elements of concentration matrix (i.e.
the inverse of the covariance matrix)are often re-
markably small which can be safely ignored. This
observation reflects the sparse correlations be-
tween different dimensions and supports a sparse
Mahalanobis metric. Second, analogous to the
principle of minimum description length (Hansen
& Yu, 2001) in model selection, the sparse prin-
ciple that yields the most compact model is pre-
ferred in distance metric learning. Third, a sparse
Mahalanobis distance can be computed very effi-
ciently which is of significant importance to many
realistic applications.

IT By analogous to covariance estimation (Raviku-
mar et al., 2008), the proposed sparse metric
learning algorithm in Section 3 has a consis-
tent distance estimation at rate ||[M — M*||p =

o ( (m*logd);

the concentration matrix with at most m nonzero
per row, where M and M™* are the estimated and
target distance matrix respectively, d is the di-
mension number and n is the sample size. This
rate reveals a much consistent result even in the

), with high probability, for

“large d, small n” setting as long as the number
of nonzero elements m is small enough(i.e., the
sparsity requirement).

IIT We show that the obtained ¢;-penalized Log-
Determinant optimization problem for the sparse
metric can be efficiently minimized by leverag-
ing a block coordinate descent fashion algorithm
(Friedman et al., 2007), which is much faster than
the Semi-Definite Programming (SDP) methods
widely used in metric learning.

The remainder of this paper is organized as follows. In
section 2, we first motivate the proposed ¢1-penalized
log-determinant regularization framework. We explain
the superiority of sparsity property from both practical
and theoretical perspectives. Section 3 details the pro-
posed sparse distance metric learning algorithm and an
efficient block coordinate descent optimization method
for this formulation. Section 4 evaluates the proposed
distance metric learning algorithm by comparison with
the other state-of-the-art algorithms. Finally we con-
clude the paper in Section 5.

2. (1-Penalized Log-Determinant
Regularization

We begin this section with some notational definitions.
Our goal is to learn a (squared) Mahalanobis distance

dar (2,y) = (& —y)" M (z — ) (1)

from a set of n examples {x1,z9, -, 2.}
in an input feature space R¢ where M is
a d x d positive semi-definite matrix. Two
sets of pairwise similarity constraints S =
{(zs,2;) |x; and z; are similar} and dissimilarity
constraints D = {(z;,z;) |x; and x; are dissimilar}
are also given. The purpose is to learn a Mahalanobis
distance (1) by leveraging the above similarity and
dissimilarity constraints on these n examples.

We start by imposing a suitable prior knowledge on
the Mahalanobis matrix for learning. As stated in
Section 1, (Davis et al., 2007) biject the Mahalanobis
distance to an equal-mean multivariate Gaussian dis-
tribution and formulate the problem by minimizing
the differential relative entropy between the two mul-
tivariate Gaussians as its prior information. In de-
tail, given a Mahalanobis matrix M, the corresponding
multivariate Gaussian distribution can be expressed as
pla; M) = Lexp (—i(z — p)"M(xz — p)), where Z is a
normalizing constant and M is the concentration ma-
trix of the distribution. In other words, they biject
Mahalanobis matrix into a corresponding concentra-
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Figure 1. It illustrates the distribution of absolute values
of the elements of concentration matrix ™! over a set of
225 dimensional feature vectors. These values are scaled
into [0,1]. The figure illustrates most of these values are
much closer to zero and only a small portion have large
values. Also, 81.60% of elements are less than mean value
0.009.

tion matrix for the multivariate Gaussian. This multi-
variate Gaussian distribution reflects the distribution
of samples revealed by the learned Mahalanobis dis-
tance. However, a simple bijection between Maha-
lanobis distance and equal-mean multivariate Gaus-
sian distribution oversimplifies the underlying metric
structure in (Davis et al., 2007). For example, if we
require the learned metric to be as close as the Eu-
clidean distance corresponding to the identity matrix
as its Mahalanobis matrix, no existing practice and
theory can guarantee that the complexity of the resul-
tant metric has been compactly regularized especially
in the “less sample, high dimensions” setting.

In this paper, we impose a different prior on learning
Mahalanobis distance. The observation is the sparsity
of sample concentration matrix X ~!, where ¥ is the
covariance matrix of examples. Figure 1 illustrates a
distribution of the absolute values of the elements in
Y. ~!, which are calculated from a set of 225 dimen-
sional features vectors. These values have been nor-
malized into the region [0, 1]. It illustrates that most
of the elements have a much smaller values close to zero
and only a small portion has a larger values. Accord-
ing to the above mentioned bijection between the Ma-
halanobis distance and the multivariate Gaussian in
(Davis et al., 2007), it shows that a sparse Mahalanobis
matrix is preferred. This sparsity nature results from
the weak correlation among different dimensions in the
high dimensional space because most of the different
features are measured by different mechanisms in the

Dim number with the
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Figure 2. From this figure we can find the diagonal ele-
ments have the largest values among the elements corre-
sponding to each dimension in the concentration matrix.
Of all the 225 dimensions, the diagonal elements have the
largest values on 202 dimensions (about 89.78%).

real world. For example, in image retrieval we usu-
ally extract features from different color components,
such as in CIE Luv color space. These components
are generated by nearly independent lighting compo-
nents which have very week correlations between each
other. On the other hand, the diagonal elements often
have the largest values compared to those off-diagonal
elements as illustrated in Figure 2, and they are much
larger than those off-diagonal elements (see Figure 3)
due to the the strong self correlations. In summary, we
can obtain a sparsity prior where the off-diagonal ele-
ments of Mahalanobis matrix have much small values
closer to zero as compared to those diagonal elements.
Here we verify this sparsity prior from a practical view-
point. In Section 3, we will show that a more consis-
tent result can be obtained by applying the sparsity
prior to metric learning with the proposed [;-penalized
log-determinant formulation below from a theoretical
perspective.

To seek a sparse solution for Mahalanobis distance (1),
we can formulate to minimize lp-norm of Mahalanobis
matrix M which counts its nonzero elements. How-
ever, the problem for /p-minimization is that it is NP-
hard and difficult even to approximate (Wright et al.,
2008). Instead, if the target distance matrix M is
sparse enough, we can equivalently minimize ¢1-norm
of M, i.e., the absolute summation of all its elements
instead (Donoho, 2006). We also note that those di-
agonal elements of M are often not so sparse as indi-
cated in Figure 2 and 3 where the diagonal elements
usually have much more significant values than those
off-diagonal elements. Therefore we propose to mini-
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Figure 3. Self variances of different dimensions. We find
that as compared to the other portions of the elements as
illustrated in Figure 1, all the diagonal elements are larger
than the mean value 0.009.

mize the off-diagonal ¢;-norm

1off = Z | M5 (2)

i#]

[|M]

to pursue a sparse solution.

In addition to the above sparsity requirement, we also
impose another distribution prior on the metric learn-
ing that parameterizes the Mahalanobis distance by
the sample concentration or the identity matrix cor-
responding to the squared Euclidean distance. The
sample concentration prior provides the metric learn-
ing with the distribution knowledge about the sam-
ple distribution, while the identity matrix gives the
most unbiased prior to learn a metric starting from
the squared Euclidean distance. In other words, we
regularize the Mahalanobis matrix M to be as close
as possible to a given Mahalanobis matrix M, asso-
ciated with the priori sample distribution by mini-
mizing the log-determinant divergence D,(M||My) =
g(M) — g(Moy) — (Vg(Mo), M — M) between M and
My with a strict convex, continuously differentiable
function g(M) = —logdet (M). This log-determinant
divergence function can be rewritten as

Dy (M||Mo) = tr (My'M) —logdet M (3)

where tr(-) means the trace operation on matrix. Note
that we ignore the constant term regarding My in the
above equation.

The above sparsity and distribution priors complement
each other. The sparsity prior prefers a sparse metric
structure in the general sense to control its complex-
ity while the distribution prior prefers a metric model
as close as possible to the metric calculated from the

priori sample distribution in the data-driven sense. By
combining the sparsity prior and log-determinant regu-
larization together, we can obtain the following sparse
metric learning formulation

min tr (Mg ' M) —logdet M + A||M||1,06 + 1L (S, D)
st. M >0
(4)

where M > 0 is the positive semi-definite constraint,
A is the balance parameter trading off between sparsity
prior and the My prior, and £ (S, D) is a loss function
defined on the sets of similarity S and dissimilarity D
constraints. 7 is a positive balance parameter trading
off between the loss function and the regularizer. We
will detail it in the following Section.

3. Sparse Distance Metric Learning

In this section, we first complete the formulation (4)
by designing a proper loss function £(S, D). Then, we
propose to use an efficient optimization algorithm to
solve /1-penalized log-determinant problem in a block
coordinate descent fashion.

3.1. Formulation

Given the sets of similar and dissimilar pairs & and
D, we can define an incidence matrix K to encode the
(dis)similarity information as

o 1, if ($Z‘,$j)68
Kij = { -1, if (x;,z;) €D (5)

Like (Hoi et al., 2008)(Zhang et al., 2007), we can as-
sume that there exists a corresponding linear trans-
formation A : R™ — R! where A € R™ and
M = AAT parameterizes the Mahalanobis matrix so
that the squared Euclidean distance in the transformed
space R! can be computed as

dn (i, 5)
= |[ATz; — ATx;[3
T T (6)
= (Ii — Ij) AA (ll?i — Ij)
= (2 — ;)" M (2; — ;)

By minimizing the distances between those adjacent
examples indicated in K, we can formulate to minimize
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the following loss function

L(S,D)
=3 2 ATz — ATz | 3Ky
Q=1
= Y (a7 AATz; — 2T AAT2;) K5
ig=1
ig=1

tr (XTMXD) — tr (XTMXK)
= tr (XDXTM) — tr (XKXTM)
=tr (X (D - K) X" M)

= tr (XLXT M)

where X = [z1,22, - +,2,], D is a diagonal matrix
whose diagonal elements are the sums of the row ele-
ments of K, L = D — K is the Laplacian matrix.

Substitute Eqn. (7) into the formulation (4), we can
obtain the following ¢;-penalized log-det optimization
problem

min tr (Mg ' M) —logdet M + N||M||1 o +nL (S, D)

=tr ((My " +nXLXT) M) —logdet M + X||M]||1 0
st. M >0
(8)

Note that since both —logdet (M) and ||M||1,0x are
convex w.r.t. M, and tr ((My' +nXLXT) M) is a
linear term, the above formulation is convex and there
exists a global minimum in the above optimization
problem.

Denote P = Mgl +nXLXT, we analogize the above
metric learning problem to the covariance estimation
problem with a “pseudo” sample covariance matrix
P, which plays the same role as the sample covari-
ance matrix underlying the consistency analysis in
(Ravikumar et al., 2008). Here we express their main
result about consistent analysis. For a target Ma-
halanobis matrix with at most m nonzero per row
subject to sub-Gaussian condition, minimizing an ¢;-
penalized log-determinant function in Eqn.(8) leads to

a consistent distance estimate at rate ||J\7 - M*||F =

o (\/ (m?log d)/n), with high probability, where M

and M™ are the estimated and target distance matrix
respectively, d is the dimension number and n is the
sample size. The rate reveals a much consistent result
even in the “large dimension number d, small train-
ing size n” setting as long as the number of nonzero
elements per row is small enough per row. It justifies
the sparsity prior to learn a metric distance from a
theoretical perspective.

The above semi-definite optimization problem (8) con-
tains a ¢1-penalized log-det operator in the objective

function which can be converted into an associated
standard Semi-Definite Programming (SDP) problem
(Todd, 2001) by making the following translations
M = U -V, where U > 0 and V > 0. If ei-
ther U;; or V;; has to be zero, we have ||M||1 08 =
U100 + [[V|1,08 = > Uij + >_ Vij . Therefore, the
i#£j i#]
SDP problem (8) can be formulated as

. —1 T
min tr (Mg ' +nXLX") - (U—-V)) —logdet (U —V)

+ AUl 0m 4+ M[V]1,01
tr ((My' + L) (U—-V)) —logdet (U —V)
d d

+ X > Ugi+Xx > Vi
i,j=1,i#] B,j=1,i#j
st. U=V =0
U>0,V>0

(9)

To validate the equivalence between problem (8) and
(9), we have the following lemma

Lemma 1. In the problem (9), either U;; or Vi; has
to be zero so that ||M|l108 = [|Ull1,08 + [|V]|1068 =

> Uij+ > Vi
) i)

Proof. If this theorem does not hold, we can assume
Uij > Vi; > 0 without any loss of generality. Then
we can find a better solution by setting U;; < U;; —
Vij,Vij < 0. It can be easily proved that this new
solution still satisfies all the above constraints, and
the new objective value is smaller than before. This
contradicts the optimality of U, V', thus the we can
always find a more optimal solution of U;, V;;, either
of which is zero. O

With the above lemma, it is not difficult to prove that
the SDP problem (9) yields solutions equivalent to
those obtained by ¢;- minimization problem (8).

3.2. An Efficient /;-penalized Log-Determinant
Solver

Although there exist optimization algorithms that di-
rectly solves the semi-definite problem like (8), their
computational costs are usually expensive especially
when the feature dimension is high. An alternative
optimization method is to use the block coordinate de-
scent algorithm (Friedman et al., 2007). Slightly differ-
ent from (8), they optimize over the inverse of the Ma-
halanobis matrix M ~! rather than M directly. Let W
be an estimation of M !, they show that the problem
can be optimized over each row and the corresponding
column of W in a block coordinate descent fashion.
With a partitioning W and P = My ' +nXLXT
Wi w2 ] (10)
W22

T
Wi2

|
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and
P11 pro }
P = 11
[pirz Pp22 (11)

(Banerjee et al., 2007) proves the solution for wyo sat-
isfies

wiz = argmin {zT W'z ¢ ||z — pial| < A} (12)
z

By permuting the rows and columns so the target col-
umn is always placed the last, problem (12) is solved
for each column so as to update the estimates of W
after each step until convergence. With an initial pos-
itive definite matrix, it can be shown that the itera-
tions from this procedure remain positive definite even
if p > n. Problem (12) can be solved by its associated
dual problem (Banerjee et al., 2007)

.1 _
min {1030~ W5 ol Nl | (13

If « solves it, wis = Wiia solves (12). The above
lasso problem can be efficiently solved by a coordinate
descent algorithm. Let 7" = Wi, and g = pi12, @ can
be updated until convergence as

F (gj - k%; TijAzk,)\>
N 7

G —
J T]

(14)

where F(z,t) = sign(|x| — t)+ is the soft-threshold
operator. Finally, an estimation W is obtained and the
Mahalanobis matrix can be recovered by M = W—! =
M
{ 1 mi2 ] as
Mmis Ma2

Mz = —GMa2

Moo = 1/(w22 — wi’;d) (15)

in the final step through the corresponding « for each
row. Finally, we summarize the above block coordinate
descent method in Algorithm 1.

4. Experiments

In this Section, we compare the proposed Sparse Dis-
tance Metric Learning (SDML) with other existing
state-of-the-art algorithms on various benchmark UCI
datasets and a real image dataset. We compare these
algorithms from the following three aspects

1. k-nearest neighbor (k-NN) classification perfor-
mance by using the different distance metrics.

2. The changes of k-NN classification performances
under different ratios of n (i.e., the example size)

Algorithm 1 Optimization Algorithm for (8)

input example matrix X = [z1,z9, -,
cian matrix L, balance parameters A, 7.
Set matrix P = My ' +nXLXT.
Initialize W = P 4+ Al and the diagonal elements of
W remain changed in the following.
repeat
Solve the problem (13):
repeat
for j=1tod—1do
F(gj— 3 Tkjdr,N)
k2

Tyj

xn], Lapla-

update 6;
end for

until convergence of &
Fill in the corresponding row and column of W
using wye = Wiia.
Permute the rows and columns of W for the next
target wio.

until convergence of W

Compute the Mahalonobis matrix M:

for each « of the corresponding row of M do
miz = —GMa2
Moo = 1/(’[1)22 — ’LUE&)
Fill in the corresponding row and column of M us-
ing m12, and the corresponding diagonal element
using maa.

end for

output The Mahalonobis matrix M.

to d (i.e., the dimension number). It illustrates
how these metrics perform in the “less n, large d”
settings.

3. We also compare the computational costs of these
algorithms on the same platform.

We evaluate the algorithm on four UCI benchmark
datasets - Iris, Ionosphere, Wine, Sonar and a real-
world image dataset Corel. All the metrics are com-
pared via two-fold cross validation with k = 3 for k-NN
classification.

4.1. k-INN Classification Results

The proposed SDML is compared with the following
algorithms for k-NN classification

Euclidean The squared Euclidean distance as a base-
line algorithm.

InvCov a Mahalanobis distance parameterized by the
inverse of the sample covariance. It is equiva-
lent to performing a standard PCA transforma-
tion over the input space followed by computing
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the squared Euclidean distance in the transformed
space.

LMNN Large margin nearest neighbor proposed by
(Weinberger et al., 2005). It is trained with the
goal that the k-nearest neighbors always belong
to the same class while examples from different
classes are separated by a large margin.

ITML Information-theoretic metric learning pro-
posed by (Davis et al., 2007). It formulates to
learn the Mahalanobis distance by minimizing the
differential relative entropy between two multi-
variate Gaussians under a set of constraints on
the distance function.

For the proposed SDML, we use two different Maha-
lanobis matrices as prior matrix My. They are the
identity matrix which regularizes to the squared Eu-
clidean distance, and sample covariance matrix calcu-
lated on the training examples. We denote them by
SDML(Identity Matrix) and SDML(Covariance Ma-
trix) respectively.

The experimental results are illustrated in Table 1.
We can see that the SDML has incurred the small-
est error rates across all the datasets compared to
the other distance metrics. On the other hand,
the SDML(Covariance Matrix) performs better than
SDML(Identity Matrix). This is probably due to the
underlying sample distribution revealed by the sample
covariance.

4.2. Performance Changes under different n/d

We also conduct experiments to illustrate how the pro-
posed SDML performs with less training examples n
and higher dimensions d. The experiments are done
on k-NN classification with & = 3 on an image dataset
Corel. This dataset contains 500 images from the five
different classes each of which contains 100 images. We
split the whole dataset into three parts. The first is
the training set with 250 images, the second is the val-
idation set with 100 images and the last is the testing
set with 150 images. A 225 dimensional color moment
feature vector is extracted from each individual im-
age. In experiments, we use the varying numbers of
the training examples to learn the distance metric and
compare the performance changes under different n/d,
where a lower n/d means a relatively high dimensional
feature space compared to a smaller number of train-
ing examples.

Figure 4 illustrates SDML(Identity Matrix) signifi-
cantly outperforms the other metrics under the dif-
ferent n/d ranging from 0.09 to 0.27, especially when

0.6

—o— Euclidean
—=— LMNN
—+— ITML

055 —&— SDML

0.5F

I
»
4]

Error rate

o
~

0.351

0.3F

Figure 4. Comparison of k-NN classification error rates
with different distance metrics by the changes of n/d. It
shows that the proposed SDML performs best compared
to the other metrics especially when n/d is low (i.e., the
dimension is relatively high compared to the number of
training examples.

Table 2. Training time used for the different distance learn-
ing algorithm on the different data sets.

ALGORITHM LMNN ITML SDML
IRrIS 1.230 0.01545 0.0071
IONOSPHERE 6.440 0.02087 0.0083
WINE 2.82 0.3945 0.058
SONAR 10.46 1.3598 0.098

n/d is low. It empirically verifies that SDML can reg-
ularize the metric model in a relatively high feature
space resulting in the much competitive performance.

4.3. Computational Costs

Finally, we compare the computational efficiency of
learning these distance metrics. All these experiments
are conducted on a PC equipped with an Intel 2.66
GHz CPU and 3.25 GMB memory.

In Table 2, we report the training time used to learn
these metrics over the benchmark datasets, and Fig-
ure 5 illustrates the training time on Corel image
dataset under different n/d. We find that SDML is
two and three orders of magnitude faster than LMNN
and ITML, respectively.
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Table 1. k-NN classification error rates (%) for the different distances across various benchmark datasets. We can see the
SDML gains the best performance across all the used datasets.

ALGORITHM Iris IONOSPHERE WINE  SONAR
EUCLIDEAN 4.00 14.86 4.50 18.27
InvCov 8.67 17.71 43.82 39.42
LMNN 3.34 14.29 2.25 14.42
ITML 3.00 17.14 3.94 23.56
SDML(IDENTITY MATRIX) 2.00 13.71 0.5618  16.35
SDML(INVERSE COVARIANCE) || 2.00 12.00 0 13.46

250
200
T
i~
a
L
> 150
E
=
g
£ 100
£
m
=
50
a
0.09 013 048 0.22 0.7
WLMNN| 1322 13.19 10.82 15.67 1556
= ITML 185.2 196.5 1724 241 195.8
soML| a2 013 033 048 054

Figure 5. Comparison of the computational times used to
learn the distance metric by the changes of n/d. It shows
that SDML is much faster as compared to LMNN and
ITML.

5. Conclusion

This paper presents an efficient sparse metric learning
algorithm via ¢;-penalized log-determinant regulariza-
tion. This sparsity prior on the distance metric regu-
larizes the complexity of the distance model especially
with the “less example number p and high dimensions
d” in a general sense. On the other hand, we pro-
pose a complementary distribution prior which prefers
a model as close as possible to a metric calculated from
the priori sample distribution in the data-driven sense.
We show that the ¢;-penalized log-determinant func-
tion can be efficiently optimized by a block coordinate
descent algorithm. The experiments on both bench-
mark datasets and the image dataset show that com-
petitive results can be obtained as compared to the
other state-of-the-art algorithms.
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