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Abstract

We describe a new method for learning
the conditional probability distribution of a
binary-valued variable from labelled train-
ing examples. Our proposed Compositional
Noisy-Logical Learning (CNLL) approach
learns a noisy-logical distribution in a com-
positional manner. CNLL is an alternative
to the well-known AdaBoost algorithm which
performs coordinate descent on an alterna-
tive error measure. We describe two CNLL
algorithms and test their performance com-
pared to AdaBoost on two types of prob-
lem: (i) noisy-logical data (such as noisy
exclusive-or), and (ii) four standard datasets
from the UCI repository. Our results show
that we outperform AdaBoost while using
significantly fewer weak classifiers, thereby
giving a more transparent classifier suitable
for knowledge extraction.

1. Introduction

AdaBoost (Freund & Schapire, 1996) is one of the most
influential machine learning algorithm for binary clas-
sification. It estimates a strong classifier from training
data by combining a weighted sum of weak classifiers
and can be formulated as coordinate descent on an
upper bound of the training error. But despite its
successes in terms of classification performance, Ad-
aBoost is less effective at detecting underlying struc-
ture, or extracting knowledge, from the data. Knowl-
edge extraction is important both for transfer learning
and for debugging and understanding machine learn-
ing systems (Alpaydin, 2004).

There is a deep connection between AdaBoost and ad-
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ditive logistic regression (Friedman et al., 2000) where
the conditional distribution of the output is expressed
in exponential form in terms of statistics of the in-
put. The statistics and their parameters of logistic
regression correspond to the weak classifiers and their
weights of AdaBoost. Friedman et al. prove theo-
rems relating these approaches in the asymptotic limit
(Friedman et al., 2000).

These results suggest that the effectiveness of Ad-
aBoost for a specific application will depend on how
well the conditional distribution for the application
data can be approximated by an exponential distribu-
tion. If we can approximate the distribution sparsely
(i.e., using an exponential distribution with a small
number of statistics) then we expect that AdaBoost
will give high classification performance and will per-
form knowledge extraction by specifying which statis-
tics are important. But suppose that the distribution
can only be approximated by an exponential model
which uses a large number of statistics. In this case,
AdaBoost may be successful for classification but will
result in a strong classifier which is a combination of
many weak classifiers and will fail to extract useful
knowledge about the data.

We can make an analogy to harmonic analysis where
the goal is to express functions in terms of a linear
combination of basis functions, e.g, (Meyer, 2001).
There are many choice of bases – Fourier series, Haar
bases, wavelets, polynomials – which are complete in
the sense that any function can be represented in terms
of them (by weighted linear combination). But for any
specific application it is usually desirable to use bases
which can represent the functions sparsely so that a
good approximation to the function is obtained by us-
ing a small number of basis functions. This gives in-
sight into the application and can be thought of as
knowledge extraction. Mathematicians have shown
that certain bases are best for representing functions
in specific functional classes (Meyer, 2001) in the sense
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that fewer basis functions are required to get good ap-
proximations.

These considerations suggest that we design machine
learning algorithms based on different representations
of conditional distributions. Recently noisy-logical dis-
tributions were proposed (Yuille & Lu, 2008) as an al-
ternative to exponential models (this paper did not
contain a learning algorithm). These distributions
are complete, in the sense that any conditional dis-
tribution can be expressed in noisy-logical form, and
are built by composing elementary components which
yield a structured representation for the distribution.
Certain distributions – such as noisy-or and noisy-
and-not (Pearl, 1988) – can be sparsely represented in
noisy-logical form but are hard to represent sparsely
by exponential distributions (and conversely). In gen-
eral, noisy logical distributions are sparse if there is a
(noisy) logical process generating the data.

This paper presents two Compositional Noisy-Logic
Learning (CNLL) algorithms which perform classifica-
tion by learning noisy-logical distributions. The hope
is that CNLL algorithms will have better performance
and yield sparser representations than AdaBoost for
certain forms of classification problems. We empha-
size that sparse representations can enable knowledge
extraction which can yield many benefits including
transfer learning. Sparse representations can also have
practical benefits because they reduce the computa-
tion time (after learning) and could be useful for ap-
plications where computation power is limited.

Our experimental results using CNLL are very promis-
ing. Firstly, we consider applications where the data
is generated by a noisy-logical process – for exam-
ple, a noisy version of the exclusive-or problem. In
these cases, CNLL is able to learn the underlying
(noisy) logical process that generates the data and
hence performs knowledge extraction. Secondly, we
apply CNLL to four standard datasets from the UCI
repository which are used to test AdaBoost and its
variants. On these datasets we obtain significantly
better performance than AdaBoost and also obtain
sparse noisy-logical representations of the data.

2. Background: Noisy-Logical and
Exponential Distributions

The noisy-logical distribution (Yuille & Lu, 2008)
was proposed as a generalization of the noisy-or and
noisy-and-not distributions (Pearl, 1988). These types
of distributions are of interest to cognitive scientists
since human performance on causal learning tasks can
be successfully modeled by assuming that humans

use noisy-or and noisy-and-not distributions (Cheng,
1997; Griffiths & Tenenbaum, 2005) and more complex
noisy-logical distributions (Yuille & Lu, 2008).

A noisy-logical distribution represents the distribution
P (y|~C) of a binary variable y ∈ {0, 1} conditioned on
a binary vector ~C ∈ {0, 1}N in terms of composition of
elementary distributions, see Fig. 1(left panel). Each
elementary distribution is of form P (Hi|ψi(~C), ωi)
where Hi ∈ {0, 1} is a hidden variable, ψi( ~C) ∈ {0, 1}
is a causal feature of ~C, and ωi are the parameters
of the distribution. The full distribution is obtained
by setting the output y to be a (deterministic) log-
ical combination of the hidden states {Hi}. This is
formally expressed as:

P (y = 1|~C; ~ω) = (1)

∑

~H

δy,f(H0,···,H2N−1)

2N−1∏

i=0

P (Hi = 1|ψi(~C); ωi),

where f(H0, · · · ,H2N−1) is a logical (i.e. determinis-
tic) function of the hidden variables {Hi}; δy,f = 1 if
y = f and 0 otherwise.

It was shown (Yuille & Lu, 2008) that any conditional
distribution on binary variables can be expressed in
noisy-logical form. In particular, the standard noisy-
or and noisy-and-not distributions (Pearl, 1988) can
be obtained as special cases by setting ~C = (C1, C2),
using causal features ψ1( ~C) = C1, ψ2( ~C) = C2, and
letting y = H1 ∨H2 to obtain noisy-or and y = H1 ∧
¬H2 to obtain noisy-and-not. In these cases, the noisy-
logical distribution takes a simple form which gives
insight into the structure of the data – in particular,
by showing the logical relationship between the output
y and the hidden states H1,H2.

More generally, we can express this relationship in
Disjunctive Normal Form (DNF), for example, y =
(H1 ∧H2 ∧ · · ·)∨ (H3 ∧H4 ∧ · · ·)∨ · · ·, see Fig. 1(right
panel). We can think of this DNF as specifying a logi-
cal process underlying the data which is made noisy by
the distributions P (Hi|ψi, ωi). In other words, there is
a deterministic rule for the data specified by the {Hi}
but we cannot observe that {Hi} directly and instead
must infer them from noisy observations {ψi( ~C)}.
By contrast, additive linear regression (Friedman et
al., 2000) is a standard way to represent distribu-
tions. We change notation so that the output variable
y ∈ {−1, +1} and the input is x. This conditional
distribution can be expressed in the form:

P (y|x) =
1

Z[x, {λi}] exp{y
∑

i

λiψi(x)}, (2)
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Figure 1. The basic Noisy-Logical Distribution (left panel). The DNF formulation of Noisy-Logical (right panel).

where the {ψi(x)} are statistics, the {λi} are parame-
ters, and Z[x, {λi}] is the normalization term.

The exponential distributions in Eq. (2) can be learnt
from training data {(xµ, yµ) : µ = 1, · · · , N} (yµ ∈
{±1}) by maximum likelihood (ML) to find λ∗ =
arg maxλ

∏N
µ=1 P (yµ|xµ). This has several limitations:

(i) performing ML is difficult because it requires evalu-
ating the normalization term Z[x, {λi}]; (ii) ML learn-
ing may not be optimal for learning a decision rule
when only a finite number of training samples are
available.

AdaBoost (Freund & Schapire, 1996) learns a strong
classifier H(x) = sign{∑M

i=1 λiψi(x)} from train-
ing data without needing to evaluate the normaliza-
tion term Z[x, {λi}], using a set of weak classifiers
{ψi(x)}(ψi(x) ∈ {±1}). It classifies new data x as
positive if H(x) ≥ 0 or as negative if H(x) < 0. It can
be formulated as coordinate descent on the function
F (~λ) =

∑
µ exp{yµ

∑
i λiψi(xµ)}, where {λi} are the

components of ~λ.

It can be shown (Friedman et al., 2000) that Ad-
aBoost converges asymptotically to a strong classifier
H(x) = sign{∑i λ∗i ψi(x)} where the coefficients {λ∗i }
are the maximum likelihood (ML) estimators λ∗ =
arg maxλ P ({yµ}|{xµ}, λ) of the linear additive regres-
sion model. Hence the strong classifier corresponds to
the log-likelihood ratio test sign{log P (y=1|x,λ∗)

P (y=−1|x,λ∗)}.

3. Compositional Noisy-Logical
Learning (CNLL)

We now develop Compositional Noisy-Logical Learn-
ing (CNLL) as an alternative learning strategy to Ad-
aBoost based on the noisy-logical distribution. We
supply two CNLL algorithms in sections (3.1,3.3).
They both proceed by minimizing a performance mea-
sure in a greedy manner (similar to AdaBoost).

We are given a set of training examples {(xµ, yµ) : µ ∈

1, · · · , N}, where xµ is the data vector and yµ ∈ {0, 1}
is the label. We specify a set of causal features {ψρ(x)}
with ψρ(x) ∈ {0, 1}, where ρ ∈ Ω with Ω indexes all
the possible causal features. We will specify the precise
form of these causal features in the experimental sec-
tion (4). Our default is to have a set of stump features
{fa(x)} for which we determine a casual feature (weak
classifier): ψ(a,b,c)(x) = 1 if pb log P (y=1|fa(x))

P (y=0|fa(x)) > Tc,
where pb ∈ {±1} is parity and Tc is a threshold,
and ψ(a,b,c)(x) = 0 otherwise. We also consider log-
ical AND’s and OR’s of these causal features (e.g.
ψ(a,b,c)(x) ∧ ψ(a′,b′,c′)(x) and ψ(a,b,c)(x) ∨ ψa′,b′,c′(x)).
To simplify notation, we write all causal features as
ψρ(x).

Both our CNNL algorithms construct will construct
a noisy-logical distribution using the causal features
as input. In this paper we use a variant of the noisy-
logical form presented in (Yuille & Lu, 2008). In equa-
tion (1) we set ωi = (αi, βi) where αi = P (Hi =
1|ψi(x) = 1; ωi) and βi = P (Hi = 1|ψi(x) = 0; ωi)
(βi = 0 ∀i in (Yuille & Lu, 2008)).

The performance measure is the error ER of the log-
likelihood classifier R(x) = sign{log P (y=1|x)

P (y=0|x)}. The
false positive errors are weighted more than the false
negative errors to allow for the different number of
positive and negative examples in the datasets.

3.1. Basic CNLL: The First CNLL Algorithm

CNLL grows the distribution Pt(y|x) by composi-
tion, see Fig. 2. This involves adding a new hid-
den unit Ht+1, a causal feature ψρ(x), a distribution
P (Ht+1|ψρ(x)) parameterized by ωt+1, and a composi-
tional rule to obtain ft+1({H1, · · · ,Ht}) by combining
ft({H1, · · · , Ht}) with Ht+1. We grow the distribu-
tion Pt(y|x) in a greedy manner by coordinate descent
on the performance measure hence selecting the causal
feature, and logical combination rule, that gives max-
imal increase in performance.
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We initialize the distribution Pt=0(y|x) by setting
f0({Hi}) = H1 ∨H2 ∨ · · · and αi = βi = 0, ∀i, which
corresponds to P0(y = 1|x) = 0, ∀x. (An alternative
initialization is f0({Hi}) = H1 ∧ H2 ∧ · · · with αi =
βi = 1, ∀i, which corresponds to P0(y = 1|x) = 1, ∀x.)

Figure 2. CNLL grows a Noisy-Logical distribution.

The first CNLL algorithm has pseudo-code given in
Fig. 3. It uses the composition rule:

ft+1({H1, · · · ,Ht+1} = ft({H1, · · · , Ht})⊗Ht+1,

where ⊗ = ∧ or ⊗ = ∨ (i.e. logical AND or
OR). This composition generates a new distribution
Pt,(ρ,ω,⊗)(y|x) which defines a classifier Rt,(ρ,ω,⊗)(x).

To select the best extension of Pt(y|x), we solve for

(ρ∗, ω∗,⊗∗) = arg min
(ρ,ω,⊗)

ER(Rt,(ρ,ω,⊗)).

This is obtained by an exhaustive search over ρ and ⊗
and, for fixed (ρ,⊗), we minimize ER(Rt,(ρ,ω,⊗)) with
respect to ω = (α, β). This search is simplified by the
decomposition

ER(Rt) = ER,1(α,⊗) + ER,0(β,⊗),

where

ER,1(α,⊗) =
∑

µ∈Λ:ψρ(x)=1

{1− δRt(xµ),yµ
}

and

ER,0(β,⊗) =
∑

µ∈Λ:ψρ(x)=0

{1− δRt(xµ),yµ
}.

It is straightforward to verify that ER,1(α,⊗) and
ER,0(β,⊗) are functions of α and β, respectively.
Hence we can determine αt+1 ∈ [0, 1] and βt+1 ∈ [0, 1]
by two independent one dimensional searches. Then
we set Pt+1(y|x) = Pt,(ρ∗,ω∗,⊗∗)(y|x).

This require more computation that AdaBoost. Ad-
aBoost must also do exhaustive search over all clas-
sifiers ρ but can then determine the parameters λ by

an analytic expression. By contrast CNLL must do
one dimensional searches for α and β within the range
[0, 1] and check for the two possibilities (AND or OR)
for ⊗.

If ⊗ = ∧, then ft+1({Hi}) = ft({Hi}) ∧ Ht+1 and
Pt+1(y = 1|x) = Pt(ft = 1|x) ×(αt+1ψt+1(x) +
βt+1(1− ψt+1(x))).

If ⊗ = ∨, then ft+1({Hi}) = ft({Hi}) ∨ Ht+1 and
Pt+1(y = 0|x) = Pt(ft = 0|x) ×{1 − αt+1ψt+1(x) −
βt+1(1− ψt+1(x))}.

3.2. Converting to DNF

The final form of the noisy-logical distribution depends
on the logical function y = f({Hi}) relating the hid-
den states. We can express this in Disjunctive Normal
Form (DNF) as y = CL1 ∨CL2 · · · ∨CLN where each
clause is a conjunction of the {Hi}, see Fig 1 (right
panel).

Expressing the hidden states in DNF gives insight into
the structure of the data. We can think of the data
as being generated by (deterministic) logical process
specified by the DNF but where the {Hi} are not
observable and must be inferred from noisy measure-
ments {ψi(·)}.
The following iterative procedure can be used to trans-
form the the output of the CNLL algorithm – y =
f({Hi}) = (· · · (H1 ⊗H2) ⊗H3) · · ·) – into DNF. We
initialize at t = 1 by setting y = H1, which is clearly in
DNF. Now we suppose we have successfully converted
the expression y = (· · · ((H1⊗H2)⊗H3)⊗H4 · · ·)⊗Ht

to DNF y = CL1 ∨CL2 ∨ · · · ∨CLN , where the CLi’s
are conjunctions of Hi’s. For the (t+1)th iteration, we
have y = ((· · · ((H1⊗H2)⊗H3)⊗H4 · · ·)⊗Ht)⊗Ht+1 =
(CL1 ∨ CL2 ∨ · · · ∨ CLN ) ⊗ Ht+1. If ⊗ = ∨, then
y = CL1 ∨ CL2 ∨ · · · ∨ CLN ∨ Ht+1 is of DNF form
with CLN+1 = Ht+1, i.e. we just add a new clause. If
⊗ = ∧, then y = (CL1 ∨ CL2 ∨ · · · ∨ CLN ) ∧Ht+1 =
(CL1 ∧Ht+1)∨ (CL2 ∧Ht+1)∨ · · · ∨ (CLN ∧Ht+1) is
of DNF form with CLi = CLi ∧Ht+1, i.e. we modify
each clause by adding a conjunctive term.

3.3. The Second CNLL Algorithm

The second CNLL algorithm represents the logi-
cal form as DNF. At each iteration it combines
ft({H1, · · · , Ht}) with Ht+1 by allowing Ht+1 to be
AND-ed with any of the clauses CL1, · · · , CLN in
ft({H1, · · · , Ht}), or AND-ed with all of the clauses,
or alternatively to create a new clause. The pseudo-
code for this second CNLL algorithm is given in Fig. 4.
This algorithm allows a greater number of ways to
construct the logical form ft+1({H1, · · · ,Ht+1}) from
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Input: Training set {(xµ, yµ) : µ = 1, · · · , N}, a set of causal features {ψρ(x) : ρ ∈ Ω}, where x is the data vector
and y ∈ {0, 1} is the label, and Ω indexes all the possible features. Initialize αi = 0 and βi = 0 for all i.

For t = 1, · · · , T :

• Set MinError = 1;

• For each ⊗ ∈ {∨,∧}
– For each ρ ∈ Ω

1. find α∗ = arg minα ER,1(α,⊗) by a 1-D search over [0, 1]
2. find β∗ = arg minβ ER,0(β,⊗) by a 1-D search over [0, 1]
3. Error = [ER,1(α

∗,⊗) + ER,0(β
∗,⊗)]/N

4. if Error < MinError, then set (ρ∗, α∗, β∗,⊗∗) ← (ρ, α∗, β∗,⊗), and set MinError = Error
– End for ρ

• End for ⊗
• Update ft+1({Hi}) = ft({Hi})⊗∗ Ht+1 and the distribution Pt(y = 1|x).

End algorithm

Output: Logical expression fT ({Hi}) and parameterized distribution P (y = 1|x; ~ωT , fT ).

Figure 3. Pseudo-code for the first CNLL algorithm

ft({H1, · · · , Ht}) and hence is a more powerful algo-
rithm, but it is slightly slower since it has to evaluate
more possibilities.

4. Experimental Results

We evaluate CNLL in two ways. Firstly, by using data
generated from noisy-logical processes – e.g. by logical
rules such as exclusive-or (XOR) with some additional
noise. This is to verify that CNLL gives the correct
results for the class of problems that it is well suited
to. Secondly, we compare it to AdaBoost on standard
datasets. In both cases, we evaluate the algorithm
in terms of classification performance and knowledge
extraction.

4.1. Results on Noisy-Logical Data

Noisy-logical data means that the process of generat-
ing the data is basically logical but with noise added.
This can either be obtained by starting with a log-
ical rule and adding noise (our first example) or by
sampling from the discriminative model. For noisy-
logical data we expect that CNLL will give better per-
formance than AdaBoost since the data will be de-
scribed by a sparse noisy-logical distribution but not
by a sparse exponential model. We anticipate that
CNLL will learn the correct underlying logical process
of the data – i.e., determine the correct DNF.

We first consider a simple variant of the classic XOR
problem. We generate 3,000 points (x1, x2) ∈ [0, 2] ×
[0, 2] in the following manner: (i) sample 1,000 points
uniformly in [0, 1] × [0, 1], (ii) sample 500 points uni-

formly in [1, 2] × [1, 2], (iii) sample 400 points uni-
formly in [1, 2] × [0, 1], and (iv) sample 1,100 points
uniformly in [0, 1] × [1, 2]. We classify a data-point
(x1, x2) as a positive example if x1 ∈ [0, 1]∧x2 ∈ [0, 1]
OR x1 ∈ [1, 2] ∧ x2 ∈ [1, 2] and as a negative example
otherwise. The weak classifiers are defined by thresh-
olding the x1 and x2 coordinates – i.e., the set of rules
of form xi > T1 or xi < T2 for i = 1, 2 where T1, T2

are thresholds.

We use the second CNLL algorithm to learn the un-
derlying logical expression. Table 1 shows the selected
features, the clause structure and the error rates after a
new feature is added. CNLL learns the logical expres-
sion E = (x2 < 1 ∧ x1 < 1) ∨ (x1 > 1 ∧ x2 > 1), which
is the correct solution to the XOR problem. (Note:
the first CNLL algorithm gets stuck at a saddle point
of the error measure and lacks the correct logical rule
to descend further – it learns (H1 ∧ H2) ∨ H3, but is
unable to move to (H1 ∧H2) ∨ (H3 ∧H4)).

Table 1. The features selected for XOR problem.
Feature x2 < 1 x1 > 1 x2 > 1 x1 < 1
Clause 1 2 2 1
Error 0.300 0.134 0.134 0.000

We now test CNLL on more noisy-logical data ob-
tained by sampling from the discriminative distribu-
tion P (y|{ψi}). We specify a underlying logical pro-
cess y = (H1∧H2)∨(H3∧H4) for the data with added
noise (described below). We compare the classifica-
tion performance of CNLL and AdaBoost on this data
and check to see whether CNLL discovers the correct
noisy-logical structure.
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Input: Training set {(xµ, yµ) : µ = 1, · · · , N}, a set of causal features {ψρ(x) : ρ ∈ Ω}, where x is the data vector
and y ∈ {0, 1} is the label, and Ω indexes all the possible features.
Goal: Learn the DNF expression f({Hi}) = CL1 ∨ · · · ∨CLn, with each CLi is a conjunction of a subset of {Hi}.
Initialize: n = 1, and CL1 = 1, αi = 0 and βi = 0 for all i.

For t = 1, · · · , T :
//Trying to add Ht to an existing clause

• Set MinErrC = 1; //the smallest error when adding to an existing clause

• For i = 1, · · · , n
– Let f ′ = CL1 ∨ · · · ∨ CL′i ∨ · · · ∨ CLn, with CL′i = CLi ∧Ht+1

– Search (ρ∗, α∗, β∗, Error) as in Fig. 3;
– if Error < MinErrC, then set (ρC , αC , βC , C) ← (ρ∗, α∗, β∗, i), and set MinErrC = Error

• Endfor // Now the parameters are stored in (ρC , αC , βC , C)
// Trying to add Ht to every clause

• Let f ′ = (CL1 ∧Ht) ∨ · · · ∨ (CLn ∧Ht).

• Search (ρ, α, β) to minimize the training error; denote the optimal parameter as (ρA, αA, βA) and the
minimal error as MinErrAll.
//Trying to add a new clause Ht

• Let f ′ = CL1 ∨ · · · ∨ CLn ∨Ht (CL1 = 0 if t = 1).

• Search (ρ, α, β) to minimize the training error; denote the optimal parameter as (ρN , αN , βN ) and the
minimal error as MinErrN .
// updating the Clauses, and the DNF expression

• Pick the smallest value from MinErrC, MinErrAll, and MinErrN , update each clause CLi accordingly,
and update the clause number n if necessary; denote the new DNF expression as ft({Hi}).

• Update the distribution Pt(y = 1|x) according to the form of ft({Hi}).
End algorithm

Output: DNF expression fT ({Hi}) and parameterized distribution P (y = 1|x; ~ωT , fT )

Figure 4. The second CNLL algorithm, “//” stands for comments.

We generate the noisy-logical data by sampling from
the distribution P (y|{ψi}) by exploiting the structure
shown in Fig. 1. We first sample to get the {CLi}
from P ({CLi}|y) = P (y|{CLi})P ({CLi})

P (y) , next we sam-
ple the {Hi} from P ({Hi}|{CLi}), and finally we sam-
ple the {ψi} from P ({ψi}|{Hi}) = P ({Hi}|{ψi})P ({ψi})

P ({Hi}) .
More precisely, we set P (CL1 = 1, CL2 = 0|y =
1) = P (CL1 = 0, CL2 = 1|y = 1) = 0.3, and
P (CL1 = 1, CL2 = 1|y = 1) = 0.4; when y = 0,
we must have CL1 = 0 and CL2 = 0. We also spec-
ify P (Hi = 1, Hj = 0|CLk = 0) = P (Hi = 0,Hj =
1|CLk = 0) = 0.4, and P (Hi = 0,Hj = 0|CLk =
0) = 0.2, where CLk is one of the two clauses, Hi and
Hj are two components of the corresponding clause;
obviously, when CLk = 1, both of the two compo-
nent must be 1. Finally, we specify P (ψi = 1|Hi = 1)
and P (ψi = 0|Hi = 0) for i = 1, · · · , 4 (observe that
when these two probabilities are set to be 1, it will be
a deterministic logical expression). The components
ψ5, · · · , ψ50 are unrelated to the logical expression and
they are sampled uniformly at random from {0, 1}. We
generated 1000 examples for each case of y = 0 and

y = 1.

We used the obtained data as input to the second
CNLL and AdaBoost algorithm, to compare their per-
formance on this noisy-XOR data. Again we expect
CNLL to outperform AdaBoost since the data can be
sparsely described by a noisy-logical distribution but
not by an exponential model.

We consider two cases: (I) P (ψi = 1|Hi = 1) = 0.95
and P (ψi = 0|Hi = 0) = 0.95. (II) P (ψi = 1|Hi =
1) = 1 and P (ψi = 0|Hi = 0) = 1.

CNLL performs well for both cases and obtains the
correct DNF logical expression. It selects the correct
causal cues ψ1, ..., ψ4 and ignores the rest. For case (I),
CNLL has training and testing error rates of 5% and
7%, respectively. For case (II), CNLL has 0% error
rate in both training and testing stages.

AdaBoost performs comparatively poorly. For case (I)
it has training and testing errors of 21% and 24% re-
spectively. For case (II) it has training and testing er-
rors are 16% and 20% respectively. In both cases, Ad-
aBoost algorithm selects 20 features. In the first few
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iterations, AdaBoost selects the correct causal cues –
ψ1, · · · , ψ4 – but at later iterations AdaBoost also se-
lects some of the irrelevant features ψ5, · · · , ψ50. Over-
all the performance of AdaBoost is poor at both clas-
sification and knowledge extraction.

4.2. Results on Standard Datasets and
Comparison to AdaBoost

We now compare CNLL with AdaBoost on four stan-
dard datasets (breast cancer, ionosphere, splice, and
ocr49) which are available from the UCI repository and
for which AdaBoost results are reported. The gener-
ating processes are unknown for these datasets, so it
is unclear whether exponential or noisy-logical models
would give better fits.

Table 2 shows the size and the number of attributes of
the datasets. We compare our results against those of
AdaBoost by using stump features reported in (Reyzin
& Schapire, 2006). We use similar stump features for
CNLL. Table 3 shows the results of CNLL and Ad-
aBoost, and Fig. 5 shows the average training and
testing error curves of CNLL.

Our results show that we obtain significantly better
results than AdaBoost on all four datasets. More-
over, CNLL outputs simpler representations using a
far fewer causal features. We typically obtain good
results with around 10 features, while AdaBoost typ-
ically uses O(100). CNLL shows a greater tendency
to over-generalize than AdaBoost, see Fig. 5. While
obtaining comparable results to AdaBoost on the test
set we obtain significantly better results on the train-
ing set (sometimes by a factor of three). This phe-
nomena may be partly explained because CNLL gives
a richer class of decision boundaries than AdaBoost
(this can be seen by examining the form of log P (y=1|x)

P (y=0|x)

for noisy-logical distributions). Another reason might
be that the CNNL algorithm is greedy and might get
trapped in a local minimum. We hope that better un-
derstanding of CNLL may help us take advantage of
the low training errors and obtain even better results
on the test set.

Table 2. The sizes of the training and testing datasets for
each of ten trials and the number of attributes. These trial
data samples are randomly selected from the datasets in
the UCI repository.

cancer iono ocr49 splice
Training 630 315 1000 1000
Testing 69 36 5000 2175

Attributes 10 34 64 60

We now attempt to use the hidden variables H and

Table 3. The testing errors of CNLL and AdaBoost on four
datasets (averaged over 10 trials for each dataset). Observe
that CNLL gives better results than AdaBoost in all cases.
AdaBoost was run for 500 rounds of all trials hence using
roughly 500 weak classifiers. CNLL required much fewer
weak classifiers in general – on average 9 for cancer, 5 for
ions, 15 for OCR49, and 15 for splice.

cancer iono ocr49 splice
AdaBoost 4.29% 9.58% 6.28% 6.79%

CNLL 1.74% 6.11% 5.83% 4.70%

clauses CL to extract knowledge about the structure
of the data. We picked one of the trial results on
the cancer dataset where CNLL output the logical ex-
pression f({H1, · · · , H9}) = CL1∨CL2 ∨CL3 ∨CL4,
with CL1 = H1 ∧ H2 ∧ H3 ∧ H5 ∧ H8 ∧ H9, CL2 =
H4 ∧ H5 ∧ H8 ∧ H9, CL3 = H6 ∧ H8 ∧ H9, and
CL3 = H7 ∧H8 ∧H9. Table 4 shows the performance
of the clauses: the first and second rows show the true
positive and error rates for each clause. The third and
fourth rows show the accumulated true positive and
error rates (combining the clauses). For this example,
we see that the first clause is clearly dominant and ex-
plains most of the error. We observe similar results on
other trials for these datasets – dominance by a single
AND clause. This suggests that either these datasets
have limited OR structure, or that CNLL is unable to
extract it.

5. Conclusion

This paper conjectured that the effectiveness of Ad-
aBoost in terms of performance, and particularly
knowledge extraction, depends on whether the con-
ditional distribution for the data can be approximated
by a sparse exponential distribution. We described
how conditional distributions could also be represented
as noisy-logical distributions (Yuille & Lu, 2008) and
conjectured that for some applications this would lead
to sparser representations than those obtained by ex-
ponential distributions.

We developed Compositional Noisy-Logical Learning
(CNLL) as a way to learn two-classe classifier by
composing elementary noisy-logical distributions. We
specified two CNLL algorithms both of which pro-
ceeded by coordinate descent on a training error mea-
sure. This is slightly more complex than learning for
AdaBoost: (i) it requires performing two searches for
values in range [0, 1], (ii) the training error is not con-
vex (unlike the measure used in AdaBoost). Neverthe-
less, the training time increases with respect to Ad-
aBoost only by a constant factor (due to the searches
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Figure 5. Average training and testing error curves on UCI data sets. CNLL gives good results for five causal features.

Table 4. Clause analysis for one of the trials on cancer dataset, see text for details.

Clause CL1 CL2 CL3 CL4

Individual True Positive 0.9737 0.0310 0.2792 0.8878
Individual Error Rate 0.0206 0.6444 0.4794 0.0778

Cumulative True Positive 0.9737 0.9785 0.9809 0.9833
Cumulative Error Rate 0.0206 0.0175 0.0159 0.0143

in [0, 1]). The resulting distribution is expressed using
hidden units with DNF and has a simple transparent
form.

We tested CNLL on two types of data: (i) data gener-
ated to be in noisy-logical form, and (ii) four standard
datasets from the UCI repository. Both sets of results
showed the effectiveness of CNLL both in terms of per-
formance and for knowledge extraction. CNLL was
much more successful than AdaBoost for the noisy-
logical data and was able to identify the underlying
logical process. CNLL also outperformed AdaBoost
on the four datasets from the UCI repository both in
terms of classification performance and in terms of the
sparseness of the resulting representation (by an order
of magnitude) enabling knowledge extraction. Note
that CNLL takes longer to train than AdaBoost by a
constant factor, but the number of weak classifiers re-
quired by CNLL is smaller (by an order of magnitude),
so the total amount of training time is roughly compat-
ible. Moreover, the resulting CNLL classifier is faster
in testing because of its reliance on fewer weak classi-
fiers. This may be an advantage for practical systems
(e.g., implementing a face detector on a cell phone).
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