
Structure Preserving Embedding

Blake Shaw blake@cs.columbia.edu
Tony Jebara jebara@cs.columbia.edu

Department of Computer Science, Columbia University, 1214 Amsterdam Ave, New York, NY 10027

Abstract

Structure Preserving Embedding (SPE) is
an algorithm for embedding graphs in Eu-
clidean space such that the embedding is low-
dimensional and preserves the global topolog-
ical properties of the input graph. Topology
is preserved if a connectivity algorithm, such
as k-nearest neighbors, can easily recover the
edges of the input graph from only the coor-
dinates of the nodes after embedding. SPE
is formulated as a semidefinite program that
learns a low-rank kernel matrix constrained
by a set of linear inequalities which captures
the connectivity structure of the input graph.
Traditional graph embedding algorithms do
not preserve structure according to our def-
inition, and thus the resulting visualizations
can be misleading or less informative. SPE
provides significant improvements in terms
of visualization and lossless compression of
graphs, outperforming popular methods such
as spectral embedding and Laplacian eigen-
maps. We find that many classical graphs
and networks can be properly embedded us-
ing only a few dimensions. Furthermore,
introducing structure preserving constraints
into dimensionality reduction algorithms pro-
duces more accurate representations of high-
dimensional data.

1. Introduction

Graphs are essential for encoding information, and
graph and network data is increasingly abundant in
fields ranging from computational biology to computer
vision. Given a graph where vertices and edges rep-
resent pairwise interactions between entities (such as
links between websites, friendships in social networks,
or bonds between atoms in molecules), we hope to re-

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

cover a low-dimensional set of coordinates for each ver-
tex that implicitly encodes the graph’s binary connec-
tivity.

Graph embedding algorithms place nodes at points
on some surface (e.g. Euclidean space) and connect
points with an arc if the nodes have an edge between
them. One traditional objective of graph embedding is
to place points on a surface such that arcs never cross.
In this setting, it is well known that any graph can
be embedded in 3-dimensional Euclidean space and
planar graphs can be embedded in 2-dimensional Eu-
clidean space. However, there are many uses for graph
embedding that do not relate to arc crossing and thus
there exists a suite of embedding algorithms with dif-
ferent goals (Chung, 1997; Battista et al., 1999). One
motivation for embedding graphs is to solve compu-
tationally hard problems geometrically. For example,
using hyperplanes to separate points after graph em-
bedding is useful for efficiently approximating the NP-
hard sparsest cut problem (Arora et al., 2004). This
article will focus on graph embedding for visualiza-
tion and compression. Given only the connectivity
of a graph, can we efficiently recover low-dimensional
point coordinates for each node such that these points
can easily be used to reconstruct the original struc-
ture of the network? We are interested in reversible
graph embeddings (from a graph to points back to a
graph). If the graph can be easily reconstructed from
the points and these require low-dimensionality (and
storage), the method can be useful for both visualiza-
tion and compression.

Many embedding algorithms find compact coordinates
for nodes in a graph. Given an unweighted graph
consisting of N nodes and |E| edges represented as
a symmetric adjacency matrix A ∈ {0, 1}N×N spec-
ifying which pairs of nodes are connected, spectral
embedding finds a set of coordinates for each node
!yi ∈ Rd for i = 1, . . . , N by applying singular value
decomposition (SVD) or principal component analy-
sis (PCA) to the adjacency matrix A and using the d
eigenvectors of A with the largest eigenvalues as the
coordinates. Similarly, Laplacian eigenmaps (Belkin

Structure Preserving Embedding

Spectral Embedding Möbius Band
Möbius Ladder

Graph

A

Two Spring Embeddings SPE Embedding

Figure 1. Embedding the classical Mobius Ladder Graph. Given the adjacency matrix (left), the visualizations produced
by spectral embedding and spring embedding (middle) do not accurately capture the graph topology. The SPE embedding
is compact and topologically correct.

& Niyogi, 2002) employ a spectral decomposition of
the graph Laplacian L = D − A, or normalized graph
Laplacian L = I − D− 1

2 AD− 1
2 , where D = diag(A1)

and use the d eigenvectors of L with the smallest non-
zero eigenvalues. Unfortunately, in practice there are
often many eligible eigenvectors of A or L, and fur-
thermore the resulting coordinates do not preserve the
topology of the input graph exactly. We propose learn-
ing a positive semi-definite kernel matrix K ∈ RN×N

whose spectral decomposition yields a small set of
eigenvectors which preserve the topology of the input
graph. Specifically, given a connectivity algorithm G
(such as k-nearest neighbors, b-matching, or maximum
weight spanning tree) which accepts as input a kernel
K specifying an embedding and returns an adjacency
matrix, we call an embedding structure preserving if
the application of G to K exactly reproduces the in-
put graph: G(K) = A. This article proposes SPE,
an efficient convex optimization based on semidefinite
programming for finding an embedding K such that
K is both low-rank and structure preserving.

Traditional graph embedding algorithms such as spec-
tral embedding and spring embedding do not explicitly
preserve structure according to our definition and thus
in practice produce poor visualizations of many sim-
ple classical graphs. In Figure 1 we see the classical
Möbius ladder graph and the resulting visualizations
from the two methods. The spectral embedding looks
degenerate and does not resemble the Möbius band in
any regard. The eigenspectrum indicates that the em-
bedding is 6-dimensional when we expect to be able to
embed this graph using fewer dimensions. Two spring
embeddings are shown. The left spring embedding is
a good diagram of what the graph should look like;
however, we see that the twist of the Möbius strip
is not accurately captured. Given the coordinates in
Euclidean space produced by this method, any sim-
ple neighbor-finding algorithm G would connect nodes
along the red dotted lines, not the blue ones specified
by the connectivity matrix. Thus, the inherent con-
nectivity of the embedding disagrees with the actual
connectivity of the graph. The spring embedding on

the right shows a typical result when a poor random
initialization is used. Due to local minima in spring
embedding algorithms, the graph is no longer visually
recognizable or accurate. We are motivated to find
a simple tool for properly visualizing graphs such as
the Möbius ladder, as well as large complex network
datasets. The tool should be accurate and should cir-
cumvent local minima issues.

Structure preserving constraints can also benefit di-
mensionality reduction algorithms. These methods
similarly find compact coordinates that preserve cer-
tain properties of the input data. Multidimensional
scaling preserves distances between data points (Cox
& M.Cox, 1994). Nonlinear manifold learning algo-
rithms preserve local distances described by a graph
on the data (Tenenbaum et al., 2000; Roweis & Saul,
2000; Weinberger et al., 2005). For these algorithms
the input consists of high-dimensional points as well
as binary connectivity. Many of these manifold learn-
ing techniques preserve local distances but not graph
topology. We show that adding explicit topological
constraints to these existing algorithms is crucial for
preventing folding and collapsing problems that occur
in dimensionality reduction.

The rest of the article is organized as follows. In Sec-
tion 2, we introduce the concept of structure preserv-
ing constraints and formulate these constraints as a set
of linear inequalities for a variety of different connec-
tivity algorithms. We then derive an objective func-
tion in Section 3 which favors low-dimensional embed-
dings close to the spectral embedding solution. In Sec-
tion 4, we combine the structure preserving constraints
and the objective function into a convex optimization
and propose a semidefinite program for solving it ef-
ficiently. We present a variety of experiments on real
and synthetic graphs in Section 5 and show improve-
ments in terms of visualization quality and level of
compression. We then briefly explore using SPE to im-
prove dimensionality reduction algorithms before con-
cluding in Section 7.

Structure Preserving Embedding

2. Preserving Graph Structure

We assume we are given an input graph defined by
both a connectivity matrix A as well as an algorithm
G which accepts as input a kernel matrix K, and out-
puts a connectivity matrix Ã = G(K), such that Ã is
close to the original graph A. In this article, we con-
sider several choices for G including k-nearest neigh-
bors, epsilon-balls, maximum weight spanning trees,
maximum weight generalized matching and other max-
imum weight subgraphs. We can evaluate how well the
embedding produced by K preserves graph structure
by determining how much the input connectivity dif-
fers from the connectivity computed directly from the
learned embedding. A simple metric to capture this
difference is the normalized number of pairwise errors
#(Ã, A) = 1

N2

∑
ij |Ãij − Aij |. For a variety of differ-

ent classes of graphs and algorithms G, it is possible
to enumerate linear constraints on K to ensure that
this error or difference is zero. The next subsections
describe several choices for algorithm G and the linear
constraints they entail on the embedding K.

2.1. Nearest Neighbor Graphs

The k-nearest neighbor algorithm (knn) greedily con-
nects each node to the k neighbors to which the node
has shortest distance, where k is an input parameter.
Preserving the structure of knn graphs requires enu-
merating a small set of linear constraints on K.
Definition 1. Define the distance between a pair of
points (i, j) with respect to a given positive semidefinite
kernel matrix K, as Dij = Kii + Kjj − 2Kij.

Note that the matrix D constructed from elements
Dij is a linear function of K. For each node, the dis-
tances to all other nodes to which it is not connected
must be larger than the distance to the furthest con-
nected neighbor of that node. This results in the linear
constraints on K: Dij > (1 − Aij) maxm(AimDim).
Another common connectivity scheme is to connect
each node to all neighbors which lie within an ep-
silon ball of radius ε. Preserving this ε-neighborhood
graph can be achieved with the linear constraints on
K: Dij(Aij − 1

2) ≤ ε(Aij − 1
2).

It is trivial to show that if for each node the connected
distances are less than the unconnected distances (or
some ε), a greedy algorithm will find the exact same
neighbors for that node, and thus the connectivity
computed from K is exactly A, and #(G(K), A) = 0.

2.2. Maximum Weight Subgraphs

Maximum weight subgraph algorithms select edges
from a weighted graph to produce a subgraph which

has maximal weight (Fremuth-Paeger & Jungnickel,
1999).
Definition 2. Given a kernel matrix K, define the
weight between two points (i, j) as the negated pairwise
distance between them: Wij = −Dij = −Kii − Kjj +
2Kij.

Once again, the matrix W composed of elements Wij

is simply a linear function of K. Given W , a maximum
weight subgraph produces a graph with binary adja-
cency matrix Ã which maximizes

∑
ij ÃijWij . For ex-

ample when G is the generalized b-matching algorithm,
G finds the connectivity matrix which has maximum
weight while enforcing a set of degree constraints bi for
i = 1...N as follows: G(K) = arg maxÃ

∑
ij WijÃij

s.t.
∑

j Ãij = bi, Ãij = Ãji, Ãii = 0, Ãij ∈ {0, 1}.
Similarly, a maximum weight spanning tree algorithm
G returns the maximum weight subgraph G(K) such
that G(K) ∈ T , where T is the set of all tree graphs:
G(K) = arg maxÃ

∑
ij WijÃij s.t. Ã ∈ T . Unfortu-

nately, for both these algorithms the linear constraints
on K (or W) to preserve the structure in the original
adjacency matrix A such that Ã = A cannot be enu-
merated with a small finite set of linear inequalities;
in fact, there can be an exponential number of con-
straints of the form:

∑
ij WijAij ≥

∑
ij WijÃij . How-

ever, in Section 4 we present a cutting plane approach
such that the exponential enumeration is avoided and
the most violated inequalities are introduced sequen-
tially. It has been shown that cutting-plane optimiza-
tions such as this converge and perform well in practice
(Finley & Joachims, 2008).

3. A Low-Rank Objective

The previous section showed that it is possible to
force an embedding to preserve the graph structure
in a given adjaceny matrix A by introducing a set
of linear constraints on the embedding Gram matrix
K. To choose a unique K from the admissible set in
the convex hull generated by these linear constraints,
we propose an objective function which favors low-
dimensional embeddings close to the spectral embed-
ding solution. Spectral embedding is the canonical way
of mapping nodes of a graph into points with coor-
dinates. Given a symmetric adjacency matrix A, it
uses the eigenvectors of A = V ΛV T with the largest
k eigenvalues as coordinates of the points. Spectral
embedding produces embeddings with few dimensions,
since it uses the most dominant eigenvectors first. Sim-
ilarly, we are interested in recovering an embedding,
or equivalently, a positive semidefinite kernel matrix
K & 0 which is low-rank. Consider the following ob-
jective function maxK#0 tr(KA) and limit the trace

Structure Preserving Embedding

Structure
Preserving
Embedding

(SPE)

Spectral
Embedding

Tesseract Celmins Swart SnarkMöbius Ladder Balaban 10-cage

Figure 2. Classical graphs embedded with spectral embedding (above), and SPE w/ kNN (below). Eigenspectra are shown
to the right. SPE finds a small number of dimensions that highlight many of the symmetries of these graphs.

norm of K to avoid the objective function from grow-
ing unboundedly. We claim that this objective func-
tion attempts to recover a low-rank version of spectral
embedding.
Lemma 1. The objective function maxK#0 tr(KA)
subject to tr(K) ≤ 1 recovers a low-rank version of
spectral embedding.

Proof. Rewrite the matrices in terms of the eigende-
composition of the positive semidefinite matrix K =
UΛUT and the symmetric matrix A = V Λ̃V T , and
insert into the objective function:

max
K#0

tr(KA) = max
Λ∈L,U∈O

tr(UΛUT V Λ̃V T)

where L is the set of positive semidefinite diagonal
matrices and O is the set of orthonormal matrices also
known as the Stiefel manifold. By Von Neumann’s
lemma, we have:

max
U∈O

tr(UΛUT V Λ̃V T) = λT λ̃.

Here λ is a vector containing the diagonal entries of
Λ in decreasing order λ1 ≥ λ2 ≥ . . . ≥ λn and λ̃ is a
vector containing the diagonal entries of Λ̃ in decreas-
ing order, i.e. λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃n. Therefore, the full
optimization problem can be rewritten in terms of an
optimization over non-negative eigenvalues

max
K#0,tr(K)≤1

tr(KA) = max
λ≥0,λT 1≤1

λT λ̃

where we also have to satisfy λT 1 ≤ 1 since tr(K) ≤ 1.
To maximize the objective function λT λ̃ we simply set
λ1 = 1 and the remaining λi = 0 for i = 2, . . . , n which
produces the maximum λ̃1, the top eigenvalue of the
spectral embedding

max
K#0,tr(K)≤1

tr(KA) = λ̃1.

Thus, the maximization problem reproduces spectral
embedding while pushing all the spectrum weight into

the top eigenvalue. The (rank 1) solution must be
K = vvT where v is the leading eigenvector of A. If
there are ties in A for its top eigenvalues, K is a conic
combination of the top eigenvectors of A which is a
low rank solution and has rank at most equal to the
multiplicity of the top eigenvalue of A.

In summary, this objective function will attempt to
mimic the traditional spectral embedding of a graph.
By combining this objective with the linear constraints
from the previous section, it will be possible to also
correct the embedding such that the graph structure
in A is preserved and can be reconstructed from the
embedding by using a connectivity algorithm G.

4. Algorithm

In this section, the convex objective function is com-
bined with the linear constraints implied by the con-
nectivity algorithm G, be it knn, maximum weight b-
matching or a maximum weight spanning tree. All
share the same objective function and some common
constraints K = {K & 0, tr(K) ≤ 1,

∑
ij Kij = 0, ξ ≥

0} to limit the trace norm of K and to center K such
that the embeddings are centered on the origin. The
objective function becomes maxK∈K tr(KA) − Cξ.
Note that the function involves an additional term Cξ
which uses a manually specified parameter C. This
allows some violations of the constraints on K given
by the choice of algorithm G, as shown in Figure 3.
All linear inequalities encountered from structure pre-
serving constraints are slackened with a large C weight
to allow a few violations if necessary. The use of a fi-
nite C assures a solution to the SDP is always possible
and helps avoid numerical problems and also encour-
ages faster convergence of cutting plane methods as
discussed in (Finley & Joachims, 2008).

For graphs created from greedy algorithms such as k-
nearest neighbors, Table 1 outlines the corresponding
SPE procedure.

Structure Preserving Embedding

Ring Graph w/ noise C = 1000 C = 5 C ! 2 C = 0

Figure 3. By adjusting the input paramter C, SPE is able to handle noisy graphs. From left to right, we see a perfect
ring graph embedded by SPE, a noisy line added to the graph at random , and then the results of using SPE on the noisy
graph with C roughly set to 1000, 5, 2, and 1. Note when C is small, SPE reproduces the rank-1 spectral embedding.

Table 1. Structure Preserving Embedding algorithm for k-
nearest neighbor constraints.

Input A ∈ BN×N , connectivity algorithm G,
and parameter C.

Step 1 Solve SDP K̃ = arg maxK∈K tr(KA) − Cξ
s.t. Dij > (1 − Aij) maxm(AimDim) − ξ

Step 2 Apply SVD to K̃ and use the top
eigenvectors as embedding coordinates

For maximum weight subgraph constraints, there of-
ten exists an exponential number of constraints of the
form:

tr(WA) − tr(WÃ) ≥ #(Ã, A) − ξ ∀Ã ∈ G

where #(Ã, A) = 1
N2

∑
ij |Ãij −Aij |, and Ã ∈ G states

that Ã is in the family of graphs formed by a con-
nectivity algorithm G, such as b-matchings or trees.
To avoid enumerating the exponential number of con-
straints, we start by running the optimization without
any structure preserving constraints and then add the
most violated constraint at each iteration. Given a
learned kernel K̃ from the previous iteration, we find
the most violated constraint by computing the con-
nectivity Ã that maximizes tr(W̃Ã) s.t. Ã ∈ G using a
maximum weight subgraph method. We then add the
constraint to our optimization (tr(WA) − tr(WÃ)) ≥
#(Ã, A) − ξ. The first iteration yields a rank-1 so-
lution, which typically violates many constraints, but
after several iterations, the algorithm converges when
|tr(W̃Ã)−tr(W̃A)| ≤ ε, where ε is an input parameter.
Table 2 summarizes the cutting-plane version of SPE.

SPE is implemented in MATLAB as a Semidefinite
Program using CSDP and SDP-LR (Burer & Mon-
teiro, 2003) and has complexity similar to other dimen-
sionality reduction SDPs such as Semidefinite Embed-
ding. The complexity is O(N3+C3) (Weinberger et al.,
2005) where C denotes the number of constraints (for
the k-nearest neighbor constraints we typically have
C ∝ |E|). However, in practice many constraints are
inactive and working set methods (now common prac-
tice for SDPs) perform well. Furthermore, SDP-LR
directly exploits the low-rank properties of our objec-
tive function. We have run SPE on graphs with over
thousands of nodes and tens of thousands of edges. For

Table 2. Structure Preserving Embedding algorithm with
cutting-plane constraints.

Input A ∈ BN×N , connectivity algorithm G,
and parameters C, ε.

Step 1 Solve SDP
K̃ = arg maxK∈K tr(KA) − Cξ.

Step 2 Use G, K̃ to find biggest violator
Ã = arg maxA tr(W̃A).

Step 3 If |tr(W̃Ã) − tr(W̃A)| > ε, add constraint
tr(WA) − tr(WÃ) ≥ #(Ã, A) − ξ and go
to Step 1

Step 4 Apply SVD to K̃ and use the top
eigenvectors as embedding coordinates

the cutting plane formulation, we add constraints it-
eratively, and it can be shown that the algorithm will
converge in polynomial time for quadratic programs
with linear constraints (Finley & Joachims, 2008).
Since we have a semidefinite program, these guarantees
do not carry over immediately, although in practice
the cutting plane algorithm works well and has also
been successfully deployed in settings beyond struc-
tured prediction and quadratic programming (Sontag
& Jaakkola, 2008).

5. Experiments

We present visualization results on a variety of syn-
thetic and real-world datasets, highlighting the im-
provements of SPE over purely spectral methods. Fig-
ure 2 shows a variety of classical graphs visualized by
spectral embedding and SPE. Note that spectral em-
bedding typically finds many eigenvectors with dom-
inant eigenvalues, and thus needs many more coordi-
nates for accurate visualization, as compared to SPE
which finds compact and accurate embeddings. Fig-
ure 4 shows an embedding of two organic compounds.
The true physical embedding in 3D space is shown on
the left. Given only connectivity information SPE is
able to produce coordinates for each atom that bet-
ter resemble the true physical coordinates. Figure 5
shows a visualization of 981 political blogs (Adamic &
Glance, 2005). The eigenspectrum shown next to each
embedding reveals that both spectral embedding and

Structure Preserving Embedding

Laplacian
Eigenmaps

Structure Preserving
Embedding (SPE)

Spectral Embedding

Molecule TR012

Molecule TR015 Normalized
Laplacian

Eigenmaps

Figure 4. Two comparisons of molecule embeddings (top row and bottom). The SPE w/kNN embedding (right) more
closely resembles the true physical embedding of the molecule (left), despite being given only connectivity information.

Laplacian eigenmaps find many possible dimensions
for visualization, whereas SPE requires far fewer di-
mensions to accurately represent the structure of the
data. Also, note that the embedding that uses the
graph Laplacian is dominated by the degree distribu-
tion of the network. Nodes with high degree require
neighbors to be very far away. The SPE embedding
was created using b-matching constraints and repre-
sents the network quite compactly, finding 2 dominant
dimensions which produce a beautiful visualization of
the link structure as well as yield the lowest error on
the adjacency matrix created from the low-dimensional
embedding.

6. Dimensionality Reduction

SPE is not explicitly intended as a dimensionality re-
duction tool, but rather a tool for embedding graphs in
few dimensions. However, these two goals are closely
related; many nonlinear dimensionality reduction al-
gorithms, such as Locally Linear Embedding (LLE),
Maximum Variance Unfolding (MVU), and Minimum
Volume Embedding (MVE) begin by finding a sparse
connectivity matrix A that describes local pairwise dis-
tances (Roweis & Saul, 2000; Weinberger et al., 2005;
Shaw & Jebara, 2007). These methods assume that
the data lies on a low-dimensional nonlinear mani-
fold embedded in a high-dimensional ambient space.
To recover the manifold, these methods preserve local
distances along edges specified by A in the hope that
they mimic true geodesic distances measured along the
manifold as opposed to measured through arbitrary di-
rections in high-dimensional space. These pairwise dis-
tances and the connectivity matrix describe a weighted
graph. However, preserving distances does not explic-
itly preserve the structure of this graph. Algorithms

such as LLE, MVU, and MVE, produce embeddings
whose resulting connectivity no longer matches the
inherent connectivity of the data. The key problem
arises from unconnected nodes. The distances between
nodes that are connected are preserved; however, dis-
tances between unconnected nodes are free to vary,
and thus can drastically change the graph’s topology.
Manifold unfolding algorithms may actually collapse
parts of the manifold onto each other inadvertently
and break the original connectivity structure, as illus-
trated in the toy problem in Figure 6. Therein, the
distances are preserved yet MVU folds the graph and
moves points in such a way that they are closer to
other points that were originally not neighbors. By
incorporating SPE’s constraints, these algorithms can
globally preserve the input graph exactly, not just its
local properties.

Original MVU

Figure 6. An example of maximum variance unfolding
(MVU) folding the input graph. Because MVU does not
explicitly preserve structure, MVU collapses the diamond
shape in the middle to a single point. Explicit structure
preserving constraints would keep the original solution.

We present an adaptation of MVU called MVU+SP,
that simply adds the kNN structure preserving con-
straints to the MVU semidefinite program. Similarly,
we present an adaptation of the MVE algorithm called
MVE+SP that adds the kNN structure preserving con-
straints to the MVE semidefinite program (Shaw & Je-
bara, 2007). Exactly preserving a k-nearest neighbor
graph on the data during embedding means a k-nearest

Structure Preserving Embedding

Structure Preserving
Embedding (SPE)

Spectral Embedding
Normalized

Laplacian Eigenmaps

2.854%2.971% 9.281%

Figure 5. The link structure of 981 political blogs. Conservative are labeled red, and liberal blue. Also shown is the %
error of the adjacency matrix created from the 2D embedding, and the resulting eigenspectrum from each method. Not
shown here is un-normalized Laplacian eigenmaps, whose embedding is similar to the normalized case and reconstruction
error is 55.775%. Note that SPE is able to achieve the lowest error rate, representing the data using only 2 dimensions.

neighbor classifier will perform equally well on the re-
covered low-dimensional embedding K as it did on
the original high-dimensional dataset. Because struc-
ture is not explicitly preserved with many existing di-
mensionality reduction techniques, the neighborhood
of each point can drastically change, thus potentially
reducing the accuracy of the knn classifier. These er-
rors indicate that the manifold has been folded onto
itself during dimensionality reduction. Table 3 shows
that MVE+SP offers a significant advantage over other
methods in terms of accuracy of using a 1-nearest
neighbor classifier on the resulting 2D embeddings.

The results in Table 3 were obtained by sampling a
variety of small graphs from UCI datasets (Asuncion
& Newman, 2007) by randomly selecting 120 nodes
from the two largest classes of each dataset. Then,
the data was embedded with the the variety of algo-
rithms above and the resulting performance of a 1NN
classifier was measured. The data was split 60/20/20
into training/cross validation/testing groups. The ac-
curacies shown in Table 3 show the results of averag-
ing 50 of these folds. Cross-validation was used to
find the optimal value of k for each algorithm and
dataset, where k specifies the number of nearest neigh-
bors each node connects to. The All-Dimension col-
umn on the right shows the corresponding accuracy
of a 1-nearest-neighor classifier using all of the fea-
tures of the data. MVE+SP performs better than all
other low-dimensional methods, and for the datasets
Ionosphere, Ecoli, and OptDigits, MVE+SP is more
accurate than using all the features of the data even
though MVE+SP uses only 2 features per datapoint.
It appears that the manifold recovered by MVE+SP
denoises the data, placing the key modes of variation in

the top few dimensions, while disregarding other noise
that reduces accuracy for the all-dimensions case.

Clearly MVE+SP is not intended to compete with
supervised algorithms for classification since it oper-
ates agnostically without any knowledge of the labels
for the points. However, Table 3 highlights a com-
mon deficiency with many dimensionality reduction
algorithms. Often, if dimensionality reduction is used
in an unsupervised setting as a preprocessing step, it
can reduce performance and a classifier formed from
the low-dimensional data can perform worse. Sim-
ply preserving distances during dimensionality reduc-
tion is not enough to preserve accuracy for a sub-
sequent classification problem. This is not the case
for MVE+SP which is maintaining (or even helping)
classification rates, further reinforcing the strength of
the structure preserving constraints to create accurate
low-dimensional representations of data (without any
knowledge of labels or a classification task). Further-
more, these results confirm a recent finding regarding
the finite-sample risk for a k-nearest neighbor clas-
sifer (Snapp & Venkatesh, 1998) which show that the
finite-sample risk can be expressed asymptotically as:
Rm = R∞ +

∑k
j=2 cjn−j/d + O(n−(k+1)/d), n → ∞,

where n is the number of finite samples, d is the dimen-
sionality of the data, k is the number of neighbors in
the nearest neighbor classifier and c2, ..., ck are scalar
coefficients specified in (Snapp & Venkatesh, 1998).
The main theorem of (Snapp & Venkatesh, 1998) sug-
gests that this expansion validates the curse of dimen-
sionality and, in order, to maintain |Rn −R∞| < ε for
some ε > 0 the sample size must scale with ε according
to n ∝ ε−d/2. Thus, if the k-nearest neighbor struc-
ture of the data is preserved exactly while dimension-

Structure Preserving Embedding

Table 3. Average classification accuracy of a 1-nearest neighbor classifier on UCI datasets. MVE+SP has higher accuracy
than other low-dimensional methods and also beats All-dimensions on Ionosphere, Ecoli, and OptDigits. Other class pairs
for OptDigits are not shown since all methods achieved near 100% accuracy.

KPCA MVU MVE MVE+SP All-Dimensions
Ionosphere 66.0% 85.0% 81.2% 87.1% 78.8%
Cars 66.1% 70.1% 71.6% 78.1% 79.3%
Dermatology 58.8% 63.6% 64.8% 66.3% 76.3%
Ecoli 94.9% 95.6% 94.8% 96.0% 95.6%
Wine 68.0% 68.5% 68.3% 69.7% 71.5%
OptDigits 4 vs. 9 94.4% 99.2% 99.6% 99.8% 98.6%

ality d is reduced (for instance using the approach of
MVE+SP), the finite-sample risk should more quickly
approach the infinite sample risk. This makes it is pos-
sible to more accurately use training performance on
low-dimensional k-nearest neighbor graphs to estimate
test performance.

7. Conclusion

This article suggests that preserving local distances or
using spectral methods is insufficient for faithfully em-
bedding graphs in low-dimensional space, and demon-
strates the improvements of SPE over current graph
embedding algorithms in terms of both the quality of
the resulting visualizations as well as the amount of
information compression. SPE allows us to accurately
visualize many interesting network structures ranging
from classical graphs, to organic compounds, to the
link structure between websites, using relatively few
dimensions. Furthermore, by incorporating structure
preserving constraints into existing nonlinear dimen-
sionality reduction algorithms, these methods can ex-
plicitly preserve graph topology in addition to local
distances, and produce more accurate low-dimensional
embeddings.

References

Adamic, L. A., & Glance, N. (2005). The political
blogosphere and the 2004 US election. WWW-2005
Workshop on the Weblogging Ecosystem.

Arora, S., Rao, S., & Vazirani, U. (2004). Expander
flows, geometric embeddings and graph partitioning.
Symposium on Theory of Computing.

Asuncion, A., & Newman, D. (2007). UCI ma-
chine learning repository. http://www.ics.uci.
edu/~mlearn/MLRepository.html.

Battista, G. D., Eades, P., Tamassia, R., & Tollis, I.
(1999). Graph drawing: algorithms for the visual-
ization of graphs. Prentice Hall.

Belkin, M., & Niyogi, P. (2002). Laplacian eigenmaps
for dimensionality reduction and data representa-
tion. Neural Computation, 15, 1373–1396.

Burer, S., & Monteiro, R. D. C. (2003). A nonlin-
ear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical
Programming (series B), 95(2), 329–357.

Chung, F. R. K. (1997). Spectral graph theory. Amer-
ican Mathematical Society.

Cox, T., & M.Cox (1994). Multidimensional scaling.
Chapman & Hall.

Finley, T., & Joachims, T. (2008). Training structural
svms when exact inference is intractable. Proc. of
25th International Conference on Machine Learning
(pp. 304–311).

Fremuth-Paeger, C., & Jungnickel, D. (1999). Bal-
anced network flows, a unifying framework for de-
sign and analysis of matching algorithms. Networks,
33, 1–28.

Roweis, S., & Saul, L. (2000). Nonlinear dimensional-
ity reduction by locally linear embedding. Science,
290, 2323–2326.

Shaw, B., & Jebara, T. (2007). Minimum volume
embedding. Proc. of the 11th International Con-
ference on Artificial Intelligence and Statistics (pp.
460–467).

Snapp, R., & Venkatesh, S. (1998). Asymptotic ex-
pansions of the k nearest neighbor risk. The Annals
of Statistics, 26, 850–878.

Sontag, D., & Jaakkola, T. (2008). New outer bounds
on the marginal polytope. Advances in Neural In-
formation Processing Systems 20 (pp. 1393–1400).

Tenenbaum, J., de Silva, V., & Langford, J. (2000).
A global geometric framework for nonlinear dimen-
sionality reduction. Science, 290, 2319–2323.

Weinberger, K. Q., Packer, B. D., & Saul, L. K. (2005).
Nonlinear dimensionality reduction by semidefinite
programming and kernel matrix factorization. Proc.
of the of the 10th International Workshop on Arti-
ficial Intelligence and Statistics (pp. 381–388).

