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Abstract

We propose abc-boost (adaptive base class
boost) for multi-class classification and
present abc-mart, an implementation of abc-
boost, based on the multinomial logit model.
The key idea is that, at each boosting it-
eration, we adaptively and greedily choose
a base class. Our experiments on pub-
lic datasets demonstrate the improvement of
abc-mart over the original mart algorithm.

1. Introduction

Classification is a basic task in machine learning. A
training data set {yi,Xi}N

i=1 consists of N feature vec-
tors (samples) Xi, and N class labels, yi. Here yi ∈
{0, 1, 2, ..., K−1} and K is the number of classes. The
task is to predict the class labels. Among many classi-
fication algorithms, boosting has become very popu-
lar (Schapire, 1990; Freund, 1995; Freund & Schapire,
1997; Bartlett et al., 1998; Schapire & Singer, 1999;
Friedman et al., 2000; Friedman, 2001).

This study focuses on multi-class classification (i.e.,
K ≥ 3). The multinomial logit model has been used
for solving multi-class classification problems. Using
this model, we first learn the class probabilities:

pi,k = Pr (yi = k|xi) =
eFi,k(xi)

∑K−1
s=0 eFi,s(xi)

, (1)

and then predict each class label according to

ŷi = argmax
k

pi,k. (2)

A classification error occurs if ŷi 6= yi. In (1), Fi,k =
Fi,k(xi) is a function to be learned from the data.
Boosting algorithms (Friedman et al., 2000; Friedman,
2001) have been developed to fit the multinomial logit
model. Several search engine ranking algorithms used
mart (multiple additive regression trees) (Friedman,
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2001) as the underlying learning procedure (Cossock
& Zhang, 2006; Zheng et al., 2008; Li et al., 2008).

Note that in (1), the values of pi,k are not affected by
adding a constant C to each Fi,k, because

eFi,k+C

∑K−1
s=0 eFi,s+C

=
eCeFi,k

eC
∑K−1

s=0 eFi,s

=
eFi,k

∑K−1
s=0 eFi,s

= pi,k

Therefore, for identifiability, one should impose a
constraint on Fi,k. One popular choice is to as-
sume

∑K−1
k=0 Fi,k = const, which is equivalent to∑K−1

k=0 Fi,k = 0, i.e., the sum-to-zero constraint.

This study proposes abc-boost (adaptive base class
boost), based on the following two key ideas:

1. Popular loss functions for multi-class classification
usually need to impose a constraint such that only
the values for K − 1 classes are necessary (Fried-
man et al., 2000; Friedman, 2001; Zhang, 2004;
Lee et al., 2004; Tewari & Bartlett, 2007; Zou
et al., 2008). Therefore, we can choose a base
class and derive algorithms only for K−1 classes.

2. At each boosting step, we can adaptively choose
the base class to achieve the best performance.

We present a concrete implementation named abc-
mart, which combines abc-boost with mart. Our
extensive experiments will demonstrate the improve-
ments of our new algorithm.

2. Review Mart & Gradient Boosting

Mart is the marriage of regress trees and function gra-
dient boosting (Friedman, 2001; Mason et al., 2000).
Given a training dataset {yi,xi}N

i=1 and a loss function
L, (Friedman, 2001) adopted a “greedy stagewise” ap-
proach to build an additive function F (M),

F (M)(x) =
M∑

m=1

ρmh(x;am), (3)

such that, at each stage m, m = 1 to M ,

{ρm,am} = argmin
ρ,a

N∑
i=1

L
(
yi, F

(m−1) + ρh(xi;a)
)

(4)
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Here h(x;a) is the “weak” learner. Instead of directly
solving the difficult problem (4), (Friedman, 2001) ap-
proximately conducted steepest descent in function
space, by solving a least square (Line 4 in Alg. 1)

am = argmin
a,ρ

N∑

i=1

[−gm(xi)− ρh(xi;a)]2 ,

where

−gm(xi) = −
[
∂L (yi, F (xi))

∂F (xi)

]

F (x)=F (m−1)(x)

is the steepest descent direction in the N -dimensional
data space at F (m−1)(x). For the other coefficient ρm,
a line search is performed (Line 5 in Alg. 1):

ρm = argmin
ρ

N∑
i=1

L
(
yi, F

(m−1)(xi) + ρh(xi;am)
)

.

Algorithm 1 Gradient boosting (Friedman, 2001).

1: Fx = argminρ

∑N
i=1 L(yi, ρ)

2: For m = 1 to M Do

3: ỹi = −
[

∂L(yi,F (xi))
∂F (xi)

]
F (x)=F (m−1)(x)

.

4: am = argmina,ρ

∑N
i=1 [ỹi − ρh(xi;a)]2

5: ρm = argminρ

∑N
i=1 L

(
yi, F

(m−1)(xi) + ρh(xi;am)
)

6: Fx = Fx + ρmh(x;am)

7: End

8: End

Mart adopted the multinomial logit model (1) and the
corresponding negative multinomial log-likelihood loss

L =
N∑

i=1

Li, Li = −
K−1∑

k=0

ri,k log pi,k (5)

where ri,k = 1 if yi = k and ri,k = 0 otherwise.

(Friedman, 2001) used the following derivatives:

∂Li

∂Fi,k
= − (ri,k − pi,k) , (6)

∂2Li

∂F 2
i,k

= pi,k (1− pi,k) . (7)

Alg. 2 describes mart for multi-class classification. At
each stage, the algorithm solves the mean square prob-
lem (Line 4 in Alg. 1) by regression trees, and imple-
ments Line 5 in Alg. 1 by a one-step Newton update
within each terminal node of trees. Mart builds K re-
gression trees at each boosting step. It is clear that
the constraint

∑K−1
k=0 Fi,k = 0 need not hold.

Algorithm 2 Mart (Friedman, 2001, Alg. 6)
0: ri,k = 1, if yi = k, and ri,k = 0 otherwise.

1: Fi,k = 0, k = 0 to K − 1, i = 1 to N

2: For m = 1 to M Do

3: For k = 0 to K − 1 Do

4: pi,k = exp(Fi,k)/
∑K−1

s=0 exp(Fi,s)

5: {Rj,k,m}J
j=1 = J-terminal node regression tree

: from {ri,k − pi,k, xi}N
i=1

6: βj,k,m = K−1
K

∑
xi∈Rj,k,m

ri,k−pi,k
∑

xi∈Rj,k,m
(1−pi,k)pi,k

7: Fi,k = Fi,k + ν
∑J

j=1 βj,k,m1xi∈Rj,k,m

8: End

9: End

Alg. 2 has three main parameters. The number of
terminal nodes, J , determines the capacity of the weak
learner. (Friedman, 2001) suggested J = 6. (Friedman
et al., 2000; Zou et al., 2008) commented that J > 10
is very unlikely. The shrinkage, ν, should be large
enough to make sufficient progress at each step and
small enough to avoid over-fitting. (Friedman, 2001)
suggested ν ≤ 0.1. The number of iterations, M , is
largely determined by the affordable computing time.

3. Abc-boost and Abc-mart

Abc-mart implements abc-boost. Corresponding to the
two key ideas of abc-boost in Sec. 1, we need to: (A)
re-derive the derivatives of (5) under the sum-to-zero
constraint; (B) design a strategy to adaptively select
the base class at each boosting iteration.

3.1. Derivatives of the Multinomial Logit
Model with a Base Class

Without loss of generality, we assume class 0 is the
base. Lemma 1 provides the derivatives of the class
probabilities pi,k under the logit model (1).

Lemma 1
∂pi,k

∂Fi,k
= pi,k (1 + pi,0 − pi,k) , k 6= 0

∂pi,k

∂Fi,s
= pi,k (pi,0 − pi,s) , k 6= s 6= 0

∂pi,0

∂Fi,k
= pi,0 (−1 + pi,0 − pi,k) , k 6= 0

Proof: Note that Fi,0 = −∑K−1
k=1 Fi,k. Hence

pi,k =
eFi,k

∑K−1
s=0 eFi,s

=
eFi,k

∑K−1
s=1 eFi,s + e

∑K−1
s=1 −Fi,s

∂pi,k

∂Fi,k
=

eFi,k

∑K−1
s=0 eFi,s

− eFi,k
(
eFi,k − e−Fi,0

)
(∑K−1

s=0 eFi,s

)2

= pi,k (1 + pi,0 − pi,k) .
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The other derivatives can be obtained similarly. ¤

Lemma 2 provides the derivatives of the loss (5).

Lemma 2 For k 6= 0,

∂Li

∂Fi,k
= (ri,0 − pi,0)− (ri,k − pi,k) ,

∂2Li

∂F 2
i,k

= pi,0(1− pi,0) + pi,k(1− pi,k) + 2pi,0pi,k.

Proof:

Li = −
K−1∑

s=1,s6=k

ri,s log pi,s − ri,k log pi,k − ri,0 log pi,0.

Its first derivative is

∂Li

∂Fi,k
= −

K−1∑

s=1,s 6=k

ri,s

pi,s

∂pi,s

Fi,k
− ri,k

pi,k

∂pi,k

Fi,k
− ri,0

pi,0

∂pi,0

Fi,k

=

K−1∑

s=1,s 6=k

−ri,s (pi,0 − pi,k)− ri,k (1 + pi,0 − pi,k)

− ri,0 (−1 + pi,0 − pi,k)

=−
K−1∑
s=0

ri,s (pi,0 − pi,k) + ri,0 − ri,k

=(ri,0 − pi,0)− (ri,k − pi,k) .

And the second derivative is

∂2Li

∂F 2
i,k

= − ∂pi,0

∂Fi,k
+

∂pi,k

∂Fi,k

=− pi,0 (−1 + pi,0 − pi,k) + pi,k (1 + pi,0 − pi,k)

=pi,0(1− pi,0) + pi,k(1− pi,k) + 2pi,0pi,k. ¤

3.2. The Exhaustive Strategy for the Base

We adopt a greedy strategy. At each training iteration,
we try each class as the base and choose the one that
achieves the smallest training loss (5) as the final base
class, for the current iteration. Alg. 3 describes
abc-mart using this strategy.

3.3. More Insights in Mart and Abc-mart

First of all, one can verify that abc-mart recovers mart
when K = 2. For example, consider K = 2, ri,0 = 1,
ri,1 = 0, then ∂Li

∂Fi,1
= 2pi,1, ∂2Li

∂F 2
i,1

= 4pi,0pi,1. Thus,

the factor K−1
K = 1

2 appeared in Alg. 2 is recovered.

When K ≥ 3, it is interesting that mart used the av-
eraged first derivatives. The following equality

∑

b6=k

{−(ri,b − pi,b) + (ri,k − pi,k)} = K(ri,k − pi,k),

Algorithm 3 Abc-mart using the exhaustive search
strategy. The vector B stores the base class numbers.
0: ri,k = 1, if yi = k, ri,k = 0 otherwise.

1: Fi,k = 0, pi,k = 1
K

, k = 0 to K − 1, i = 1 to N

2: For m = 1 to M Do

3: For b = 0 to K − 1, Do

4: For k = 0 to K − 1, k 6= b, Do

5: {Rj,k,m}J
j=1 = J-terminal node regression tree

: from {−(ri,b − pi,b) + (ri,k − pi,k), xi}N
i=1

6: βj,k,m =

∑
xi∈Rj,k,m

−(ri,b−pi,b)+(ri,k−pi,k)
∑

xi∈Rj,k,m
pi,b(1−pi,b)+pi,k(1−pi,k)+2pi,bpi,k

7: Gi,k,b = Fi,k + ν
∑J

j=1 βj,k,m1xi∈Rj,k,m

8: End

9: Gi,b,b = −∑
k 6=b Gi,k,b

10: qi,k = exp(Gi,k,b)/
∑K−1

s=0 exp(Gi,s,b)

11: L(b) = −∑N
i=1

∑K−1
k=0 ri,k log (qi,k)

12: End

13: B(m) = argmin
b

L(b)

14: Fi,k = Gi,k,B(m)

15: pi,k = exp(Fi,k)/
∑K−1

s=0 exp(Fi,s)

16: End

holds because
∑

b 6=k

{−(ri,b − pi,b) + (ri,k − pi,k)}

=−
∑

b6=k

ri,b +
∑

b6=k

pi,b + (K − 1)(ri,k − pi,k)

=− 1 + ri,k + 1− pi,k + (K − 1)(ri,k − pi,k)

=K(ri,k − pi,k).

We can also show that, for the second derivatives,
∑

b 6=k

{(1− pi,b)pi,b + (1− pi,k)pi,k + 2pi,bpi,k}

≥(K + 2)(1− pi,k)pi,k,

with equality holding when K = 2, because
∑

b6=k

{(1− pi,b)pi,b + (1− pi,k)pi,k + 2pi,bpi,k}

=(K + 1)(1− pi,k)pi,k +
∑

b6=k

pi,b −
∑

b6=k

p2
i,b

≥(K + 1)(1− pi,k)pi,k +
∑

b6=k

pi,b −

∑

b6=k

pi,b




2

=(K + 1)(1− pi,k)pi,k + (1− pi,k)pi,k

=(K + 2)(1− pi,k)pi,k.

The factor K−1
K in Alg. 2 may be reasonably replaced

by K
K+2 (both equal 1

2 when K = 2), or smaller. In a
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sense, to make the comparisons more fair, we should
have replaced the shrinkage factor ν in Alg. 3 by ν′,

ν′ ≥ ν
K − 1

K

K + 2
K

= ν
K2 + K − 2

K2
≥ ν.

In other words, the shrinkage used in mart is effectively
larger than the same shrinkage used in abc-mart.

4. Evaluations

Our experiments were conducted on several public
datasets (Table 1), including one large dataset and
several small or very small datasets. Even smaller
datasets will be too sensitive to the implementation
(or tuning) of weak learners.

Table 1. Whenever possible, we used the standard (de-
fault) training and test sets. For Covertype, we randomly
split the original dataset into halves. For Letter, the default
test set consisted of the last 4000 samples. For Letter2k
(Letter4k), we took the last 2000 (4000) samples of Letter
for training and the remaining 18000 (16000) for test.

dataset K # training # test # features
Covertype 7 290506 290506 54
Letter 26 16000 4000 16
Letter2k 26 2000 18000 16
Letter4k 26 4000 16000 16
Pendigits 10 7494 3498 16
Zipcode 10 7291 2007 256
Optdigits 10 3823 1797 64
Isolet 26 6218 1559 617

Ideally, we hope that abc-mart will improve mart (or
be as good as mart), for every reasonable combination
of tree size J and shrinkage ν.

Except for Covertype and Isolet, we experimented with
every combination of ν ∈ {0.04, 0.06, 0.08, 0.1} and
J ∈ {4, 6, 8, 10, 12, 14, 16, 18, 20}. Except for
Covertype, we let the number of boosting steps M =
10000. However, the experiments usually terminated
earlier because the machine accuracy was reached.

For the Covertype dataset, since it is fairly large, we
only experimented with J = 6, 10, 20 and ν = 0.1. We
limited M = 5000, which is probably already a too
large learning model for real applications, especially
applications that are sensitive to the test time.

4.1. Summary of Experiment Results

We define Rerr, the “relative improvement of test mis-
classification errors” as

Rerr =
error of mart− error of abc-mart

error of mart
. (8)

Since we experimented with a series of parameters, J ,
ν, and M , we report, in Table 2, the overall “best”
(i.e., smallest) mis-classification errors. Later, we will
also report the more detailed mis-classification errors
for every combination of J and ν, in Sec. 4.2 to 4.9.
We believe this is a fair (side-by-side) comparison.

Table 2. Summary of test mis-classification errors.

Dataset mart abc-mart Rerr (%) P -value
Covertype 11350 10420 8.2 0
Letter 129 99 23.3 0.02
Letter2k 2439 2180 10.6 0
Letter4k 1352 1126 16.7 0
Pendigits 124 100 19.4 0.05
Zipcode 111 100 9.9 0.22
Optdigits 55 43 21.8 0.11
Isolet 80 64 20.0 0.09

In Table 2, we report the numbers of mis-classification
errors mainly for the convenience of future compar-
isons with this work. The reported P -values are based
on the error rate, for testing whether abc-mart has
statistically lower error rates than mart. We should
mention that testing the statistical significance of the
difference of two small probabilities (error rates) re-
quires particularly strong evidence.

4.2. Experiments on the Covertype Dataset

Table 3 summarizes the smallest test mis-classification
errors along with the relative improvements (Rerr).
For each J and ν, the smallest test errors, separately
for abc-mart and mart, are the lowest points in the
curves in Figure 2, which are almost always the last
points on the curves, for this dataset.

Table 3. Covertype. We report the test mis-classification
errors of mart and abc-mart, together with the results from
Friedman’s MART program (in [ ]). The relative improve-
ments (Rerr, %) of abc-mart are included in ( ).

ν M J mart abc-mart
0.1 1000 6 40072 [39775] 34758 (13.3)
0.1 1000 10 29456 [29196] 23577 (20.0)
0.1 1000 20 19109 [19438] 15362 (19.6)
0.1 2000 6 31541 [31526] 26126 (17.2)
0.1 2000 10 21774 [21698] 17479 (19.7)
0.1 2000 20 14505 [14665] 12045 (17.0)
0.1 3000 6 26972 [26742] 22111 (18.0)
0.1 3000 10 18494 [18444] 14984 (19.0)
0.1 3000 20 12740 [12893] 11087 (13.0)
0.1 5000 6 22511 [22335] 18445 (18.1)
0.1 5000 10 15450 [15429] 13018 (15.7)
0.1 5000 20 11350 [11524] 10420 (8.2)

The results on Covertype are reported differently from
other datasets. Covertype is fairly large. Building
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a very large model (e.g., M = 5000 boosting steps)
would be expensive. Testing a very large model at
run-time can be costly or infeasible for certain applica-
tions. Therefore, it is often important to examine the
performance of the algorithm at much earlier boosting
iterations. Table 3 shows that abc-mart may improve
mart as much as Rerr ≈ 20%, as opposed to the re-
ported Rerr = 8.2% in Table 2.

Figure 1 indicates that abc-mart reduces the training
loss (5) considerably and consistently faster than mart.
Figure 2 demonstrates that abc-mart exhibits consid-
erably and consistently smaller test mis-classification
errors than mart.
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Figure 1. Covertype. The training loss, i.e., (5).
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Figure 2. Covertype. The test mis-classification errors.

4.3. Experiments on the Letter Dataset

We trained till the loss (5) reached machine accuracy,
to exhaust the capacity of the learner so that we could
provide a reliable comparison, up to M = 10000.

Table 4 summarizes the smallest test mis-classification
errors along with the relative improvements. For abc-
mart, the smallest error usually occurred at very close
to the last iteration, as reflected in Figure 3, which
again demonstrates that abc-mart exhibits consider-
ably and consistently smaller test errors than mart.

One observation is that test errors are fairly stable
across J and ν, unless J and ν are small (machine
accuracy was not reached in these cases).

4.4. Experiments on the Letter2k Dataset

Table 5 and Figure 4 present the test errors, illus-
trating the considerable and consistent improvement
of abc-mart over mart on this dataset.

Table 4. Letter. We report the test mis-classification
errors of mart and abc-mart, together with Friedman’s
MART program results (in [ ]). The relative improvements
(Rerr, %) of abc-mart are included in ( ).

mart
ν = 0.04 ν = 0.06 ν = 0.08 ν = 0.1

J = 4 174 [178] 177 [176] 177 [177] 172 [177]
J = 6 163 [153] 157 [160] 159 [156] 159 [162]
J = 8 155 [151] 148 [152] 155 [148] 144 [151]
J = 10 145 [141] 145 [148] 136 [144] 142 [136]
J = 12 143 [142] 147 [143] 139 [145] 141 [145]
J = 14 141 [151] 144 [150] 145 [144] 152 [142]
J = 16 143 [148] 145 [146] 139 [145] 141 [137]
J = 18 132 [132] 133 [137] 129 [135] 138 [134]
J = 20 129 [143] 140 [135] 134 [139] 136 [143]

abc-mart
J = 4 152 (12.6) 147 (16.9) 142 (19.8) 137 (20.3)
J = 6 127 (22.1) 126 (19.7) 118 (25.8) 119 (25.2)
J = 8 122 (21.3) 112 (24.3) 108 (30.3) 103 (28.5)
J = 10 126 (13.1) 115 (20.7) 106 (22.1) 100 (29.6)
J = 12 117 (18.2) 114 (22.4) 107 (23.0) 104 (26.2)
J = 14 112 (20.6) 113 (21.5) 106 (26.9) 108 (28.9)
J = 16 111 (22.4) 112 (22.8) 106 (23.7) 99 (29.8)
J = 18 113 (14.4) 110 (17.3) 108 (16.3) 104 (24.6)
J = 20 100 (22.5) 104 (25.7) 100 (25.4) 102 (25.0)
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Figure 3. Letter. The test mis-classification errors.

Table 5. Letter2k. The test mis-classification errors.

mart
ν = 0.04 ν = 0.06 ν = 0.08 ν = 0.1

J=4 2694 [2750] 2698 [2728] 2684 [2706] 2689 [2733]
J=6 2683 [2720] 2664 [2688] 2640 [2716] 2629 [2688]
J=8 2569 [2577] 2603 [2579] 2563 [2603] 2571 [2559]
J=10 2534 [2545] 2516 [2546] 2504 [2539] 2491 [2514]
J=12 2503 [2474] 2516 [2465] 2473 [2492] 2492 [2455]
J=14 2488 [2432] 2467 [2482] 2460 [2451] 2460 [2454]
J=16 2503 [2499] 2501 [2494] 2496 [2437] 2500 [2424]
J=18 2494 [2464] 2497 [2482] 2472 [2489] 2439 [2476]
J=20 2499 [2507] 2512 [2523] 2504 [2460] 2482 [2505]

abc-mart
J=4 2476 (8.1) 2458 (8.9) 2406 (10.4) 2407 (10.5)
J=6 2355 (12.2) 2319 (12.9) 2309 (12.5) 2314 (12.0)
J=8 2277 (11.4) 2281 (12.4) 2253 (12.1) 2241 (12.8)
J=10 2236 (11.8) 2204 (12.4) 2190 (12.5) 2184 (12.3)
J=12 2199 (12.1) 2210 (12.2) 2193 (11.3) 2200 (11.7)
J=14 2202 (11.5) 2218 (10.1) 2198 (10.7) 2180 (11.4)
J=16 2215 (11.5) 2216 (11.4) 2228 (10.7) 2202 (11.9)
J=18 2216 (11.1) 2208 (11.6) 2205 (10.8) 2213 (9.3)
J=20 2199 (12.0) 2195 (12.6) 2183 (12.8) 2213 (10.8)
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Figure 4. Letter2k. The test mis-classification errors.

Figure 4 indicates that we train more iterations for abc-
mart than mart, for some cases. In our experiments,
we terminated training mart whenever the training loss
(5) reached 10−14 because we found out that, for most
datasets and parameter settings, mart had difficulty
reaching smaller training loss. In comparisons, abc-
mart usually had no problem of reducing the training
loss (5) down to 10−16 or smaller; and hence we ter-
minated training abc-mart at 10−16. For the Letter2k
dataset, our choice of the termination conditions may
cause mart to terminate earlier than abc-mart in some
cases. Also, as explained in Sec. 3.3, the fact that mart
effectively uses larger shrinkage than abc-mart may be
partially responsible for the phenomenon in Figure 4.

4.5. Experiments on the Letter4k Dataset

Table 6. Letter4k. The test mis-classification errors.

mart
ν = 0.04 ν = 0.06 ν = 0.08 ν = 0.1

J = 4 1681 [1664] 1660 [1684] 1671 [1664] 1655 [1672]
J = 6 1618 [1584] 1584 [1584] 1588 [1596] 1577 [1588]
J = 8 1531 [1508] 1522 [1492] 1516 [1492] 1521 [1548]
J = 10 1499 [1500] 1463 [1480] 1479 [1480] 1470 [1464]
J = 12 1420 [1456] 1434 [1416] 1409 [1428] 1437 [1424]
J = 14 1410 [1412] 1388 [1392] 1377 [1400] 1396 [1380]
J = 16 1395 [1428] 1402 [1392] 1396 [1404] 1387 [1376]
J = 18 1376 [1396] 1375 [1392] 1357 [1400] 1352 [1364]
J = 20 1386 [1384] 1397 [1416] 1371 [1388] 1370 [1388]

abc-mart
J = 4 1407 (16.3) 1372 (17.3) 1348 (19.3) 1318 (20.4)
J = 6 1292 (20.1) 1285 (18.9) 1261 (20.6) 1234 (21.8)
J = 8 1259 (17.8) 1246 (18.1) 1191 (21.4) 1183 (22.2)
J = 10 1228 (18.1) 1201 (17.9) 1181 (20.1) 1182 (19.6)
J = 12 1213 (14.6) 1178 (17.9) 1170 (17.0) 1162 (19.1)
J = 14 1181 (16.2) 1154 (16.9) 1148 (16.6) 1158 (17.0)
J = 16 1167 (16.3) 1153 (17.8) 1154 (17.3) 1142 (17.7)
J = 18 1164 (15.4) 1136 (17.4) 1126 (17.0) 1149 (15.0)
J = 20 1149 (17.1) 1127 (19.3) 1126 (17.9) 1142 (16.4)

4.6. Experiments on the Pendigits Dataset
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Figure 5. Letter4k. The test mis-classification errors.

Table 7. Pendigits. The test mis-classification errors.

mart
ν = 0.04 ν = 0.06 ν = 0.08 ν = 0.1

J = 4 144 [145] 145 [146] 145 [144] 143 [142]
J = 6 135 [139] 135 [140] 143 [137] 135 [138]
J = 8 133 [133] 130 [132] 129 [133] 128 [134]
J = 10 132 [132] 129 [128] 127 [128] 130 [132]
J = 12 136 [134] 134 [134] 135 [140] 133 [134]
J = 14 129 [126] 131 [131] 130 [133] 133 [131]
J = 16 129 [127] 130 [129] 133 [132] 134 [126]
J = 18 132 [129] 130 [129] 126 [128] 133 [131]
J = 20 130 [129] 125 [125] 126 [130] 130 [128]

abc-mart
J = 4 109 (24.3) 106 (26.9) 106 (26.9) 107 (25.2)
J = 6 109 (19.3) 105 (22.2) 104 (27.3) 102 (24.4)
J = 8 105 (20.5) 101 (22.3) 104 (19.4) 104 (18.8)
J = 10 102 (17.7) 102 (20.9) 102 (19.7) 100 (23.1)
J = 12 101 (25.7) 103 (23.1) 103 (23.7) 105 (21.1)
J = 14 105 (18.6) 102 (22.1) 102 (21.5) 102 (23.3)
J = 16 109 (15.5) 107 (17.7) 106 (20.3) 106 (20.9)
J = 18 110 (16.7) 106 (18.5) 105 (16.7) 105 (21.1)
J = 20 109 (16.2) 105 (16.0) 107 (15.1) 105 (19.2)
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Figure 6. Pendigits. The test mis-classification errors.
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4.7. Experiments on the Zipcode Dataset

Table 8. Zipcode. We report the test mis-classification er-
rors of mart and abc-mart, together with the results from
Friedman’s MART program (in [ ]). The relative improve-
ments (Rerr, %) of abc-mart are included in ( ).

mart
ν = 0.04 ν = 0.06 ν = 0.08 ν = 0.1

J = 4 130 [132] 125 [128] 129 [132] 127 [128]
J = 6 123 [126] 124 [128] 123 [127] 126 [124]
J = 8 120 [119] 122 [123] 122 [120] 123 [115]
J = 10 118 [117] 118 [119] 120 [115] 118 [117]
J = 12 117 [118] 116 [118] 117 [116] 118 [113]
J = 14 118 [115] 120 [116] 119 [114] 118 [114]
J = 16 119 [121] 111 [113] 116 [114] 115 [114]
J = 18 113 [120] 114 [116] 114 [116] 114 [113]
J = 20 114 [111] 112 [110] 115 [110] 111 [115]

abc-mart
J = 4 120 (7.7) 113 (9.5) 116 (10.1) 109 (14.2)
J = 6 110 (10.6) 112 (9.7) 109 (11.4) 104 (17.5)
J = 8 106 (11.7) 102 (16.4) 103 (15.5) 103 (16.3)
J = 10 103 (12.7) 104 (11.9) 106 (11.7) 105 (11.0)
J = 12 103 (12.0) 101 (12.9) 101 (13.7) 104 (11.9)
J = 14 103 (12.7) 106 (11.7) 103 (13.4) 104 (11.9)
J = 16 106 (10.9) 102 (8.1) 100 (13.8) 104 (9.6)
J = 18 102 (9.7) 100 (12.3) 101 (11.4) 101 (11.4)
J = 20 104 (8.8) 103 (8.0) 105 (8.7) 105 (5.4)
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Figure 7. Zipcode. The test mis-classification errors.

4.8. Experiments on the Optdigits Dataset

This dataset is one of two largest datasets (Optdigits
and Pendigits) used in a recent paper on boosting (Zou
et al., 2008), which proposed the multi-class gentle-
boost and ADABOOST.ML.

For Pendigits, (Zou et al., 2008) reported 3.69%,
4.09%, and 5.86% error rates, for gentleboost, AD-
ABOOST.ML, and ADABOOST.MH (Schapire &
Singer, 2000), respectively. For Optdigits, they re-
ported 5.01%, 5.40%, and 5.18%, respectively.

Table 9. Optdigits. The test mis-classification errors

.
mart

ν = 0.04 ν = 0.06 ν = 0.08 ν = 0.1
J = 4 58 [61] 57 [58] 57 [57] 59 [58]
J = 6 58 [57] 57 [54] 59 [59] 57 [56]
J = 8 61 [62] 60 [58] 57 [59] 60 [56]
J = 10 60 [62] 55 [59] 57 [57] 60 [60]
J = 12 57 [60] 58 [59] 56 [60] 60 [59]
J = 14 57 [57] 58 [61] 58 [59] 55 [57]
J = 16 60 [60] 58 [59] 59 [58] 57 [58]
J = 18 60 [59] 59 [60] 59 [58] 59 [57]
J = 20 58 [60] 61 [62] 58 [60] 59 [60]

abc-mart
J = 4 48 (17.2) 45 (21.1) 46 (19.3) 43 (27.1)
J = 6 43 (25.9) 47 (17.5) 43 (27.1) 43 (24.6)
J = 8 46 (24.6) 45 (25.0) 46 (19.3) 47 (21.6)
J = 10 48 (20.0) 47 (14.5) 47 (17.5) 50 (16.7)
J = 12 47 (17.5) 48 (17.2) 47 (16.1) 47 (21.7)
J = 14 50 (12.3) 50 (13.8) 49 (15.5) 47 (14.6)
J = 16 51 (15.0) 48 (17.2) 46 (22.0) 49 (14.0)
J = 18 49 (18.3) 48 (18.6) 49 (20.0) 50 (15.3)
J = 20 51 (12.1) 48 (21.3) 50 (13.8) 47 (20.3)
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Figure 8. Optdigits. The test mis-classification errors.

4.9. Experiments on the Isolet Dataset

This dataset is high-dimensional with 617 features,
for which tree algorithms become less efficient. We
have only conducted experiments for one shrinkage,
i.e,. ν = 0.1.

Table 10. Isolet. The test mis-classification errors.

mart abc-mart
ν = 0.1 ν = 0.1

J = 4 80 [86] 64 (20.0)
J = 6 84 [86] 67 (20.2)
J = 8 84 [88] 72 (14.3)
J = 10 82 [83] 74 (9.8)
J = 12 91 [90] 74 (18.7)
J = 14 95 [94] 74 (22.1)
J = 16 94 [92] 78 (17.0)
J = 18 86 [91] 78 (9.3)
J = 20 87 [94] 78 (10.3)
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Figure 9. Isolet. The test mis-classification errors.

5. Conclusion

We present the concept of abc-boost and its concrete
implementation named abc-mart, for multi-class clas-
sification (with K ≥ 3 classes). Two key components
of abc-boost include: (A) By enforcing the (commonly
used) constraint on the loss function, we can derive
boosting algorithms for only K − 1 classes using a
base class; (B) We adaptively (and greedily) choose
the base class at each boosting step. Our experiments
demonstrated the improvements.

Comparisons with other boosting algorithms on some
public datasets may be possible through prior publica-
tions, e.g., (Allwein et al., 2000; Zou et al., 2008). We
also hope that our work could be useful as the baseline
for future development in multi-class classification.
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