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Abstract

A popular approach to collaborative filtering
is matrix factorization. In this paper we de-
velop a non-linear probabilistic matrix factor-
ization using Gaussian process latent variable
models. We use stochastic gradient descent
(SGD) to optimize the model. SGD allows us
to apply Gaussian processes to data sets with
millions of observations without approximate
methods. We apply our approach to bench-
mark movie recommender data sets. The re-
sults show better than previous state-of-the-
art performance.

1. Introduction

Collaborative filtering is the process of filtering infor-
mation from different viewpoints. A particular use of
the approach is the prediction of user tastes. Given a
body of works, such as books or movies, what does a
given user’s quality rating of one item say about their
likely rating for another? There are two dominant ap-
proaches to collaborative filtering. The neighborhood
approach involves expressing a similarity measure be-
tween the items to be rated. When a prediction for a
new item is required, the similarity between the new
item and previously rated items is computed. The new
prediction is given by a normalized similarity-weighted
sum of the rated items. The alternative approach is
the latent factor approach, which typically involves a
low rank approximation. There is evidence (Bell &
Koren, 2007) that both these approaches to collabo-
rative filtering are important for good performance on
real data.

In this paper we develop a non-linear extension of
the latent factor approach to collaborative filtering.
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We show how a probabilistic matrix factorization is
equivalent to probabilistic principal component anal-
ysis. We then extend this model in a non-linear way
to give a probabilistic non-linear matrix factorization.
Moreover, our formula for predicting a new test rating
from previously rated items turns out to be strikingly
similar to the weighted similarity equations used in
neighborhood approaches.

Our model therefore embodies a combined approach to
collaborative filtering. Heuristic algorithms exhibiting
this combined approach to collaborative filtering have
already been suggested (see e.g. Koren, 2008). Our al-
gorithm emerges naturally through Gaussian process
prediction. We show how the parameters of the algo-
rithm can all be learned using maximum likelihood via
stochastic gradient descent.

The latent factor approach to collaborative filtering
sees the data as a sparsely populated matrix of rat-
ings. For a data set with N items and D users we
take this matrix to be Y ∈ <N×D. The objective is
to factorize Y into a lower rank form, Y ≈ U>V (see
e.g. Rennie & Srebro, 2005; DeCoste, 2006), where
U ∈ <q×N and V ∈ <q×D. Prediction can then be
done by estimating (U, V) from the training data and
computing the resulting approximation to Y. In this
paper we consider a non-linear generalization of this
approach.

To guide algorithmic development, we favor a prob-
abilistic perspective, we therefore consider the very
natural probabilistic interpretation of this factoriza-
tion given by Salakhutdinov and Mnih (2008b) they
referred to as probabilistic matrix factorization (PMF).
Their probabilistic model takes the form

p
(
Y|U,V, σ2

)
=

N∏
i=1

N
(
yi,:|V>u:,i, σ

2I
)
.

where u:,i is the ith column of U and yi,: is a column
vector taken from the ith row of Y containing ratings
of the ith item from the users. In practice yi,: will have
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many missing values, but we will ignore this aspect for
the moment.

In PMF we are modeling the matrix Y as a noise
corrupted low rank matrix. The mean of the dis-
tribution is given by the matrix factorization, U>V,
and the noise is taken to be Gaussian with variance
σ2. In PMF a Gaussian prior is placed over U,
p (U) =

∏N
i=1

∏q
j=1N

(
uj,i|0, α−1

u

)
and V, p (V) =∏D

i=1

∏q
j=1N

(
vj,i|0, α−1

v

)
. Ideally, the marginal like-

lihood of the model would be calculated, but in prac-
tice this is not tractable. Instead, in their original
paper, Salakhutdinov and Mnih suggest maximum a
posteriori (MAP) approximations.

It is well known that SVD of a data matrix is directly
equivalent to principal component analysis (PCA). In
this case we consider Y to be a design matrix, with
each row representing a separate data point. Salakhut-
dinov and Mnih consider their model to be a prob-
abilistic generalization of SVD, it therefore makes
sense to ask the question, what is the relationship be-
tween PMF and probabilistic PCA (PPCA, Tipping &
Bishop, 1999)?

2. PMF is Bayesian PCA

It turns out that the unconstrained PMF is probabilis-
tically equivalent to Bayesian PCA (Bishop, 1999a).
This is a little easier to see with a small change
of notation. Consider a matrix of latent variables,
X ≡ U> ∈ <N×q and a mapping matrix which goes
from the latent space to the observed data space,
W ≡ V> ∈ <D×q. Using this new notation,

p
(
Y|W,X, σ2

)
=

N∏
i=1

N
(
yi,:|Wxi,:, σ2I

)
, (1)

the likelihood has a familiar look. It is a multi-output
linear regression from a q dimensional feature matrix
X to matrix targets Y. Placing a prior over X,

p (X) =
N∏
i=1

q∏
j=1

N
(
xi,j |0, α−1

x

)
,

and marginalizing leads to

p
(
Y|W, σ2, αx

)
=

N∏
i=1

N
(
yi,:|0, α−1

x WW> + σ2I
)
.

When optimizing with respect to parameters we can
absorb αx into W leaving the likelihood function as-
sociated with PPCA (Tipping & Bishop, 1999). Un-
fortunately, attempting to marginalize W is now in-
tractable. Instead, we take a step back and consider

marginalizing W instead of X. Taking the prior over
W,

p (W) =
D∏
i=1

q∏
j=1

N
(
wi,j |0, α−1

w

)
and combining with the likelihood we recover the fol-
lowing marginal likelihood:

p
(
Y|X, σ2, αw

)
=

D∏
j=1

N
(
y:,j |0, α−1

w XX> + σ2I
)
.

This is the marginal likelihood of a Bayesian linear
regression model with multiple outputs. However, we
are not given the input matrix, X, but we optimize
with respect to it. Optimization with respect to these
inputs is also equivalent to probabilistic PCA. It is
known as dual probabilistic PCA (DPPCA, Lawrence,
2005).

If we were to marginalize both X and W we would re-
cover Bayesian PCA. This is not analytically tractable,
but the Laplace approximation (Bishop, 1999a; Minka,
2001) and variational approaches (Bishop, 1999b) have
been proposed. Salakhutdinov and Mnih (2008a) used
Gibbs sampling to deal with the intractabilities.

The equivalences of the models we’ve laid out above
imply we can deal with marginalization of either X
or W analytically, leaving us to optimize the result-
ing marginal likelihood with respect to the remaining
matrix and the hyper parameters of the model.

2.1. Missing Values

Both models we’ve described are Gaussian models with
a particular covariance structure. This means that
marginalizing over missing values is straightforward.
Consider a Gaussian distribution over a vector y with
mean µ and covariance Σ, y ∼ N (µ,Σ) . We rep-
resent an observed subset of y by yi, where i repre-
sents the indexes of the observed values. Marginal-
izing the missing values leads to a Gaussian of the
form yi ∼ N (µi,Σi,i) , where µi and Σi,i represent
the mean vector with the rows (and for Σ columns)
associated with the unobserved elements of y removed.
This implies that when the data matrix is sparse (as
is typically the case in collaborative filtering) the like-
lihoods have the form

p
(
Y|W, σ2, αx

)
=

N∏
i=1

N
(
yi,ji |0, α−1

x Wji,:W
>
ji,: + σ2I

)
and

p
(
Y|X, σ2, αw

)
=

D∏
j=1

N
(
yij ,j |0, α−1

w Xij ,:X
>
ij ,: + σ2I

)
.

(2)
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Which of these likelihoods should we select? Either
the likelihood in the PPCA form or the DPPCA form
can be used. Whilst there are sensible statistical argu-
ments for selecting the likelihood with less parameters
(which this is will depend on whether there are more
users or items), the maximum likelihood solutions for
the fully observed case are equivalent. We will proceed
with the DPPCA form, though, as typically there are
more users than items in collaborative filtering, and
in this case DPPCA has fewer parameters. However,
it should be borne in mind that the ideas that follow
apply equally to the PPCA form, but with the roles
of users and items reversed (there is a duality between
the likelihoods that should have become apparent by
now).

When Y is fully observed, a global maximum for (2)
with respect to X and σ2 can be found through an
eigenvalue problem. When there are missing values,
Tipping and Bishop (1999) suggested an expectation-
maximization (EM) algorithm. However, when D is
very large EM is computationally too expensive and it
makes sense to consider stochastic gradient descent.

2.2. Stochastic Gradient Descent

Rather than maximizing the likelihood through an EM
algorithm we propose presenting ratings for each user
one at a time and computing the gradient of the log
likelihood for that user. The parameters X, αw and σ2

can then be updated by the gradients for that user, and
a new user is presented. The objective is to maximize
the log likelihood, conversely we minimize the negative
log likelihood. For the jth user this is given by

Ej(X) =
Nj
2

log |Cj |+
1
2

(
y>ij ,jC

−1
j yij ,j

)
+ const.,

where Cj = α−1
w Xij ,:X

>
ij ,:

+σ2I and Nj is the number
of items rated by user j. The gradient with respect to
X can be computed as

dEj (X)
dXij,:

= −GXij,:

with G =
(
C−1
j yij ,jy

>
ij ,j

C−1
j −C−1

j

)
. Gradients with

respect to σ2 and αw can also be found. The com-
putational complexity of the gradient computation is
O(N3

j ) or, if q < Nj the matrix inversion lemma,

C−1 = σ−2I− σ−4X
(
αwIσ−2 + X>X

)−1
X>,

can be used to give a complexity of O(q3) for the in-
version.

3. Non-Linear PMF via GP-LVMs

We have already highlighted the fact that proba-
bilistic matrix factorization, with the parameters W
marginalized is a Bayesian multi-output regression
model in which we optimize with respect to the inputs
to the regression. This type of model is equivalent to
probabilistic PCA. However, it also belongs to a larger
class of models called Gaussian process latent variable
models (GP-LVM). Lawrence (2005) showed how the
matrix C has an interpretation as a Gaussian process
(GP) covariance matrix. The GP associated with the
covariance function C = α−1

w XX> + σ2I is a linear
model. However, by replacing the inner product ma-
trix, XX>, by a Mercer kernel the model becomes a
non-linear GP model. Maximization of the log like-
lihood can no longer be done through an eigenvalue
problem, but it is straightforward to apply stochastic
gradient descent in the manner described above.

The regression model from (1) can be written as a
product of univariate Gaussian distributions,

p
(
Y|W,X, σ2

)
=

D∏
j=1

N∏
i=1

N
(
yi,j |fj (xi,:) , σ2I

)
,

where the mean of each Gaussian is given by the inner
product fj (xi,:) = w>j,:xi,:. Probabilistic PCA can be
recovered by marginalizing either W or X. The GP-
LVM is recovered by recognizing that we can place
the prior distribution directly over the function f (·)
through a Gaussian process (Rasmussen & Williams,
2006).

A Gaussian process (GP) can be thought of as a proba-
bility distribution for generating functions. The GP is
specified by a mean and a covariance function. For any
given set of observations of the function, f , the joint
distribution over those observations is Gaussian. Re-
stricting ourselves to GPs with a zero mean function,
they are distributed as p (f |X) = N (f |0,K) , where
K represents the covariance function. The covariance
function is made up of elements, k(xi,:,xj,:) that en-
code the degree of correlation between two samples, fi,
fj from f as a function of the inputs associated with
those samples, xi,: and xj,:. For a covariance function
to be valid, it has to lead to a positive semi-definite
matrix K for all valid inputs to the function. In prac-
tice that means that valid covariance functions have
to be positive definite functions, i.e. the class of valid
covariance functions is the same as the class of Mercer
kernels (Schölkopf & Smola, 2001). A linear regres-
sion model is a GP in which the covariance function is
taken to be k (xi,:,xj,:) = x>i,:xj,:.

A widely used covariance function that gives a prior
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over non-linear functions is known as the RBF covari-
ance,

k (x`,:,xi,:) = αm exp
(
−γm

2
||x`,: − xi,:||2

)
.

This covariance can be substituted directly for the
linear covariance function in (2) giving the following
probabilistic model,

p
(
Y|X, σ2,θ

)
=

D∏
j=1

N
(
yij ,j |0,K + σ2I

)
.

where θ are the parameters of the covariance function.
Alternative covariance functions can also be consid-
ered, but in this paper we focus only on the RBF and
linear covariance functions.

3.1. Prediction of User Rating: Relations to
Neighborhood Approaches

The parameters that need to be stored after model
training are the latent variables, X, and the parame-
ters of the covariance function. When a prediction is
required for a new item, these parameters are com-
bined using the standard formula for prediction by
Gaussian processes (Rasmussen & Williams, 2006).
The mean of a user j’s prediction for item ` is given
by

µ`,j = s>yij ,:, (3)

where we have defined

s =
(
Kij ,ij + σ2I

)−1
kij ,`.

In other words, the mean prediction for an unseen item
for the user is given by a weighted sum of the user’s
rated items. This has a very similar feel to neigh-
borhood models for collaborative filtering, where the
neighborhood is based on item similarity. In this ap-
proach to collaborative filtering, similarity scores are
made between the test item and the user’s rated items.
These are often based on correlation measures. Pre-
diction of the test item is made by summing the user’s
rated items weighted by their normalized similarities
to the test item.

For the GP-LVM approach, the neighborhood is be-
ing constructed in the latent space1, X. Con-
sider the RBF covariance function: k`,i =
αm exp

(
−γm

2 ||x`,: − xi,:||2
)
. As a user’s rated items

become better separated in the latent space, then
Kij ,ij becomes a constant diagonal matrix and s be-
comes a scaled version of kij ,`. Now note that the el-
ements of kij ,` are just scaled similarities between the

1By reversing the roles of W and X we could also de-
velop a user-orientated neighborhood model.

test rating and the user’s rated items. For this case
our prediction is functionally identical to the neigh-
borhood approach to collaborative filtering.

Note that the model can rapidly deal with new users.
A prediction for a new user can be made using (3)
without any change to the parameters of the system.

An additional advantage of the Gaussian process is
that it provides a full posterior distribution over the
predictions. This allows us to compute a variance for
the prediction,

ς`,j = k`,` + σ2 − k>ij ,`
(
Kij ,ij + σ2I

)−1
kij ,`.

The variance could be helpful in determining whether
or not to propose the item to the user: it expresses
the confidence with which the model is estimating the
user’s preference. As we will see in the experiments
there is a strong correlation between the variance and
the number of items the user has rated.

4. Experimental Evaluation

We consider three data sets to assess the quality of
the GP-LVM for collaborative filtering. The data sets
are widely used benchmarks for collaborative filtering,
each containing a set of item ratings from different
users. These data sets are the EachMovie, the 1M
MovieLens, and the recently released 10M MovieLens
data2. We don’t show results on Netflix. State-of-
the-art on Netflix typically involves model combina-
tions and bespoke algorithm modification to account
for the particular peculiarities of the data (Salakhut-
dinov & Mnih, 2008b; Salakhutdinov & Mnih, 2008a;
Bell & Koren, 2007; Bell et al., 2008). This makes
it an interesting challenge, but perhaps a less good
evaluator of generic algorithms for collaborative filter-
ing. Two of the data sets we consider (EachMovie and
1M MovieLens) have been widely used benchmarks, al-
lowing us to compare our approach to a range of other
approaches. There are currently no other published re-
sults on the third data set (the recently released 10M
MovieLens), but we expect it will also become a well
used benchmark and our result serves to show that our
algorithm is easily extended to larger systems.

For the 1M MovieLens and EachMovie data sets, we
mimic the setup used by Marlin (2004a), allowing us
to compare directly to the best published results which
include: the user rating profile (URP, Marlin, 2004b),
Attitude (Marlin, 2004a), maximum margin matrix
factorization (MMMF, Rennie & Srebro, 2005), the
approach of (Park & Pennock, 2007) that combines
collaborative filtering with item proximities, and en-

2See http://www.grouplens.org/.
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sembles of MMMF (DeCoste, 2006). To our knowledge
the results of DeCoste (2006) were the best reported to
date on the EachMovie and 1M MovieLens databases.

We explore the importance of the dimensionality of
the latent space, q; how performance varies against
the available training data and the effect of covariance
function choice on the results. For training the models
we always use stochastic gradient descent (SGD). Pa-
rameters of the stochastic gradient descent algorithm
were “tuned” on the 100k MovieLens data3 (results
not presented) and were fixed for the three presented
data sets. For all our experiments we used 10 epochs of
SGD, with a learning rate of 1×10−4 and a momentum
of 0.9. Latent points were initialized by drawing from a
zero mean spherical Gaussian with standard deviation
1×10−3. All covariance parameters were initialized as
1 except noise variance which was fixed to 5 and bias
variance which was fixed to 0.11. Our code is available
from http://www.cs.man.ac.uk/~neill/collab/.

4.1. Marlin’s setup

In his thesis Marlin (2004a) defines two types of gener-
alization, “weak” and “strong”. Weak generalization
is a single step process which involves filling-in miss-
ing data in the rating matrix. Strong generalization
is a two-stage process, where the models are trained
on one set of users and the test predictions are on a
disjoint set of users. The learner is given sample rat-
ings of those users, but may not use those ratings until
after the initial model is constructed.

Marlin used the normalized mean absolute error
(NMAE) as an error measure so that random guessing
produces a score of 1. NMAE is computed by normal-
izing the NMAE by a factor that depends on the range
of the ratings4. The factor is 1.6 for MovieLens data
set (i.e., ratings varying {1, · · · , 5}), and 1.944 for the
EachMovie data set (i.e. ratings varying {1, · · · , 6}).

EachMovie Data The EachMovie data set con-
tains 2.6 million ratings for 1, 648 movies and 74, 424

3The tuning process was very coarse: we always used
momentum 0.9 and 10 epochs of SGD. The learning rate
was then logarithmically decreased from 0.1 until results
seemed to be converging.

4The motivation for this factor is that it is the mean ab-
solute error that would be obtained if the ratings were uni-
formly distributed and the prediction was uniform random
guessing. A much better prediction in this case would be
to guess the median. For MovieLens the prediction would
be 3 and it would lead to a score of 1.2. A still better
“dumb” score could be obtained by predicting the median
of the observed data. However, the use of the factors 1.6
and 1.944 has become somewhat standardized, so we follow
this practice.

Table 1. EachMovie. Our approach outperforms the
URP and Attitude algorithms (Marlin, 2004a), the MMMF
(Rennie & Srebro, 2005), E-MMMF of (DeCoste, 2006),
and the Item-based approach of (Park & Pennock, 2007).

Weak NMAE Strong NMAE

URP 0.4422 ± 0.0008 0.4557 ± 0.0008
Attitude 0.4520 ± 0.016 0.4550 ± 0.0023
MMMF 0.4397 ± 0.0006 0.4341 ± 0.0025

Item 0.4382 ± 0.0009 0.4365 ± 0.0024
E-MMMF 0.4287 ± 0.0023 0.4301 ± 0.0035

Ours Linear 0.4209 ± 0.0017 0.4171 ± 0.0054
Ours RBF 0.4179 ± 0.0018 0.4134 ± 0.0049

users. The ratings range {1, 2, · · · , 6}. Following Mar-
lin (2004a) users with fewer than 20 ratings were dis-
carded; This left us with 36, 656 users. We selected
30, 000 randomly that were used for “weak” general-
ization, while the remaining 6, 656 users were used for
the strong generalization. We report results averaged
over the same 3 partitions originally used in Marlin
(2004a) and replicated by Rennie and Srebro (2005);
DeCoste (2006); Park and Pennock (2007), where one
movie is withheld to construct the test set.

Table 1 shows the NMAE for the different baselines as
well as our approach. Note that our approach, with
either a linear or an RBF kernel, outperforms signif-
icantly all the baselines. Importantly, our approach
uses latent dimensions much smaller than the 100D
used in MMMF and E-MMMF. In particular, for weak
and strong generalization we use 20D latent spaces for
the RBF and linear models. Larger dimensional spaces
resulted in better performance especially for the strong
generalization, since the latent space is trained using
more data, and thus is less prone to overfitting.

Experiments showing the influence of the latent dimen-
sionality are shown below. The Weak RMSE5 of our
approach when using a 20D latent space is (1.1110 ±
0.0028) for the RBF kernel and (1.1118 ± 0.0022) for
linear. The Strong RMSE of our approach when using
a 20D latent space is (1.0981 ± 0.0077) for the RBF
kernel and (1.1008 ± 0.0080) for the linear kernel.

1M MovieLens The 1M MovieLens data consists
of 1 million ratings for 6, 040 users, and 3, 952 movies,
with ratings ranging {1, 2, · · · , 5}. 5, 000 users were
used for weak generalization and the remaining 1, 040
for strong generalization. As before, we reported re-
sults averaged over the same 3 partitions used in (Mar-
lin, 2004a; Rennie & Srebro, 2005; DeCoste, 2006;

5Note that for EachMovie RMSE error is higher than
for MovieLens as the range of the ratings is larger.
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Table 2. 1M MovieLens. Our approach outperforms the
URP and Attitude algorithms (Marlin, 2004a), the MMMF
(Rennie & Srebro, 2005), E-MMMF (DeCoste, 2006), and
the Item-based approach (Park & Pennock, 2007) when
using a non-linear latent space.

Weak NMAE Strong NMAE

URP 0.4341 ± 0.0023 0.4444 ± 0.0032
Attitude 0.4320 ± 0.0055 0.4375 ± 0.0028
MMMF 0.4156 ± 0.0037 0.4203 ± 0.0138

Item 0.4096 ± 0.0029 0.4113 ± 0.104
E-MMMF 0.4029 ± 0.0027 0.4071 ± 0.0093
Ours linear 0.4052 ± 0.0011 0.4071 ± 0.0081
Ours RBF 0.4026 ± 0.0020 0.3994 ± 0.0145

Park & Pennock, 2007).

Table 2 shows the NMAE for the baselines as well as
for our approach. Using an RBF covariance function
our approach results in the best performance for both
weak and strong generalization. As before, the latent
space required by our approach is small. In particu-
lar, for weak generalization we use a 10D latent space
for the RBF and 11D for the linear model, and for
strong generalization a 14D latent space for the non-
linear model and 15D for the linear one. The weak
RMSE of our approach is (0.8801 ± 0.0082) for a
12D RBF model and (0.8791 ± 0.0080) for a 14D
linear model. The Strong RMSE of our approach is
(0.8748 ± 0.0268) for a 15D RBF model and (0.8775
± 0.0239) for a 11D linear model.

As for the EachMovie data set, the method that pre-
viously performed best among the baselines is the en-
sembles of MMMF (DeCoste, 2006) that combines pre-
dictions from multiple MMMF models. In particular
predictions from 100 models created using bagging and
multiple random weight seeds are combined by plural-
ity voting, voting by averaging and voting by confi-
dence. Our approach could also benefit from averag-
ing the predictions from multiple models. We set up a
small experiment where we combine by averaging the
predictions of 11 models whose latent space dimen-
sionality ranges 5 to 15. The NMAE error for Weak
NMAE was reduced to (0.3987 ± 0.0013).

A further point of interest is the fact that with our ap-
proach, unlike most of the baselines, the strong NMAE
is often smaller than the weak NMAE. This might look
surprising, however the data set partitioning means
that the models learned for strong generalization have
seen more data (i.e., 30, 000 for EachMovie and 5, 000
for 1M MovieLens) than the weak generalization. This
combined with the fact that all user specific parame-
ters are marginalized in the model leads to improved
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Figure 1. GP variance: as a function of the number of
movies rated, for a 10D latent space learned on 1M Movie-
Lens Weak. The variance of the GP is a good indicator of
the uncertainty in the model, its value decreases with the
amount of movies rated.

performance.

Figure 1 shows the variance of the GP as a function of
the movies rated for a 10D RBF model learned for 1M
MovieLens Weak. Note that the variance of the GP
is a good indicator of the uncertainty in the model,
its value decreases as the amount of movies rated in-
creases.

4.2. Latent dimensionality and training set size

To test the response of our models to increasing data
set size we also conduct experiments in a different set-
ting than Marlin. We generate different training set
sizes by splitting different percentages of the data as
training and testing.

Figure 2 depicts NMAE and RMSE errors average over
5 random partitions as a function of the dimensionality
of the latent space. As expected our model’s predic-
tions are more accurate when more data is used for
training. Small latent dimensionalities are preferred
for small training set sizes (e.g. 30%) to avoid over-
fitting. When using more data, higher dimensional
latent spaces result in better performance.

4.3. Using different kernels

Figure 3 shows NMAEs when using different kernels
for the MovieLens and EachMovie databases. Note
than in general non-linear models (e.g. RBF) out-
perform linear models, showing the benefit of our ap-
proach with respect to other approaches that assume
that the mapping is linear (e.g. Rennie & Srebro,
2005; DeCoste, 2006; Salakhutdinov & Mnih, 2008b;
Salakhutdinov & Mnih, 2008a.



Non-linear Matrix Factorization with Gaussian Processes

10 11 12 13 14 15
0.402

0.403

0.404

0.405

0.406

0.407

0.408

latent dimensionality

NM
AE

 e
rro

r

 

 

RBF
linear
metadata

10 11 12 13 14 15
0.398

0.4

0.402

0.404

0.406

0.408

0.41

0.412

0.414

0.416

0.418

latent dimensionality

NM
AE

 e
rro

r

 

 

RBF
linear
metadata

10 11 12 15 20
0.417

0.418

0.419

0.42

0.421

0.422

0.423

0.424

0.425

0.426

latent dimensionality

NM
AE

 e
rro

r

 

 

RBF
linear

10 11 12 15 20
0.413

0.414

0.415

0.416

0.417

0.418

0.419

0.42

0.421

0.422

0.423

latent dimensionality

NM
AE

 e
rro

r

 

 

RBF
linear

(1MML Weak NMAE) (1MML Strong NMAE) (EaM Weak NMAE) (EaM Strong NMAE)

10 11 12 13 14 15
0.874

0.876

0.878

0.88

0.882

0.884

0.886

latent dimensionality

RM
SE

 e
rro

r

 

 

RBF
linear
metadata

10 11 12 13 14 15
0.874

0.876

0.878

0.88

0.882

0.884

0.886

latent dimensionality

RM
SE

 e
rro

r

 

 

RBF
linear
metadata

10 11 12 15 20
1.11

1.112

1.114

1.116

1.118

1.12

1.122

latent dimensionality

RM
SE

 e
rro

r

 

 

RBF
linear

10 11 12 15 20
1.098

1.1

1.102

1.104

1.106

1.108

1.11

1.112

latent dimensionality

RM
SE

 e
rro

r

 

 

RBF
linear

(1MML Weak RMSE) (1MML Strong RMSE) (EaM Weak RMSE) (EaM Strong RMSE)

Figure 3. 1M MovieLens (1MML) and EachMovie (EaM): NMAE and RMSE errors for different kernels. Note
that in general non-linear latent spaces result in better performance.

4.4. Larger database

10M MovieLens We also perform experiments on
a larger data set. The 10M MovieLens data set con-
sists of 10 million ratings for 71, 567 users and 10, 681
movies, with ratings ranging {1, 2, · · · , 5}. We use the
ra and rb partitions provided with the database, that
split the data into a training and testing, so that they
are 10 ratings per user in the test set. This database
was made available on 9th January 2009, so there are
currently no other published results to compare with.
results. Our approach gave an RMSE of (0.8740 ±
0.0278) using a 10 dimensional latent space.

4.5. Adding Movie Meta-Data

The backbone of the GP-LVM is a Gaussian process
regression model, in which we are optimizing with re-
spect to input values to maximize the likelihood of the
data. For the case of movies, there is additional data
about the movie that we might want to include, for
example with the 1M MovieLens data, there is infor-
mation about the genre of the movie (e.g., comedy
and western). This can be encoded in a binary vector
that defines the genre for each movie in the database.
We can include this information in the kernel matrix.
If the meta-data for a particular movie is given in a
vector mi,: then a covariance function can be created
from the meta-data,

km (mi,:,mj,:) = αm exp
(
−γm

2
||mi −mj ||2

)
.

This can be combined with the covariance function
defined in x-space through a tensor product,

ki,j = km (mi,:,mj,:) kx (xi,:,xj,:) .

We now optimize the parameters of the meta-data co-
variance function along with the X and the parameters
of the latent data covariance function.

The dashed green line in Figure 3 shows the NMAE
and RMSE when using meta-data. No significant im-
provement in performance is seen with the meta-data,
but conversely it hasn’t significantly harmed the per-
formance. In practice the use of meta-data may be
important when, for example, a new movie is released
and ratings data is not yet available for it.

5. Conclusions

We have shown how probabilistic matrix factorization
is equivalent to Bayesian probabilistic PCA. This in-
spired a new algorithm which allowed for non-linear
extensions in the manner of the Gaussian process la-
tent variable model. The predictions from the model
have a very similar form to neighborhood based meth-
ods for collaborative filtering. We tested the resulting
algorithm on two popular movie databases. Our ap-
proach outperformed all existing published results for
these data. We briefly considered extensions to the
model involving incorporating side information (meta-
data) about movie genre. We didn’t see a significant
difference in the performance given meta-data, but
speculate that such data may be useful for new movies
with few ratings.

As well as pushing forward the boundary of the state-
the-art performance for the data sets we’ve stud-
ied, our model provides probabilistic predictions. An
item/user dependent variance can be computed giving
the confidence with which the model is prepared to
make the predictions.
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Figure 2. 1M MovieLens: NMAE and RMSE errors as
a function of the latent space dimensionality for different
percentages of the database used as training, i.e., 30-90 %.
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