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Abstract

This paper gives an efficient Bayesian method
for inferring the parameters of a Plackett-
Luce ranking model. Such models are param-
eterised distributions over rankings of a finite
set of objects, and have typically been stud-
ied and applied within the psychometric, so-
ciometric and econometric literature. The in-
ference scheme is an application of Power EP
(expectation propagation). The scheme is ro-
bust and can be readily applied to large scale
data sets. The inference algorithm extends to
variations of the basic Plackett-Luce model,
including partial rankings. We show a num-
ber of advantages of the EP approach over
the traditional maximum likelihood method.
We apply the method to aggregate rankings
of NASCAR racing drivers over the 2002 sea-
son, and also to rankings of movie genres.

1. Introduction

Problems involving ranked lists of items are
widespread, and are amenable to the application of
machine learning methods. An example is the sub-
field of “learning to rank” at the cross-over of machine
learning and information retrieval (see e.g. Joachims
et al., 2007). Another example is rank aggregation
and meta-search (Dwork et al., 2001). The proper
modelling of observations in the form of ranked items
requires us to consider parameterised probability dis-
tributions over rankings. This has been an area of
study in statistics for some time (see Marden, 1995
for a review), but much of this work has not made
its way into the machine learning community. In this
paper we study one particular ranking distribution,
the Plackett-Luce, which has some very nice proper-
ties. Although parameter estimation in the Plackett-
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Luce can be achieved via maximum likelihood estima-
tion (MLE) using MM methods (Hunter, 2004), we
are unaware of an efficient Bayesian treatment. As we
will show, MLE is problematic for sparse data due to
overfitting, and it cannot even be found for some data
samples that do occur in real situations. Sparse data
within the context of ranking is a common scenario
for some applications and is typified by having a small
number of observations and a large number of items
to rank (Dwork et al., 2001), or each individual ob-
servation may rank only a few of the total items. We
therefore develop an efficient Bayesian approximate in-
ference procedure for the model that avoids overfitting
and provides proper uncertainty estimates on the pa-
rameters.

The Plackett-Luce distribution derives its name from
independent work by Plackett (1975) and Luce (1959).
The Luce Choice Axiom is a general axiom governing
the choice probabilities of a population of ‘choosers’,
choosing an item from a subset of a set of items. The
axiom is best described by a simple illustration. Sup-
pose that the set of items is {A,B,C,D}, and suppose
that the corresponding probabilities of choosing from
this set are (pA, pB , pC , pD). Now consider a subset
{A,C} with choice probabilities (qA, qC). Then Luce’s
choice axiom states that qA/qC = pA/pC . In other
words, the choice probability ratio between two items
is independent of any other items in the set.

Suppose we consider a set of items, and a set of choice
probabilities that satisfy Luce’s axiom, and consider
picking one item at a time out of the set, according
to the choice probabilities. Such samples give a to-
tal ordering of items, which can be considered as a
sample from a distribution over all possible orderings.
The form of such a distribution was first considered
by Plackett (1975) in order to model probabilities in a
K-horse race.

The Plackett-Luce model is applicable when each ob-
servation provides either a complete ranking of all
items, or a partial ranking of only some of the items, or
a ranking of the top few items (see section 3.5 for the
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last two scenarios). The applications of the Plackett-
Luce distribution and its extensions have been quite
varied including horse-racing (Plackett, 1975), docu-
ment ranking (Cao et al., 2007), assessing potential
demand for electric cars (Beggs et al., 1981), modelling
electorates (Gormley & Murphy, 2005), and modelling
dietary preferences in cows (Nombekela et al., 1994).

Inferring the parameters of the Plackett-Luce distribu-
tion is typically done by maximum likelihood estima-
tion (MLE). Hunter (2004) has described an efficient
MLE method based on a minorise/maximise (MM)
algorithm. In recent years, powerful new message-
passing algorithms have been developed for doing ap-
proximate deterministic Bayesian inference on large
belief networks. Such algorithms are typically both
accurate, and highly scalable to large real-world prob-
lems. Minka (2005) has provided a unified view of
these algorithms, and shown that they differ solely by
the measure of information divergence that they min-
imise. We apply Power EP (Minka, 2004), an algo-
rithm in this framework, to perform Bayesian inference
for Plackett-Luce models.

In section 2, we take a more detailed look the Plackett-
Luce distribution, motivating it with some alternative
interpretations. In section 3, we describe the algo-
rithm at a level of detail where it should be possible for
the reader to implement the algorithm in code, giving
derivations where needed. In section 4, we apply the
algorithm to data generated from a known distribu-
tion, to an aggregation of 2002 NASCAR race results,
and also to the ranking of genres in the MovieLens
data set. Section 5 provides brief conclusions.

2. Plackett-Luce models

A good source for the material in this section, and
for rank distributions in general, is the book by Mar-
den (1995). Consider an experiment where N judges
are asked to rank K items, and assume no ties. The
outcome of the experiment is a set of N rankings
{y(n) ≡ (y(n)

1 , . . . , y
(n)
K ) | n = 1, . . . , N} where a rank-

ing is defined as a permutation of the K rank indices;
in other words, judge n ranks item i in position y

(n)
i

(where highest rank is position 1). Each ranking has
an associated ordering ω(n) ≡ (ω(n)

1 , . . . , ω
(n)
K ), where

an ordering is defined as a permutation of the K item
indices; in other words, judge n puts item ω

(n)
i in po-

sition i. Rankings and orderings are related by (drop-
ping the judge index) ωyi = i, yωi = i.

The Plackett-Luce (P-L) model is a distribution over
rankings y which is best described in term of the as-
sociated ordering ω. It is parameterised by a vector

v = (v1, . . . , vn) where vi ≥ 0 is associated with item
index i:

PL(ω | v) =
∏

k=1,...,K

fk(v) (1)

where

fk(v) ≡ fk(vωk , . . . , vωK ) ,
vωk

vωk + · · ·+ vωK
(2)

2.1. Vase model interpretation

The vase model metaphor is due to Silverberg (1980).
Consider a multi-stage experiment where at each stage
we are drawing a ball from a vase of coloured balls.
The number of balls of each colour are in proportion to
the vωk . A vase differs from an urn only in that it has
an infinite number of balls, thus allowing non-rational
proportions. At the first stage a ball ω1 is drawn from
the vase; the probability of this selection is f1(v). At
the second stage, another ball is drawn — if it is the
same colour as the first, then put it back, and keep on
trying until a new colour ω2 is selected; the probability
of this second selection is f2(v). Continue through the
stages until a ball of each colour has been selected. It is
clear that equation 1 represents the probability of this
sequence. The vase model interpretation also provides
a starting point for extensions to the basic P-L model
detailed by Marden (1995), for example, capturing the
intuition that judges make more accurate judgements
at the higher ranks.

2.2. Thurstonian interpretation

A Thurstonian model (Thurstone, 1927) assumes an
unobserved random score variable xi (typically inde-
pendent) for each item. Drawing from the score dis-
tributions and sorting according to sampled score pro-
vides a sample ranking — so the distribution over
scores induces a distribution over rankings. A key re-
sult, due to Yellott (Yellott, 1977), says that if the
score variables are independent, and the score distri-
butions are identical except for their means, then the
score distributions give rise to a P-L model if and only
if the scores are distributed according to a Gumbel
distribution.

The CDF G (x | µ, β) and PDF g(x | µ, β) of a Gumbel
distribution are given by

G (x | µ, β) = e−z (3)

g(x | µ, β) =
z

β
e−z (4)

where z(x) = e−
x−µ
β . For a fixed β, g(x | µ, β) is an

exponential family distribution with natural parame-
ter v = e

µ
β which has a Gamma distribution conjugate
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prior. The use of the notation v for this natural param-
eter is deliberate — it turns out that vi = e

µi
β is the

P-L parameter for the ith item in the ranking distri-
bution induced by the Thurstonian model with score
distributions g(xi | µi, β). The TrueSkill rating sys-
tem (Herbrich et al., 2007) is based on a Thurstonian
model with a Gaussian score distributon. Although
this model does not satisfy the Luce Choice Axiom,
it has been applied in a large-scale commercial online
rating system with much success.

2.3. Maximum likelihood estimation

The typical way to fit a P-L model is by maxi-
mum likelihood estimation (MLE) of the parameters v.
Hunter (2004) describes a way to do this using a mi-
norise/maximise (MM) algorithm (expectation max-
imisation (EM) is a special case of an MM algorithm),
which is shown to be faster and more robust than
the more standard Newton-Raphson method. Fur-
thermore Hunter provides MATLAB code for this al-
gorithm, along with an interesting example of learn-
ing a P-L to rank NASCAR drivers across the entire
2002 season of racing. We take up this example fur-
ther in section 4.2, demonstrating that whilst MLE
works well in some settings, it will overfit when there is
sparse data. Furthermore, the MM algorithm requires
a strong assumption (Assumption 1 of Hunter, 2004)
to guarantee convergence: in every possible partition
of the individuals into two nonempty subsets, some in-
dividual in the second set ranks higher than some indi-
vidual in the first set at least once. As we shall see in
the NASCAR data, this assumption is often not satis-
fied in real examples involving sparse data, and indeed
the MM algorithm does not converge.

3. Bayesian Inference

This section makes heavy use of the ideas, notation,
and algorithms in (Minka, 2005), and there is not the
space to summarise those here. So although we give a
complete description of our algorithm, a lot of back-
ground information from (Minka, 2005) is assumed.

Suppose that we have a set of observed full orderings
Ω = {ω(n)}. We would like to infer the parameters of a
P-L model, placing proper priors on them. By Bayes’
theorem, the posterior distribution over the parame-
ters is proportional to:

p(v) ≡ p(v | Ω) =
∏

n=0,...,N

∏
k=1,...,K

f
(n)
k (v) (5)

where f (0)
k is a prior, and the remaining f

(n)
k are as

in equation (2), but now indexed by datum also. As

the vi are positive values, it is natural to assign them
Gamma distribution priors, and this is reinforced by
the discussion in section 2.2. So we will assume that,
for each k,

f
(0)
k = Gam(vk | α0, β0) (6)

In general we are interested in recovering the marginals
of p(v). We will be inferring a fully factorised approxi-
mation to p(v), so the marginals will be a direct output
of the inference algorithm. When the approximation
is fully factorised, message-passing has a graphical in-
terpretation as a factor graph, with messages passing
between variables and factors.

3.1. Preliminaries

The message-passing algorithm described below will
make use of both normalised and unnormalised ver-
sions of the Gamma distribution:

UGam(x | α, β) , xα−1e−βx (7)

Gam(x | α, β) ,
βα

Γ(α)
UGam(x | α, β) (8)

where, for the normalised version, we require α > 0
and β > 0. α is the shape parameter, and β is the
rate parameter (i.e. 1/scale). The UGam family is
useful as it allows us to deal, in a consistent way, with
improper distributions.

3.2. The factorisation

We will approximate p(v) as a fully factorised product
of Gamma distributions:

p(v) ≈ q(v) =
∏
i=1,K

qi(vi) =
∏
a

f̃a(v) (9)

a = (n, k) summarises the double index of datum and
rank into a single index so as to keep the notation suc-
cinct and consistent with (Minka, 2005), and qi(vi) =
UGam(vi | αi, βi). We follow the message-passing
treatment in (Minka, 2005, section 4.1). The factors
f̃a(v), which approximate the P-L factors fa(v), fac-
torise fully into messages ma→i from factor a to vari-
able vi:

f̃a(v) =
∏
i

ma→i(vi) (10)

where ma→i(vi) = UGam(vi | αai, βai). Collect all
terms involving the same variable vi to define messages
from variable vi to factor a

mi→a(vi) =
∏
b6=a

mb→i(vi) (11)

The rationale of the message-passing algorithm is to
improve the approximating factors f̃a(v) one at a



Bayesian inference for Plackett-Luce ranking models

time under the assumption that the approximation
from the rest of the model is good — i.e. assuming
that q\a(v) = q(v)/f̃a(v) is a good approximation of
p\a(v) = p(v)/fa(v). Note that

q\a(v) =
∏
b 6=a

∏
i

mb→i(vi) =
∏
i

mi→a(vi) (12)

3.3. The message update

The key quantity that we need to calculate is:

q′i(vi) = proj
[
ma→i(vi)1−αmi→a(vi) ×∫

v\vi
dv fa(v)α

∏
j 6=i

ma→j(vj)1−αmj→a(vj)
]

(13)

where proj denotes K-L projection, and where α is the
α-divergence parameter which we can choose to make
our problem tractable.1 Define

ma→j(vj)1−αmj→a(vj) = UGam(vj | γaj , δaj) (14)

The inference algorithm fails if UGam(vj | γaj , δaj)
becomes improper for any j — however, we have not
seen this happen in practice. Individual messages,
however, are allowed to and often will become im-
proper. Assuming that UGam(vj | γaj , δaj) is proper,
we can equivalently replace it with its normalised ver-
sion gaj , Gam(vj | γaj , δaj) — this simplifies the
derivations.

We choose α = −1 as our α-divergence. This is needed
in order to make the integral tractable, as the true fac-
tor fa(v) then gets inverted, leading to a sum of prod-
ucts of univariate integrals of Gamma distributions.

3.3.1. Projection for a P-L factor

Fixing attention on a specific factor fa(v) where a =
(n, k), with observed ordering ω, we have fa(v) =
vωk/

∑
l=k...K vωl . So, with an α-divergence of −1,

fa(v)α =
∑
l=k...K(vωl/vωk).

When evaluating q′i(vi), if vi does not appear in fa(v),
then ma→i(v) = 1, so we can restrict the calculations
to when i = ωr for some r. Note, also, that we can
ignore any factor in

∏
j 6=i gaj(vj) for which j 6= ωl

for some l, because these integrate out to 1. We will
consider the cases r = k and r 6= k separately.

1For true K-L projection, we need to match the fea-
tures of the Gamma distribution - namely ln(vi) and vi.
However, we will approximate this by just matching the
first two moments in order to avoid the non-linear itera-
tive procedure required to retrieve gamma parameters from
E(ln(vi)) and E(vi).

Case 1 (i = ωk):

gai(vi)
∫
v\vi

fa(v)−1
∏
j 6=i

gaj(vj)dv

= gai(vi)
∑

l=k...K

∫
v\vi

(vωl/vωk)
∏
j 6=i

gaj(vj)dv

= gai(vi)
(

1 +
1
vi

∑
l=k+1...K

∫
vωlgaωl(vωl)dvωl

)
= gai(vi)

(
1 +

1
vi

∑
l=k+1...K

γaωl
δaωl

)
=
( δai
γai − 1

∑
l=k+1...K

γaωl
δaωl

)
Gam(vi | γai − 1, δai)

+ Gam(vi | γai, δai)
(15)

Case 2 (i = ωr, r 6= k):

gai(vi)
∫
v\vi

fa(v)−1
∏
j 6=i

gaj(vj)dv

=
(

1 +
δai

γai − 1

∑
l=k+1...K,l 6=r

γaωl
δaωl

)
Gam(vi | γai, δai)

+
( δak
γak − 1

γai
δai

)
Gam(vi | γai + 1, δai)

(16)

Note that these both reduce to the general form

c·Gam(vi | a, b) + d·Gam(vi | a+ 1, b) (17)

The first two moments for an expression in the form
of equation (17) are easily shown to be:

E(vi) =
ca+ d(a+ 1)
b(c+ d)

E(v2
i ) =

ca(a+ 1) + d(a+ 1)(a+ 2)
b2(c+ d)

(18)

The unnormalised projection can then be calculated
as

q′i(vi) = UGam
(
vi |

E(vi)2

E(v2
i )− E(vi)2

,
E(vi)

E(v2
i )− E(vi)2

)
(19)

3.3.2. Message update for a P-L factor

As a clarification to (Minka, 2005), and matching the
original Power EP description in (Minka, 2004), the
marginal updates and the message updates are:

qnewi (vi) = qi(vi)2/q′i(vi) (20)

mnew
a→i =

qnewi (vi)
mi→a(vi)

(21)
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3.4. Summary of the algorithm

1. Initialisema→i(vi) for all a,i to be uniform, except
when a = (0, k), corresponding to the constant
prior messages. We set each of these to a broad
prior of UGam(vi | 3.0, 2.0).

2. Repeat until all ma→i(vi) converge:

(a) Pick a factor a = (n, k).
(b) Compute the messages into the factor using

equation (11).
(c) Compute the projections q′i(vi) using equa-

tion (19) via equations. (15), (16), (17), (18).
(d) Update the factor’s outgoing messages using

equations (20) and (21).

Note that marginals can be recovered at any time by
qi(vi) =

∏
ama→i. As there is a degree of freedom in

the vi, the rate parameter of the marginals can be col-
lectively scaled so that, for example, the means of the
vi’s sum to a specified value; this is useful, for example
if you are trying to identify known parameters as we do
in section 4.1. Finally, there isn’t the space to show the
evidence calculation here, but it can be easily derived
from the converged unnormalised messages as shown
in (Minka, 2005, section 4.4). This computation of the
evidence is a further advantage of the fully Bayesian
approach as it allows us to build mixture models with
different numbers of mixture components and evaluate
their Bayes factors (model selection).

3.5. Incomplete rankings

One of the nice properties of the P-L distribution is
that it is internally consistent: the probability of a par-
ticular ordering does not depend on the subset from
which the individuals are assumed to be drawn (see
Hunter, 2004 for an outline of a proof, and relation to
the Luce Choice Axiom). Suppose we have two sets
of items A and B where B ⊂ A. This means that
the probability of a particular ordering of the items in
B, marginalizing over all possible unknown positions
of the items left over in A, is exactly the same as the
P-L probability of simply ordering those items in B
completely independently from A. The consequence
of internal consistency is that each datum can be an
incomplete ordering of the total set of items, and yet
they can still be combined together consistently, with
each datum’s likelihood being a simple product of the
factors f (n)

k of the items that are ranked in that par-
ticular datum. This is extremely useful in practice, as
in many applications an individual “judge” may only
rank some of the items. An example is the NASCAR
data of section 4.2 where a different, but overlapping,

set of drivers compete in each race. In terms of our
inference algorithm, the incomplete ranking case sim-
ply decreases the number of factors that have to be
included in the message-passing graph.

Another variation is where top-S rankings have been
given. An example might be where users are asked
to rank their top-10 movies, or in meta-search where
each search engine reports its top-10 (or top-100 etc)
documents for a given query. Again this situation can
be handled consistently, and in this case the factors
f

(n)
k for which k > S are removed from the likelihood

(1). This is equivalent to marginalizing over all the un-
known positions of the other items, but assuming that
they are ranked somewhere below the top-S items.

4. Examples

4.1. Inferring known parameters

To verify that the algorithm is doing the right thing,
we can generate data from a P-L distribution with
known parameters, and then try to infer the parame-
ters. Figure 1 shows the inferred parameters from a P-
L model with parameter vector v = (1.0, 2.0, . . . , 10.0).
The marginals in 1a are inferred from 5 observations,
those in 1b from 50, and those in 1c from 5000 ob-
servations. As expected, the spread of the marginals
decreases as the data increases, and the true parameter
values are reasonably represented by the marginals.

It is interesting to observe that estimates become less
certain for larger parameters. This is perhaps to be
expected, as the ratio v10/v9 in this example is much
smaller than the ratio of v2/v1, so the top rank choices
are less clear-cut decisions than the bottom ones.

4.2. Ranking NASCAR racing drivers

Hunter (2004) performs a case-study of fitting a P-L
model to the NASCAR 2002 season car racing results.
In this section we also study this data because it serves
as a comparison and highlights a number of advan-
tages of our fully Bayesian approach to the MM MLE
method. The 2002 US NASCAR season consisted of 36
races in which a total of 87 different drivers competed.
However, any one race involved only 43 drivers. This
ranged from some drivers competing in all the races,
and some only in one race in the season. This is there-
fore a good example of the incomplete rankings case
discussed in section 3.5. As discussed in section 2.3,
Hunter’s MM algorithm requires quite a strong as-
sumption for convergence. In many cases, and indeed
in this case, this assumption will not be satisfied. In
the NASCAR data 4 drivers placed last in every race
they entered, thus violating this assumption. There-
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Figure 1. Marginal P-L parameter distributions inferred from data generated from PL(ω | (1.0, 2.0, . . . , 10.0))

fore Hunter had to simply remove these drivers from
the model. In contrast, our Bayesian method can be
applied to all the data with no problems due to the
proper priors that are placed on the P-L parameters.
However, for the purposes of making a direct compar-
ison with their work, we follow this and remove these
drivers so as to be using exactly the same data set,
with a total of 83 drivers.

Table 1 shows the top and bottom 10 drivers as ordered
by average place, as well as their rank assigned by both
maximum likelihood and Bayesian EP inference. For
maximum likelihood the ordering is done by MLE P-L
parameter, and for EP the ordering is done by mean P-
L parameter. There are some clear differences between
the two methods. The MLE method places Jones and
Pruett in first and second place respectively — this
certainly ties in with their very high (numerically low)
average place. However, they only actually raced in
one race each compared with some drivers who raced
the whole season of 36 races. This is an example of the
MLE algorithm overfitting — one race is not enough
evidence on which to judge the skill of these drivers,
and yet MLE places them right at the top. In contrast
the EP inference places these drivers mid-way down
the ranking, and also their P-L parameters have high
uncertainty compared with other drivers. With further
evidence, it is possible that these drivers would rise up
the ranking. The EP method ranks Mark Martin in
first place, followed by Rusty Wallace: drivers who
have raced all 36 races. Similarly, toward the bottom
of the table EP method puts Morgan Shepherd at the
very bottom instead of some of the other drivers with
similar average place but who raced in only one or two
races. Morgan Shepherd has raced in 5 races, and so
enough evidence has accumulated that he consistently
does poorly. Notice that even when the number of
races raced is the same (e.g. Martin, Stewart, Wallace,
Johnson raced 36 races), neither MLE P-L or EP P-L
are equivalent to simply ordering by average place —

the P-L model takes into account exactly who is racing
in each race: it is better to have won in a race full of
good drivers rather than a race of poor drivers.

Figure 2 is an alternative way of viewing the infer-
ences about selected NASCAR drivers — the top and
bottom 5 drivers as ordered by MLE (2a) and by EP
(2b). Instead of showing the inferred P-L parameters,
which are a little hard to interpret in themselves, we
show the inferred rank marginal distributions implied
by the inferred P-L parameters for each driver. This
is grey-scale visualisation of the probability that each
driver will come at a certain place in a race involv-
ing all 83 drivers. As we see the MLE plot is domi-
nated by the over-fitting to the two drivers P J Jones
and Scott Pruett, who both have highly skewed dis-
tributions toward the top ranks. In contrast the EP
plot shows much broader and more reasonable rank
marginal distributions, reflecting the fact that even for
the best drivers there is high uncertainty in any given
race about where they will place.

4.3. Ranking movie genres

The MovieLens data set was collected and is owned
by the GroupLens Research Project at the University
of Minnesota. The data set consists of 100,000 ratings
(1–5) from 943 users on 1682 movies. This data is in-
teresting in that it (a) provides simple demographic
information for each user, and (b) provides informa-
tion about each film as a list of genre vectors — a film
can have more than one genre — for example Roman-
tic Comedy. We obtained ranking data by creating,
for each user, an average rating of each genre across
all films seen by the particular user. Each user rated
at least 20 films so they each see many genres, but
there is no guarantee that a user will see all types
of genre. This means the genre rankings are partial
lists and the absence of a given genre from an obser-
vation is not an indication that a user is giving it a
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Table 1. Posterior P-L rankings for top and bottom ten 2002 NASCAR drivers, as given by average place. The parameter
estimates v have been normalised to sum to 1 for both MLE and EP so that they are comparable (for EP their means
sum to 1). The EP SDev v column shows the standard deviation of the posterior gamma distribution over v.

Driver Races Av. place MLE Rank MLE v EP Rank EP Mean v EP SDev v

PJ Jones 1 4.00 1 0.1864 18 0.0159 0.0079
Scott Pruett 1 6.00 2 0.1096 19 0.0156 0.0078
Mark Martin 36 12.17 4 0.0235 1 0.0278 0.0047
Tony Stewart 36 12.61 7 0.0184 4 0.0229 0.0040
Rusty Wallace 36 13.17 5 0.0230 2 0.0275 0.0046
Jimmie Johnson 36 13.50 6 0.0205 3 0.0250 0.0042
Sterling Marlin 29 13.86 9 0.0167 6 0.0207 0.0040
Mike Bliss 1 14.00 3 0.0274 23 0.0146 0.0073
Jeff Gordon 36 14.06 8 0.0168 5 0.0213 0.0036
Kurt Busch 36 14.06 12 0.0153 8 0.0198 0.0034

.

.

.
Carl Long 2 40.50 75 0.0021 73 0.0062 0.0029
Christian Fittipaldi 1 41.00 77 0.0019 68 0.0075 0.0039
Hideo Fukuyama 2 41.00 83 0.0014 77 0.0054 0.0028
Jason Small 1 41.00 81 0.0017 71 0.0067 0.0036
Morgan Shepherd 5 41.20 78 0.0019 83 0.0041 0.0016
Kirk Shelmerdine 2 41.50 76 0.0021 75 0.0059 0.0028
Austin Cameron 1 42.00 68 0.0029 62 0.0083 0.0043
Dave Marcis 1 42.00 67 0.0030 61 0.0083 0.0043
Dick Trickle 3 42.00 74 0.0022 80 0.0050 0.0022
Joe Varde 1 42.00 71 0.0025 66 0.0078 0.0041
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Figure 2. Marginal posterior rank distributions for top and bottom 5 drivers as ordered by (a) MLE or (b) EP. White
indicates high probability and rankings are from left (1st place) to right (83rd place).

Table 2. Normalised P-L parameters for ranking MovieLens genres, with no. of data points in each category in parentheses.

All (943) Age 25-29 (175) Age 55-59 (32)

Genre Mean SDev Genre Mean SDev Genre Mean SDev

War 0.0968 0.0036 Film-Noir 0.0920 0.0101 War 0.0873 0.0165
Drama 0.0902 0.0032 Drama 0.0911 0.0075 Thriller 0.0805 0.0147
Film-Noir 0.0828 0.0039 Documentary 0.0867 0.0117 Drama 0.0741 0.0137
Romance 0.0709 0.0026 War 0.0820 0.0070 Film-Noir 0.0681 0.0153
Crime 0.0619 0.0023 Romance 0.0730 0.0060 Mystery 0.0676 0.0131
Mystery 0.0607 0.0023 Crime 0.0570 0.0050 Crime 0.0655 0.0124
Thriller 0.0563 0.0020 Sci-Fi 0.0533 0.0045 Adventure 0.0607 0.0119
Sci-Fi 0.0545 0.0020 Animation 0.0513 0.0049 Western 0.0603 0.0149
Documentary 0.0538 0.0034 Thriller 0.0501 0.0041 Action 0.0595 0.0112
Action 0.0514 0.0018 Mystery 0.0487 0.0043 Romance 0.0569 0.0104
Western 0.0511 0.0027 Action 0.0479 0.0039 Sci-Fi 0.0535 0.0113
Adventure 0.0489 0.0018 Western 0.0461 0.0053 Documentary 0.0459 0.0139
Animation 0.0478 0.0022 Comedy 0.0450 0.0037 Comedy 0.0450 0.0083
Comedy 0.0428 0.0015 Adventure 0.0446 0.0038 Animation 0.0418 0.0119
Musical 0.0397 0.0017 Musical 0.0411 0.0039 Fantasy 0.0418 0.0148
Children’s 0.0348 0.0014 Children’s 0.0386 0.0036 Musical 0.0365 0.0081
Horror 0.0313 0.0013 Horror 0.0285 0.0027 Horror 0.0278 0.0065
Fantasy 0.0244 0.0013 Fantasy 0.0229 0.0026 Children’s 0.0272 0.0064
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low ranking. We then built a P-L model using these
observations. The advantage of using user rankings
rather than ratings is that it removes user bias on the
ratings scale, and indeed ordering the genres by mean
rating gives significantly different results. Note that
we are not ranking genre popularity here — instead
we are ranking how well a particular genre was re-
ceived, although there is likely to be genre-dependent
bias in movie selection. So, for example, the algo-
rithm put the War genre at the top of the ranking;
although war movies were not the most watched type
of movie, when watched, they were ranked highly. Ta-
ble 2 shows the means of the posterior parameter es-
timates and the corresponding rankings for the whole
user population; these are compared with the param-
eter estimates/rankings for the sub-populations of age
25–29 users and age 55–59 users. Not only are the
rankings different, with the younger category prefer-
ring Film-Noir to the older category’s War films, but
also the uncertainties are higher for the older category
due to there only being 32 age 55–59 data points. The
division of the users into different categories hints at a
straightforward extension of the basic P-L model — a
mixture of P-L distributions. An advantage of the EP
Bayesian inference is that model evidence can be used
to determine the optimum number of components in
a mixture. The resulting mixture model can then be
used as the basis for a recommender system. We leave
this extension for future work.

5. Conclusions

We have described a message-passing algorithm for in-
ferring parameters of a P-L ranking distribution. We
have shown that this can accurately learn parame-
ters and their uncertainties from data generated from
a known P-L model. We have shown the scalabil-
ity of the algorithm by running it on real-world data
sets, and demonstrated significant advantages over the
maximum likelihood approach, especially the avoid-
ance of over-fitting to sparse data.

Future work involves extending the algorithm to learn
mixtures of these models. A Bayesian treatment of
mixtures should yield insights into clusters of users
in e.g. movie rating data such as MovieLens. The
Thurstonian interpretation of these models provides
insights to how we might build more complex models
where the P-L parameters are outputs of other feature-
based models, thus extending the range of applica-
tions. For example, in a “learning to rank” application
we could build a feature-based regression model to link
query-document features to P-L ranking parameters.
The EP method described is also straightforwardly ap-

plied to the extensions of the basic P-L model briefly
discussed in section 2.1. These “multi-stage” models
have many more parameters, and therefore are likely
to benefit even more from a Bayesian treatment.
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