
Constraint Relaxation in Approximate Linear Programs

Marek Petrik petrik@cs.umass.edu
Shlomo Zilberstein shlomo@cs.umass.edu

Department of Computer Science, University of Massachusetts Amherst, Amherst, MA 01003

Abstract

Approximate Linear Programming (ALP) is
a reinforcement learning technique with nice
theoretical properties, but it often performs
poorly in practice. We identify some reasons
for the poor quality of ALP solutions in prob-
lems where the approximation induces vir-
tual loops. We then introduce two methods
for improving solution quality. One method
rolls out selected constraints of the ALP,
guided by the dual information. The second
method is a relaxation of the ALP, based on
external penalty methods. The latter method
is applicable in domains in which rolling out
constraints is impractical. Both approaches
show promising empirical results for simple
benchmark problems as well as for a realistic
blood inventory management problem.

1. Introduction

The Markov decision process (MDP) has been shown
to provide an effective framework for planning under
uncertainty. It offers a rich modeling language and
a wide variety of solution techniques. However, the
size of many real-world problems tends to be too large
to be solvable using exact methods. A general ap-
proach to improve the scalability of MDP algorithms
is through value function approximation and approxi-
mate dynamic programming (ADP) (Powell, 2007).

Approximate algorithms for solving MDPs are typi-
cally variations of the exact algorithms. Hence, they
can be categorized as Approximate Policy Iteration
(API), Approximate Value Iteration (AVI), Approxi-
mate Linear Programming (ALP) (Powell, 2007; Bert-
sekas & Tsitsiklis, 1996). Each one of these methods
offers different advantages over the others.

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

ALP offers some significant theoretical advantages
over other ADP algorithms (de Farias & Roy, 2003).
Unlike other algorithms, ALP is guaranteed to con-
verge to a solution with guaranteed bounds. These
bounds guarantee that the solution will be as close to
the optimal value function as its closest approxima-
tion in the basis. In addition, a solution of ALP is
guaranteed to be an upper bound on the true value
function and thus may be used as a heuristic func-
tion in search problems (Petrik & Zilberstein, 2008).
However, ALP has been found to be less effective than
ADP approaches (Guestrin et al., 2003). Therefore it
is important to improve the practical solution quality
of ALP while retaining the important favorable prop-
erties.

In this paper we propose modifications to ALP to im-
prove the quality of the obtained solutions. First, we
formally define the framework we use and show a sim-
ple example in which ALP performs poorly. We ar-
gue that the loss in quality is largely due to the pres-
ence of virtual loops in the approximate formulation.
Then, we propose to improve solution quality by con-
straint roll-outs, based on the dual values. Next, we
propose a modification of ALP that constrains the dual
variables to improve solution quality. Finally, we ex-
perimentally verify the effectiveness of the approach
on the mountain-car benchmark problem and a large-
scale blood inventory management problem.

2. Framework

In this section, we first provide a formal definition of
the terms we use. We also briefly describe the formu-
lation of ALPs and the approximation errors involved.
Finally, we show a simple example in which the solu-
tion quality of ALP is not acceptable.

A Markov Decision Process is a tuple (S,A, P, r, α),
where S is the finite set of states, A is the finite set
of actions. P : S × S × A 7→ [0, 1] is the transition
function, where P (s′, s, a) represents the probability
of transiting to state s′ from state s, given action a.

Constraint Relaxation in ALP

Function r : S × A 7→ R is the reward function, and
α : S 7→ [0, 1] is the initial state distribution. To
shorten the notation we assume an arbitrary ordering
on the states: s1, s2, Then we use Pa to denote
the probabilistic transition matrix for action a, and
ra to denote the vector of rewards received for the
transitions.

We focus on linear value function approximation for
discounted infinite-horizon problems. In linear value
function approximation the value function is repre-
sented as a linear combination of nonlinear basis func-
tions (vectors). For each state s we define a row-vector
φ(s) of features. The rows of the basis matrix M cor-
respond to the φ(s), and the approximation space is
generated by the columns of the matrix. The value
function is represented as v = Mx, for any vector x.

It is well known that an infinite horizon discounted
MDP problem may be formulated in terms of solving
the following linear program:

min
v

∑
s∈S

c(s)v(s)

s.t. v(s) ≥ r(s, a) +
∑
s′∈S

γP (s′, s, a)v(s′)

∀(s, a) ∈ (S,A)

(2.1)

We use A as a shorthand notation for the constraint
matrix and b for the right-hand side. The value c repre-
sents a distribution over the states, usually a uniform
one. We assume in the remainder of the paper that∑
s∈S c(s) = 1. This linear program is too large to

solve precisely, so it is often approximated by assum-
ing that v = Mx (de Farias & Roy, 2003). An ap-
proximate linear program is a tuple: L = (c, A, b,M),
defined as:

min
x

cTMx

s.t. AMx ≥ b
Mx ≤ ‖r‖∞/(1− γ)1

(2.2)

The standard assumption that guarantees the feasibil-
ity of the ALP is that 1 ∈ span(M), where 1 is a vector
of all ones. We implicitly assume this in the remain-
der of the paper. The constraint Mx ≤ ‖r‖∞/(1−γ)1
ensures that the values of states are not too large. No-
tice that it does not limit the feasibility of the ALP,
nor the quality of the solution. The number of con-
straints is reduced by sampling. In the following we
use ṽ = Mx to denote the approximate value function
from the optimal solution of an ALP. Its important
property is that ṽ ≥ v∗. As a result, the objective of
the linear program may be seen as a minimization of
‖ṽ − v∗‖1,c, where ‖ · ‖1,c is a c-weighted L1 norm.

1
0

11111

s7s6s5s4s3s2s1

Figure 1. An example chain problem with deterministic
transitions and reward denoted above the transitions.

The approximation error incurred in an ALP may be
divided into three components: 1) representational er-
ror 2) sampling error and 3) transitional error. The
representational error is due to the limited represen-
tation of the approximation basis M . Its value is
ε1 = minx ‖Mx − v∗‖∞. The sampling error is due
to the limited number of samples. Finally the transi-
tional error is due to the approximation method used,
in this case ALP. Let v̂ be the value for which the rep-
resentational error is achieved. Then if ṽ is the solution
of the ALP, then the transitional error is ε2 = ‖ṽ− v̂‖
for some norm.

Bounds on the transitional error ε2 have been exten-
sively studied (de Farias & Roy, 2003). The basic
bound on the approximation error is:

ε2 = ‖ṽ − v∗‖1,c ≤
2

1− γ
ε1,

where ε1 is the representational error. See (de Farias
& Roy, 2003) for tighter bounds that rely on the ba-
sis having additional structure. While this bound is
significantly tighter than bounds of other ADP algo-
rithms, it is not sufficient to guarantee good solutions.
Notice that this bound grows significantly as γ ap-
proaches 1. For example, for γ = 0.99, a commonly
used value, ε2 ≤ 200ε1. Such large approximation er-
ror is not acceptable in most practical applications.

Unfortunately, the looseness of the bounds is a prop-
erty of the ALP solutions, not the bounds. It is possi-
ble to construct a problem in which the approximate
value function has a significant error. To demonstrate
this, consider the simple deterministic chain problem
with a discount factor γ = 0.9, depicted in Figure 1.
The optimal value function v∗, the closest approxima-
tion v1 in terms of L∞ norm, and the solution v2 of
an ALP are depicted in Figure 2. It is apparent that
the approximation error in this problem is too large to
make the value useful.

While it is possible to reduce the transitional error by
requiring that an appropriate structure is present in
the basis, this is not always practical. An example of
such structure is the Lyapunov vectors (de Farias &
Roy, 2003). The existence of such vectors in all but the
simplest problem domains is typically hard to ensure.

Constraint Relaxation in ALP

1 2 3 4 5 6 7
0

10

20

30

State

V
al

ue

v* v

1
v

2

Figure 2. Approximation errors in approximate linear pro-
gramming.

5

 4

6

3

5

 4 1

3

 2

1

Figure 3. An example of 2-step expanded constraints
(dashed) in a deterministic problem. The numbers next
to the arcs represent rewards.

In this paper, we focus mostly on reducing the tran-
sitional error, ignoring the representational and sam-
pling errors. This is reasonable, because the transi-
tional error typically increases with decreasing sam-
pling error. We, however, discuss the impact of
the methods we present on the sampling require-
ments. Further, we universally assume that a genera-
tive model is available. This model can generate tran-
sitions from an arbitrary state taking arbitrary action.
The approaches we propose are however applicable to
problems without such a generator.

3. Constraint Roll-out

The transitional error would be zero, if the ALP con-
straints were in the form v(s) ≥ v∗(s) instead of having
a constraint for each transition. This is however often
impractical. We therefore consider a hybrid formu-
lation, in which the constraints represent multi-step
transitions – expanded, or rolled-out, constraints. An
example of 2-step expanded constraints is depicted in
Figure 3.

Definition 1. A t-step expanded ALP constraint for
an action sequence E = (a1, a2, . . . , at) ∈ At and state
si has the following form:

v(si) ≥
∑
sj∈S

γtPE (sj si) v(sj) + rE(si).

The terms are defined as follows, using matrix notation

for simplicity:

PE (sj si) = 1T
i

(
t∏

k=1

γPak

)
1j

rE (si, E) = 1T
i

(
t∑

l=1

(
l−1∏
k=1

γPal

)
rak

)
,

where 1i is the i-th unit vector. We denote such a
constraint as v(si) ≥ C(si, E). A full t-step expanded
constraint is:

v(si) ≥ max
E∈At

C(si, E).

For the sake of simplifying the analysis, we consider
only full expanded constraints. That is, for every state
we have constraints that correspond to all action se-
quences. For example, a ≥ max{b, c} may be written
as two constraints a ≥ b and a ≥ c. Next, we describe
the benefits of using expanded constraints and we ad-
dress the difficulties later. The set of constraints for
all states is denoted as Ct
This idea is somewhat related to temporally extended
actions, or options, commonly studied in reinforcement
learning (Stolle & Precup, 2002). Options however
typically serve a different purpose – to simplify and
accelerate learning rather than to reduce the transi-
tional error. In addition, unlike options, the expanded
constraints have a fixed length.

Expanding the constraints with a larger horizon guar-
antees improvement in the approximation error bound,
as the following generalization of the simple error
bound shows.

Corollary 2. Assume that 1 ∈ span(M), and let ṽ
be a solution of a t-step expanded approximate linear
program. Then: ṽ ≥ v∗ and:

‖ṽ − v∗‖1,c ≤
2

1− γt
ε1.

The corollary follows directly from the basic error
bound on the modified MDP with actions that cor-
respond to t-step actions in the original MDP. In fact,
the approximation error is guaranteed to not increase
with increased t.

Corollary 3. Let v be a solution of an ALP with t-step
expanded constraints and let v′ be a solution of an ALP
with t′-step expanded constraints such that t′ = d∗t for
some positive d ∈ Z. Then ‖v′ − v∗‖1,c ≤ ‖v − v∗‖1,c.

While the expanded formulation improves the solution
quality, there are two main problems with its practical
application. First, the number of constraints for each

Constraint Relaxation in ALP

state is |A|t, which grows exponentially with t. This
may however be manageable in problems with a small
number of actions. We describe below how to address
this problem by adaptively expanding only selected
states in Section 3.2.

The second problem is that the t-step transition model
is rarely available. Thus the probabilities of t-step
transitions need to be obtained from sampled t-step
execution traces. We show how to obtain the transi-
tion matrix using only a limited number of samples in
Section 3.1.

3.1. Constraint Estimation

As described above, it may be difficult to determine
an expanded constraint for a large t, even when the
sequence of actions is fixed. In order to estimate such
a constraint, we need to calculate the transition prob-
abilities and rewards after taking t actions. Because a
generative model typically can generate only one-step
samples, the probabilities need to be calculated from
sampled execution traces. We show in this section that
the number of samples needed to obtain a solution is
reasonably small.

An appealing property of many reinforcement learning
problems is that the number of states that are targets
of a transition is relatively small. This leads to a sparse
transition matrix. With t-step transitions, however,
the number of states to which it is possible to transit
to may be large. To limit the number of necessary
samples, we need a sampling bound independent of
the size of the state space. The available samples for
a fixed constraint, determined by an action sequence
a1, . . . , at, are of the following form:

(sj1, . . . , s
j
t)
q
j=1 (rj1, . . . , r

j
t)
q
j=1.

The state sji is the i-th state in the j-th sample, and rji
is the reward received in in the transition to sji . The
constants needed to specify the constraint are obtained
as follows:

Pq (st s0) =
1
q

q∑
j=1

I
{
sjt = st

}

Rq(s0) =
1
q

q∑
j=1

t∑
k=1

γk−1rjk.

Here I {·} denotes the indicator function. We denote
the constraints that are obtained from the samples as
Cqt for t-step expanded constraints. These values are
used to construct the empirical ALP, denoted as Lq,
based on q samples per constraint.

To derive a bound on the number of samples needed,
we first analyze the sensitivity of the solution of the
approximate linear program with regard to the change
in the constraints. If the difference between the two
linear programs is arbitrary, then even a small change
in the constraints may lead to a large change in the so-
lution. However, when the error is due to insufficient
sampling, the ALP still retains the important prop-
erty: A1 ≤ (1 − γ)1. We exploit this property in the
following lemma. We use ‖A‖1,∞ = maxi ‖ai‖1, that
is, a maximum of L1 norms on the matrix rows ai.
Lemma 4. Let L1 = (c, A1, b1,M) and L2 =
(c, A2, b2,M) be two ALPs with optimal solutions v1

and v2 respectively. Also let εa = ‖A1M − A2M‖1,∞
and εb = ‖b1 − b2‖∞. Assuming that A11 = A21 =
(1− γ)1 then:

‖ṽ1 − ṽ2‖ ≤
εax̂

1− γ
+

εb
1− γ

,

where x̂ ≥ |x(i)| for all i for both L1 and L2.

The lemma can be proved by constructing a solution
feasible in L2 from the optimal solution v1 by adding
a sufficiently large constant vector.

Notice that in a t-step expanded ALP, we could use
the factor 1/(1 − γt) for tighter bounds. We ignore
this for the sake of simplicity.

Lemma 4 shows that a small change in the constraints
leads to only a small change in the resulting objective
value. It remains to show now that given a sufficient
number of samples, the probability that the empirical
probability distribution significantly deviates from its
true value is small.
Lemma 5. Let L = (c, A, b,M) be the true ALP and
let Lq = (c, Aq, bq,M) be the sampled ALP. Then:

P [‖AqM −AM‖1,∞ ≥ εa] ≤ nm exp

(
−2qε2am

2

‖M‖2∞

)
P [‖b− bq‖∞ ≥ εb] ≤ n exp

(
− 2qε2b
‖r‖2∞

)
,

where n is the total number of constraints and m is
the total number of state features.

The lemma follows directly from the union bound and
Hoeffding’s inequality. Putting the lemmas above to-
gether leads to the following theorem.
Theorem 6. Let v1 be the solution of the true ALP
L1 and let v2 be the solution of the sampled ALP Lq.
Then:

P [‖v1 − v2‖1,c ≥ ε] ≤ nm exp

(
−2qε2m2(1− γ)2

x̂2

)
+

+n exp

(
−2qε2(1− γ)2

‖r‖2∞

)
,

Constraint Relaxation in ALP

where x̂ ≥ |x(i)| for all i assuming that ‖M‖∞ = 1.

The size of x̂ may be controlled by adding appropriate
constraints to the ALP that limit it. For example, for
piece-wise linear approximations, which we use, it is
possible to constraint x̂ = ‖r‖∞/(1 − γ) without loss
of generality.

As with all distribution-free results, the practical use
of the bounds above is limited, as they require 100s of
samples in most practical circumstances, while good
empirical results can be obtained with an order of 10
samples per transition. They however indicate that
the number of samples required to obtain the multi-
step constraints is independent of the number of states,
and strengthening of the assumptions may yield prac-
tical bounds in the future.

3.2. Adaptive Selection of Expanded
Constraints

Expanding all constraints may improve the solution
quality, but at a steep computational cost. The num-
ber of constraints required per states scales exponen-
tially with the number of steps for which the con-
straints are expanded. As a result, assuming that full
constraints are added for many steps into the future is
not realistic if it needs to be done for all states. In this
section, we propose a scheme for selecting only some
constraints for expansion.

To obtain the bounds on improvement achievable by
expanding constraints, we compare solutions of an
ALP with and without some constraints expanded,
ignoring the approximation basis M without loss of
generality. Let A1v ≥ b1 represent constraints that
are not expanded and let A2v ≥ b2 be the expanded
constraints. Then, let Ā1v ≥ b̄1 be a fully expanded
version of the constraint A1v ≥ b1. This leads to two
linear programs:

min
v

cTv

s.t. A1v ≥ b1 A2v ≥ b2
(3.1)

min
v

cTv

s.t. Ā1v ≥ b̄1 A2v ≥ b2
(3.2)

We can now state the following proposition. We use
[x]+ = max{x,0}.

Proposition 7. Let v1 and v̄1 be the optimal solu-
tions of Eq. (3.1) and Eq. (3.2) respectively. Let λ1

and λ2 be the Lagrange multipliers that respectively
correspond to constraints A1v1 ≥ b1 and A2v1 ≥ b2
in Eq. (3.1). Then the improvement from expanding

constraints A1v ≥ b1 is at most:

‖v1−v∗‖1,c−‖v̄1−v∗‖1,c ≤
‖ [Av1 − b1]+ ‖∞

1− γ
‖λT

1A1‖1.

Proof. First, let v2 ≥ v∗ be the optimal solution of:

min
v

cTv

s.t. Ā1v ≥ b̄1
From the optimality of v1, the dual feasibility, and

the complementary slackness we conclude:

c = AT
1λ1 +AT

2λ2

λT
2A2v1 = λT

2 b2

The feasibility of v2 and λ2 ≥ 0 imply that:

λT
2A2v1−λT

2A2v2 = λT
2 b2−λT

2A2v2 = λT
2 (b2−A2v2) ≤ 0,

The proposition then follows from Corollary 2, and the
trivial version of Holder’s inequality:

‖v1 − v∗‖1,c − ‖v̄1 − v∗‖1,c =
= (λT

1A1 + λT
2A2)(v1 − v2)

≤ λT
1A1(v1 − v2)

≤ ‖λT
1A1‖1‖v1 − v2‖∞ ≤ ‖λT

1A1‖1‖v1 − v∗‖∞.

The proposition follows from the Bellman residual
bound on the value function approximation.

The proposition shows that the dual variables (or La-
grange multipliers) may be used to bound the potential
improvement in the approximation that can be gained
from expanding some of the constraints. In the trivial
case, the proposition states that expanding constraints
for which λ = 0 has no effect on the solution. Thus,
it is sufficient to obtain a solution of the linear pro-
gram in which the sum of the Lagrange multipliers of
unexpanded constraints is sufficiently small. A greedy
algorithm that accomplishes this is depicted in Algo-
rithm 1. Note that after expanding a constraint, the
previous solution of the ALP may be used as the start-
ing point, since it is a feasible solution (Corollary 3).

Algorithm 1: Iterative Expansion Algorithm
while ‖v1 − v∗‖1,c − ‖v̄1 − v∗‖1,c ≥ ε do1

v ←M arg min{x AMx≥b} cTMx ;2

λi ← dual variables ;3

a1 . . . ad ← arg maxai
‖λiai‖1 ;4

Expand constraints a1 . . . ad5

We showed in this section a practical approach for ob-
taining expanded constraints in stochastic domains, as
well as a method for selecting a subset of constraints
to expand.

Constraint Relaxation in ALP

4. Relaxed Linear Program

In this section, we describe a method for eliminating
the virtual loops without requiring constraint expan-
sion. This method is generally inferior to constraint
expansion in terms of solution quality, since it can-
not use the extra multi-step transitions. However, the
method is useful in problems in which rolling out con-
straints is impractical and in which it is possible to
obtain a good approximate value function while vio-
lating only a few constraints.

As the example in Figure 2 shows, a single constraint
in an ALP may degrade the quality of the whole solu-
tion. This can be addressed by allowing a small viola-
tion of a small number of constraints. One possibility
of relaxing the constraints is to use: Av ≥ b − ε1 for
some small ε. This will however only lower the value
function with little effect on quality. We take an alter-
native approach and solve the following optimization
problem:

min
v
cTv + dT [b−Av]+ , (4.1)

for some vector d ≥ 0. We implicitly assume that
v ∈ span(M). The parameter d determines the trade-
off between guaranteeing that ṽ is an upper bound on
v∗ and the closeness of the approximation. In fact, the
choice of this optimization problem is motivated by its
dual, which is:

max
y

bTy

s.t. ATy = c y ≥ 0 y ≤ d
(4.2)

The optimal dual solution in the exact formula-
tion is denoted as y∗ and corresponds to: y∗(s) =
Ec

[∑∞
i=0 γ

i I {Si = s}
]
, where S0, S1 . . . represent the

states of the MDP using the optimal policy and the
initial distribution c in corresponding stages. The vec-
tor d then correspond to upper bounds on the dual
values y of the linear program in Eq. (4.2). Therefore,
the approach may be seen as a regularization of the
linear program dual values.

The relaxed linear program formulation can be used
when violating a small number of constraints signif-
icantly improves the solution. The formulation then
automatically selects the appropriate constraints that
need to be violated. The following proposition shows a
bound on the total weight of the violated constraints.

Proposition 8. Assume that 1 ∈ span(M). Let IV be
the set of violated constraints and let IA be the set of
active constraints by the optimal solution of the relaxed
ALP. Then d(IV) ≤ 1/(1 − γ) and d(IA) + d(IV) ≥
1/(1 − γ), where d(·) denotes the sum of the weights
defined by d on the selected constraints.

The proposition implies that setting d > 1
(k+1)(1−γ)1

guarantees that at most k constraints are violated.
The relaxation does not guarantee an improvement on
the ALP solution. It is possible to construct an in-
stance in which the solution can be improved only by
violating all constraints.

While it number of violated constraints is important,
it is also necessary to bound the scale of the viola-
tion. The following theorem shows the bound on the
constraint violation in terms of the Bellman error vio-
lation. It also provides guidance in selecting the con-
straint violation penalty d.

Theorem 9. Let minv∈span(M) ‖v − v∗‖∞ ≤ ε with a
minimizer v̂, and let ṽ be the optimal solution of the
relaxed linear program with weight d = y∗+∆d, where
∆d ≥ 0. Then:

‖[b−Aṽ]+‖1,∆d ≤ (2 + ∆dT1)ε.

Further if the weight of the constraints violated by v̂ is
less than 1/(1− γ), then ‖[ṽ − v∗]+‖1,c ≤ ε.

Notice that the first inequality provides a lower bound
on the approximate value function, while the second
one provides an upper bound. The incompatibility of
the bounds is due to an inherent problem with the ALP
formulation that minimizes a weighted L1, which has
not been shown to provide tight error bounds on the
performance.

The proof of Theorem 9 differs from the standard ALP
proofs, since the approximate value function is not
guaranteed to be an upper bound on the true value
function v∗. It is instead based on the Lagrange func-
tion formulation of the linear program in Eq. (2.1). In
particular, it relies on the fact that v∗ and y∗ are the
optimal solutions of maxy minv cTv + yT(b−Av).

An important property of the formulation is that given
a sufficiently large vector d, if the optimal value func-
tion v∗ is representable in the approximation space d,
then it will be also the optimal solution of the relaxed
linear program.

Proposition 10. Assuming that 1 ∈ span(M) and
d > 1

1−γ1 then the optimal solutions of Eq. (3.1) and
Eq. (4.1) are identical.

The proposition follows from the constraints of the
dual ALP formulation.

The bounds above indicate that the values d should
be upper bounds on the optimal visitation frequen-
cies y∗ in the MDP, which is the optimal solution of
Eq. (4.2). One way of obtaining the d is to choose
a value that optimizes the empirical performance, or

Constraint Relaxation in ALP

1 2 3 4 5 6 7
−2

0

2

4

6

8

10

12

14

State

V
al

ue

 v* v
alp2

v
ralp

v
ls

v
br

Figure 4. Benchmark results for the chain problem.

the value function bound. In many problems, it may
be possible to use the structure to derive bounds on
y∗. For example, if it is impossible to return to the
same state s of the MDP in less than k steps, then
y∗(s) ≤ 1/(1−γk). When the probability of returning
is small in the first few steps, the following bound can
be used.

Proposition 11. Let pj be the probability of return-
ing for the first time to state s1 in the j-th step,
and assume that pĵ = 1. Let θ1 = p1 and θj =

pj

(
1−

∑j−1
k=1 θk

)
, then y∗(s) = 1/

(
1−

∑ĵ
j=1 γ

jθj

)
.

Given that pj’s are upper bounds on the probabilities,
this is an upper bound on y∗(s).

The result can be shown by induction on ĵ. When the
probabilities are not available, they can be estimated
from the domain samples.

5. Experimental Results

We experimentally evaluate the proposed approaches
on three problems of increasing complexity. We first
demonstrate the soundness of the main ideas on the
simple chain problem described in the introduction.
Then we evaluate the approach on a modified version
of the mountain-car problem, a standard benchmark in
reinforcement learning. Finally, we describe an appli-
cation of the method to a blood-management problem,
a complex multi-attribute optimization problem.

The empirical results for the chain problem are de-
picted in Figure 4. Here vbr represents the Bellman
residual value function and vls is least squares min-
imization value function (Lagoudakis & Parr, 2003).
The constraints in the problem are rolled out with 2
steps, with the value denoted by valp2. The values d in
the relaxed ALP are 1, except in the last state in which
it is 10. These values are upper bounds, since all states
except the last one are transient. The value function

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

Expanded Constraints

L 1 E
rr

or
 B

ou
nd

Figure 5. Bound on L1 approximation error with regard to
the number of expanded constraints on the mountain-car
problem.

of the relaxed ALP is denoted by vralp. These results
show that at least in the simple problem, constraint
roll-outs and relaxed formulation perform well.

In the mountain-car benchmark an underpowered car
needs to climb a hill (Sutton & Barto, 1998). To do
so, it first needs to back up to an opposite hill to gain
sufficient momentum. In our modified version of the
mountain car, the reward of 1 is received just before
the top of the hill. In the traditional formulation, the
task stops as soon as the reward is received. In our
modified problem, the car continues for an extra 0.1
distance, but cannot receive the reward again. We
used γ = 0.99.

We used piece-wise linear value function approxima-
tion, which is particularly suitable for use with ALP,
because it has no constant continuous regions. The
constraints were based on 3000 uniformly generated
states with all 3 actions. The approximation error
of the solution with regard to number of 10-step ex-
panded constraints using Algorithm 1 is shown in Fig-
ure 5. The relaxed linear program was evaluated on
this problem with d = 0.6 ∗ 1, which is an upper
bound on the dual value when all states are transient.
The average ‖ · ‖1,c error over 10 runs was 4.474, with
only 0.35% of constraints violated. The average dis-
counted returns of the ALP policy was 0.338, of the
ALP with 90 expanded constraints was 0.438, and of
the relaxed ALP formulation was 0.42. Our ALP for-
mulations outperformed our implementation of LSPI
on this problem, which achieved average return of 0.38.

The blood inventory management problem, described
for example in (Powell, 2007) concerns managing a
blood supply inventory and determining the optimal
blood-type substitution. This is a multi-dimensional
resource management problem. The number of actions
in the problem is essentially infinite, and the greedy
step needs to be solved using a linear program. We also
use in this problem a simple piece-wise linear approx-
imation. Constraint expansion in this problem is im-
practical due to the complex action space and the large

Constraint Relaxation in ALP

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

Resource

v∗

ṽ

Transition

Figure 6. Illustration of the value function in the inventory
management problem.

sampling error encountered in constraint estimation.
A simple greedy solution in this problem achieves re-
turn of 70331, standard ALP solution achieves 19108,
and the bound on the optimal solution is 94169. Re-
laxed ALP solution, with the assumption that a loop
on any state is at least 20 states long, improves on the
greedy solution with value 87055. We do not describe
the details of this application due to lack of space.
This is a complex optimization problem and its solu-
tion requires a number of trade-offs, which significantly
influence the solution quality.

ALP performs poorly in the blood inventory manage-
ment problem because the solution significantly over-
estimates the value of the resources. While the opti-
mal value function in this problem is not known, we
hypothesize that the function is concave. When ap-
proximating a concave function by a linear one, the
ALP formulation can be seen as an approximation of
the upper bound on the functions derivative. This
leads to a large approximation error, as demonstrated
in Figure 6. The solution of the relaxed formulation
will however violate some of the constraints close to 0.

The impact of the proposed methods on the compu-
tational time depends on the tradeoffs involved in the
particular domain. Solving a relaxed ALP may be in
fact easier than solving the original ALP. In the case of
constraint expansion, the penalty depends on the type
of samples available and the cost involved in gathering
them. For example, the constraint expansion method
in impractical in in the Blood inventory management
due to the high computational cost of gathering sam-
ples.

6. Conclusion

We identified an important drawback of approximate
linear programming that may significantly impact its
performance. In particular, we showed that a single
constraint in an approximate linear program may sig-
nificantly impact the solution quality, and proposed
two methods to remedy the issue. The first one is
based on constraint roll-outs, guided by the dual vari-

ables. The second one is based on allowing violation
of a limited number of constraints. This approach
does not ensure that the approximate solution is an
upper bound on the optimal value function, but it
significantly decreases the sensitivity of the approach
to individual constraints. Our empirical results show
that these techniques can significantly improve solu-
tion quality in comparison to plain ALP.

An important issue to be addressed future work is a
deeper study of the modified ALP formulations with
regard to the constraint sampling error. It is likely that
the approach may also reduce the bounds on the sam-
pling error, since it reduces the importance of the in-
dividual constraints. These results will hopefully help
to establish ALP as one of leading solution methods
for large stochastic optimization problems.

Acknowledgements

This work was supported by the Air Force Office of
Scientific Research under agreement number FA9550-
08-1-0171.

References

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-
dynamic programming. Athena Scientific.

de Farias, D. P., & Roy, B. V. (2003). The linear pro-
gramming approach to approximate dynamic pro-
gramming. Operations Research, 51, 850–856.

Guestrin, C., Koller, D., Parr, R., & Venkataraman,
S. (2003). Efficient solution algorithms for factored
MDPs. Journal of Artificial Intelligence Research,
19, 399–468.

Lagoudakis, M. G., & Parr, R. (2003). Least-squares
policy iteration. Journal of Machine Learning Re-
search, 4, 1107–1149.

Petrik, M., & Zilberstein, S. (2008). Learning heuris-
tic functions through approximate linear program-
ming. International Conference on Automated Plan-
ning and Scheduling (ICAPS) (pp. 248–255).

Powell, W. B. (2007). Approximate dynamic program-
ming. Wiley-Interscience.

Stolle, M., & Precup, D. (2002). Learning options in
reinforcement learning. Lecture Notes in Computer
Science, 2371, 212–223.

Sutton, R. S., & Barto, A. (1998). Reinforcement
learning. MIT Press.

