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Abstract

This paper addresses feature selection tech-
niques for classification of high dimensional
data, such as those produced by microarray
experiments. Some prior knowledge may be
available in this context to bias the selection
towards some dimensions (genes) a priori as-
sumed to be more relevant. We propose a fea-
ture selection method making use of this par-
tial supervision. It extends previous works on
embedded feature selection with linear mod-
els including regularization to enforce spar-
sity. A practical approximation of this tech-
nique reduces to standard SVM learning with
iterative rescaling of the inputs. The scaling
factors depend here on the prior knowledge
but the final selection may depart from it.
Practical results on several microarray data
sets show the benefits of the proposed ap-
proach in terms of the stability of the selected
gene lists with improved classification perfor-
mances.

1. Introduction

Classification of microarray data is a challenging prob-
lem as it typically relies on a few tens of samples but
several thousand dimensions (genes). Feature selec-
tion techniques are commonly used in this context,
both to increase the interpretability of the predictive
model and possibly to reduce its cost (Guyon & Elis-
seef, 2003; Saeys et al., 2007). In some cases feature
selection has also been shown to improve classifica-
tion accuracy (Krishnapuram et al., 2004). Biomarker
selection specifically refers to the identification of a
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small set of genes, also called a signature, related to
a pathology or to an observed clinical outcome after a
treatment.

Semi-supervised classification deals with problems for
which only a fraction of the learning examples have
known class labels, and semi-supervised feature selec-
tion methods have been recently proposed (Zhao &
Liu, 2007; Cheng et al., 2008). We use here a different
kind of partial supervision, namely on the dimensions
of a feature selection procedure. For instance in the
case of microarray data classification, a molecular bi-
ologist may know or guess that some genes are likely
to be more discriminant. This knowledge is usually
only partial, as the purpose of biomarker selection is
often to discover new gene signatures, or even inaccu-
rate, as gene expression may be influenced by several
factors not related with the outcome. The technique
presented in this paper makes use of such prior knowl-
edge to guide feature selection while letting the final
selection depart from it if necessary to optimize the
classification objective.

Support vector machines (SVMs) are particularly con-
venient to classify high dimensional data with only
a few samples. In their simplest form, SVMs sim-
ply reduce to maximal margin hyperplanes in the
input space. Such models were shown to success-
fully classify microarray data either on the full input
space (Mukherjee, 2003) or combined with feature se-
lection (Weston et al., 2000; Chapelle et al., 2002;
Guyon et al., 2002). The latter approaches are em-
bedded as the selected features directly follow from
the structure of the classifier. Our method extends
the embedded AROM methods (Weston et al., 2003),
by adding a partial supervision on the dimensions to
be selected, in a simple yet efficient way.

A good set of features is ideally highly stable with
respect to sampling variation. In the context of
biomarker selection from microarray data, high stabil-
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ity means that different sub-samples of patients lead to
very similar sets of biomarkers. This is motivated by
the assumption that the biological process explaining
the outcome is common among different patients. We
show in the present study that the use of prior knowl-
edge on relevant genes effectively induces a large gain
in stability with improved classification performances
in most cases.

The rest of this paper is organized as follows. Section 2
briefly reviews the AROM methods. Section 3 details
how to extend these methods with partial supervision
on the selected features. Practical experiments on var-
ious microarray data sets are reported in section 4. We
conclude and present our perspectives in section 5.

2. The AROM methods

Given m examples xi ∈ Rn and the corresponding
class labels yi ∈ {±1} with i = 1, ...,m, a linear model
g(x) predicts the class of any point x ∈ Rn as follows.

g(x) = sign(w · x + b) (1)

Feature selection is closely related to a specific form
of regularization of this decision function to enforce
sparsity of the weight vector w. Weston et al. (2003)
study in particular the zero-norm minimization sub-
ject to linear margin constraints1 :

min
w

||w||0 subject to yi(w · xi + b) ≥ 1 (2)

where ||w||0 = card{wj |wj 6= 0} and card is the set
cardinality. Since problem (2) is NP-Hard, a log 1-
norm minimization is proposed instead.

min
w

n∑
j=1

ln(|wj |+ ε) subject to yi(w · xi + b) ≥ 1 (3)

where 0 < ε � 1 is added to smooth the objective
when some |wj | vanishes. The natural logarithm in
the objective facilitates parameter estimation with a
simple gradient descent procedure (an extended ver-
sion of this procedure is detailed in section 3). The
resulting algorithm l1-AROM2 simply optimizes the
1-norm of w with iterative rescaling of the inputs.

The l2-AROM method further approximates this ob-
jective by replacing the 1-norm by the 2-norm. Even
though such an approximation may result in a less

1The constraints in problem (2) could be rewritten
yi(w · xi + b) > 0 since the 0-norm is insensitive to the
scale of w. The use of margin constraints is motivated by
the subsequent approximations to this problem.

2AROM stands for Approximation of zeRO-norm
Minimization.

sparse solution, it is very efficient in practice when
m � n. Indeed, a dual formulation may be used and
the final algorithm boils down to a linear SVM esti-
mation with iterative rescaling of the inputs. A stan-
dard SVM solver can be iteratively called on properly
rescaled inputs. A smooth feature selection occurs
during this iterative process since the weight coeffi-
cients along some dimensions progressively drop below
the machine precision while other dimensions become
more significant. A final ranking on the absolute val-
ues of each dimension can be used to obtain a fixed
number of features.

3. Partially supervised AROM

Whenever some prior knowledge on the relative im-
portance of each feature is available, the l1-AROM
objective can be modified by adding a prior relevance
vector β = [β1, ..., βn]t defined over the input dimen-
sions. Let βj ≥ 1 denote the relative prior relevance
of the jth feature, the higher its value the more rele-
vant the corresponding feature is a priori assumed. If
no information is available about a given feature prior
relevance, it is fixed to the default value βj = 1. The
optimization problem is modified to penalize less the
dimensions which are assumed a priori more relevant:

min
w

n∑
j=1

1
βj

ln(|wj |+ε) subject to yi(w·xi+b) ≥ 1 (4)

Following the same line of reasoning as in (Weston
et al., 2003), we derive below an iterative algorithm to
solve problem (4). An equivalent problem is obtained
after introducing auxiliary variables vj ’s:

min
v

n∑
j=1

1
βj

ln(vj +ε) subject to

 yi(w · xi + b) ≥ 1
vj ≥ wj

vj ≥ −wj

(5)
Next, problem (5) is solved using an iterative con-
strained gradient descent technique due to (Franke &
Wolfe, 1956):
1. Find the steepest descent direction of the objective
function that is consistent with the constraints:

min
v,w

∇h(vk) · (v − vk) subj.to

 yi(w · xi + b) ≥ 1
vj ≥ wj

vj ≥ −wj

(6)
where h(vk) is the value of the objective function at
step k. Let (v̄, w̄) be the optimum value of this prob-
lem.
2. Optimize along that steepest descent direction:
compute λ such that h(vk + λ(v̄ − vk)) is minimal.
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At step k, the objective function is approximately
given by h(vk) ≈

∑n
j=1

1
βj

ln(vkj). It follows that:

∂h(.)
∂vkj

=
1

βjvkj

Since the steepest descent is given by

∇h(vk) · (v − vk) =
n∑

j=1

vj − vkj

βjvkj

problem (6) becomes

min
v,w

n∑
j=1

vj − vkj

βjvkj
subject to

 yi(w · xi + b) ≥ 1
vj ≥ wj

vj ≥ −wj

(7)

By introducing new variables v′j = vj

βjvkj
, it can be

rewritten as:

min
v′,w

n∑
j=1

v′j −
n∑

j=1

1
βj

= min
v′,w

n∑
j=1

v′j (8)

subject to yi(w · xi + b) ≥ 1 ; v′j ≥
wj

βjvkj
; v′j ≥

−wj

βjvkj
.

By defining w′
j = wj

βjvkj
and given that |wkj | = |vkj |,

the two last constraints can be rewritten to obtain
wj = w′

jwkjβj . Hence problem (8) can be refor-
mulated as a 1-norm optimization with margin con-
straints on rescaled inputs:

min
w′

n∑
j=1

|w′
j | subject to yi(w′·(xi∗wk∗β)+b) ≥ 1 (9)

where ∗ denotes the component-wise product.

The second step of the iterative Franke and Wolfe’s
method aims at finding λ such that h(wk + λ(w̄ −
wk)) is minimal (with w̄ being the optimal solution
to problem (9)). Since h is a weighted positive sum
of logarithms, it is concave. Consequently, at each
iteration, λ is either 0, in which case wk+1 = wk and
a local optimum is reached, or 1, in which case wk+1 =
w̄∗wk ∗β, and the process is iterated till convergence.

Similarly to the l2-AROM method presented in sec-
tion 2, problem (9) can be approximated by replacing
the 1-norm by the 2-norm. This formulation reduces to
an iterative algorithm using hard-margin linear SVMs
with rescaled margin constraints (a soft-margin variant
is straightforward). The original l2-AROM method is
obtained when βj = 1 (∀j), in other words, without
prior preference between the input features.

The RFE approach proposed by (Guyon et al., 2002) is
an iterative procedure where a linear SVM is trained at

each iteration and features corresponding to the small-
est absolute weights are discarded. It has a different
initial motivation but is algorithmically very similar to
l2-AROM. RFE can be seen as an iterative threshold-
ing of the vector wk, masking some features at each it-
eration: each dimension is either multiplied by 1 (kept)
or 0 (discarded) resulting in a backward selection pro-
cess. l2-AROM performs a smoother selection at each
step. We show here how some prior knowledge β can
weight the smooth selection mask wk.

Some a priori less relevant features may appear in the
final solution to problem (9), or its 2-norm approxima-
tion, since all βj ’s are strictly positive. This observa-
tion, confirmed in our practical experiments reported
in section 4, illustrates why our feature selection pro-
cedure is only partially (and softly) supervised.

4. Experiments

We report here practical experiments with the feature
selection method proposed in section 3. These ex-
periments are conducted with the partially supervised
l2-AROM approach (PS-l2-AROM for short) because
of its computational efficiency. This choice is also
motivated by the results reported in (Weston et al.,
2003) which show that classification performances of
the original l1-AROM and l2-AROM methods do not
significantly differ while the computational time is in
favor of the latter. This method is applied to several
microarray data sets described in section 4.1. Two
evaluation metrics, respectively measuring the stabil-
ity of the selected genes and the classification perfor-
mance, are defined in section 4.2. The experiments re-
ported in sections 4.3 and 4.4 illustrate that partial su-
pervision leads to an increased stability with improved
classification performance in most cases. Comparative
results with random supervision also show the sound-
ness of the proposed approach.

4.1. Microarray Data Sets

Table 1. Microarray data sets characteristics.

Data Set Samples Features Class Priors

DLBCL 77 7129 75%/25%
Leukemia 72 7129 65%/35%
Prostate 102 6033 51%/49%
Colon 62 2000 65%/35%

Table 1 summarizes the main characteristics of the 4
data sets used in the present study, namely the number
of samples, the initial dimension of the input space and
the binary class priors. Each dimension corresponds to
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the expression value of a particular gene. The classi-
fication task in DLBCL (standing for diffuse large B-
cells) is the prediction of the tissue types (Shipp et al.,
2002). The Leukemia task distinguishes two sub-
types of leukemia (Golub et al., 1999). The Colon
cancer task discriminates between tumor and normal
tissues (Alon et al., 1999). The Prostate cancer
task discriminates between tumor and non-tumor sam-
ples (Singh et al., 2002).

4.2. Evaluation metrics

Stability measures to which extent k sets S of s se-
lected features (gene signatures) share common fea-
tures. Those sets can typically be produced by se-
lecting features from different samplings of the data.
Kuncheva (2007) proposed such a stability index:

K({S1, . . . ,Sk}) =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

|Si ∩ Sj | − s2

n

s− s2

n

where n is the total number of features, and Si, Sj

are two signatures built from different subsets of the
training samples. The s2

n ratio in this formula corrects
a bias due to the chance of selecting common features
among two sets chosen at random. This correction mo-
tivates our use of this particular stability index. This
index satisfies −1 < K ≤ 1 and the greater its value
the largest the number of commonly selected features
in the various sets. A negative stability index means
feature sets sharing common features mostly due to
chance.

Stability alone cannot characterize the quality of a sub-
set of features. Indeed, if a large randomly chosen set
of features were purely forced in every signature, the
stability would be very high, but the model built on
those features would likely have a poor classification
performance. This performance is assessed here with
the Balanced Classification Rate:

BCR =
1
2

(
TP

P
+

TN

N

)

where TP (resp. TN) is the number of positive (resp.
negative) test samples correctly predicted as positive
(resp. negative) among the P positive (resp. N neg-
ative) test samples. BCR is preferred to accuracy be-
cause microarray data sets often have unequal class
priors. BCR is the average between specificity and
sensitivity, two very common measures in the medical
domain. BCR can also be generalized to multi-class
problems more easily than ROC analysis.

4.3. Partial supervision from prior biological
knowledge

Shipp et al. (2002) mention two genes previously
known as clinical markers to discriminate DLBCL tis-
sues from Follicular Lymphomas: Transferrin Recep-
tor (TR) and Lactate Dehydrogenase A (LDHA).

Our first experiment with PS-l2-AROM favors those
two dimensions to build a signature of 30 genes (the
same signature size as in (Shipp et al., 2002)).
We define the prior relevance vector β as follows:
βj∈[TR,LHDA] = 10, βj /∈[TR,LHDA] = 1. The relevance
value for genes assumed more relevant is arbitrarily
assigned to 10. Additional experiments (not detailed
here) illustrate that results presented in this section
depend only marginally on this choice.

We report here comparative results with no prior pref-
erence between genes (βj = 1 ,∀j, in which case PS-
l2-AROM reduces to the original l2-AROM approach).
This experiment is run on the whole DLBCL data set
(77 samples). Without prior preference (l2-AROM),
LDHA and TR are not ranked within the top 30 genes
selected as signature. In contrast, they correspond to
the two largest components of the weight vector w
with non uniform prior relevance (PS-l2-AROM). The
number of genes differing between signatures gener-
ated with and without prior relevance is greater than
just the number of favored genes. Only 6 genes are
shared between both signatures. This illustrates the
multivariate nature of the selection.

Shipp et al. (2002) report a leave-one-out (LOO) accu-
racy of 91% on the 77 samples with their 30 genes sig-
nature. Their classifier is a linear model with weighted
voting, where the weights measure the correlation with
class labels. Their evaluation does not look completely
sound. Firstly, because it relies on accuracy while class
priors are unequal. More importantly, because it in-
cludes a selection bias as the signature was built on
the whole data set before evaluating several classifiers
with LOO. With the same biased protocol, a linear
SVM built on the 30 genes produced by l2-AROM
(respectively PS-l2-AROM) has 93 % (resp. 92 %)
LOO-accuracy. Such a protocol includes an optimistic
performance bias (Ambroise & McLachlan, 2002). The
additional experiments detailed below avoid such a
bias and aim at evaluating both stability and classi-
fication performances.

We consider (k = 200) independent sub-samplings
without replacement of the DLBCL data set with ar-
bitrary splits into 90% training - 10% test. Figure 1
reports the average stability and BCR results obtained
with PS-l2-AROM and l2-AROM for several signature



Partially Supervised Feature Selection with Regularized Linear Models

sizes. The RANDOM approach refers to PS-l2-AROM
when the partial supervision relies on two genes picked
at random3 instead of TR and LDHA. We also report
results obtained with the related approach RFE (see
section 3) and Golub’s S/N ratio (Golub et al., 1999).
This univariate filtering method measures the correla-
tion with the class labels and ranks genes according to
|µ+

j −µ−j |
σ+

j +σ−j
, where µ+

j (resp. µ−j ) is the mean expression

value of the gene j for positively (resp. negatively) la-
beled samples, and σ+

j , σ−j are the associated standard
deviations. For all methods, soft-margin linear SVMs
are built on selected features on the training sets and
evaluated on the test sets4.
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Figure 1. Signature stability (Kuncheva index) and clas-
sification performance (BCR) of PS-l2-AROM (with
βj∈[TR,LHDA] = 10), l2-AROM, RANDOM, RFE and
Golub’s S/N filtering on the DLBCL data set. Average
results over 200 runs (90 % training - 10% test).

3We perform 10 independent random selection of genes
and 20 random partition into 90% training and 10% test
for a total of 200 independent runs on which average results
are reported.

4Microarray data are usually normalized to make sure
that each dimension has zero mean and unit variance across
samples. In order to avoid another common bias, we es-
timate the normalization coefficients on the training sets
only and apply those coefficients to normalize the test data.

The comparison between l2-AROM and PS-l2-AROM
shows that a partial supervision on only 2 genes im-
proves drastically the stability of gene signatures with
64 or fewer genes. There is also an important gain
in classification performance for very small signatures
(≤ 8 genes). It is expected that those effects would be
even stronger, or also observed for larger signatures, if
additional biological knowledge were available to favor
more genes (see section 4.4). Partial supervision with
randomly chosen genes increases the stability with re-
spect to l2-AROM, because they are favored through
PS-l2-AROM, but not at all the classification perfor-
mance. This illustrates that, if the partial supervision
is based on (likely) irrelevant dimensions, the PS-l2-
AROM may depart from those but without improv-
ing prediction. RFE offers intermediate classification
performance but a lower stability for small signatures,
while S/N filtering offers good classification results but
a drop in stability when fewer than 64 genes are se-
lected.
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Figure 2. Signature stability (Kuncheva index) and clas-
sification performance (BCR) of PS-l2-AROM (with
βj∈[CD11c,CD33,MB−1] = 10), l2-AROM, RANDOM, RFE
and Golub’s S/N filtering on the Leukemia data set. Av-
erage results over 200 runs (90 % training - 10% test).

Three genes, CD11c, CD33 and MB-1, are mentioned
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in (Golub et al., 1999) as clinical markers to distin-
guish between AML and ALL leukemia subtypes. We
repeat the same experiments on the Leukemia data
set with (k = 200) random splits in 90% training and
10% test. Figure 2 reports stability and classification
performances. The conclusions are even stronger than
those obtained on DLBCL, with substantial improve-
ments both in stability and BCR for small signatures.
Partial supervision with 3 randomly selected genes of-
fers no benefit, neither in stability nor in BCR, as com-
pared to no supervision. RFE performances are com-
paratively worse on this dataset both in stability and
BCR, while S/N filtering offers BCR results equivalent
to PS-L2-AROM with a drop in stability for small sig-
natures.
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Figure 3. Signature stability (Kuncheva index) on DLBCL
and Leukemia. Partial supervision for PS-l2-AROM with
50 genes selected on an independent partition (20%) with
Golub’s S/N ratio.

4.4. Partial supervision from data partitioning

It is interesting to compare the various selection meth-
ods on additional data sets while checking the influence
of a partial supervision on a larger number of genes.
However we do not always have access to such a biolog-
ical knowledge on public databases. Our experimental
protocol is consequently adapted as follows. Each data

set is first randomly split into two stratified folds rep-
resenting respectively 20% and 80% of the whole data.
Prior knowledge is simulated by computing on the 20%
partition a signature Sprior made of the 50 most dif-
ferentially expressed genes according to Golub’s S/N
ratio. The 80% partition is subsequently randomly
partitioned into 90% training and 10% test sets. The
50 dimensions in Sprior are favored with PS-l2-AROM
to select features on the 90% training set on which a
linear SVM is built. BCR performances are estimated
on the 10 % test set. We report average results over a
total of 200 runs: 10 random external splits (20%-80%)
and (k = 20) internal splits (90%-10%).
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Figure 4. Classification performances (BCR) on DLBCL
and Leukemia. Partial supervision for PS-l2-AROM with
50 genes selected on an independent partition (20%) with
Golub’s S/N ratio.

Figures 3 and 4 report stability and classifica-
tion performances on DLBCL and Leukemia with
βj∈Sprior

= 10, βj /∈Sprior
= 1 for PS-l2-AROM. The

partial supervision greatly increases both the stabil-
ity of the selected gene lists and BCR with respect to
l2-AROM. Results with RFE are globally worse espe-
cially in terms of stability. BCR results are equiva-
lent between Golub’s filtering and PS-l2-AROM while
the latter generally offers a better stability for small
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signatures. Figures 5 and 6 show that significant sta-
bility improvements are observed with PS-l2-AROM
on the Prostate and Colon datasets. If we com-
bine stability and BCR performances in a single metric
(for instance, by computing the geometric average be-
tween both measures), PS-l2-AROM offers improved
results over l2-AROM in all our experiments. The
closest competitor to PS-l2-AROM is Golub’s S/N fil-
tering combined with a linear SVM classifier but this
is likely related with the fact that the prior knowledge
was precisely simulated with Golub’s S/N ratio.
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Figure 5. Signature stability (Kuncheva index) on
Prostate and Colon. Partial supervision for PS-l2-
AROM with 50 genes selected on an independent partition
(20%) with Golub’s S/N ratio.

5. Conclusion and perspectives

We propose a new feature selection method based on
regularized linear models. This approach makes use
of a partial supervision on the features a priori as-
sumed to be more relevant. This method naturally
extends the AROM methods due to (Weston et al.,
2003). Several experiments on microarray data sets
show that the partial supervision largely improves the
stability of the selected gene lists, with respect to vari-
ation in data sampling. Classification performances

are also improved in most cases. Since the selection
algorithm is multivariate, partial supervision of a few
dimensions may influence the other selected features.
The dimensions a priori favored may also be discarded
if necessary to optimize the classification objective.
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Figure 6. Classification performances (BCR) on Prostate
and Colon. Partial supervisionfor PS-l2-AROM with 50
genes selected on an independent partition (20%) with
Golub’s S/N ratio.

The iterative learning algorithm uses a l1-norm regu-
larization. This objective function can be subsequently
approximated with a l2-norm. Even though such an
approximation may result in a less sparse solution, it
is very efficient in practice for high dimensional data
with few samples. This algorithm then reduces to lin-
ear SVM learning with iterative rescaling of the in-
puts. The scaling factors directly depend on the prior
relevance defined on each dimension. Approximating
l1-AROM by l2-AROM had no significant influence
on the practical results described in (Weston et al.,
2003). It would be worthwhile to confirm this obser-
vation when partial supervision is added to the feature
selection. We also plan to study to which extent par-
tial supervision could be applied to other regularized
models, such as the generalized LASSO (Roth, 2004)
or Huberized SVMs (Wang et al., 2007).
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Our selection approach was originally motivated by
microarray data experiments. It is however a general
feature selection technique that can be used in prin-
ciple in any application domain with some prior pref-
erence on the relevant features. The weights to favor
some dimensions could also depend on the degree of
certainty of the prior knowledge. The proposed ap-
proach could also be used to perform transfer learning
across tasks, while acquiring prior knowledge on one
dataset and using it as partial supervision on others.
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