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Abstract

We consider a supervised machine learning sce-
nario where labels are provided by a hetero-
geneous set of teachers, some of which are
mediocre, incompetent, or perhaps even mali-
cious. We present an algorithm, built on the SVM
framework, that explicitly attempts to cope with
low-quality and malicious teachers by decreas-
ing their influence on the learning process. Our
algorithm does not receive any prior information
on the teachers, nor does it resort to repeated la-
beling (where each example is labeled by mul-
tiple teachers). We provide a theoretical analy-
sis of our algorithm and demonstrate its merits
empirically. Finally, we present a second algo-
rithm with promising empirical results but with-

future search engine results. A search-engine log records
which links were clicked-on by each user. We think of
each user as a distinct teacher, and of each click as a la-
bel. The click-patterns of most users are informative and
helpful, while the click-patterns of other users merely in-
troduce noise. Search-engine optimizers (SEOs) are in-
dividuals who try to reverse-engineer the algorithms used
to construct a search engine and to manipulate these algo-
rithms in their favor. If a SEO knows that our search en-
gine promotes pages that received many historic clicks, he
may masquerade as numerous users and simulate fictitious
clicks on the links that he wants to promote. ldentifying
this form of click-spamand attenuating its effect is an es-
sential step in the learning process.

Another example of a multi-teacher scenario involves the
use ofcrowdsourcingwebsites. Websites such &alaxy

out a formal analysis. Zoo (galaxy classification) an8tardust@homéinterstel-

lar dust particle detection) let members of the public vol-
unteer their services by labeling astronomical images over
the Internet. Amazon.comiglechanical Turkis an online

A supervised machine learning algorithm receives a train?gsizr:ko;n\évrgggra;y;n?;\gg;’%rci?gCp’;gl'f'gtiir?rqrvvdfcc;ﬁrc'
ing set of labeled examples and returns a hypothesis th‘rjlatgc]iataset labelin taF;kyis broken u intopmulti .Ie Zﬁbtas)lgs
attempts to accurately predict the labels of new unseen in- gt P Ik P '
o . . . and each subtask is completed by a different worker. Oc-

stances. When designing learning algorithms, we typically . -
; . .~casionally, workers are tempted to cheat by building au-

overlook the data collection process and make the simplis:-

tic assumption that the training set is sampled i.i.d. fromtom"’lted systems, kno_wn asts that appear to solve the
some fixed distribution. However, real datasets are ofter%aSkS but actually provide worthless labels. Althougheéhes

non-homogeneous. In particular, training examples may bgots do not directly try to harm our learning algorithm, they
. . ! : o try to trick us into believing that their labels are gerauin
labeled by various different teachers. Labels provided byl_

different teachers can be of different quality, due to i his intentional deceitful input can be as detrimental to ou
’ 0 learning algorithm as deliberate malice. Weeding out the

degrees of expertise, competence, and dedication amon ts from amona the human teachers is an important and
teachers. Moreover, some teachers may deliberately try tg%‘ficult feat 9 P

manipulate or confuse our learning algorithms by provid-
ing incorrect labels.

1. Introduction

To our knowledge, the existing literature on multi-teacher

For example, imagine an algorithm that analyzes the IogIsearnlng discusses two main approaches: using prior infor-

- . - ; . “mation and repeated labeling. For example, the work in
generated by a search engine, with the intent of ImlorOVInQ{Blitzer etal. 2%07' Crammerget al., 2008) gssumes that la-

Appearing inProceedings of the6'" International Conference beled examples are obtained from multiple heterogeneous
on Machine LearningMontreal, Canada, 2009. Copyright 2009 sources, and that we have explicit prior knowledge on the
by the author(s)/owner(s). relationships between these sources. This approach is in-
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adequate for the type of problems we are concerned with2. Setting and Notation

since no such prior knowledge is available to us. Addition-__ . . . .

ally, an adversarial teacher will behave in a way that con'St: We review the typical setting of an SVM learning
tradicts any prior information we may rely on. Repeatedprqblem' Assume t.hat each e>'<ample s an instance-label
labeling (see (Smyth et al., 1094; Sheng et al., 2008) anfair (%, %), wherex is a vector inX’ C R” andy takes
references therein) is the practice of having each exampl\é?llueS m{__L +1}. ) Additionally, define a featu_re map-
labeled by multiple teachers, and then aggregating thes®iNd ¢, which maps instances froa to a reproducing ker-
labels in a way that cleans noise and identifies bad teacHleI Hilbert spacet (Shawe-Taylor & Cristianini, 2000).

ers. Repeated labeling is a powerful and successful tectfUr classifier is composed of a vecter & 7 and a bias

nigue when it can be applied. However, we often have€m?b € R. Themargin of an instancex is defined as

no control over the assignment of examples to teachers ( @(X)’ w) +b anpl the pr_edlct_ed label fot is S|mply the

in the search engine example). Additionally, even wher'd" ©f the margin. To simplify our presentation, assume
we do have control over the assignments, repeated labeli atg is the identity mapping and tha{ = &, which al-

is wasteful and ultimately decreases the size of our train- WS US to drOPQ? altogether. Additionally, we focus.on
ing set. Yet another related approach is to design machianb'ased classifiers, whea'se: 0. All of our results easily
learning algorithms that withstand specific types of Iabel-extend to the general setting.

noise, either on the training set (Kearns, 1998) or on therhe standard statistical learning paradigm assumes that a
test set (Teo et al., 2007; Dekel & Shamir, 2008). Theseraining setS is sampled i.i.d. from an unknown dis-
approaches do not make use of teacher identities, and deibution D over the space of examples, x {—1,+1}.

not assume any heterogeneity in the data. We also note thene goal is to useS to find a classifierw such that
related work in (Dekel et al., 2008), which addresses thepr, ,, p (sign((x,w) # y)) is small. While our goal
multi-teacher learning problem from a mechanism desigrin this paper remains the same, we modify the training set
perspective, and incentivises teachers to be good. generation process as follows: First, a setofinlabeled

In this paper, we address the problem of learning from"Stancesixi}i’,, is drawn i.id. from the marginal dis-

heterogeneous, possibly malicious, teactvéthout prior ‘”b%ﬂ,‘o_“ of D on X. This setis then.randqmly split intp
knowledgeon the teachers andlithout repeated labeling k disjoint subsets, and each subse't is assigned to a Q|ﬁer-
For concreteness, we focus on the classic learning probqnt teacher. _E_ach teacher labels his examples, resulting in
lem of binary classification. We present a new algorithm,a labeled training sef = {(&.’y’?) =1 At.thls stage, we
based on the well-known support vector machine (SVM)Ieave the exact random splitting mechanism unspecified.
framework, that explicitly attempts to identify low-quali  For the sake of our theoretical analysis, we assume that
and malicious teachers and to decrease their influence asach teacher is eithgood or evil. This is a harsh sim-
the learning process. We exploit the fact that SVMs, likeplification of the real-world, but it is one that enables us
many other machine learning algorithms, explicitly revealto derive a rigorous theory, which inspires the design of
how important each training example is to the learning proour algorithms. An evil teacher may label his instances
cess. SVMs indicate which training examples are supporin any arbitrary, possibly malicious, manner. Evil teach-
vectors and which are not, and non-support vectors can bers are even allowed to collude amongst themselves. The
removed from the training set without changing the learnecbnly assumption we make regarding the evil teachers is that
classifier. In the multi-teacher setting, we can measure théhey do not know the identity of the good teachers’ exam-
influence of each teacher by the cumulative effect of the exples. This happens, for instance, if good teachers never re-
amples he controls. Intuitively, if examples are assigied t veal their instances to evil teachers, or if teachers are sim
teachers randomly and if all teachers are alike, we expegily isolated from each other. On the other hand, a good
any two teachers to have a similar influence on the algoteacher labels each of its instancedy sampling a label
rithm output. Specifically, for support vector machines, wefrom pp (y|x), the marginal distribution over labels condi-
expect each teacher to contribute roughly the same numbebned onx. In other words, examples controlled by good
of support vectors. Our algorithm essentially turns this ob teachers are essentially sampled directly frPmIn fact,
servation into a constraint, namely, we require that all ofthis assumption is not really necessary, but the important
the teachers have a similar contribution to the learned hyeondition that must be met is that when all of the teachers
pothesis. In our analysis, we show that this constraint isare good, a low error-rate classifier (in termsd)fcan be
likely to affect only low-quality and malicious teachers.  learned. To avoid making our problem trivially impossible,
we assume that a majority of the data comes from good
teachers.

Turning to more technical notation, we abbreviate the sets
{1,...,m} and {1,...,k} by [m] and [k] respectively.
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Also, we define the hinge functida]. = max{a,0}. We  optimization problem:

assume that the support of the marginal distributiorDof .

on X is bounded in a ball of radiug around the origin. 1 1 €

Teachers are recognized by an index [k], the set of vt € (K] 154 Z % < m Zai + my/|S:]’ ®)
evil teachers is denoted §° c [k], and the set of good s =

teachers is denoted by C [k]. For any instance, we let  wheree > 0 is a parameter. In the scenario described
t(i) € [k] denote the teacher that labeled instand@nally,  above, this constraint is likely to affect only the evil teag

we let S; denote the set of examples labeled by tea¢her and to reduce his influence am. The form of the slack

and we abbreviat§? = U;c7s.S; andS® = Usere S;. term,e/(m+/|S:|), comes from large deviation considera-
tions: If instances are assigned randomly to teachers and
3. Facing Evil Teachers the sample size increases, we expect the random variable

|S—1f| Zie s, i tO be concentrated about its expected value
We_ begln_ the derivation of our algorithm by r_ecallm_g the ¢ ‘Slgl ,c0 i Ifmost of the examples are controlled by
plain vanilla2-norm soft-margin SVM formulation. Given o0od teachers. th 5 andL S s will be
a training setS = {x;,y; }/, and a regularization param- 9 > eI@gl icgo i m =1 Vi .
: close. These informal statements are made more precisely
eter\ > 0, define . . o
in our theoretical analysis in Sec. 4.

A s, 1 & Adding the constraints in Eg. (3) to the optimization prob-
F(w|S;A) = 2 hwll™+ m Z[l vt wly - (1) lem in Eg. (2), and using standard tools from convex anal-
ysis to convert the problem back into its primal form, we

The SVM classifier is the minimizer df (w|5, \). As dis-  obtain:

cussed in the introduction, the philosophy behind our ap- m L
proach is to prevent any single teacher from disproportion- min A lwl® + 1 Z &+ Z _
ally influencing the learned classifier. We find it conve- weR™£eRT veR: 2 m V/|St]
nient to enforce this constraint in tlokial formulation of ) S~ &

the SVM optimization problem, S.L Vi€ [m] yilxs, w) 21~ (\Sml — 2 ”t) — &

=1

i=1 t=1

m L This problem is convex, and there exist various methods of

max Y i — o > oagyy;(xi, %) () solving it, either in the primal or in the dual formulation.

= | 2A i,j=1 Our proposed learning algorithm calculates the solution to
st.Vie[m] 0<a; < this optimization problem and outputs the resulting classi

fier w.

We also know additional useful facts about the SVM opti-

mization problem. First, the primal and dual variables are4, Theoretical Analysis

related by the equatiow = ), a;y;x;. Second, it holds o _

thata; > 0 (namely, examplé is asupport vectoy, only ~ Our new optimization problem can be written more com-

if y;(x;,w) < 1, and thata; = 1/m if y;(x;, w) < 1. pactly as the minimization over of

These results are thoroughly discussed in (Shawe-Taylor & L

Cristianini, 2000) and elsewhere. G(w]S, \) = min gHW\P n Z €y |

t

1
m

“4)
To motivate our next step, imagine a situation where all very = VIS
but one of the teachers are good. Now assume that de- 1 & g i

spite the presence of the evil teacher, we manage to find Z {1 - (|SW)| — 2im1 ’/t) - y¢<xi,W>L

a good classifiew with respect toD. We expect this =1

classifier to disagree with many of the labels provided by o _ o _ _
the evil teacher. As a result, many of the examples cond h€ basic idea behind our analysis is that instead of a hinge
trolled by the evil teacher will have a margin less than 0SS defined with a fixed required-marginiofas in Eq. (1),
(y(x,w) < 1). Using the facts stated above, we expect thethe .re_quwed—margm in Eq. (4) is teachgr-depgndent. This
average value of the dual variables associated with the evilexibility allows us to trade-off the margin requirement fo

teacher,‘slgl S iese @i, to be unusually high compared to different teachers. When, = 0 for all Z, our formula-
. tion reduces to the standard SVM formulation. However,
the overall average dual variablé, >°. ;. On the other . . .
L e settingy; to a high value for each evil teacher and to zero
hand, we intuitively expect a good teacher to have an aver: . )
. for each good teacher decreases the margin requirement for
age dual variable value close f0>". ;. . = )
Lt evil teachers and compensates by requiring a higher mar-

This motivates us to add the following constraint to the dualgin for good teachers. The end result is that if we can find a
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high-margin classifier for the good teachers’ instances) th theorem has an additional non-trivial condition. We see
Eqg. (4) automatically becomes less sensitive to the loss otshortly when this condition holds.
tained on the evil teachers’ instances, and is thus less influrheorem 2. Let a training setS of sizem be fixed. Let

enced by them. W = arg miny, G(w|S, \) (with optimal auxiliary param-

There are many ways to provide this intuitive observationetersis, . .., ), and letw* = arg miny F(w|SY, rgir A).
with a more solid theoretical grounding. Here, we take anFurthermore, assume that for any € 79, 7y <
optimization-based approach. Suppose we somehow knel:| 3=, 71/m. ThenF(w|S, (g7 A) — F(w*|S9, 557 A)
beforehand the identity a$?, the subset of examples la- Is at most

beled by good teachers. By assumptidfi, is essentially )

sampledi.i.d. fronD. Therefore, with high probability, the @(1 + R|w*|)) m ﬂZteTi VIS
standard SVM solutionw* = arg miny, F(w|S9, \) hasa |99 59| 59| |5¢| ’
low error-rate over the entire distribution (Shawe-Tayor ) ]

Cristianini, 2000). However, we do not kno@ in ad-  Where#V(w”) is the number of instances:, y) € 59
vance and we cannot calculate. We therefore pose the SUCh thaty(x, w*) <1+ (1 + R[w*[|)[5¢|/[S].
question: How large cal’(w|S9,\) — F(w*|SY9, \) be
whenw = arg min G(w|S, A) ? In other words, how sub-
optimal is the classifier trained by our algorithm Sitom-
pared to a classifier trained by a standard SVMsén We

Comparing the two bounds, we see that they both include
the term(1 + R|w*|))|S¢|/[S?|. In Thm. 2, this term is
multiplied by an additional expression

also ask the same question whén= arg min F(w|S, \), Viw* em /151
namely, how sub-optimal is the SVM classifier trained on # |;q| ) @ ZtETSel 15 (5)
all of 52 ' ‘

Although this is not the focus of our paper, it is straight- We now explain why this expression can be much smaller

forward to derive a generalization analysis for our Iearne?}han 1, leading to a tighter bound in Thm. 2 compared to

classifier based on the sub-optimality bound describe hm. 1. E”q.O(S) is the sum of_twoﬂt]e;rrtls: thetsefctondr:erm
above. The idea is to use a uniform convergence argumet’ﬁ generatly (¢/v/m), assuming that the set ol teachers
to relate bothF (W] 59, \) and F(w* |59, \) to their expec- remains fixed, and that the fraction of examples controlled

tations with respect to the underlying distribution. Thus,by each teacher remains roughly constant as the training

the sub-optimality of our learned classifier with respect tofet"g(rjogvs. Thdetflrst;ermt;]s :hettfr'actlohr? %f examplesﬂi on-
SY translates to a similar sub-optimality with respect to the rofied by good teachers that attain a high margin with re-

underlying distribution, and generalization guarantees f spect to our Iearr_wed c_Iassifier._ This definition matches_the
w* can be converted into similar guarantees far We intuitive explanatlon'glven earlier about how large masgin
refer the interested reader to standard references such %ger 90 od teaCh?rS Instances can redgce our se_nS|t|V|ty 10
(Shawe-Taylor & Cristianini, 2000). the evil tgachers instances. In a certain sense, if the orig
inal data is easy to classify (in terms of having large mar-
For technical reasons, we actually prove bounds omins), it is easy to identify teachers who are misbehaving.
F(w|S9, ls—”ff,lA) — F(w*|59, ls—"ff,l)\) rather than on These observations should be taken with a grain of salt,
F(w|S9,\) — F(w*|S9,)). Namely, we compare the since we are comparing theoretical upper-bounds. How-
SVM objective value using a slightly different regulariza- ever, we believe that our analysis supports our algorithmic
tion parameter. Since:/|S?| is assumed to be small, this design choices and that it complements the empirical study

does not materially affect the conclusions. presented later on.

We begin with a simple theorem that bounds the effect evillo complete the analysis, it remains to justify the techni-
teachers may have on a standard SVM. Proofs are given &gl condition in Thm. 2, namely that that for alle 7,

the end of the section. vy < |S¢| >, oe/m, wherery, ..., iy, are the optimal pa-
Theorem 1. Let a training set S of size m be rameter; with respect to our I'earned plassiﬁer‘l’o und.er-
fixed. Letw = argming F(w|S,)\) and let w* = stand this more clearly, consider the important speciad cas
arg miny, F(w|S9, %)\)_ Then F(w|S9, ﬁA) -~ \t/vhfare<\5t| = n]z/kl:\lfor alll t]; The cond(;non nr?w Are_duces
F(w*|S9, 2 \) is at most o, <, /k. Namely, for any good teacher?, is gt_
1591 most the average value of over all the teachers. This is
|5¢| N intuitively plausible, since we expegt to be large for the
59| (1+ Rl[w™) - evil teachers and small for the good teachers. Below, we

prove a stronger assertion, provideis not too small.

Similarly, the next theorem bounds the effect evil teacherroposition 1. Using the notation of Thm. 2, assume
may have on our algorithm. Compared to Thm. 1, the nexthat the evil teachers do not have accessSt, that
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instances are split randomly between the teachers (wittRecall thatG(w|S, \) (defined in Eq. (4)) for anw is in

|S1],...,|Sk| being fixed in advance), and that >  facta minimum over the non-negative variablgs. . ., vy
|S€|\/|St|/m for any good teachet € T9. Then with  Therefore, we can upper bound it for any giwerby fixing
probability of at least v, =0forallt € T9, and

2 S|

s v = oo (14 R||wl])
1-— E exp | —2| t( , Sy
Pyl ( 1/|,5’t| m | |

forall t € T°. Note that for this choice} _, v, = [S¢|(1 +
over the random assignment of instances to teachers, We||wl|)/(]S?]). By definition,

have thaty, = O forall ¢t € T9.

k
A
For example, say thdt,| is the same for all, a quarter gz G(wl|S,\) < 277; |wl* + % Z v 9)
of the teachers are evil, and = 1000,k = 40. Then 591 1591 591 V15t

the bound in Proposition 1 is greater th&83 for a very 1 k
reasonable = 3. The bound in Proposition 1 depends + 1o, ST+ —vilx,w) (10)
somewhat on the exact mechanism used to assign instances (x,y)€SY t=1 +
to teachers. However, we note that a somewhat different -
expression can be obtained if we choose a teacher for each+ ool Z l < t(z Z vy — ] (112)
instance uniformly at random, independently and without 1571 (x,y)ESe S +
fixing [S1], ..., |Sk| in advance. In both cases, the bottom .
line remains the same. Line (10) can be upper bounded by
. . . k
We conclude this section with proofs of the results stated g m mA 2,
above. F(W|S ’@)‘) 2|99 Ilwii*+ |Sg 2:: - (12)
Proof of Thm. 1.By the definition ofF'(w|S, \) in Eq. (1), Leaving this aside for a minute, it is easy to verify that
we have for anyw that with our choice ofvy, ..., v, it holds for allt € T¢ that
- [#v = Yoty v = 1+ R||w|. This implies that line (11)
Si F(wl[S,A) — (W\Sg7 @)\) (6)  can be upper bounded by:
1 1
= 159] Z [1—y{x,w)|+ ooy Z [1— 1+ R[wl) — y(x,w)]
(x,y)ese (x.y)€S®
< Y il < ol Riwl). < Y FRIwI+ R =0 (3
— 159 = 159] m .
(x,y)€S° (x,y)€S

Substituting Eq. (12), Eq. (13) and our choicesf. .., vy

In a similar manner, for any, into the decomposition of:(w|S, A) in Eqg. (9), we get

F(w|s, |Sg|/\) 5o 018, Ed. (8).
1 Now, using the assumptions in the theorem statement, we
=159 > [-yxw) <o. (7)  have that
(x,y)€eSe m
TG COWIS N 2 5o ]
Finally, by the definition ofw, F'(w|S,\) < F(w*|S, \). .
Chaining this with Eq. (6) (fow = w*) and Eq. (7) (for 1 th(z
w = w), the theorem follows. O |59] Z e Z
(x,y)€89 ' t=1 4

Proof of Thm. 2.The proof has a similar structure to the > mA [Wl|? + b Z [1—y(x,w)],
proof of Thm. 1, but is more involved. The first part of the 2| 59| |Sg| (x.g)es
proof consists of showing that for amy,

m
‘Sg| G(w|S, \) — (w\sg,wx) ®8)

e Also, sincew = argminy G(w|S,\), we have that

S %4 VIS &

< |Sg|(1+Rllw||) (#ng) @%'”) G(W|S,\) < G(w*|S,\). Chaining this with Eq. (14),
and Eq. (8) (fow = w*), the theorem follows. O
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Proof of Proposition 1.We begin by recalling that isthe  corpus contains around 240 words, and the entire corpus
global minimum ofG(w|S, \) (Eq. (4)). Also let> be the  contains over half a million distinct tokens (not including
optimal value of the auxiliary vectar in Eq. (4) and letx numbers and dates). Each article in the corpus is associ-
be the corresponding optimizer of the dual problem. Usingated with one or moréigh-level categorieswhich are:

the KKT optimality conditions, a sufficient condition for Corporate/Industrial (CCAT), Economics (ECAT), Gov-
;. = 0 is that the corresponding inequality constraint in ernment/Social (GCAT), and Markets (MCAT). We rep-
the dual problem istrictly satisfied. Thus, it suffices to resented each article in the corpus by a vector of TF-IDF

show thaix satisfies values, and considered the 6 binary classification problems
m of distinguishing between each pair of two high-level cate-
e 3 i< 1 3 a+ € (15)  gories. Specifically, for high-level categories A and B, we
|5:] 5 m m/| S| considered the problem of distinguishing articles of cate-

gory A from articles of category B, while ignoring articles
forall t € T9. But sincei; € [0,1/m], itis not hard to see  associated with both A and B, or with neither A nor B. Each

that of these 6 problems has different characteristics, duegto th
m . non-uniform category sizes, the varying degree of category
L Q> L Z Ay > 1 Z by — |S2|. similarity, and the varying degree of homogeneity within
m 4 m |S9] - m each category.
i=1 i€SY9 €S9

For each binary problem, we toak random splits of the
corpus into equally sized training and test sets. On each
split, we trained a standard well-tuned linear SVM classi-
1 . 1 ) € |S¢| fier (Shalev-Shwartz et al., 2007) on the training set, and
1S4 Z & < 159] Z &+ m Tz (16)  evaluated the resulting classifier on the test set. This test
€St iese error-rate represents the performance of SVM when all of
59 is labeled by good teachers, all of whom draw labelsthe téachers are good, and serves as a baseline for measur-
according tp (y|x), andS? is unknown to the evil teach- N9 the effect of label noise. Next, for each train/testtspli
ers. Therefore, the labeling and learning process is statidVe randomly assigned each training example to oridof
tically equivalent to the following: First spli§ into s¢  different teachers. For eachin the set{5, 10, ..., 40},
and 59, distribute S¢ to the evil teachers and have them We selected: of the 100 teachers, designated them as ma-
generate labels, draw labels f6¢ according topp (y|x) licious teachers, and flipped all of the labels under their
(hence fixing the optimafi, ..., d,,) andonly thenas- ~ control. Itis likely that there exists a more sophisticated
signS¢ to the different teachers ifi’. As a result, we can @nd harmful way of simulating a malicious teacher, but we
think of ", @;/|S;| in Eq. (16) simply as the average demdeql to choose t_he 5|r_nplest and m_ost obvious candidate
of a random subset af’s from {di}icss. The condition for the job. No_manlpulat_lon was applled to any_of the test
in Eq. (16) is then simply the event (over splitting tis) ~ S€ts. Thed0 different train/test splits and the different
that for each good teacher, the average ofilésis not sig- ~ choices off: led to a total 0f320 different noisy variations
nificantly larger than the average of alls. Since then's ~ Of €ach of oufG binary problems.

were split at random, we can apply Hoeffding’s bound plusgor each of the noisy variations described above, we trained

Therefore, for Eq. (15) to hold, it is sufficient to show that
foranyt € 79,

a union bound to get that with probability at least a classifier using standard linear SVM and using our algo-
) rithm (with e = 1), and we evaluated both classifiers on the
€ |S€] test data. We then compared the results using the follow-
1= Z exp | 2|5 (\/m -~ ) ’ ing metric: lete; be the test error-rate attained by the SVM
teTy t

that was trained on noise-free training data,dgete the

conditioned ons, Eq. (16) holds for alt € 7. Since the test error-rate attained by SVM With noisy training d_ata,
bound holds for anys¥, we can remove the conditioning and letes be the test error-rate attained by our algorithm

to get a bound on the unconditional probability of Eq. (16)with noisy training data. Define tlmcess—errospstained
holding for all¢ € T9. O by SVM ases; — e; and the excess-error sustained by our

algorithm ase3 — e;. Finally, define theexcess-error ra-
. tio of the two algorithms to bées — e1)/(e2 — e1). This
5. Experiments number compares the resistance of the two algorithms to

We empirically evaluated our new algorithm with a set tEe evil te;atchgrr]s. Specn‘flcally, if this rgtlo IS less thian
of text categorization experiments usiRguters Corpus €N our algorithm outperforms SVM. The main advantage

Vol. 1(RCV1) (Lewis et al., 2004), a collection 6H0K of reporting our results in this way is that it allows us to
news articles collected by Reuters. A typical article in thef@l"y compare our algorithm to a standard SVM across a
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Figure 1.Damage ratio of the algorithm presented in Sec. 3 vs.Figure 2.Damage ratio of the algorithm presented in Sec. 6 vs.
SVM, as a function of the fraction of evil teachers, examples areSVM, as a function of the fraction of evil teachers, examples are
assigned to teachers randomly. assigned to teachers randomly.

descent step, we check if this step will cause the constraint

: : . 1 1 & €
wide range of noise levels and érbinary problems, each - Z a; < — Z a + ——
with a different inherent baseline difficulty. |Se] i€S, mi4 m\/@

The plots in Fig. 1 show the distribution of damage ratios ago be violated. If so, we reduce the update step-size, and
a function ofk, the number of evil teachers. The effective- set it to the largest non-negative value that still satisfiess
ness of our algorithm varies on different binary problemsconstraint, which may even be zero. As a result, no teacher
and on different noise-levels, but it consistently perferm can have a disproportionate influence on our classifier: if
no worse than SVM. As noise levels increase, the advanthe examples of teachehave already received more than
tage of our algorithm over the naive SVM becomes moretheir fair share of updates in the past, the algorithm will
profound. On three of thé binary problems, wheh takes  compensate by performing smaller updates on the exam-
its highest values, the excess-error of our algorithm is gles of teachet in the future.

mere20% of the excess-error of SVM. We repeated the experiment outlined in Sec. 5 using the

) heuristic algorithm and obtained the plots presented in
6. A Second Algorithm Fig. 2. While the performance of our first algorithm im-
T . ._proved with higher levels of label-noise, our second algo-
Drawing intuition from the preceding approach, we derive’.
rithm seems to perform well on low to moderate levels of

a second algorithm, which also attempts to limit the influ- . -
. L Lo noise. Wherk, the number of malicious teachers, equals
ence of any single teacher. Despite its close similarity to

our first algorithm, we currently have no theoretical anal—lo’ the excess-error of our second algorithra% —70%

) . . ) of the excess-error attained by the standard SVM. However,
ysis for this second algorithm. We present it here because : :
its empirical behavior is surprisingly different from thatt as the number of evil teachers increases, the advantage of
our first algorithm our algorithm deteriorates.

In our experiments so far, each teacher controlled roughly
the same number of examples. Moreover, the set of exam-
ples controlled by a teacher was chosen randomly. Either of

problem, rather than to its dual. Our starting point is a : ) ;
! . . ._these assumptions may not always hold in practice. There-
stochastic gradient-descent approach for primal SVM4rain )
fore, we also conducted another set of experiments, where

ing (Shalev-Shwartz et al,, 2007). This algorithm repeaty . © o\ o that each teacher has a distinct topic of exper-

edly draws a random example and performs a gradient- . . .
. ; . se, and is required to contribute labeled examples from
descent step with a decreasing step size. At each step of tt“s

o 2 ) . is own topic. In this setting, the examples controlled by
process, the current classifier is defined as the linear con)- I .
L o . . wo teachers are statistically different, and the number of
binationw = )" o;y;x;. We modified this algorithm as

follows: at each step and for each teacher, we keep track Oe%xamples contributed by each teacher may vary greatly.

the average coefficient across all of the examples condrolleIn addition to the high-level categories mentioned in Sec. 5
by that teacher. Namely, for teachemwe keep track of above, each article in RCV1 is also associated with one
|s*1t| > ics, «i- Before performing the stochastic gradient- or morelow-level categorieswith 99 different low-level

The idea behind this algorithm is to apply a constraint
similar to the one in Eq. (3) directly to the primal SVM
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