
Fast Evolutionary Maximum Margin Clustering

Fabian Gieseke fabian.gieseke@cs.tu-dortmund.de

Faculty of Computer Science, TU Dortmund, Germany

Tapio Pahikkala tapio.pahikkala@utu.fi

Turku Centre for Computer Science, Department of Information Technology, University of Turku, Finland

Oliver Kramer oliver.kramer@cs.tu-dortmund.de

Faculty of Computer Science, TU Dortmund, Germany

Abstract

The maximum margin clustering approach is
a recently proposed extension of the concept
of support vector machines to the clustering
problem. Briefly stated, it aims at finding
an optimal partition of the data into two
classes such that the margin induced by a
subsequent application of a support vector
machine is maximal. We propose a method
based on stochastic search to address this
hard optimization problem. While a direct
implementation would be infeasible for large
data sets, we present an efficient computa-
tional shortcut for assessing the “quality” of
intermediate solutions. Experimental results
show that our approach outperforms existing
methods in terms of clustering accuracy.

1. Introduction

The task of clustering a given set of objects into groups
of “similar” items is one of the most investigated prob-
lems in both data mining and machine learning and
can be applied to many real-world situations such as
computer vision, information retrieval, marketing, and
many others (Jain & Dubes, 1988).

Recently, a new clustering technique called maximum
margin clustering (MMC) has been proposed by Xu
et al. (2005). This technique can be seen as an ex-
tension of support vector machines (SVM) (Vapnik,
1998) to unsupervised learning scenarios: Having no
class labels at hand, the aim is to find a partition of
the objects into two classes such that the margin com-
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puted by a subsequent application of a support vector
machine is maximal. Experimental results show that
this technique often outperforms common clustering
methods with respect to the accuracy. However, ap-
plying the approach requires solving a non-convex inte-
ger problem, which is, due to its combinatorial nature,
a difficult task.

Aiming at practical solutions, Zhang et al. (2007) pro-
posed a method which is based on iteratively applying
a SVM to improve an initial “guess” obtained by a
k-means (Hartigan & Wong, 1979) preprocessing step.
Our method is inspired by this approach, i.e. starting
with an initial set of (random) candidate solutions, we
iteratively update the quality of these candidates by
means of a stochastic search heuristic. Our key con-
tribution is a computational shortcut for assessing the
quality of a candidate solution. More precisely, we de-
pict how to efficiently update some auxiliary informa-
tion and, based on this information, how to compute
the quality of a candidate in linear time. Compared to
standard methods for evaluating the quality, this con-
stitutes a runtime reduction by a quadratic factor and
will make our approach capable of testing a massive
amount of candidate solutions. Our experimental re-
sults show that our approach yields a better clustering
accuracy than conventional techniques in most cases.

Notations. We use [n] to denote the set {1, . . . , n}.
Further, the set of all n × m matrices with real co-
efficients is denoted by Rn×m. Given a matrix M ∈
Rn×m, we denote the element in the i-th row and j-th
column by [M ]i,j . For two sets R = {i1, . . . , ir} ⊆ [n]
and S = {k1, . . . , ks} ⊆ [m] of indices, we use MRS

to denote the matrix that contains only the rows and
columns of M that are indexed by R and S, respec-
tively. Moreover, we set MR,[m] = MR. At last, we use
yi to denote the i-th coordinate of a vector y ∈ Rn.
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2. Maximum Margin Clustering

2.1. Standard Formulation

Given a training set T = {(x1, y1), . . . , (xn, yn)} with
patterns xi belonging to a set X and class labels yi ∈
Y = {−1,+1}, the aim of the SVM learning process is
to find a hyperplane f(x) = 〈w,Φ(x)〉+ b in a feature
space H0 induced by a feature mapping Φ : X → H0.
Both the feature map and the feature space stem from
a kernel function k : X × X → R with k(xi,xj) =
〈Φ(xi),Φ(xj)〉. This leads to the optimization problem

minimize
w∈H0,ξ∈Rn,b∈R

1
2
||w||2 + C

n∑
i=1

ξi (1)

s.t. yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi, ξi ≥ 0,

where the ξi values are called slack variables and where
C > 0 is a manually chosen constant.

The maximum margin clustering approach aims at
finding a partition of the patterns such that the margin
yielded by a subsequent application of a SVM is max-
imal. Originally, this task was formulated in terms of
the following optimization problem (Xu et al., 2005):

minimize
y∈{−1,+1}n,w,ξ,b

1
2
||w||2 + C

n∑
i=1

ξi (2)

s.t. yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi, ξi ≥ 0,

and − l ≤
n∑
i=1

yi ≤ l,

where C > 0 and l ≥ 0 are manually chosen constants.

2.2. Least-Squares Variant

The concept of support vector machines can also be
considered to be a special case of regularization prob-
lems of the form

inf
f∈H

1
n

n∑
i=1

L
(
yi, f(xi)

)
+ λ||f ||2H, (3)

where λ > 0 is a fixed real number, L : Y ×R→ [0,∞)
is a loss function measuring the “quality” of the pre-
diction function f on the training set, and ||f ||2H is
the squared norm in a reproducing kernel Hilbert space
(RKHS) H ⊆ RX = {f : X → R} induced by a kernel
function. Using the so-called hinge loss Lhinge(y, t) =
max{0, 1−yt} with y ∈ {−1,+1} leads to the support
vector machine approach depicted above (Schölkopf
et al., 2001; Steinwart & Christmann, 2008).1

1In the latter formulation, the offset b is omitted. From
the theoretical as well as from the practical point of view,

Central for our approach is the square-loss LLS(y, t) =
(y − t)2 leading to

inf
f∈H

1
n

n∑
i=1

(
yi − f(xi)

)2 + λ||f ||2H (4)

(Rifkin et al., 2003; Suykens & Vandewalle, 1999). By
the representer theorem (Schölkopf et al., 2001), any
minimizer f∗ ∈ H of (4) has the form

f∗(·) =
n∑
i=1

cik(xi, ·) (5)

with appropriate coefficients c = (c1, . . . , cn)t ∈ Rn.
Hence, by using ||f∗||2H = ctKc, where K ∈ Rn×n is
the (symmetric) kernel matrix with entries [K]i,j =
k(xi,xj), we can rewrite optimization problem (4) as

minimize
c∈Rn

J(y, c)=
1
n

(y−Kc)t(y−Kc) +λctKc. (6)

Our approach is based on the replacement of the hinge
loss by its least-squares variant, i.e. instead of solving
problem (2) we aim at finding a solution for

minimize
y∈{−1,+1}n,c∈Rn

1
n

(y −Kc)t(y −Kc) + λctKc (7)

s.t. − l ≤
n∑
i=1

yi ≤ l.

2.3. Related Work

The first attempts at coping with problem (2) con-
sisted in relaxing the definition to form semidefinite
programming problems (Xu et al., 2005; Valizadegan
& Jin, 2007). However, these approaches resort to
solving SDP problems, which is computationally ex-
pensive. The iterative method was the first approach
capable of dealing with large data sets (Zhang et al.,
2007). One of their key insights consisted in the re-
placement of the hinge loss by several other loss func-
tions including the square-loss. The cutting plane al-
gorithm is one of the most recent techniques (Zhao
et al., 2008a). It is based on constructing a sequence
of successively tighter relaxations of (2) and each of
the intermediate tasks is solved using the so-called
constrained concave-convex procedure. In addition to
these methods, extensions to multiclass scenarios have
been proposed in the literature (Xu & Schuurmans,
2005; Zhao et al., 2008b).

the offset term yields no known advantages for more com-
plex kernel functions like the Gaussian RBF kernel (Rifkin,
2002; Steinwart & Christmann, 2008). Furthermore, when
using a linear kernel, a regularized bias effect can be ob-
tained by adding a dimension of 1’s to the data.
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The MMC technique is related to the concept of Trans-
ductive Support Vector Machines (TSVM) (Vapnik,
1998) and the corresponding optimization problem is
approached by several heuristics including genetic al-
gorithms (Silva et al., 2005; Adankon & Cheriet, 2007).
Another related technique is given by Bach and Har-
chaoui (2008). Their method also uses the square-loss
instead of the hinge loss. Based upon this replacement,
they show how to solve the resulting problem by ap-
proximating a discrete set of equivalence matrices by
a convex set (Bach & Harchaoui, 2008).

3. Fast Evolutionary Approach

In this section, we outline our evolutionary approach
for optimization problem (7). Evolutionary algorithms
are inspired by biological evolution (Beyer & Schwe-
fel, 2002): They start with an initial set of candidate
solutions, called population. For each candidate, also
named individual, the fitness measuring the quality is
computed. After the initialization phase the iteration
over all generations is started. For each generation,
some individuals of the current population are mutated
and the fitness values for the mutated individuals are
computed. At the end of each generation, the popula-
tion is updated by selecting the best performing can-
didates. The key insight of our approach is the way we
obtain the fitness values. More precisely, we show how
to compute the fitness values for a mutated individ-
ual based on some auxiliary information given for the
parental individual. Further, we describe how to effi-
ciently update this auxiliary information such that it is
available for further generations. This computational
shortcut greatly reduces the runtime of our approach.

3.1. Evolutionary Optimization Approach

The framework of our evolutionary approach is given
by Algorithm 1. The starting point is the popula-
tion P0 = {y1, . . . ,yµ} ⊆ {−1,+1}n consisting of µ
randomly generated individuals. Each of these indi-
viduals (along with a corresponding vector c ∈ Rn)
constitutes a possible solution for optimization prob-
lem (7). Throughout our algorithm, we ensure that
only valid individuals are created, i.e. individuals y
fulfilling the balance constraint −l ≤

∑n
i=1 yi ≤ l. In

Step 2, the fitness F (y) is computed for each of the
initial individuals, where

F (y) = minimize
c∈Rn

J(y, c). (8)

Note that, in our case, individuals with a lower fit-
ness represent better solutions. The iteration over all
generations 1, . . . , τ is started in Step 4. For each gen-
eration t, we randomly select ν parental individuals to

Algorithm 1 Evolutionary Optimizer
Require: Training set T = {x1, . . . ,xn} ⊂ X, con-

stants C > 0, l ≥ 0, and µ, ν, τ ∈ N.
Ensure: (ŷ, ĉ) ∈ {−1,+1}n × Rn
1: Initialize P0 = {y1, . . . ,yµ} ⊆ {−1,+1}n
2: Compute the fitness F (yj) for each yj ∈ P0

3: t = 0
4: while t ≤ τ do
5: for i = 1 to ν do
6: Randomly select parent y ∈ Pt
7: Generate valid mutated individual yµ+i

8: Compute fitness F (yµ+i)
9: end for

10: Compute sorted sequence yi1 , . . . ,yiµ+ν

11: Pt+1 = {yi1 , . . . ,yiµ}
12: t = t+ 1
13: end while
14: Compute solution ĉ for minimizec∈Rn J(yi1 , c)
15: return (yi1 , ĉ)

produce mutated individuals. Each of these mutated
individuals is created by flipping s = max{1, n/(t+1)}
coordinates of the parental individual.2 After the
computation of the fitness values for the mutated
individuals, all resulting individuals are sorted up-
wards by their fitness values yielding a sorted sequence
yi1 , . . . ,yiµ+ν . Finally, the population Pt is updated
by selecting the µ individuals with the best fitness val-
ues. When generation τ is reached, the best individual
along with its corresponding vector ĉ is returned.

3.2. Fast Recurrent Fitness Computations

For fixed y, the function J(y, ·) is convex and differen-
tiable. Thus, the computation of the fitness F (yµ+i)
in Step 8 can be performed by solving d

dcJ(y, c) = 0
with respect to c which leads to

c∗ = Gy, (9)

with G = (K + λnI)−1, where I ∈ Rn×n denotes the
identity matrix (Rifkin, 2002). This requires inverting
a n×n matrix which takes O(n3) time. Assuming that
G is stored in memory, a fitness value F (ȳ) for a new
individual ȳ can be obtained in O(n2) time. Unfor-
tunately, the quadratic runtime would still render our
approach infeasible.

Our key contribution is the following computational
shortcut for obtaining the fitness values: Fix a parental
individual y ∈ Pt as selected in Step 6 and observe
that a mutated individual ȳ = yµ+i differs from y in

2If a flip violates the balance constraint, a coordinate
with a reverse label is selected and both labels are swapped.
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only a small number s of coordinates.3 Further, by
substituting (9) into (6), the value F (ȳ) becomes

F (ȳ) =
1
n

(ȳ −KGȳ)t(ȳ −KGȳ) + λȳtGKGȳ. (10)

Now, let K = V ΛV t be the eigendecomposition of the
kernel matrix, where V ∈ Rn×n contains the eigenvec-
tors of K and where the diagonal matrix Λ contains
the corresponding eigenvalues. Using the latter de-
composition of the kernel matrix, we can write G as
G = V Λ̃V t, where Λ̃ = (Λ + λnI)−1. Moreover, using
G = Gt, the fitness value can then be reformulated as

F (ȳ) =
1
n

(ȳ −KGȳ)t(ȳ −KGȳ) + λȳtGKGȳ

= ȳt
(

1
n
I − 2

n
KG+

1
n
GKKG+ λGKG

)
ȳ

= 1 + ȳtV
(

1
n

Λ2Λ̃2 − 2
n

ΛΛ̃ + λΛ̃ΛΛ̃
)

︸ ︷︷ ︸
=:D

V tȳ.

Furthermore, let S = {k1, . . . , ks} ⊆ [n] denote the set
of indices such that ȳ differs from y for all coordinates
k ∈ S and agrees for all coordinates k /∈ S. Then,

ȳtV = ytV + (ȳS − yS)tVS , (11)

can be computed in O(sn) time if ytV ∈ Rn is pre-
computed. As the remaining multiplications can each
be performed in O(n) time, it follows that the overall
runtime for computing F (ȳ) is O(sn), assuming that
ytV and the diagonal matrix D ∈ Rn×n are available.

Theorem 1 Assuming that ytV ∈ Rn and D ∈ Rn×n
are precomputed and stored in memory, one can com-
pute the fitness F (ȳ) of a mutated individual with
1
2

∑n
j=1 |yj − ȳj | = s in O(sn) time.

The latter result permits an efficient implementation
of Algorithm 1, which is based on iteratively updating
the auxiliary information ytV along with the shortcut
for computing the fitness: The diagonal matrix D and
the auxiliary information yt1V, . . . ,y

t
µV for the initial

population P0 can be obtained in O(n3 + µn2) time.
Given this auxiliary information, the fitness value for
each y ∈ P0 can be computed in O(n) time. For each
generation, the auxiliary information can be updated
in O(νsn) time. Moreover, due to Theorem 1, a fitness
computation in Step 8 can be performed inO(sn) time.
Hence, taking into account that Step 14 takes O(n3)
time, the overall runtime of Algorithm 1 is O(n3 +

3The number s decreases rapidly. Also, the stochastic
search works well with s = 1 for all generations; for ease of
notation, we therefore assume s to be a small constant for
the further analysis.

µn2 + τνsn). Furthermore, the algorithm obviously
needs O(n2 +µn) = O(n2) space to store all matrices,
the auxiliary information, and the individuals.

To sum up, for reasonable values for the parameters
τ , µ, and ν, the overall runtime of our algorithm is es-
sentially the same as training a single classifier via (9).

3.3. Kernel Matrix Approximation

The computational shortcut described above already
offers a promising runtime reduction compared to the
direct O(n2) time approach for computing the fitness
values. However, when dealing with large data sets,
the cubic runtime for obtaining the diagonal matrix D
as well as the quadratic space consumption for storing
the kernel matrix form bottlenecks. In this section, we
propose a way to shorten both drawbacks.

One way to deal with the above bottlenecks consists in
approximating the kernel matrix: Fix an individual y
and consider optimization problem (6). Here, the first
term corresponds to the loss evaluated over all training
patterns and the second term is the regularizer penal-
izing “complex” solutions. Now assume that only a
subset of the coefficients c1, . . . , cn in (5) is allowed to
be nonzero. More formally, let R = {i1, . . . , ir} ⊆ [n]
be a subset of indices such that only ci1 , . . . , cir are
nonzero in (5). Then, we search for minimizers f̂(·) =∑r
j=1 cijk(xij , ·) ∈ H solving

F̂ (y) = minimize
ĉ∈Rr

1
n

(
y − (KR)tĉ

)t(
y − (KR)tĉ

)
+λĉtKRRĉ. (12)

Note that, by applying this approximation scheme, the
loss is still evaluated over all training patterns. The
benefit of this approach consists in a runtime and space
reduction, i.e. the solution for (12) can be obtained in
O(nr2) time and O(nr) space (Rifkin, 2002) via

ĉ∗ = (KR(KR)t + λnKRR)−1KRy. (13)

In the remainder of this section, we show that the
above approximation scheme can be integrated into
our approach for obtaining the fitness values: The op-
timal prediction vector f̂∗ = (KR)tĉ∗ ∈ Rn for a mu-
tated individual ȳ can be written as

f̂∗ = (KR)t
1
λ

(KRR)−1
KRu∗ =

1
λ
K̂u∗ = K̂Ĝȳ

using

K̂ = (KR)t(KRR)−1
KR, Ĝ = (K̂ + λnI)

−1
,

u∗ = λ(K̂ + λnI)
−1

ȳ, ĉ∗ =
1
λ

(KRR)−1
KRu∗,
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refer to the thesis of Rifkin (2002) for the derivation
of the last equation.4 Thus, using

(ĉ∗)tKRR(ĉ∗) =
(

u∗

λ

)t
K̂

(
u∗

λ

)
= ȳtĜK̂Ĝȳ, (14)

we can rewrite F̂ (ȳ) for the mutated individual ȳ as

F̂ (ȳ) =
1
n

(ȳ − K̂Ĝȳ)
t
(ȳ − K̂Ĝȳ) + λȳtĜK̂Ĝȳ.

The latter representation shows that applying the ap-
proximation approach corresponds to exchanging the
matrices K and G by K̂ and Ĝ in (10). The remaining
parts of the computational shortcut leading to The-
orem 1 can essentially be carried over directly: Let
(KRR)−1 = BBt be the Cholesky decomposition of
(KRR)−1, where B ∈ Rr×r is a lower triangular ma-
trix. Then, we can write K̂ as K̂ = (KR)tBBtKR.
Further, let (KR)tB = V̂ Σ̂Û t be the reduced singu-
lar value decomposition5 of (KR)tB, where V̂ ∈ Rn×r,
Σ̂ ∈ Rr×r, and Û ∈ Rr×r contain the first r left singu-
lar vectors, the nonzero singular values, and the right
singular vectors, respectively. Then, since Û tÛ = I,
the modified kernel matrix can be expressed as

K̂ = V̂ Λ̂V̂ t,

where Λ̂ = Σ̂Σ̂t contains the eigenvalues. Note that we
can obtain the above decomposition in O(nr2) time,
as performing the Cholesky decomposition and the re-
duced singular value decomposition takes O(r3) and
O(nr2) time, respectively (Golub & Van Loan, 1989).
Using the decomposition of K̂ and matrix calculations
as in the non-approximation case, one can derive a
decomposition of the fitness F̂ (ȳ) having the form

F̂ (ȳ) = 1 + ȳtV̂ D̂V̂ tȳ, (15)

where D̂ ∈ Rr×r is a diagonal matrix. Given the aux-
iliary information ytV̂ ∈ R1×r for the parental indi-
vidual y, the according information for the mutated
individual can be obtained in O(sr) time via

ȳtV̂ = ytV̂ + (ȳS − yS)tV̂S . (16)

Hence, given the diagonal matrix D̂ and the auxiliary
information for the parental individual y, one can ob-
tain the fitness F̂ (ȳ) for ȳ in O(sr) time.

Theorem 2 Assuming that ytV̂ ∈ R1×r and D̂ ∈
Rr×r are precomputed and stored in memory, one can
compute the fitness F̂ (ȳ) for a mutated individual with
1
2

∑n
j=1 |yj − ȳj | = s in O(sr) time.

4The details are depicted on page 111. We also assume
thatR is selected such thatKRR is strictly positive definite.

5Only such singular vectors of (KR)tB are calculated
that correspond to nonzero singular values.

The evolutionary algorithm induced by Theorem 2
spends O(nr2 +µnr+τνsn) time and uses O(nr+µn)
space.6 Thus, both drawbacks, the cubic preprocess-
ing time as well as the quadratic space consumption,
are reduced at the cost of approximate fitness values.

4. Experiments

We denote the evolutionary algorithms induced by
the computational shortcuts depicted in Theorem 1
and Theorem 2 with EvoMMC and FastEvoMMC,
respectively. Both algorithms are implemented with
Python 2.5.2 including the numpy package. The
runtime analyses are performed on a 3 GHZ Intel
CoreTM Duo PC running Ubuntu 8.10.

4.1. Data Sets

Various data sets are used to test the clustering ac-
curacy as well as the runtime performance. Follow-
ing previous works (Zhang et al., 2007; Zhao et al.,
2008a), we apply our approach to data sets from
the UCI repository7 (digits, ionosphere, letter,
satellite) and from the MNIST database8. More
specifically, for the letter and satellite data set
each containing several classes, we use the first two
classes, i.e. A vs. B and 1 vs. 2, respectively.

4.2. Parameters

For both algorithms, a couple of parameters need to
be tuned, where we use a different number of initial
solutions as well as a different number of mutations
for EvoMMC (µ = 10, ν = 10) and FastEvoMMC
(µ = 1, ν = 1), respectively. Further, we stop a run
when no more fitness changes occur for a longer pe-
riod of generations. In addition to these parameters,
the number r determining the size of the index set R
has to be selected for FastEvoMMC, which we fix to
r = 0.1n for all data sets except for the MNIST dig-
its where we use r = 0.01n. The corresponding set R
of indices is selected randomly. While there are more
sophisticated methods, this choice is based upon the
observation of Rifkin et al. (2003) who reported that
random selection yields very good results in practice.

We use the RBF kernel exp(−||x− x′||2/σ2) with ker-

6The term τνsn stems from copy operations which are
necessary for generating mutated individuals if µ > 1 and
ν > 1. For the remaining cases, a single individual can
be updated efficiently resulting in a τνsr term. In these
cases, one can afford τ ≈ nr/s generations until this term
dominates the runtime.

7http://archive.ics.uci.edu/ml/
8http://yann.lecun.com/exdb/mnist/
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nel width σ for all experiments. As reported in related
works, the parameters determining the optimization
problems have a significant influence on the results.
To select them, we set l to 0.03n, 0.1n, 0.3n, or 0.4n
depending on the balance ratio of the specific data set.
The parameters λ and σ are tuned via grid search.9

4.3. Clustering Accuracy

Following Xu et al. (2005), we evaluate the clustering
accuracy for our algorithms as follows: First, all class
labels available in the data sets are removed. After-
wards, the algorithms are applied resulting in a predic-
tion vector y for each data set. Finally, the accuracy
is measured in terms of the clustering error which is
obtained by counting the number of discrepancies be-
tween the real labels and those predicted by y.

Evolutionary algorithms are susceptible to the prob-
lem of local optima. Typically, this problem is faced
by running the algorithms multiple times and by tak-
ing the best result out of these runs afterwards. In
our experiments, we apply each algorithm 10 times to
each data set and take the partition vector with the
smallest clustering error out of the reported vectors.
To test the significance of such a result, we repeat this
procedure 10 times and average the resulting errors.

Except for the MNIST data set, all experiments are
performed on the complete data sets in the way de-
scribed above. As a pairwise comparison of MNIST
digits involves roughly 14, 000 samples, we apply
EvoMMC only to subsets containing 1, 000 digits. As
mentioned in Section 3, applying EvoMMC to (much)
larger data sets becomes infeasible due to the cubic
preprocessing time and the quadratic storage require-
ment. The latter two drawbacks are shortened by
FastEvoMMC and we apply this algorithm to the
complete sets of digits. Further, for the UCI as well as
for the MNIST data set, the averaged clustering error
on all 45 pairs of digits is reported in addition to four
particular comparisons of digits.

Table 1 shows the resulting clustering accuracies. Pre-
vious results, including those of the k-means (KM)
algorithm, are simply transferred from the according
sources. It can clearly be seen that both algorithms
consistently produce good clustering results and that,
except for subsets of the UCI digits, either EvoMMC
or FastEvoMMC yields the most accurate ones.

9Similarly to Zhang et al. (2007), we process (λ, σ) ∈
{ 1

2n
, 1

200n
, 1

1000n
} × {1s, 3s, 5s}, where the value s =“Pd

1

`
max{Xk} −min{Xk}

´2”1/2

is a rough estimate of

the maximum distance between any pair of samples; here,
{Xk} denotes the set of all k-th attribute values.

Figure 1. Runtime comparison between the different fitness
computation methods on artificial data sets whose distri-
bution is shown in the upper left corner.

Table 2. CPU time in seconds for single runs along with the
average number of performed generations (in brackets).

Data EvoMMC FastEvoMMC

UCI Digits 3–8 20.80 (4923) 3.41 (8254)
UCI Digits 1–7 16.61 (3600) 2.92 (6978)
UCI Digits 2–7 18.40 (4374) 3.93 (9636)
UCI Digits 8–9 14.46 (3320) 3.09 (7383)
Ionosphere 14.18 (3288) 4.12 (10248)
Letter 172.09 (26867) 44.16 (66297)
Satellite 394.95 (58107) 70.44 (157971)
MNIST Digits 1–2 - 274.60 (565929)
MNIST Digits 1–7 - 304.00 (605932)

4.4. Runtime Performance

We start by comparing the efficiency of our computa-
tional shortcuts with two standard ways for obtaining
the fitness values, i.e. we use Algorithm 1 and also
resort to these standard techniques. The first alterna-
tive (EvoMMC(n2)) is the quadratic time approach
described at the beginning of Section 3.2. The second
way (EvoMMC(SVM)) consists in applying a sup-
port vector machine to obtain fitness values, where we
use the LIBSVM package (Chang & Lin, 2001) as im-
plementation. To compare the efficiency, we apply all
algorithms to a sequence of two-dimensional artificial
data sets of varying sizes, see Figure 1.

For all induced evolutionary algorithms, various pa-
rameters need to be tuned. In order to evaluate the
performance of the computational shortcuts, we set
µ = 1 and ν = 1 for all four algorithms. Moreover,
we set l = 0.03n, σ = 1s, λ = 1/(1000n), and, for
FastEvoMMC, r = 0.1n. The average runtime of
a single run (measured over 10 runs) in dependence
on the size of the data sets is shown in Figure 1 for
each algorithm. Clearly, both EvoMMC as well as
FastEvoMMC offer a significant runtime improve-
ment over the two standard alternatives.

In addition to these experiments, we evaluate the
performance of our approach on the real-world data
sets. As assignments for the parameters, we use the
best performing values leading to the clustering errors
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Table 1. Clustering errors in % on the various data sets of KM (Hartigan & Wong, 1979), MMC (Xu et al., 2005),
GMMC (Valizadegan & Jin, 2007), IterSVR (Zhang et al., 2007), CPMMC (Zhao et al., 2008a), EvoMMC, and
FastEvoMMC. Bold numbers indicate the method with the lowest clustering error on the particular data set.

Data Size KM MMC GMMC IterSVR CPMMC EvoMMC FastEvoMMC

UCI Digits 3–8 357 5.32± 0 10 5.6 3.36± 0 3.08 2.52± 0 2.58± 0.5
UCI Digits 1–7 361 0.55± 0 31.25 2.2 0.55± 0 0 0.0± 0 0.0± 0
UCI Digits 2–7 356 3.09± 0 1.25 0.5 0.0± 0 0.0 0.0± 0 0.0± 0
UCI Digits 8–9 354 9.32± 0 3.75 16.0 3.67± 0 2.26 3.22± 0.40 3.78± 4.13
Ionosphere 351 32± 17.9 21.25 23.5 32.3± 16.6 27.64 17.94± 6.84 18.75± 3.19
Letter 1, 555 17.94± 0 - - 7.2± 0 5.53 3.67± 0.33 3.27± 1.08
Satellite 2, 236 4.07± 0 - - 3.18± 0 1.52 1.16± 0.45 1.14± 0.65
UCI Digits 1, 797 2.62 - - 1.82 0.62 0.72 0.81
MNIST Digits 70, 000 10.79 - - 7.59 4.29 (3.23) 3.45

shown in Table 1. The average runtimes as well as
the average number of performed generations for single
runs (measured over 10 runs) are depicted in Table 2.
They demonstrate that especially FastEvoMMC can
handle large data sets within a reasonable amount of
time. The latter results also show that both methods
can efficiently perform a huge number of generations
in order to converge to (local) optima.10

Both IterSVR and CPMMC have a superior runtime
performance compared to previous approaches (Zhao
et al., 2008a). Hence, we will focus on indicating the
(theoretical) runtime of our approach with respect to
these techniques. The runtime of IterSVR depends
on the specific implementation for solving the interme-
diate optimizations problems. For instance, Zhang et
al. (2007) resort to LIBSVM. The CPMMC approach
is guaranteed to converge after CR

ε2 iterations, where ε
is a user-supplied constant and where R is a constant
being independent of n. Further, the runtime per iter-
ation is bounded by O(sn), where s is the number of
nonzero features. The results for CPMMC reported
by Zhao et al. are based on linear kernels. Nonlinear
kernels, however, can only be applied by decomposing
the kernel matrix to form an empirical feature map be-
forehand spending O(n3) time in the worst case. This
can be accelerated, for example, by using a similar ap-
proximation as in Section 3.3 spending O(nr2) time,
where r determines the number of features in the map.

In our experiments we observed that even a slight vari-
ation of the parameters of IterSVR and CPMMC
may lead to significant differences in the actual run-
times. The dependence on both different kernel func-

10Each generation is performed efficiently, but a huge
number of generations is ”wasted” for fine tuning (i.e. for
the correct assignment of the last few elements). The prob-
ability for switching wrong cluster assignments becomes
extremely small at the end of the search. Heuristic ex-
tensions like intermediate classification steps or a k-means
preprocessing phase could be used to accelerate the search.

tions and parameter selections render a detailled run-
time comparison beyond the scope of this paper. A
systematic investigation of the runtimes in relation to
the clustering errors will be subject of future work.

4.5. Number of Restarts

To assess how many restarts are needed for satisfying
results, we investigate the number of restarts against
the clustering error, i.e. m runs are performed and
the lowest obtained clustering error is taken as result.
For each m, this procedure is repeated 10 times and
the averaged results are reported. Again, we select the
values leading to the results given in Table 1 as values
for the parameters. The plots given in Figure 2 show
that a small number of restarts is sufficient to yield
good clustering errors. Further, they demonstrate that
both methods perform similarly on the data sets, i.e.
the different assignments for the parameters µ and ν
seem to have little influence on the clustering error.

5. Conclusions and Discussion

Maximum margin clustering methods turn out to be
an effective approach to the clustering problem. Aim-
ing at practical methods, we proposed a stochastic op-
timization approach along with an efficient computa-
tional shortcut making the overall algorithm capable
of dealing with large data sets. Our experimental ana-
lyses reveal that our approach yields better clustering
accuracies than competitive methods in most cases.

We expect our approach to be extendible in various
situations. For instance, our stochastic search along
with the computational shortcuts could also be ap-
plied as a fine-tuning step after a k-means preprocess-
ing phase. As the partitions obtained by such a prepro-
cessing would already constitute reasonable solutions,
we expect a considerable runtime improvement by the
preprocessing. We plan to investigate such extensions.
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(a) EvoMMC (b) FastEvoMMC

Figure 2. Restarts vs. clustering error.
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