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Abstract

Cross-domain collaborative filtering solves
the sparsity problem by transferring rating
knowledge across multiple domains. In this
paper, we propose a rating-matrix generative
model (RMGM) for effective cross-domain
collaborative filtering. We first show that
the relatedness across multiple rating matri-
ces can be established by finding a shared
implicit cluster-level rating matrix, which is
next extended to a cluster-level rating model.
Consequently, a rating matrix of any related
task can be viewed as drawing a set of users
and items from a user-item joint mixture
model as well as drawing the corresponding
ratings from the cluster-level rating model.
The combination of these two models gives
the RMGM, which can be used to fill the
missing ratings for both existing and new
users. A major advantage of RMGM is that
it can share the knowledge by pooling the rat-
ing data from multiple tasks even when the
users and items of these tasks do not overlap.
We evaluate the RMGM empirically on three
real-world collaborative filtering data sets to
show that RMGM can outperform the indi-
vidual models trained separately.

1. Introduction

Collaborative filtering (CF) in recommender systems
aims at predicting an active user’s ratings on a set of
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items based on a collection of like-minded users’ rating
records on the same set of items. Various CF meth-
ods have been proposed in the last decade. For ex-
ample, memory-based methods (Resnick et al., 1994;
Sarwar et al., 2001) find K-nearest neighbors based on
some similarity measure. Model-based methods (Hof-
mann & Puzicha, 1999; Pennock et al., 2000; Si & Jin,
2003) learn prference/rating models for similar users
(and items). Matrix factorization methods (Srebro &
Jaakkola, 2003) find a low-rank approximation for the
rating matrix. Most of these methods are based on the
available ratings in the given rating matrix. Thus, the
performance of these methods largely depends on the
density of the given rating matrix.

However, in real-world recommender systems, users
can rate a very limited number of items. Thus, the
rating matrix is often extremely sparse. As a result,
the available rating data that can be used for K-NN
search, probabilistic modeling, or matrix factorization
are radically insufficient. The sparsity problem has
become a major bottleneck for most CF methods.

To alleviate the sparsity problem in collaborative fil-
tering, one promising approach is to pool together the
rating data from multiple rating matrices in related do-
mains for knowledge transfer and sharing. In the real
world, many web sites for recommending similar items,
e.g., movies, books, and music, are closely related. On
one hand, since many of these items are literary and
entertainment works, they should share some common
properties (e.g., genre and style). On the other hand,
since these web services are geared towards the gen-
eral population, users of these services, and the items
interested by them, should share some properties as
well. However, much of the shared knowledge across
multiple related domains may be well hidden, and few
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studies have been done to uncover this knowledge.

In this paper, we solve the problem of learning a
rating-matrix generative model from a set of rating
matrices in multiple related recommender systems (do-
mains) for collaborative filtering. Our aim is to al-
leviate the sparsity problem in individual rating ma-
trices by discovering what is common among them.
We first show that the relatedness across multiple rat-
ing matrices can be established by sharing an im-
plicit cluster-level rating matrix. Then, we extend
the shared cluster-level rating matrix to a more gen-
eral cluster-level rating model, which defines a rating
function in terms of the latent user- and item-cluster
variables. Consequently, a rating matrix of any re-
lated task can be viewed as drawing a set of users and
items from a user-item joint mixture model as well
as drawing the corresponding ratings from the cluster-
level rating model. The combination of these two mod-
els gives the rating-matrix generative model (RMGM).
We also propose an algorithm for training the RMGM
on the pooled rating data from multiple related rat-
ing matrices as well as an algorithm for predicting
the missing ratings for new users in different tasks.
Experimental comparison is carried out on the three
real-world CF data sets. The results show that our
proposed RMGM learned from multiple CF tasks can
outperform the individual models trained separately.

The remainder of the paper is organized as follows. In
Section 2, we first introduce the problem setting for
cross-domain collaborative filtering and the notations
used in this paper. In Section 3, we describe how to es-
tablish the relatedness across multiple rating matrices
via a shared cluster-level rating matrix. The RMGM
is presented in Section 4 as well as the training and
prediction algorithms. Related work is introduced in
Section 5. We experimentally validate the effectiveness
of the RMGM for cross-domain collaborative filtering
in Section 6 and conclude the paper in Section 7.

2. Problem Setting

Suppose that we are given Z rating matrices in related
domains for collaborative filtering. In the z-th rating
matrix, a set of users, Uz = {u(z)

1 , . . . , u
(z)
nz } ⊂ U , make

ratings on a set of items, Vz = {v(z)
1 , . . . , v

(z)
mz} ⊂ V ,

where nz and mz denote the numbers of rows (users)
and columns (items), respectively. The random vari-
ables u and v are assumed to be independent from
each other. To consider the more difficult case, we
assume that neither the user sets nor the item sets
in the given rating matrices have intersections, i.e.,⋂

z Uz = ∅ and
⋂

z Vz = ∅ (in fact, there may exist
intersections, but they are unobservable). The rat-

ing data in the z-th rating matrix is a set of triplets
Dz = {(u(z)

1 , v
(z)
1 , r

(z)
1 ), . . . , (u(z)

sz , v
(z)
sz , r

(z)
sz )}, where sz

is the number of available ratings in the z-th rating
matrix. The ratings in {D1, . . . , DZ} should be in the
same rating scales R (e.g., 1 − 5).

For model-based CF methods, a preference/rating
model, e.g., the aspect model (Hofmann & Puzicha,
1999), can be trained on Dz for the z-th task. In our
cross-domain collaborative filtering setting, we wish to
train a rating-matrix generative model (RMGM) for
all the given related tasks on the pooled rating data,
namely,

⋃
z Dz. Then, the z-th rating matrix can be

viewed as drawing a set of users, Uz, and a set of items,
Vz , from the learned RMGM. The missing values in the
z-th rating matrix can be generated by the RMGM.

3. Cluster-Level Rating Matrix as
Knowledge Sharing

To allow knowledge-sharing across multiple rating ma-
trices, we first investigate how to establish the relat-
edness among the given tasks. A difficulty is that
no explicit correspondence among the user sets or the
item sets in the given rating matrices can be exploited.
However, some collaborative filtering tasks are some-
what related in certain aspects. Take movie-rating
and book-rating web sites for example. On one hand,
movies and books have correspondence in genre. On
the other hand, although the user sets are different
from one another, they are the subsets sampled from
the same population (this assumption only holds for
popular web sites) and should reflect similar social as-
pects (Coyle & Smyth, 2008).

The above observation suggests that, although we can
not find an explicit correspondence among individual
users or items, we can establish a cluster-level rating-
pattern representation as a “bridge” to connect all the
related rating matrices. Figure 1 illustrates how the
implicit relatedness among three artificially generated
rating matrices is established via a cluster-level rating
matrix. By permuting the rows and columns (which
is equivalent to co-clustering) in each rating matrix,
we can obtain three block rating matrices. Each block
comprises a set of ratings provided by a user group on
an item group. We can further reduce the block ma-
trices to be the cluster-level rating matrices, in which
each row corresponds to a user cluster and each col-
umn an item cluster. The entries in the cluster-level
rating matrices are the average ratings of the corre-
sponding user-item co-clusters. The resulting cluster-
level rating matrices reveal that the three rating ma-
trices implicitly share a common 4 × 4 cluster-level
rating-pattern representation.



Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model

A B C D

IV
III
II
I

A B C D

IV
III
II
I

A B C D

IV
III
II
I

A B C

III
II
I

B C D

IV
III
II
I

IV
III
II

A B C D

a e b f c d
2

6
4
5
1
3

b d a c e
5

2
7
4
1
3

6

a c d f e b g
1

4
5
2
3

a b c d e f

a b c d e

a b c d e f g

1

6
5
4
3
2

7

1

6
5
4
3
2

1

5
4
3
2

C
F 

Ta
sk

 II
I

C
F 

T
as

k 
II

C
F 

T
as

k 
I

Pe
rm

ut
e 

ro
w

s &
 c

ol
s

Pe
rm

ut
e 

ro
w

s &
 c

ol
s

Pe
rm

ut
e 

ro
w

s &
 c

ol
s

Cluster-level 
Rating Matrix

Cluster-level 
Rating Matrix

3
2
3

2
3
1

1
3
2

2
1
1

1 1 2 3

3
2
3

2
3
1

1
3
2

2
1
1

1 1 2 3

3
2
3

2
3
1

1
3
2

2
1
1

1 1 2 3

3
2

2
3

1
3

2
1

1 1 2 3

2
3
1

1
3
2

2
1
1

1 2 3

3
2
3

2
3
1

1
3
2

3   ?
3   3

1   1
?   1

2   2
2   ?

?   2
2   2

3   3
3   ?

?   3
3   ?

3   ?
3   3

?   2
2   2

1   1
?   1

?   1
1   1

2   2
?   2

?
1

3   ?
3   3

3   ?
?   3

?   1
1   1

2   2
?   2

?
3

1
1

2   2 1   ? 2

2   ?
2   2

3   ?
?   3

?   3
3   3

2   2
?   2

1   1
1   ?
?   2
2   ?

3
3
1
?

1   ? 1   1 2 3   3

?

3
2
3
3
3

3

2
3
?
?
1

?

?
3
1
2
2

3

1
?
1
?
2

2

3
2
?
3
?

3

2
?
2
1
1

3

?
2
?
?
2

3

1
?
3
1
?

?

2
2
3
2
2

?

1
1
3
1
1

1

3
?
1
1
?

1 2 ? 2 2

2

3
1
2
?

1

2
3
1
?

?

3
?
2
3

3

?
1
?
2

3

?
2
3
1

?

2
1
3
2

1

?
3
?
2

Figure 1. Sharing cluster-level user-item rating patterns among three toy rating matrices in different domains. The missing
values are denoted by ‘?’. After permuting the rows (users) and columns (items) in each rating matrix, it is revealed that
the three rating matrices implicitly share a common 4 × 4 cluster-level rating matrix.

This toy example shows an ideal case in which the
users and items in the same cluster behave exactly
the same. In many real-world cases, since users may
have multiple personalities and items may have multi-
ple attributes, a user or an item can simultaneously
belong to multiple clusters with different member-
ships. Thus, we need to introduce softness to clus-
tering models. Suppose there are K user clusters,
{c(1)

U , . . . , c
(K)
U }, and L item clusters, {c(1)

V , . . . , c
(L)
V },

in the shared cluster-level rating patterns. The mem-
bership of a user-item pair (u, v) to a user-item co-
cluster (c(k)

U , c
(l)
V ) is the joint posterior membership

probability P (c(k)
U , c

(l)
V |u, v). Furthermore, a user-item

co-cluster can also have multiple ratings with different
probabilities P (r|c(k)

U , c
(l)
V ). Then, we can define the

rating function fR(u, v) for a user u on an item v in
terms of the two latent cluster variables c

(k)
U and c

(l)
V

fR(u, v) =
∑

r

rP (r|u, v)

=
∑

r

r
∑

k,l

P (r|c(k)
U , c

(l)
V )P (c(k)

U , c
(l)
V |u, v)

=
∑

r

r
∑

k,l

P (r|c(k)
U , c

(l)
V )P (c(k)

U |u)P (c(l)
V |v), (1)

where (1) is obtained based on the assumption that
random variables u and v are independent.

We can further rewrite (1) in the form of matrices

fR(u, v) = p�
u Bpv, p�

u 1 = 1,p�
v 1 = 1, (2)

where pu ∈ R
K and pv ∈ R

L are the user- and item-
cluster membership vectors ([pu]k = P (c(k)

U |u) and
[pv]l = P (c(l)

V |v)), and B is a K × L relaxed cluster-
level rating matrix in which an entry can have multiple
ratings with different probabilities

Bkl =
∑

r

rP (r|c(k)
U , c

(l)
V ). (3)

Eq. (2) implies that the relaxed cluster-level rating ma-
trix B is a cluster-level rating model. In the next sec-
tion, we focus on learning the user-item joint mixture
model as well as the shared cluster-level rating model
on the pooled rating data from multiple related tasks.

4. Rating-Matrix Generative Model

In order to extend the shared cluster-level rating ma-
trix to a more general cluster-level rating model, we
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Figure 2. Each rating matrix can be viewed as drawing a set of users (horizontal straight lines) and items (vertical straight
lines) from the same user-item joint mixture model (the joint probability of a user-item pair is indicted by gray-scales)
as well as drawing the corresponding ratings (the crossing points of the horizontal and vertical lines) from a shared
cluster-level rating model (the figures denote the ratings which are most likely to be obtained in those co-clusters).

should first define a user-item bivariate probability
histogram over U × V . Let PU (u) and PV(v) denote
the marginal distributions for users and items, respec-
tively. The user-item bivariate probability histogram
is a |U| × |V| matrix, H, which is defined as the user-
item joint distribution

Huv = P (u, v) = PU (u)PV(v). (4)

Thus, the user-item pairs for all the given tasks can be
drawn from H

(
u

(z)
i , v

(z)
i

) ∼ Pr(H), (5)

for z = 1, . . . , Z; i = 1, . . . , sz.

Based on the assumption that there are K clusters in
U and L clusters in V , we can model the user and item
marginal distributions in the form of mixture mod-
els, in which each component corresponds to a latent
user/item cluster

PU (u) =
∑

k

P (c(k)
U )P (u|c(k)

U ), (6)

PV(v) =
∑

l

P (c(l)
V )P (v|c(l)

V ), (7)

where P (c(k)
U ) denotes the prior for the user cluster

c
(k)
U and P (u|c(k)

U ) the conditional probability of a user

u given the user cluster c
(k)
U . The user-item bivariate

probability histogram (4) can be rewritten as

Huv =
∑

k,l

P (c(k)
U )P (c(l)

V )P (u|c(k)
U )P (v|c(l)

V ). (8)

Then, the users and items can be drawn respectively
from the user and the item mixture models which are
in terms of the two latent cluster variables

(
u

(z)
i , v

(z)
i

) ∼
∑

k,l

P (c(k)
U )P (c(l)

V )P (u|c(k)
U )P (v|c(l)

V ).

(9)
Eq. (9) defines the user-item joint mixture model. Fur-
thermore, the ratings also can be drawn from the con-
ditional distributions given the latent cluster variables

r
(z)
i ∼ P (r|c(k)

U , c
(l)
V ). (10)

Eq. (10) defines the cluster-level rating model.

Combining (9) and (10), we can obtain the rating-
matrix generative model (RMGM), which can generate
rating matrices. Figure 2 illustrates the rating-matrix
generating process on the three toy rating matrices.
The 4 × 4 cluster-level rating matrix from Figure 1 is
extended to a cluster-level rating model. Each rating
matrix can thus be viewed as drawing a set of users Uz

and items Vz from the user-item joint mixture model as
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well as drawing the corresponding ratings for (Uz, Vz)
from the cluster-level rating model. Generally speak-
ing, each rating matrix can be viewed as drawing Dz

from the RMGM.

The formulation of RMGM is similar to the flexible
mixture model (FMM) (Si & Jin, 2003). The major
difference is that RMGM can generate rating matri-
ces for different CF tasks (recall that

⋂
z Uz = ∅ and⋂

z Vz = ∅ and the sizes of rating matrices are also
different from one another). RMGM can be viewed
as extending FMM to a multi-task version such that
the user- and item-cluster variables are shared by and
learned from multiple tasks. Furthermore, since the
RMGM is trained on the pooled rating data from mul-
tiple tasks, the training and prediction algorithms for
RMGM are also different from those for FMM.

4.1. Training the RMGM

In this section, we introduce how to train an RMGM
on the pooled rating data

⋃
z Dz. We need to learn five

sets of model parameters in (9) and (10), i.e., P (c(k)
U ),

P (c(l)
V ), P (u|c(k)

U ), P (v|c(l)
V ), and P (r|c(k)

U , c
(l)
V ), for k =

1, . . . , K; l = 1, . . . , L; u ∈ ⋃
z Uz; v ∈ ⋃

z Vz; and
r ∈ R.

We adopt the Expectation Maximization (EM) algo-
rithm (Dempster et al., 1977) for RMGM training. In
the E-step, the joint posterior probability of (c(k)

U , c
(l)
V )

given (u(z)
i , v

(z)
i , r

(z)
i ) can be computed using the five

sets of model parameters

P (c(k)
U , c

(l)
V |u(z)

i , v
(z)
i , r

(z)
i ) = (11)

P (u(z)
i , c

(k)
U )P (v(z)

i , c
(l)
V )P (r(z)

i |c(k)
U , c

(l)
V )

∑
p,q P (u(z)

i , c
(p)
U )P (v(z)

i , c
(q)
V )P (r(z)

i |c(p)
U , c

(q)
V )

and P (u(z)
i , c

(k)
U ) = P (c(k)

U )P (u(z)
i |c(k)

U ), P (v(z)
i , c

(l)
V ) =

P (c(l)
V )P (v(z)

i |c(l)
V ).

In the M-step, the five sets of model parameters for Z
given tasks are updated as follows (let P (k, l|j(z)) as a
shorthand for P (c(k)

U , c
(l)
V |u(z)

j , v
(z)
j , r

(z)
j ) for simplicity)

P (c(k)
U ) =

∑
z

∑
l

∑
j P (k, l|j(z))

∑
z sz

(12)

P (c(l)
V ) =

∑
z

∑
k

∑
j P (k, l|j(z))

∑
z sz

(13)

P (u(z)
i |c(k)

U ) =

∑
l

∑
j:u

(z)
j =u

(z)
i

P (k, l|j(z))

P (c(k)
U )

∑
z sz

(14)

P (v(z)
i |c(l)

V ) =

∑
k

∑
j:v

(z)
j =v

(z)
i

P (k, l|j(z))

P (c(l)
V )

∑
z sz

(15)

P (r|c(k)
U , c

(l)
V ) =

∑
z

∑
j:r

(z)
j =r

P (k, l|j(z))
∑

z

∑
j P (k, l|j(z))

. (16)

In Eqs. (12–16), all the parameters in terms of the two
latent cluster variables are computed using the pooled
rating data

⋃
z Dz. By alternating E-step and M-step,

an RMGM which is fit onto a set of related CF tasks
can be obtained. In particular, the user-item joint
mixture model defined in (9) and the shared cluster-
level rating model defined in (10) can be learned. A
rating triplet (u(z)

i , v
(z)
i , r

(z)
i ) from any task can thus

be viewed as drawing from the RMGM.

4.2. RMGM-Based Prediction

After training the RMGM, according to (1), the miss-
ing values in the K given rating matrices can be gen-
erated by

fR(u(z)
i , v

(z)
i ) =

∑

r

r
∑

k,l

P (r|c(k)
U , c

(l)
V )

P (c(k)
U |u(z)

i )P (c(l)
V |v(z)

i ), (17)

where P (c(k)
U |u(z)

i ) and P (c(l)
V |v(z)

i ) can be computed
using the learned parameters based on the Bayes rule.

To predict the ratings on Vz for a new user u(z) in
the z-th task, we can solve a quadratic optimiza-
tion problem to compute the user-cluster member-
ship, pu(z) ∈ R

K , for u(z) based on the given ratings
ru(z) ∈ {R, 0}mz (the unobserved ratings are set to 0)

minp
u(z)

∥∥[BPVz ]�pu(z) − ru(z)

∥∥2

W
u(z)

(18)

s.t. p�
u(z)1 = 1.

In Eq. (18), PVz is an L × mz item-cluster member-
ship matrix, where [PVz ]li = P (c(l)

V |v(z)
i ); Wu(z) is an

mz×mz diagonal matrix, where [Wu(z) ]ii = 1 if [ru(z) ]i
is given and [Wu(z) ]ii = 0 otherwise. Here ‖x‖W de-
notes a weighted l2-norm,

√
x�Wx. The quadratic

optimization problem (18) is very simple and can be
solved by any quadratic solver. After obtaining the op-
timal user-cluster membership p̂u(z) for u(z), the rat-
ings of u(z) on v

(z)
i can be predicted by

fR(u(z), v
(z)
i ) = p̂�

u(z)Bp
v
(z)
i

, (19)

where p
v
(z)
i

is the i-th column in PVz . Similarly, based
on the learned parameters, we can also predict the
ratings of all the existing users in the z-th task on a
new item. Due to space limitation, we skip the details.

4.3. Implementation Details

Initialization: Since the optimization problem for
RMGM training is non-convex, the initialization for
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the five sets of model parameters is crucial for search-
ing a better local maximum. We first select the
densest rating matrix from the given tasks, and si-
multaneously cluster the rows (users) and columns
(items) in that matrix using orthogonal nonnegative
matrix tri-factorization (Ding et al., 2006) (other co-
clustering methods are also applicable). Based on the
co-clustering results, we can coarsely estimate P (c(k)

U ),
P (c(l)

V ), and P (r|c(k)
U , c

(l)
V ). We use random values for

initializing P (u(z)
i |c(k)

U ) and P (v(z)
i |c(l)

V ). Note that the
five sets of initialized parameters should be respec-
tively normalized:

∑
k P (c(k)

U ) = 1,
∑

l P (c(l)
V ) = 1,∑

r P (r|c(k)
U , c

(l)
V ) = 1,

∑
z

∑
i P (u(z)

i |c(k)
U ) = 1, and∑

z

∑
i P (v(z)

i |c(l)
V ) = 1.

Regularization: In order to avoid unfavorable local
maxima, we also impose regularization on the EM al-
gorithm (Hofmann & Puzicha, 1998). We adopt the
same strategy used in (Si & Jin, 2003) and we skip
this part for space limitation.

Model Selection: We need to set the numbers of user
and item clusters, K and L, to start with. The cluster-
level rating model B should be not only expressive
enough to encode and compress various cluster-level
user-item rating patterns but also compact enough to
avoid over-fitting. In the empirical tests, we observed
that the performance is rather stable when K and L
are in the range of [20, 50]. Thus, we simply set K = 20
and L = 20 in our experiments.

5. Related Works

The proposed cross-domain collaborative filtering be-
longs to multi-task learning. The earliest studies on
multi-task learning should be (Caruana, 1997; Baxter,
2000), which learn multiple tasks by sharing a hid-
den layer in neural network. In our proposed RMGM
method, each given rating matrix in the related do-
mains can be generated by drawing a set of users and
items as well as the corresponding ratings from the
RMGM. In other words, each user/item in the given
rating matrix is a linear combination of the proto-
types for user/item clusters (see Eq. (19)). The shared
cluster-level rating model B is a two-sided feature rep-
resentation for both users and items. This knowledge
sharing fashion is similar to the feature-representation
based multi-task/transfer learning, such as (Jebara,
2004; Argyriou et al., 2007; Raina et al., 2007). They
intend to find a common feature representation (usu-
ally a low-dimensional subspace) that is beneficial for
the related tasks. A major difference from our work is
that these methods learn a one-sided feature represen-
tation (in row space) while our method learns a two-

sided feature representation (in both row and column
spaces). Owing to such two-sided feature representa-
tion, RMGM can share the knowledge across multiple
tabular data sets from different domains.

Since RMGM is a mixture model, our method is also
related to various model-based CF methods. The most
similar one is the flexible mixture model (FMM) (Si
& Jin, 2003) which simultaneously models users and
items into mixture models in terms of two latent clus-
ter variables. However, as pointed out in Section 4,
our RMGM is different from FMM in both training
and prediction algorithms; moreover, the major dif-
ference is that RMGM is able to generate rating ma-
trices in different domains. Several methods also aim
at simultaneously clustering users and items for mod-
eling rating patterns, such as the two-sided cluster-
ing model (Hofmann & Puzicha, 1999) and the co-
clustering-based model (George & Merugu, 2005).

6. Experiments

In this section, we investigate whether the CF perfor-
mance can be improved by applying RMGM to ex-
tracting the shared knowledge from multiple rating
matrices in related domains. We compare our RMGM-
based cross-domain collaborative filtering method to
two baseline single-task methods. One is the well
known memory-based method, Pearson correlation
coefficients (PCC) (Resnick et al., 1994), and we
search 20-nearest neighbors in our experiments. The
other is the flexible mixture model (FMM) (Si & Jin,
2003), which can be viewed as a single-task version
of RMGM. Since (Si & Jin, 2003) claims that FMM
performs better than some well-known state-of-the-art
model-based methods, we only compare our method to
FMM. We aim to validate that sharing useful informa-
tion by learning a common rating model for multiple
related CF tasks can obtain better performance than
learning individual models for these tasks separately.

6.1. Data Sets

The following three real-world CF data sets are used
for performance evaluation. Our method will learn
a shared model (RMGM) on the union of the rating
data from these data sets, and the learned model is
applicable for either task.

MovieLens1: A movie rating data set comprising
100,000 ratings (scales 1 − 5) provided by 943 users
on 1682 movies. We randomly select 500 users with
more than 20 ratings and 1000 movies for experiments
(rating ratio 4.33%).

1http://www.grouplens.org/node/73
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EachMovie2: A movie rating data set comprising 2.8
million ratings (scales 1− 6) provided by 72,916 users
on 1628 movies. We randomly select 500 users with
more than 20 ratings and 1000 movies for experiments
(rating ratio 3.28%). For a rating scale consistency
with other tasks, we replace 6 with 5 in the rating
matrix to make the rating scales from 1 to 5.

Book-Crossing3: A book rating data set comprising
more than 1.1 million ratings (scales 1 − 10) provided
by 278,858 users on 271,379 books. We randomly se-
lect 500 users and 1000 books with more than 16 rat-
ings for experiments (rating ratio 2.78%). We also
normalize the rating scales from 1 to 5.

6.2. Evaluation Protocol

We evaluate the performance of the compared methods
under different configurations. The first 100, 200, and
300 users in the three rating matrices (each data set
forms a 500 × 1000 rating matrix) are used for train-
ing, respectively, and the last 200 users for testing.
For each test user, three different sizes of the observed
ratings (Given5, Given10, Given15) are provided for
training and the remaining ratings are used for evalua-
tion. Note that in our experiments, the given observed
rating indices are randomly selected 10 times, so that
the reported results in Table 1 are the average results
over 10 splits.

The evaluation metric we adopt is mean absolute error
(MAE): (

∑
i∈T |ri − r̃i|)/|T |, where T denotes the set

of test ratings, ri is the ground truth and r̃i is the
predicted rating. A smaller value of MAE means a
better performance.

6.3. Results

The comparison results on the three data sets are re-
ported in Table 1. One can see that our method clearly
outperforms the two baseline methods under all the
testing configurations on all the three data sets. FMM
performs slightly better than PCC, which implies that
the model-based methods can benefit from sharing
knowledge within user and item clusters. RMGM per-
forms even better than FMM, which implies that clus-
tering users and items across multiple related tasks
can aggregate even more useful knowledge than clus-
tering users and items in individual tasks. The overall
experimental results have validated that the proposed
RMGM indeed can gain additional useful knowledge
by pooling the rating data from multiple related CF
tasks to make these tasks benefit from one another.

2http://www.cs.cmu.edu/˜lebanon/IR-lab.htm
3http://www.informatik.uni-freiburg.de/˜cziegler/BX/

Table 1. MAE Comparison on MovieLens (ML), Each-
Movie (EM), and Book-Crossing (BX).

Train Method Given5 Given10 Given15

ML100

PCC 0.930 0.908 0.895

FMM 0.908 0.868 0.846

RMGM 0.868 0.822 0.808

ML200

PCC 0.934 0.899 0.888

FMM 0.890 0.863 0.847

RMGM 0.859 0.821 0.806

ML300

PCC 0.935 0.896 0.888

FMM 0.885 0.868 0.846

RMGM 0.857 0.820 0.804

EM100

PCC 0.996 0.952 0.936

FMM 0.969 0.937 0.924

RMGM 0.942 0.908 0.895

EM200

PCC 0.983 0.943 0.930

FMM 0.955 0.933 0.923

RMGM 0.934 0.905 0.890

EM300

PCC 0.976 0.937 0.933

FMM 0.952 0.930 0.924

RMGM 0.934 0.906 0.890

BX100

PCC 0.617 0.599 0.600

FMM 0.619 0.592 0.583

RMGM 0.612 0.583 0.573

BX200

PCC 0.621 0.612 0.620

FMM 0.617 0.602 0.596

RMGM 0.615 0.591 0.583

BX300

PCC 0.621 0.619 0.630

FMM 0.615 0.604 0.596

RMGM 0.612 0.590 0.581

6.4. Discussion

Although the proposed method can clearly outperform
the other compared methods on all the three data sets,
we can see that there still exists some room for further
performance improvements. A crucial problem lies in
the inherent problem of the data sets, i.e., the users
and items in the rating matrices may not always be
able to be grouped into high quality clusters. We ob-
serve that the average ratings of the three data sets
are far larger than the medians (given the median be-
ing 3, the average ratings are 3.64, 3.95, and 4.22 for
the three data sets, respectively). This may be caused
by the fact that the items with the most ratings are
usually the most popular ones. In other words, users
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are willing to rate their favorite items and to recom-
mend them to others, but have little interest to rate
the items they dislike. Given that no clear user and
item groups can be discovered for these cases, it is hard
to learn a good cluster-level rating model.

7. Conclusion

In this paper, we proposed a novel cross-domain col-
laborative filtering method based on the rating-matrix
generative model (RMGM) for recommender systems.
RMGM can share useful knowledge across multiple
rating matrices in related domains to alleviate the
sparsity problems in individual tasks. The knowledge
is shared in the form of a latent cluster-level rating
model, which is trained on the pooled rating data
from multiple related rating matrices. Each rating ma-
trix can thus be viewed as drawing a set of users and
items from the user-item joint mixture model as well
as drawing the corresponding ratings from the cluster-
level rating model. The experimental results have val-
idated that the proposed RMGM indeed can gain ad-
ditional useful knowledge by pooling the rating data
from multiple related tasks to make these tasks benefit
from one another.

In our future work, we will 1) investigate how to statis-
tically quantify the “relatedness” between rating ma-
trices in different domains, and 2) consider an asym-
metric problem setting where knowledge can be trans-
ferred from a dense auxiliary rating matrix in one do-
main to a sparse target one in another domain.
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