
Robust Feature Extraction via Information Theoretic Learning

Xiao-Tong Yuan xtyuan@nlpr.ia.ac.cn
Bao-Gang Hu hubg@nlpr.ia.ac.cn

NLPR/LIAMA, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China

Abstract

In this paper, we present a robust feature
extraction framework based on information-
theoretic learning. Its formulated objec-
tive aims at simultaneously maximizing the
Renyi’s quadratic information potential of
features and the Renyi’s cross information
potential between features and class labels.
This objective function reaps the advan-
tages in robustness from both redescend-
ing M-estimator and manifold regularization,
and can be efficiently optimized via half-
quadratic optimization in an iterative man-
ner. In addition, the popular algorithms
LPP, SRDA and LapRLS for feature extrac-
tion are all justified to be the special cases
within this framework. Extensive compari-
son experiments on several real-world data
sets, with contaminated features or labels,
well validate the encouraging gain in algo-
rithmic robustness from this proposed frame-
work.

1. Introduction

In this paper, we study the classical feature extraction
problem, with the particular emphases on algorithmic
robustness to data outliers and label noises. The train-
ing sample set is assumed to be represented as a ma-
trix X = [x1, ..., xN ] ∈ Rm×N , where N is the sample
number and m is the original feature dimension. The
class label indicator information of the training data
is denoted by the matrix C = [c1, ..., cN ] ∈ RNc×N ,
where Nc is the number of classes and the elements of
the indicator vector ci are set to be 1 or 0, according
to whether xi is drawn from the jth class. In prac-
tice, the feature dimension (m) is usually very high
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and thus it is necessary and beneficial to transform
the data from the original high-dimensional space to
a low-dimensional one for alleviating the curse of di-
mensionality (Fukunnaga, 1991). The purpose of lin-
ear feature extraction is to search for a projection ma-
trix W ∈ Rm′×m that transforms xi ∈ Rm into a de-
sired low-dimensional representation yi ∈ Rm′

, where
m′ � m and yi = Wxi.

Typically, the projection matrix W is learnt by op-
timizing a criterion describing certain desired or un-
desired statistical or geometric properties of the data
set. Different criterions lead to different kinds of linear
feature exaction algorithms. Among them, Principal
Component Analysis (PCA) (Joliffe, 1986) and Linear
Discriminant Analysis (LDA) (Fukunnaga, 1991) have
been the two most popular ones owing to their sim-
plicity and effectiveness. Another popular technique
called Locality Preserving Projections (LPP) (He &
Niyogi, 2004) has been proposed for linear feature ex-
traction by preserving the local relationships within
the data set. In (Yan et al., 2007), many classical
linear feature extraction techniques are unified into a
common framework known as Graph Embedding. To
avoid the high time and memory usage associated with
eigenvalue decomposition in LDA, the Spectral Regres-
sion Discriminant Analysis (SRDA) (Cai et al., 2008)
was proposed based on ridge regression.

As these linear feature extraction methods are applied
to realistic problems, where the amount of training
data is large, it becomes impractical to manually verify
whether all the data is “good”. Taking image data as
an example, the training data may contain undesirable
artifacts due to image occlusion (e.g. a hand in front of
a face), illumination (e.g. specular reflections), or im-
age noise (e.g. from scanning archival data). We view
these artifacts as statistical outliers (Huber, 1981). At
the same time, for supervised learning, mislabeling of
training data (e.g. confusing handwritten digit “3”
with “8”) may occur and deteriorate the performance
of the learnt model. Therefore, the feature extraction
techniques that can robustly derive low-dimensional
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subspace from noisy data and labels is of particular
interest in practice.

In this work, we present a novel feature extrac-
tion framework, called Renyi’s Entropy Discrimina-
tive Analysis (REDA), towards algorithmic robustness
to both data outliers and label noises via the formu-
lation based on information-theoretic learning (ITL).
The data set X is transformed into an Nc-dimensional
feature space with the aim of maximizing an objective
function related to the Renyi’s entropy of the data fea-
tures and the Renyi’s cross-entropy between features
and labels. The formulated problem can be viewed as a
redescending M-estimator (Huber, 1981) of the SRDA
with manifold regularization (Belkin et al., 2006), thus
the REDA and robust statistics are well bridged. By
utilizing the well known half-quadratic optimization
technique (Rockfellar, 1970), the proposed objective
function can be maximized in an iterative manner
with theoretically provable convergence. In addition,
for each iteration, the sub-problem is reduced into a
LPP, SRDA or Laplacian Regularized Least Squares
(LapRLS) (Belkin et al., 2006) problem, according to
the values of the tunable trade-off parameter. The ap-
pealing characteristics of this proposed framework are
summarized as follows: (1) Robust versions of LPP,
SRDA and LapRLS can be derived within the pro-
posed REDA framework, which helps users select a
proper model according to given conditions; (2) Based
on non-parametric Renyi’s entropy estimation, REDA
is not subject to any data distribution assumption;
and (3) REDA can be efficiently solved via existing
optimization techniques.

1.1. Related Works

The ITL based feature extraction has been extensively
studied. In (Jenssen et al., 2006), a kernel transfor-
mation technique based on the idea of maximum en-
tropy preservation was proposed for unsupervised fea-
ture extraction. The Informative Discriminative Anal-
ysis (Kaski & Peltonen, 2003) algorithm extracts a
set of features by asymptotically maximizing mutual
information that is computed based on a generative
probabilistic model. In (Torkkola, 2003) and (Hild-II
et al., 2006), feature extraction is conducted by di-
rectly maximizing the mutual information between the
label and the features, with the entropy estimated by
non-parametric Renyi’s entropy.

The techniques for robust feature extraction have
also attracted much attention recently. Algorithms
like robust PCA (Torre & Black, 2001), robust
LLE (Chang & Yeung, 2006) and robust Euclidean
embedding (Cayton & Dasgupta, 2006) have been de-

veloped with sound theoretic justifications. As a com-
plementarity to these works, our ITL motivated REDA
framework implies the robust versions of the widely
applied LPP, SRDA and LapRLS.

1.2. Paper Organization

The remainder of this paper is organized as follows.
Section 2 introduces the non-parametric estimation of
Renyi’s quadratic/cross entropy. The problem formu-
lation along with its robustness justification and opti-
mization procedure are given in Section 3. Section 4
shows the experimental results and we conclude this
work in Section 5.

2. Non-Parametric Renyi’s Entropy

The Renyi’s quadratic entropy of a probability density
function p(x) is defined as (Renyi, 1961)

H2(x) = − log
(∫

p2(x)dx

)
. (1)

Suppose that the data set X is independently and iden-
tically drawn from p(x), the following Gaussian kernel
density estimation is then employed to estimate p(x)

p̂(x) ∝ 1
N

N∑
i=1

g(x− xi, σ)

where g(x − x′, σ) = exp(−‖x − x′‖2/σ2). By substi-
tuting p(x) with p̂(x) in (1) and after a series of sim-
plifications, we arrive at the following non-parametric
estimator for Renyi’s quadratic entropy:

Ĥ2(X) = − log V̂ (X) + const.

V̂ (X) =
N∑

i=1

N∑
j=1

g(xi − xj ,
√

2σ).

Principe et al. (2000) named V̂ (X) as the information
potential (IP) of the set X, an analogy borrowed from
physics for potential of group of interacting particles.
Intuitively, the more regular set X is, the higher V̂ (X)
will be.

Following similar arguments, one can derive the equa-
tions for Renyi’s cross-entropy between two sets X and
X ′ as follows:

Ĥ2(X;X ′) = − log V̂ (X;X ′) + const.

V̂ (X;X ′) =
N∑

i=1

N∑
j=1

g(xi − x′j ,
√

2σ).

Intuitively, the cross IP V̂ (X;X ′) reflects the extent
of correlation between set X and X ′.
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Next, based on the above two IPs V̂ (X) and V̂ (X;X ′),
we build the aforementioned robust linear feature ex-
traction framework.

3. The Framework

3.1. Problem Formulation

We consider the projection matrix W ∈ RNc×m that
maps X into an Nc × N matrix Y = WX. The fol-
lowing criterion is used to encode the IP of feature Y
and the cross IP between Y and the class label C,

E(W ) = (1− λ)V̂ (WX) + λV̂ (WX;C) (2)

where λ is a tunable trade-off parameter. The param-
eter W that maximizes E(W ) is desirable in the sense
of minimizing the entropy of training set (reflected by
the first unsupervised term), while separating training
samples with different labels (reflected by the second
supervised term). For a better statistical interpreta-
tion (see Section 3.2) of (2), we ignore the between
class feature-label intersections contained in the term
V̂ (WX;C), thus the problem is finally formulated as:

W ∗ = arg max
W

Ê(W )

= arg max
W

(1− λ)
N∑

i=1

N∑
j=1

g(Wxi −Wxj ,
√

2σ)

+λ
N∑

i=1

lig(Wxi − ci,
√

2σ)− γ‖W‖2 (3)

where li is the size of the class xi belongs to, and
term γ‖W‖2 is the introduced Tikhonov regulariza-
tion (with Frobenius norm) to avoid the possible over-
fitting to training data.

3.2. Robustness Justification

Let λ = 1 and γ = 0 in (3), we get

W ∗ = arg max
W

N∑
i=1

lig(Wxi − ci,
√

2σ)

= arg min
W

N∑
i=1

liρ

(
Wxi − ci√

2σ

)
(4)

where ρ(u) = − exp(−u2). It is obvious that (4)
is a robust M-estimator (Huber, 1981) formulation
of the recently developed SRDA (Cai et al., 2008),
with regressor X, observation C, regression parame-
ter W and loss function ρ(u). Moreover, ρ(u) satis-
fies lim|u|→∞ ρ

′
(u) = 0, thus it also belongs to the

so called redescending M-estimators (Huber, 1981),
which have in theory some special robustness proper-
ties, e.g., highest fixed design breakdown point (Miz-
era & Muller, 1999). Problem (4) is also known as a
correntropy (Liu et al., 2007) optimization problem.

For general cases with 0 < λ < 1, the second term in
the objective function (3) remains a redescending M-
estimator of SRDA. It can be seen from section 3.4.2
that the first term in (3) plays a role similar to man-
ifold regularization used in LapRLS. Therefore, the
proposed linear feature extraction formulation in (3)
reaps the advantages of both robust statistics and
manifold regularization.

3.3. Optimization

We apply the half-quadratic (HQ) optimization tech-
nique (Rockfellar, 1970) to solve problem (3).

3.3.1. Half Quadratic Optimization

Based on the theory of convex conjugated func-
tions (Rockfellar, 1970), we can trivially derive the
following proposition that forms the base to solve prob-
lem (3) in an HQ way.

Proposition 1 There exists a convex function ϕ :
R 7→ R, such that

g(x, σ) = sup
p∈R−

(
p
‖x‖2

σ2
− ϕ(p)

)
and for a fixed x, the supremum is reached at p =
−g(x, σ).

Now we introduce the following augmented objective
function in an enlarged parameter space,

F̂ (W,P,Q)

= (1− λ)
∑
i,j

(
pij

‖Wxi −Wxj‖2

2σ2
− ϕ(pij)

)

+λ
∑

i

li

(
qi
‖Wxi − ci‖2

2σ2
− ϕ(qi)

)
−γ‖W‖2

where the N ×N matrix P = [pij ] and Q is diagonal
with entity Q(i, i) = qi storing the auxiliary variables
introduced in HQ analysis. According to the Propo-
sition 1, we get immediately that for a fixed W , the
following equation holds

Ê(W ) = sup
P,Q

F̂ (W,P,Q).

It follows that

max
W

Ê(W ) = max
W,P,Q

F̂ (W,P,Q), (5)
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from which we can conclude that maximizing Ê(W )
is equivalent to maximizing the augmented function
F̂ (W,P,Q) on the enlarged domain. Obviously, a lo-
cal maximizer (W,P,Q) of F̂ can be calculated in the
following alternate maximization way:

pt
ij = −g(W t−1xi −W t−1xj ,

√
2σ), (6)

qt
i = −g(W t−1xi − ci,

√
2σ), (7)

W t = arg max
W

Tr[WX(2(1− λ)Lt
p + λLQt)XT WT

−2λWXLQtCT − γWWT ], (8)

where t means the t-th iteration, matrix L is diagonal
with entity L(i, i) = li, Laplacian matrix Lt

p = Dt
p−P t

where Dt
p is diagonal weight matrix whose entries are

row sums of P t, and Tr(·) represents the matrix trace
operation. We call this above three-step algorithm
as Renyi’s Entropy Discriminant Analysis (REDA)
hereafter.

3.3.2. Convergence of REDA

Proposition 2 Denote F̂ t = F̂ (W t, P t, Qt), then the
sequence {F̂ t}t=1,2,... generated by REDA algorithm
converges.

Proof We calculate

F̂ t − F̂ t−1 =
[
F̂ (W t, P t, Qt)− F̂ (W t−1, P t, Qt)

]
+

[
F̂ (W t−1, P t, Qt)− F̂ (W t−1, P t−1, Qt−1)

]
.

According to Eq. (8) and the Proposition 1, both terms
at the right side of above equal sign are non-negative.
Therefore, the sequence {F̂ t}t=1,2,... is non-decreasing.
It is easy to verify that both terms in Ê(W ) are
bounded above, and thus by Eq. (5) we get that F̂ t

is also bounded. Consequently we can conclude that
{F̂ t}t=1,2,... converges. �

3.4. Special Cases of REDA

We show that different setting of trade-off parame-
ter λ will lead to special versions of REDA algorithm,
which are highly related to the popular algorithms
LPP, SRDA and LapRLS.

3.4.1. When λ = 0

Let λ = 0 and γ = 0, the calculation of Eq. (8) in
REDA algorithm can be equivalently rewritten as

W t = arg min
WX(−D1

p)XT W T =I

Tr[WX(−Lt
p)X

T WT ]. (9)

In this formulation, we introduce an extra constraint
that WX(−D1

p)XT WT = I, where I is an identity ma-

trix, to remove arbitrary scaling and trivialness of solu-
tion, without breaking the convergence of algorithm.
By initializing P 1 using the graph Laplacian (He &
Niyogi, 2004), the calculation of W 1 is a standard LPP.
When t > 1, (9) is a linear graph embedding problem
with heat kernel similarity matrix −P t and constraint
matrix −D1

p, which can be efficiently solved via gener-
alized eigenvalue decomposition method. We call this
special version of our algorithm as REDA-LPP.

Basically, REDA-LPP is an unsupervised feature ex-
traction algorithm. In practice, we may extend it into
a supervised version by setting pt

ij = 0, if ci 6= cj . In-
terestingly, the supervised REDA-LPP also implies the
robustness against outliers. It is known that at each
iteration t, graph embedding problem (9) aims to pre-
serve on the set W tX the sample pairwise similarity
measured among the previous set W t−1X. Typically,
an outlier W t−1xk is far away from the data cluster of
its class and thus always receives low pt

kj to W t−1xj of
the same class. Therefore, the outliers will have weaker
influence on the estimation of W t as t increases.

3.4.2. When 0 < λ ≤ 1

In this case, the Eq. (8) in REDA is calculated as

W t = λ
(
X(2(1− λ)Lt

p + λLQt)XT − γI
)−1

XLQtCT .
(10)

• When λ = 1, by initializing q1
i = −1, the cal-

culation of W 1 is equivalent to SRDA. When
t > 1, the auxiliary variable −qt

i gives the weight
of (xi, ci) for the estimation of W t via SRDA. We
refer to this version of our algorithm as REDA-
SRDA, which is the solution of M-estimator (4).

• When 0 < λ < 1, it is easy to see that, at each
iteration t, Eq. (10) is the solution of a LapRLS
problem with graph similarity matrix −P t based
on previous representation. Such an iterative
LapRLS feature extraction method reaps both the
the robustness of M-estimator and the advantage
of manifold regularization. We call this version of
our algorithm as REDA-LapRLS.

The connections of our REDA algorithm with those
existing algorithms are summarized in Table 1.

3.5. Learning of Response C

In this work, we conventionally choose each column of
the response C in (3) as class label indicator. Actu-
ally, as pointed out in (Cai et al., 2008) that C can
be more generally learnt via some graph embedding
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Table 1. Connections of REDA with existing algorithms.

Setting Connections
λ = 0, γ = 0, t = 1 Standard LPP
λ = 0, γ = 0, t > 1 Robust extension for LPP

λ = 1, t = 1 Standard SRDA
λ = 1, t > 1 Robust extension for SRDA

λ ∈ (0, 1), t = 1 Standard LapRLS
λ ∈ (0, 1), t > 1 Robust extension for LapRLS

algorithms, e.g., LDA and LPP, with different dimen-
sions m′. Specially, when m′ = Nc, the learnt spectral
response C by LDA is equivalent to the one used here.

3.6. Kernel Extension

Commonly, algorithm for linear feature extraction is
computationally efficient for both projection matrix
learning and final classification. However, its per-
formance may degrade in cases with nonlinearly dis-
tributed data. A technique to extend methods for lin-
ear projections to nonlinear cases is to directly take
advantage of the kernel trick. The intuition of the ker-
nel trick is to map the data from the original input
space to another higher dimensional Hilbert space as
φ : X 7→ Z, and then perform the linear algorithm in
this new feature space. This approach is well-suited
to algorithms that only need to compute the inner
product of data pairs k(xi, xj) = 〈φ(xi), φ(xj)〉. As-
suming that the projection matrix W = AΦ, where
Φ = [φ(x1), ..., φ(xN )]T and K is the kernel Gram ma-
trix with entity K(i, j) = k(xi, xj), we have the follow-
ing kernelization of problem (3),

A∗ = arg max
A

(1− λ)
∑
i,j

g(AKi −AKj ,
√

2σ)

+λ
∑

i

lig(AKi − ci,
√

2σ)− γ‖A‖2,

where Ki indicates the ith column vector of the ker-
nel Gram matrix K. Accordingly, we can derive the
so called KREDA-LPP, KREDA-SRDA and KREDA-
LapRLS algorithms for robust kernel-based feature ex-
traction.

4. Experiments

To evaluate the robustness of different special versions
of our proposed REDA algorithm, we systematically
compare them with their traditional counterparts on
several real-world data sets, with contaminated fea-
tures or labels.

4.1. Data Sets

We use the Extended Yale Face Database B1, the
MNIST handwritten digit database2 and the TDT2
document database3 for performance evaluation. Here
are some basic information about these three data sets.

Extended Yale Face Database B (YaleB) The
YaleB database contains 16128 images of 38 human
subjects under 9 poses and 64 illumination conditions.
We use 64 near frontal face images for each individual
in our experiment. The size of each cropped gray scale
image is 32 × 32 pixels. For each individual, N =
(20, 30, 40) images are randomly selected for training
(with m = 1024 and Nc = 38), and the rest are used
for testing.

MNIST Handwritten Digits Database The
MNIST database of handwritten digits has a train-
ing set A of 60,000 examples, and a test set B of
10,000 examples. The digits have been size-normalized
and centered in a fixed-size (28 × 28) bilevel image.
In our experiment, we use the digits {3, 8, 9} which
represent difficult visual discrimination problem. We
take the {3, 8, 9} digits in the first 10000 samples from
set A as our training set and those in the first 10000
from set B as our test set. A random subset with
N = (100, 200, 300) samples per digit from the training
set is selected for training (with m = 784 and Nc = 3).

TDT2 Document Database The TDT2 corpus con-
sists of 11,201 on-topic documents which are classified
into 96 semantic categories. We use the top 9 cat-
egories for our experimental evaluation. Each docu-
ment is represented as a normalized term-frequency
vector, with top 2000 words selected according to mu-
tual information. For each category, N = (30, 60, 100)
documents are randomly selected for training (with
m = 2000 and Nc = 9), and the rest are used for
testing.

4.2. Experiment Design

We compare the following algorithms on the YaleB and
MNIST data sets:

1. LPP and our REDA-LPP.

2. SRDA and our REDA-SRDA.

3. LapRLS and our REDA-LapRLS.
1http://vision.ucsd.edu/~leekc/ExtYaleDatabase/

ExtYaleB.html
2http://yann.lecun.com/exdb/mnist/
3http://www.nist.gov/speech/tests/tdt/tdt98/

index.htm
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Table 2. Performance comparison on YaleB set. σ = 0.47, γ = N .
Classification Errors (mean ± std-dev %)

Methods N ×Nc = 20× 38 N ×Nc = 30× 38 N ×Nc = 40× 38
η = 0% η = 25% η = 50% η = 0% η = 25% η = 50% η = 0% η = 25% η = 50%

REDA-LPP 5.7 8.9±0.7 13.1±1.2 3.0 4.8±0.4 6.9±0.8 2.4 3.6±0.4 5.6±0.5
LPP 6.1 15.4±1.0 21.9±2.1 2.7 10.0±0.6 14.2±0.8 1.8 6.5±0.6 10.7±1.0

REDA-SRDA 4.7 9.1±0.7 13.3±0.9 1.8 5.6±0.6 6.8±1.1 1.8 2.7±0.2 6.2±1.1
SRDA 4.7 13.1±1.4 19.1±1.6 1.7 8.5±0.6 11.8±0.7 1.7 5.8±0.3 9.5±0.7

REDA-LapRLS 5.0 9.2±0.7 13.3±1.0 1.9 5.0±0.1 6.8±1.1 1.1 2.9±0.2 5.5±0.8
LapRLS 4.8 12.8±1.2 19.0±1.7 1.8 8.5±0.6 11.7±0.7 1.1 5.7±0.2 9.3±0.7
RLDA 4.4 12.6±0.1 18.2±2.0 1.7 8.0±0.5 11.6±0.4 1.2 5.3±0.3 9.2±0.5

Robust PCA 31.5 35.3±0.8 39.7±1.2 24.4 27.9±0.8 30.4±0.8 20.3 22.3±1.1 26.0±1.0

4. Regularized LDA (RLDA) (Friedman, 1989) as
non-robust baseline.

5. Robust PCA (Torre & Black, 2001) as robust base-
line.

On the TDT2 corpus, we compare the kernel exten-
sions of the above algorithms. The second order poly-
nomial kernel is used to construct Gram matrix K.

As aforementioned, we aim to test the performance of
the compared algorithms when training sets are con-
taminated by outliers or mislabeling, which are gener-
ated in the following artificial ways:

• For the YaleB data set, from each individual, we
randomly select η = (25%, 50%) training sample
images and partially occlude in them some key
facial features. See Figure 1 for some selected
sample images with outliers.

• For MNIST and TDT2 data sets, from each train-
ing class, we randomly select η = (25%, 50%) sam-
ples and then label each of them as one of the
other classes with equal probabilities.

Figure 1. Selected sample images without and with artifi-
cial outliers in the YaleB set. Top row: clean images; Mid-
dle row: outliers by forehead and eyes occlusion; Bottom
row: outliers by nose and mouth occlusion.

To evaluate the discriminability of the learnt subspace,
the classification error from the nearest center classi-
fier on test set is finally used as the evaluation metric.

4.3. Results

4.3.1. Illustration of Robustness

To visualize the robustness of the proposed REDA-
LPP, REDA-SRDA and REDA-LapRLS, we apply
them on the MNIST set. In this example, each digit
class is of size N = 300 with η = 50% training sam-
ples being randomly mislabeled as the other digits. We
set λ = 0.99 in REDA-LapRLS throughout the experi-
ments. When t = 1, the standard LPP (Figure 2(a.1)),
SRDA (Figure 2(b.1)) and LapRLS (Figure 2(c.1)) all
perform poorly to discriminate classes in the learnt
subspace due to mislabeling. When convergence is at-
tained at t = 6 for all these three REDA algorithms,
much more discriminative results are achieved, as can
be seen in Figure 2(a.2), 2(b.2)&2(c.2). The enhanced
discriminability of our algorithms on dirty data also
leads to the significant improvement of classification
performance, as can be seen from the quantitative re-
sults provided in next sub-section.

4.3.2. Quantitative Results

Tables 2∼4 list the test errors of compared algorithms
on the three data sets separately. For each given train-
ing size N and outlier (mislabeling) percentage η > 0,
the test error mean and standard deviation are esti-
mated according to 50 times of running under random
outlier (mislabeling) generation. When training set is
clean, it can be seen that the test performance is com-
parable among our REDA methods and their related
traditional methods. This is because without appar-
ent outliers, only one single regression cluster appears
in the data, thus the robust statistics does not help to
improve the performance of parameter estimation and
classification. When outliers or mislabeling are intro-
duced in training sets, the robustness of our REDA
methods functions and much lower test errors are con-
sistently achieved by our methods compared to their
non-robust counterparts, as well as the RLDA and ro-
bust PCA. Interestingly, we observe that for the mis-
labeling cases in MNIST and TDT2 data sets, when
training set size N is relatively large (see the right
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(c.1) REDA-LapRLS, t = 1
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Figure 2. Feature extraction results of a MNIST training set by REDA-LPP, REDA-SRDA and REDA-LapRLS. Here, the
first two dimensions of output features are plotted for visualization. Each class center is robustly estimated via iteratively
re-weighted least squares (IRLS).This figure is better viewed in color and please see text for the detailed descriptions.

three columns of Table 3&4), the test errors by our
REDA methods are relatively stable as the η increases
from 0% to 50%. We also observe that the unsuper-
vised robust PCA is insensitive to label noise as shown
on these two data sets. In all our experiments, the con-
vergence of REDA can be attained after less than 10
iterations.

4.3.3. Parameter Selection for REDA

We estimate the kernel scale parameter σ by adopting
the technique of simultaneous regression-scale estima-
tion (Mizera & Muller, 2002). γ is another essential
parameter in REDA-SRDA and REDA-LapRLS algo-
rithms that controls the smoothness of M-estimator.
The reported results in this paper are obtained under
γ = N , while our numerical observation shows that
REDA performs well over a large range of γ.

5. Conclusions and Future Work

In this paper, a robust feature extraction framework
was derived by maximizing an objective function mo-
tivated by Renyi’s quadratic and cross entropy. As
analyzed, the main advantage of this proposed frame-
work lies in its robustness against training outliers
for both features and labels. We proposed to utilize
the half-quadratic optimization technique to solve the
formulated optimization problem in an iterative man-
ner. At each iteration the problem was reduced to
a quadratic optimization problem which can be effi-
ciently optimized. The connections between our pro-

posed framework and several existing popular feature
extraction algorithms were highlighted. One interest-
ing future research direction is to study REDA further
within the settings of robust semi-supervised learning
and robust transfer learning.
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