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Abstract

Scientists frequently have multiple types of ex-
periments and data sets on which they can test
the validity of their parameterized models and lo-
cate plausible regions for the model parameters.
By examining multiple data sets, scientists can
obtain inferences which typically are much more
informative than the deductions derived from
each of the data sources independently. Sev-
eral standard data combination techniques result
in target functions which are a weighted sum of
the observed data sources. Thus, computing con-
straints on the plausible regions of the model
parameter space can be formulated as finding a
level set of a target function which is the sum
of observable functions. We propose an active
learning algorithm for this problem which selects
both a sample (from the parameter space) and an
observable function upon which to compute the
next sample. Empirical tests on synthetic func-
tions and on real data for an eight parameter cos-
mological model show that our algorithm signifi-
cantly reduces the number of samples required to
identify the desired level-set.

model parameters (from the parameter space) which cannot
be statistically rejected by the combination of the obsgrve
data and theoretical models.

When given a single model and data set pair, computation
of the feasible regions of parameter space can be done by
performing a simple hypothesis test for all points in the
space; that is, we are interested in the regions of param-
eter space where the null hypothesis — that the data was
generated by the model — cannot be rejected at some spec-
ified confidence level. Extending this to the multiple model
and data setting, we are interested in determining regibns o
parameter space where we cannot reject the hypothesis that
each of the data sets was generated by its respective model
at a given confidence level.

For example, when determining the spatial location of a
disease outbreak, a researcher might use information de-
rived from medical records (e.g. hospital admits), as well
as sales of over the counter and prescription medications
(Shmueli & Fienberg, 2006). Note that the presence (or
lack thereof) of a single indicator may be enough to ac-
cept or reject a single hypothesis, resulting in increased
data efficiency. Specifically, if there are many hospital ad-
mits from a single locality, the probability of disease is ex
tremely high regardless of the over the counter and pre-
scription drug sales. Moreover, while we believe that the

underlying cause affects each of the signals we observe, we
do not necessarily believe that the signals themselves are
Scientists frequently have multiple types of experimentscorrelated. For instance, colds result in significant oler t
and data sets on which they can test the validity of their pacounter sales with few hospital visits or prescription sale
rameterized models and the plausible or optimal regions foHowever, anthrax attacks will affect all three data streams
the model parameters. One task that can be considered i% :
that of computing the parameter setting (from a pre—defined_ ere are many other examples of the multiple model set-

model parameter space) which maximizes the likelihood of "9  Here, we focus on finding — o confidence re-
all the observations given the models. However, this calgions for statistical analyses involving multiple relatida

culation does not determine whether or not the derived p sets. Traditionally, the combination of statistical evide

rameter setting is consistent with the data given the model as been achieved in the sciences in a somewhat ad-hoc

Instead, a more prudent approach is to compute the set @shlon. For mstanc_e, a joint aqaly5|s can be performed
y (loosely) intersecting the confidence regions of several

Appearing inProceedings of _th@_5”” International Conference studies. Additionally, results from one publication might
on Machine LearningHelsinki, Finland, 2008. Copyright 2008 he used to guide the selection of parameters in future ex-
by the author(s)/owner(s). periments, possibly in the form of a prior.

1. Introduction
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Let f be a target function we are interested in learning o
the domain® C R?. Suppose thaf is the linear combina-
tion of m observable functions; (i =1, ..., m). Without

A more rigorous and efficient approach is to consider multi-loss of generality, we can drop the coefficients from the
ple experimental sources of evaluation simultaneously andummation (as they can be included in this) and write
choose samples in light of their contribution to the com-f(6) = >, fi(#) for all & € ©. We are now interested
bined target function. This target function is the composi-in finding the level setS, of f at the threshold:
tion of the “observable” test functions: one for each data se .
and model pair. We assume that the observable functions . oy .
share the same parameter space, but are functionally inde- S= {9 €6 Zl 1:(60) = £(6) = t} '
pendent. As such, hierarchical models do not apply. More- -
over,'whereas muIti—ta_sk learning problems.are based Ok general, computing the value of eaghmay not incur
learning the com.monallty' between the constltu.ent modelsthe same cost. However, we begin by assuming that the
the task of locating confidence regions benefits from the,,qt are similar, and hence try to minimize the total num-
discrepancies between the models to efficiently accept 9fe, ot samples of observable functions required to accu-
reject a par_ameter vector. While in theory we could Chec‘?ately estimateS. Moreover, we assume thgtcannot be
eac_h pointin th_e Pafamet,er space to detgrmlne wh(_ather %rirectly sampled, and that neithgrnor any of thef;’s is
notit should be included within odr-a confidence region, iy ertible. That s, the only way to estimate a level-sef of
in practice each experiment is too expensive. is to sample points from thg’s and inferf. As we will see
As such, we develop active learning algorithms to learnin Section 4, this formulation accurately mimics combining
the confidence regions. Active learning using informedp-values using Fisher's method, as the method for finding
choices of future experiments has long been known to draghe individualp-values may be entirely unknown.
tically decrease a problem’s sample complexity (Angluin,\ye myst now determine how best to choose samples both
1988). _Many sampllng heurlstlcs_ have been developed t%mong and within the;'s. Ideally, we want to sample the
learn e_ltherthe entire target function (e.g. MacKay (1992) observable functiorf; at the pointy € © which best in-
Guestrin, C., et al. (2005)) or some feature of the targef, o ses our prediction accuracy (e.g. whether anothet poin
func'uon_, such as its level sets (e.g. Bryan, B., etal. (,2905 is above or below the threshold) ovgr Since the param-
Ramakrishnan, N., etal. (2005)). While we cannotdirectlygio snace is continuous and multi-dimensional, we cannot
observe the value of the target function, we can use the Oy, 1 test all possible points and observable functions
servable functions to infer its value. By measuring all ob-
servable functions at a particular parameter setting, we calnstead, we model each of the observable functions inde-
compute the value of the target function, reducing the probpendently given the current samples taken from that func-
lem to a standard active learning problem. However, sucfiion, as illustrated in Figure 1. For each experiment, we
an approach disregards any strong evidence provided byrandomly select a small subset of the parameter space (usu-
single statistical test, and hence may result in extraneoudlly 1000 points drawn uniformly at random, although
sampling of the remaining statistical models. other distributions are possible based on domain knowl-
) ) ) ) ) edge) and choose the best point and observable function
Rther, we are |nt.erested in active leaming aIgonthmsbair upon which to experiment from among these candi-
which use information about each observable function tqy,ie5 " \We find the value of the observable function at the
learn some composite target function. In Section 2, We progg|acted point and add it to the data set used to model that
pose a heuristic for actlvely_learmng level s_ets of comigosi function. The process is then repeated.
functions of sums for continuous valued input spaces. In
Section 3, we show that this heuristic performs the level-There are several methods one could use to model each
set discovery task more efficiently than both random andf the f;’s, notably some form of parametric regression.
sequential sampling of the constituent functions usingsta However, we chose to approximate tfi&s using Gaussian
of the art heuristics. In Section 4, we discuss how the taslerocess regression, as other forms of regression may over
of finding joint confidence regions can be formulated assmooth the data, ignoring subtle features of the function
a level set problem, where the target function is the sunthat may become pronounced with more data. While much
of several observable functions. Section 5 concludes byvork has been done studying Gaussian processes, we only
demonstrating the computation of 95% confidence regiongouch on the basic concepts here; we refer interested read-
for eight cosmological parameters using our algorithm. ~ €rs to Cressie (1991); Rasmussen and Williams (2006).
Gaussian processes are hon-parametric forms of regression
2. Active Learning Algorithm Predictions for unobserved points are computed by using
a weighted combination of the function values for those
npoints which have already been observed, where a distance-
based kernel function is used to determine the relative
weights. These distance-based kernels generally weight
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Figure 1.0utline of our sampling algorithm. Given an initial set of points (typically eptie randomly select a set of candidates and
score them using a set of Gaussian process models. The best smmirihgnd observable function pair is chosen, and we evaluate the
selected observable function at the given point. This data is added tortesmonding data set.

nearby points significantly more than distant points. Thussome fixed constarit. This reduces the computation time
assuming the underlying function is continuous, Gaussiato O(k3+klog(n;)) per prediction. Here, we lét= 1000.
processes will perfectly describe the function given an in-

finite set of unique data points. While, in many applica-2.1. Choosing Experiments

tions the assumption of continuity is violated, Gaussian

processes have been successfully used to model resporfgl¥en this active learning framework, we must now decide

surfaces in many domains with limited smoothness guarl@W 0 choose sample / observable function pairs. We con-

antees (Cressie, 1991; Santner et al., 2003). sider the following heuristics:

In this work we use °rd.'”afy kriging (Cresslle, 1991.)’ which Random One of the candidate points and an observable
assumes a linear semivariance as a function of distance, as_ . L . X
o . . . Unction pair is chosen uniformly at random. This method
it is both data and computationally efficient. While other . . o

. erves as a baseline for comparison of the other heuristics.
forms of Gaussian Processes could be used — most notab?y
adaptive kernel methods (e.g. Kersting, K. etal. (2007)) — _ . .
we find that a learned model based upon a simple kriging/ariance The candidate point and observable function
approximator performs well in practice and ensures that wéair which has the highest predicted variance (out of all

do not spend more time computing the next sample than wie candidate / observable function pairs) is selected. Us-
do running the experiment. ing model variance to pick the next experiment is com-

mon for active learning methods whose goal is to map out

Regardless of the kernel used, Gaussian processes predigl target function over a parameter space (MacKay, 1992;
that the value of a target poin, will be Normally dis-  Guestrin, C., et al., 2005). In particular, (Guestrin, @., e

tributed with a mean and variancg (¢) ando?(0), respec- 51 '2005) showed that greedily picking experiments based
tively) given by: upon model variance performs nearly as well as using a

N F L wT w12 mutual information heuristic when learning the target over
1) = fi+ Zi’ézi Fi @) the entire parameter space; this is significant, as the utua
o0 = 25375 (2)  information heuristic can be shown to bie— 1/¢) optimal
’ ' (Guestrin, C., etal., 2005). Since variance is closeljteela
where7; is the set of observed experimentsfof to distance for kriging models, this heuristic samples {®in
- which are far from their nearest neighbors. However, when
- 1 « searching for level-sets, we are less interested in the func
fi = || Z filay), tion away from the level-set boundary, and instead want to
=t focus our sampling resources near the predicted boundary.
Filil = fi(0;) - fi, In particular, sampling based solely on variance results in

substantially worse performance than heuristics that con-

%; denotes the covariance matrix between the elements fy v ate on the function level-set (Bryan, B., et al., 2005)
7;, andX, ; is the covariance vector between elements of

7; andé. . . . .

Information Gain Information gain is a common my-
For a set ofv; observed points|7;| = n;), prediction with  opic metric used in active learning. Computing the infor-
a Gaussian process requi@gn?) time, as ar; x n; linear ~ mation gain over the whole state space for each observable
system of equations must be solved. However, for manyunction provides an optimal 1-step experiment choice. In
Gaussian processes — and ordinary kriging in particulasome discrete or linear problems this can be done, but it is
— the correlation between two points decreases as a funénatractable for continuous non-linear spaces. As such we
tion of distance. Thus, the full Gaussian process modetlo not consider a traditional information gain heuristiat b
is approximated well by a local Gaussian process in whichrely on efficient point estimates which act as proxies for
only thek nearest neighbors of the query point are used, foglobal information gain.
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Sequential-Straddle  As noted in Section 1, the problem information gain of a candidate point and observable func-
can be simplified to a standard active learning problemntion pair is:
if one sequentially samples each of the observable func-

tions in order to directly comput¢. (Bryan, B., et al., variance-maxvarstraddle(6)

2005) showed that in a setting where experiments yield the m

(approximately) true values of the target function, a good = max {1.9603(5)} - Z fi0) —t|. (4)
heuristic for level set identification is the straddle heri ! i=1

tic: straddle(d) = 1.9602(A) — | f(0) — t|. This heuristic
balances the need to explore uncertain parts of paramet
space, with the desire to refine the model's estimate aroun
those regions already known to be close to the level-set )
boundary; the constant 1.96 ensures that points with neg3. EXperiments

ative scores are far from the desired level set with at Ieas\tNe now assess the accuracy with which our active learnin
a 95% probability. This heuristic leverages the straddle y 9

: {nodel reproduces synthetic target functions for the sam-
pling heuristics just described. This is done by computing
the fraction of test points in which the predictive model

(\:(\'le choose the candidate point that maximizes this heuristic
%nd the corresponding.

combined straddle score,

m m (the sum of the kriging models associated with each ob-
combined-straddle () = 1.96203(9)— Z fi(0) —t|, servable function) agrees with the true target functioruabo
i—1 i=1 on which side of the threshold the test points lie. This pro-

) cess was repeated 20 times to account for variations due to
and then sequentially sampling @il observable functions  the random nature of the candidate generation process. The
at this point. first three target functions considered were sums of two ob-

servable functions, while the fourth was a sum of four ob-
Variance-Straddle While (Bryan, B., et al., 2005) servable functions. The kriging parameters for each model
showed that thestraddle heuristic works well when di- were computed priori from the observable functions. The
rectly sampling the target function, we can hope to do betconsidered functions are:
ter by considering the output from each observable function
individually. For instance, if a sample pointresultsinaye Gaussian This problem consisted of determining the
large value for one of the observable functions, it may be95% acceptance region of two axis aligned perpendicular
unlikely that the results of the othégt's will be such that two dimensional Gaussian distributions centered at the ori
the resulting value off is near the level-set. In particu- gin. Both Gaussians had diagonal covariance matrices with
lar, when dealing withy? models (see Section 4), we know on diagonal elements of 1 and 16. Since working in prob-
that f; > 0 for all i. Thus, if a singlef; is greater than the ability space results in many near-zero values, the problem
level-set boundary, the target function will also be greate was considered in log-space. As such, the target function
than the level-set boundary, and hence it may be more efaas a 2 dimensional symmetric quadratic function, and the
ficient to sample elsewhere. This heuristic simply choosesevel-set was a circle centered at the origin. The range of
the next sample from among the candidates based on thibe parameter space wak (0> € [—3.4,3.4])
combined-straddle score, and then selects the observable
function with the largest variance at that point. Sin2D The second problem consists of finding where the

two 2D sinusoidal observable functions
Variance-MaxVar Straddle Finally, we consider a vari-
ant of thestraddle heuristic. This heuristic tries to mimic ~ 41(%1:62)
the information gain of choosing a particular point and ob- f2(61,02)
servable function pair. Note that after observing a point,
the variance of the kriging model is effectively zero at that

: . o tions were chosen because 1) the target threshold winds
point (since we have set c to be a very small positive value)throu h the plot aiving ample lenath to test the accuracy of
The originalstraddle heuristic balances the expected gain 9 plot giving amp 9 Y

in the model fit 6(@)) with the expected distance of the th.e approximating mpdel, 2) the bogndary IS cﬁscontmuo_us

X with several small pieces, 3) there is an ambiguous region
point to the level-set boundary. L .

around(0.9, 1), where the true function is approximately

However, with the multiple model formulation, we do equal to the threshold, and the gradient is small and 4) there
not expect the model variance to decreasesByff) =  are areas in the domain where the function is far from the
St o2(6), but rather byo;(0) where f; is the observ-  threshold and hence we can see whether algorithms refrain
able function we pick. Thus, a more accurate proxy for thefrom oversampling in these regions.

sin(1001) + cos(4602) — cos(36162)
sin(100s) + cos(461) — cos(36162)

sum to zero wheré,, 02 € [0,2]. These observable func-
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Table 1.Number of samples required to achieve a 99% accuracy on the Gaassi&BimpleSin2D tests, and a 90% accuracy on the
Sin2D and 4-Sin2D tests based on 20 trials. Vaeance-maxvarstraddle heuristic consistently performs better than competitors.

Gaussian  SimpleSin2D Sin2D 4-Sin2D

random > 1000 > 1000 > 1000 > 1000
variance 95.0+11.0 > 500 105.0+11.5 188.6:32.2
variance-straddle 89.5+5.0 157.912.3 90.4+9.0 72.5:12.0
sequential-straddle  76.2£3.5  150.3t6.5 87.0+7.3 98.1+14.0
variance-maxvarstraddle 71.743.3  127.3:-6.8 82.9-10.2 54.9-16.9
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Figure 2.Predicted level-set (solid), true level-set (dashed) and experimsgiargs, circle, triangles and x’s) for the 4-Sin2D func-
tion after sampling 100 points using the Variance heuristic (left), dbguential-straddle heuristic (center), and theariance-
maxvarstraddle heuristic (right).

SimpleSin2D  This problem is a simplified version of the and variance-weighted heuristics choose samples (roughly
previous problem, where the observable functions uniformly throughout the parameter space, while the
. straddle-based heuristics focus on the level-set of istere
f1(61,02) = sin(461) + cos(462) — cos(6:162) Additionally, the advantage ofariance-maxvarstraddle
f2(61,02) = sin(46) + cos(46:) — cos(6162) oversequential-straddle grows as the number of observ-
were chosen to reduce the problem’s semi-variances (agaﬁ’1b_Ie functions increases, as the relative cost of a badehOiC
61,0 € [0 : 2]). Since problems with large semi-variances 'S mcreqsed. These results demonstrate that Iear_nlr_wg the
result in large model variance estimates in the kriging mod_models independently allows for better overall prediction

els, such problems require extensive sampling to correctlDne surprising result of our experimentation is that the
identify function level-sets. Performance on this funetio sequential-straddle performs as well as theariance-
highlights an algorithm’s ability to quickly rule out por- straddle heuristic on the test functions which are sums of
tions of the function. two observable functions. We believe that this result illus
trates the fact that theariance-straddle heuristic is over
4-Sin2D  This task consisted of finding where four 2D si- estimating the importance of the variance component of the
nusoids sum te-2. The sinusoids chosen for this problem candidate points to the information gain of a point, while
were similar to those of the SimpleSin2D problem: the fact that there are only two observable functions re-
duces the efficiency of theequential-straddle heuristic

11(01,02) = sin(401) + cos(203) — cos(301) only by a factor of two. Thevariance-straddle heuristic
f2(61,02) = sin(202 —2) + cos(201) — cos(301) will be as likely to choose a candidate point where the pre-
f3(01,02) = sin(360162) + cos(2601) + 1 dicted observable functions are moderate but equal, as it is
£1(61,00) = cos(6162) — sin(6:05) to choose a point with a large predicted variance for one

. . _ . . of the observable functions, and zero variance for the other

The resulting target function contains regions with bothohservable functions. However, the second candidate has
high and low derivatives near the specified threshold.  much more information than the first, as selecting the sec-
Classification accuracy results for the four tests are givePNd candidate will give us the (approximately) exact value

of the target function, while selecting the first will only-re

in Table 1. variance-maxvarstraddle outperforms all X
of the other heuristics on each of the target functionsduce the overall variance by a moderate amount. On the 4-
Unsurprisingly, the straddle-based heuristics beat the ra Sin2D task thevariance-straddle heuristic is able to make

dom and variance-weighted heuristics, as both the randorise of the individual observable functions, but still does n
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do as well as thgariance-maxvarstraddle heuristic. points between data setisand B. If data setsA and B are
To illustrate the differences in sampling patterns betweeﬁn(jependent, then all elgmentéxmB are zero and we can
o write the above expression as:
these heuristics, we plot the samples chosen for the ob-
servable functions (with squares, circles, triangles dad x
respectively) with the true (dashed) and predicted (solid) . Y el . )
function level-sets for the 4-Sin2D task in Figure 2. The + (T —7p) X (T = MB) ~ X{ate)-
variance-maxvarstraddle heuristic is much better at pick- That is, the target function is merely the sum of the two

ing points than the other two heuristics. Note that theghservable functions: the variance weighted sum of squares
variance-maxvarstraddle heuristic is able to learn that for both data sets.

some regions of the space are poor by sampling just one , , o
of the observable functions; as such, its samples lie muchn°ther approach to performing simultaneous joint anal-
closer to the target level-set. This reinforces our hypsithe YSIS iS to combine the modelg-values. There are many

that modeling the observable functions separately reisults Ways to combine test procedures, including using Bonfer-
additional learning opportunities. roni corrections, the inverse normal method, and inverse

logit methods (Hedges, 1985). A common method to com-
. .. bine p-values is Fisher's method (Fisher, 1932). Fisher
4. Joint Statistical Analyses noted that since p-value, p;, has a Uniform distribution,

Now let us look at a concrete application of this sampling_mog(pi) will have axé) distribution. Again, using the
algorithm: joint statistical analyses. L&f; be a random fact that the sum of independeqt random variables has a
variable denoting a data source ande a generic observa- x° dlistribution, the test becomes: rejefd} if and only if
tion of X;. For each data sek;, letm; be a corresponding _ , < , : " 2
model of X; given some € ©. We are interested in con- 21;1 log(pi) = €' whereC'is the critical value of &z,
structing a confidence region for the true value of the padistribution for some particular level. Again, we see that
rameter, denoteét*, based on the observation thét = z; the target function is the sum of observable functions.
for each model / data set pair.

(Fa —114) 51 (£a — 170a)

Thus, given the models:; and data sets(;, we are in-
For a single data set, consider testing the hypothesis th&grested in locating thosé € ©, such that the the result-
0* = 0 at level o for some arbitrany € ©. The as- ing modelsm; (: = 1,...,m) are accepted by the chosen
sociated acceptance region for the tedt(6), is the set hypothesis test. This, in turn, reduces to testing whether
of data values (model outputs) for which the test will notthe sum of a set of observable functions is below a spec-
reject the hypothesi§* = 6 for model m;. Since we ified threshold. Specifically, given a threshaldve want
are interested in tests with significance lemele require  to find the set of points®’, where the target functiofi is
Py(X; € Ai(0)) > 1 — a. We can then usel; to con-  equal or less than the thresholel! = {0 € ©[f(0) < t}.
struct al —a confidence regiorg 4, (z;), for * based on However, note that we need only discover the boundary,
the observed data;: C 4, (z;) = {0 € O|z; € A;(0)}. S ={0 € ©|f(0) = t}, asS implicitly defines®’. There-

) . o fore, using eitheg? tests or Fisher’'s method, we can apply
We consider two approaches to combine the individual cOng, e 5150rithm described in Section 2 to locate the bound-
fidence tests above into joint confidence regions. In the first .o of thel — o confidence region.

we create a statistical model which simultaneously consid-
ers all data sets. For instance, when performing an analysis .
on two data sets using? tests, we will have ong? test 5. Cosmological Data Example

H 2
for data setd and a second for data sBt Since thex” 14 jjjystrate our algorithm and its application to joint sta

test assumes that each of the data points have dependenciggi | analyses, we show how it can be applied to an anal-
given by the covariance matrix, we can combine the tWagg of gight cosmological parameters that affect the for-

. e
tests into a singlg” test of the form mation and evolution of our universe using three data sets:

. L 4T 1 . the Comic Microwave Background (CMB) power spectrum

{ AT mA } [ YA Zap } { La—ma } as observed by Wilkinson Microwave Anisotropy Project

B —MB YaB 2B T —Mp (WMAP) (Bennett, C. L., et al., 2003), the Davis, T. M., et
~ x%a +b) al. (2007) supernovae (SN) survey and a large scale struc-

wherem;, z; and X; are the associated test model, ob- ture survey (LSS) from Tegmark, M., etal. (2006).

served data and observed covariance of datg gg@ten  While models for each of these data sets try to determine
some vector from the parameter spacendb are the de- what the Universe is formed of and how it has evolved, they
grees of freedom of the tests associated with data4ets measure significantly different aspects of the Universe Th

and B respectively, andC 4 5 is the covariance of the data CMB data set records temperature fluctuations in the Uni-
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Figure 3.Comparison of the confidence regions derived for WMAP (a), super (b), and LSS (c) data sets with those derived using
all three data sets together (d). Regions of solid color indicate valug2yfoand$2, for which some combination of the remaining
parameters results in a model with probability greater thamnv. The WMAP and LSS models are 7 parameter models, while the
supernova is a 3 parameter model, and the combination model is anrBgtaranodel.

verse just after the Big-Bang. The size and spatial proxcal solver, such as CMBFast to approximate the Boltzmann
imity of these temperature fluctuations depict the types anéquation and yield the expected power spectrum.

rates of particle interactions in the early universe anahen : .
. : To alleviate the problem posed by the computational costs
characterize the formation of large scale structure (galax L :
of CMBFast, we initialize the Gaussian process model as-

ies, clusters, walls and voids) in the current observabile un sociated with the WMAP data using the one millip

Verse. Meanwhllg, the supernovae data measures the alues derived by Bryan, B., et al. (2005). Bryan, B., et al.
pansion of the universe as a function of time, in order to

. . éZOOS) uses confidence balls — a statistical procedure sim-
constrain the total mass and eventual fate of the Univers 5 ; . .
ifar to x* tests, generally with better inference properties

Finally, the large scale struc_ture_ survey measures the de- to map out the level-set associated with the 95% con-

gree of galaxy cluster clumping in order to determine theﬁdence region of the seven CMB parameters. Additional

relative importance of dark matter and Baryonic (normal) . . i i

matter. Combined, these data sets can be used to determifs. dels were selected using tariance-maxvarstraddie
' o . euristic with one small change: If the heuristic selects th

the age, composition and eventual fate of the Universe, as

. . observable function associated with the CMB data, we first
well as provide strong evidence for the presence of dark

. . compute thep-values associated with the supernova and
energy — a large-scale negative gravitational force. .
large scale structure data sets to see if we can exclude the

In this analysis we look at an eight dimensional parameparameter vector without needing to run CMBFast. That
ter space comprised of the optical deptf), (dark energy is, we determine whether the sum of the jsgalues from
mass fraction{Q,), total mass fraction({,,), baryon den- the supernovae and large scale structure data sets alone is
sity (wp,), dark matter density.(;,,), neutrino fraction f,,), larger than the threshold for the combined model. This
spectral indexs,) and galaxy biastj. The CMB model modification allows us to reduce the number of CMBFast
constrains the first seven parameters while the supernov@mputations by about a factor of five. Using this modified
model constrains g, wi, v andQ,. The LSS model variance-maxvarstraddle heuristic, we sampled roughly
constrains all of the parameters exceptfor 1.5 million additional parameter vectors, about 300,000 of
these points resulted in CMBFast runs. Note that 1.5 mil-
lion parameter vectors corresponds to a grid with roughly
six elements per side. Since the variance-based metrics
sample the entire parameter space, their prediction perfor
mance is typically similar to this naive gird. Thus, using an
active learning metric that focuses on the boundary that we
are interested in (and ignores large parts of the parameter
space which can be proved to be infeasible) significantly
Computing expected observations given parameter vectoreduces the computational complexity of the algorithm.

is fast for the supernovae and large scale structure model

and hence we can quickly compute th&alues associated rived using only a single data set projected intofihg ver-

with these two models using” tests. However, computing usQ, space. Confidence regions are derived by binning

the expected observations for the CMB data set is mucfs}] . : .
. . . . the samples selected by the algorithm and including those
more time consuming. Typically one employs a numeri-

bins in the confidence region which contain points where

Fisher's method was used to combinealues from each
of the three models. While for smallvalues the log of the
p-value goes to infinity, note that the algorithm is interdste
in determining where the sum of thevalues corresponds
to the 95% quantile of &%, distribution. Since this results
in t ~ 12.6, the algorithm has no incentive to select points
which are expected to have near zgrealues.

™ Figures 3(a)-3(c) we depict 95% confidence regions de-
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f < t, resulting in the blockiness in the diagrams. The fig-Using the CMB, supernovae and large scale structure data
ures illistrate that the shapes of the 95% confidence regionsets results in much tighter confidence regions than those
for each of the data sources are quite different, validatingobtained using only a single source of data, allowing for

our supposition that different observable functions can bestronger scientific inferences. Standard ad hoc techniques
used to efficiently reject parts of parameter space. for combining evidence, such as intersecting the data, or

In Figure 3(d), depicts the 95% confidence region found”SN9 weak priors do not result in such a significant reduc-
tion in the accepted parameter space.

using the joint analysis for all three data sets; one and two
dimensional projections onto the other parameters can be
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