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Abstract
Scientists frequently have multiple types of ex-
periments and data sets on which they can test
the validity of their parameterized models and lo-
cate plausible regions for the model parameters.
By examining multiple data sets, scientists can
obtain inferences which typically are much more
informative than the deductions derived from
each of the data sources independently. Sev-
eral standard data combination techniques result
in target functions which are a weighted sum of
the observed data sources. Thus, computing con-
straints on the plausible regions of the model
parameter space can be formulated as finding a
level set of a target function which is the sum
of observable functions. We propose an active
learning algorithm for this problem which selects
both a sample (from the parameter space) and an
observable function upon which to compute the
next sample. Empirical tests on synthetic func-
tions and on real data for an eight parameter cos-
mological model show that our algorithm signifi-
cantly reduces the number of samples required to
identify the desired level-set.

1. Introduction

Scientists frequently have multiple types of experiments
and data sets on which they can test the validity of their pa-
rameterized models and the plausible or optimal regions for
the model parameters. One task that can be considered is
that of computing the parameter setting (from a pre-defined
model parameter space) which maximizes the likelihood of
all the observations given the models. However, this cal-
culation does not determine whether or not the derived pa-
rameter setting is consistent with the data given the models.
Instead, a more prudent approach is to compute the set of
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model parameters (from the parameter space) which cannot
be statistically rejected by the combination of the observed
data and theoretical models.

When given a single model and data set pair, computation
of the feasible regions of parameter space can be done by
performing a simple hypothesis test for all points in the
space; that is, we are interested in the regions of param-
eter space where the null hypothesis — that the data was
generated by the model — cannot be rejected at some spec-
ified confidence level. Extending this to the multiple model
and data setting, we are interested in determining regions of
parameter space where we cannot reject the hypothesis that
each of the data sets was generated by its respective model
at a given confidence level.

For example, when determining the spatial location of a
disease outbreak, a researcher might use information de-
rived from medical records (e.g. hospital admits), as well
as sales of over the counter and prescription medications
(Shmueli & Fienberg, 2006). Note that the presence (or
lack thereof) of a single indicator may be enough to ac-
cept or reject a single hypothesis, resulting in increased
data efficiency. Specifically, if there are many hospital ad-
mits from a single locality, the probability of disease is ex-
tremely high regardless of the over the counter and pre-
scription drug sales. Moreover, while we believe that the
underlying cause affects each of the signals we observe, we
do not necessarily believe that the signals themselves are
correlated. For instance, colds result in significant over the
counter sales with few hospital visits or prescription sales.
However, anthrax attacks will affect all three data streams.

There are many other examples of the multiple model set-
ting. Here, we focus on finding1 − α confidence re-
gions for statistical analyses involving multiple relateddata
sets. Traditionally, the combination of statistical evidence
has been achieved in the sciences in a somewhat ad-hoc
fashion. For instance, a joint analysis can be performed
by (loosely) intersecting the confidence regions of several
studies. Additionally, results from one publication might
be used to guide the selection of parameters in future ex-
periments, possibly in the form of a prior.
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A more rigorous and efficient approach is to consider multi-
ple experimental sources of evaluation simultaneously and
choose samples in light of their contribution to the com-
bined target function. This target function is the composi-
tion of the “observable” test functions: one for each data set
and model pair. We assume that the observable functions
share the same parameter space, but are functionally inde-
pendent. As such, hierarchical models do not apply. More-
over, whereas multi-task learning problems are based on
learning the commonality between the constituent models,
the task of locating confidence regions benefits from the
discrepancies between the models to efficiently accept or
reject a parameter vector. While in theory we could check
each point in the parameter space to determine whether or
not it should be included within our1−α confidence region,
in practice each experiment is too expensive.

As such, we develop active learning algorithms to learn
the confidence regions. Active learning using informed
choices of future experiments has long been known to dras-
tically decrease a problem’s sample complexity (Angluin,
1988). Many sampling heuristics have been developed to
learn either the entire target function (e.g. MacKay (1992);
Guestrin, C., et al. (2005)) or some feature of the target
function, such as its level sets (e.g. Bryan, B., et al. (2005);
Ramakrishnan, N., et al. (2005)). While we cannot directly
observe the value of the target function, we can use the ob-
servable functions to infer its value. By measuring all ob-
servable functions at a particular parameter setting, we can
compute the value of the target function, reducing the prob-
lem to a standard active learning problem. However, such
an approach disregards any strong evidence provided by a
single statistical test, and hence may result in extraneous
sampling of the remaining statistical models.

Rather, we are interested in active learning algorithms
which use information about each observable function to
learn some composite target function. In Section 2, we pro-
pose a heuristic for actively learning level sets of composite
functions of sums for continuous valued input spaces. In
Section 3, we show that this heuristic performs the level-
set discovery task more efficiently than both random and
sequential sampling of the constituent functions using state
of the art heuristics. In Section 4, we discuss how the task
of finding joint confidence regions can be formulated as
a level set problem, where the target function is the sum
of several observable functions. Section 5 concludes by
demonstrating the computation of 95% confidence regions
for eight cosmological parameters using our algorithm.

2. Active Learning Algorithm

Let f be a target function we are interested in learning on
the domainΘ ⊆ R

d. Suppose thatf is the linear combina-
tion of m observable functions,fi (i=1, . . . ,m). Without

loss of generality, we can drop the coefficients from the
summation (as they can be included in thefi’s) and write
f(θ) =

∑m

i=1 fi(θ) for all θ ∈ Θ. We are now interested
in finding the level set,S, of f at the thresholdt:

S =

{

θ ∈ Θ

∣

∣

∣

∣

∣

m
∑

i=1

fi(θ) = f(θ) = t

}

.

In general, computing the value of eachfi may not incur
the same cost. However, we begin by assuming that the
costs are similar, and hence try to minimize the total num-
ber of samples of observable functions required to accu-
rately estimateS. Moreover, we assume thatf cannot be
directly sampled, and that neitherf nor any of thefi’s is
invertible. That is, the only way to estimate a level-set off
is to sample points from thefi’s and inferf . As we will see
in Section 4, this formulation accurately mimics combining
p-values using Fisher’s method, as the method for finding
the individualp-values may be entirely unknown.

We must now determine how best to choose samples both
among and within thefi’s. Ideally, we want to sample the
observable functionfi at the pointθ̃ ∈ Θ which best in-
creases our prediction accuracy (e.g. whether another point
is above or below the threshold) overf . Since the param-
eter space is continuous and multi-dimensional, we cannot
afford to test all possible points and observable functions.

Instead, we model each of the observable functions inde-
pendently given the current samples taken from that func-
tion, as illustrated in Figure 1. For each experiment, we
randomly select a small subset of the parameter space (usu-
ally 1000 points drawn uniformly at random, although
other distributions are possible based on domain knowl-
edge) and choose the best point and observable function
pair upon which to experiment from among these candi-
dates. We find the value of the observable function at the
selected point and add it to the data set used to model that
function. The process is then repeated.

There are several methods one could use to model each
of the fi’s, notably some form of parametric regression.
However, we chose to approximate thefi’s using Gaussian
process regression, as other forms of regression may over
smooth the data, ignoring subtle features of the function
that may become pronounced with more data. While much
work has been done studying Gaussian processes, we only
touch on the basic concepts here; we refer interested read-
ers to Cressie (1991); Rasmussen and Williams (2006).

Gaussian processes are non-parametric forms of regression.
Predictions for unobserved points are computed by using
a weighted combination of the function values for those
points which have already been observed, where a distance-
based kernel function is used to determine the relative
weights. These distance-based kernels generally weight
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Figure 1.Outline of our sampling algorithm. Given an initial set of points (typically empty), we randomly select a set of candidates and
score them using a set of Gaussian process models. The best scoringpoint and observable function pair is chosen, and we evaluate the
selected observable function at the given point. This data is added to the corresponding data set.

nearby points significantly more than distant points. Thus,
assuming the underlying function is continuous, Gaussian
processes will perfectly describe the function given an in-
finite set of unique data points. While, in many applica-
tions the assumption of continuity is violated, Gaussian
processes have been successfully used to model response
surfaces in many domains with limited smoothness guar-
antees (Cressie, 1991; Santner et al., 2003).

In this work we use ordinary kriging (Cressie, 1991), which
assumes a linear semivariance as a function of distance, as
it is both data and computationally efficient. While other
forms of Gaussian Processes could be used — most notably
adaptive kernel methods (e.g. Kersting, K. et al. (2007)) —
we find that a learned model based upon a simple kriging
approximator performs well in practice and ensures that we
do not spend more time computing the next sample than we
do running the experiment.

Regardless of the kernel used, Gaussian processes predict
that the value of a target point,̃θ, will be Normally dis-
tributed with a mean and variance (fi(θ̃) andσ2

i (θ̃), respec-
tively) given by:

fi(θ̃) = f̄i + ~ΣT

i,θ̃
Σ

−1
i

~Fi (1)

σ2(θ̃) = ~ΣT

i,θ̃
Σ

−1
i

~Σi,θ̃ (2)

whereTi is the set of observed experiments offi,

f̄i =
1

|Ti|

|Ti|
∑

j=1

fi(aj),

Fi[j] = fi(θj) − f̄i,

Σi denotes the covariance matrix between the elements of
Ti, and~Σi,θ̃ is the covariance vector between elements of

Ti andθ̃.

For a set ofni observed points (|Ti| = ni), prediction with
a Gaussian process requiresO(n3

i ) time, as ani ×ni linear
system of equations must be solved. However, for many
Gaussian processes — and ordinary kriging in particular
— the correlation between two points decreases as a func-
tion of distance. Thus, the full Gaussian process model
is approximated well by a local Gaussian process in which
only thek nearest neighbors of the query point are used, for

some fixed constantk. This reduces the computation time
toO(k3+k log(ni)) per prediction. Here, we letk = 1000.

2.1. Choosing Experiments

Given this active learning framework, we must now decide
how to choose sample / observable function pairs. We con-
sider the following heuristics:

Random One of the candidate points and an observable
function pair is chosen uniformly at random. This method
serves as a baseline for comparison of the other heuristics.

Variance The candidate point and observable function
pair which has the highest predicted variance (out of all
the candidate / observable function pairs) is selected. Us-
ing model variance to pick the next experiment is com-
mon for active learning methods whose goal is to map out
the target function over a parameter space (MacKay, 1992;
Guestrin, C., et al., 2005). In particular, (Guestrin, C., et
al., 2005) showed that greedily picking experiments based
upon model variance performs nearly as well as using a
mutual information heuristic when learning the target over
the entire parameter space; this is significant, as the mutual
information heuristic can be shown to be(1−1/e) optimal
(Guestrin, C., et al., 2005). Since variance is closely related
to distance for kriging models, this heuristic samples points
which are far from their nearest neighbors. However, when
searching for level-sets, we are less interested in the func-
tion away from the level-set boundary, and instead want to
focus our sampling resources near the predicted boundary.
In particular, sampling based solely on variance results in
substantially worse performance than heuristics that con-
centrate on the function level-set (Bryan, B., et al., 2005).

Information Gain Information gain is a common my-
opic metric used in active learning. Computing the infor-
mation gain over the whole state space for each observable
function provides an optimal 1-step experiment choice. In
some discrete or linear problems this can be done, but it is
intractable for continuous non-linear spaces. As such we
do not consider a traditional information gain heuristic, but
rely on efficient point estimates which act as proxies for
global information gain.
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Sequential-Straddle As noted in Section 1, the problem
can be simplified to a standard active learning problem
if one sequentially samples each of the observable func-
tions in order to directly computef . (Bryan, B., et al.,
2005) showed that in a setting where experiments yield the
(approximately) true values of the target function, a good
heuristic for level set identification is the straddle heuris-
tic: straddle(θ̃) = 1.96σ2(θ̃) − |f(θ̃) − t|. This heuristic
balances the need to explore uncertain parts of parameter
space, with the desire to refine the model’s estimate around
those regions already known to be close to the level-set
boundary; the constant 1.96 ensures that points with neg-
ative scores are far from the desired level set with at least
a 95% probability. This heuristic leverages the straddle
heuristic by choosing the candidate point with the highest
combined straddle score,

combined-straddle(θ̃) = 1.96
m

∑

i=1

σ2
i (θ̃)−

∣

∣

∣

∣

∣

m
∑

i=1

fi(θ̃) − t

∣

∣

∣

∣

∣

,

(3)
and then sequentially sampling allm observable functions
at this point.

Variance-Straddle While (Bryan, B., et al., 2005)
showed that thestraddle heuristic works well when di-
rectly sampling the target function, we can hope to do bet-
ter by considering the output from each observable function
individually. For instance, if a sample point results in a very
large value for one of the observable functions, it may be
unlikely that the results of the otherfi’s will be such that
the resulting value off is near the level-set. In particu-
lar, when dealing withχ2 models (see Section 4), we know
thatfi ≥ 0 for all i. Thus, if a singlefi is greater than the
level-set boundary, the target function will also be greater
than the level-set boundary, and hence it may be more ef-
ficient to sample elsewhere. This heuristic simply chooses
the next sample from among the candidates based on the
combined-straddle score, and then selects the observable
function with the largest variance at that point.

Variance-MaxVarStraddle Finally, we consider a vari-
ant of thestraddle heuristic. This heuristic tries to mimic
the information gain of choosing a particular point and ob-
servable function pair. Note that after observing a point,
the variance of the kriging model is effectively zero at that
point (since we have set c to be a very small positive value).
The originalstraddle heuristic balances the expected gain
in the model fit (σ(θ̃)) with the expected distance of the
point to the level-set boundary.

However, with the multiple model formulation, we do
not expect the model variance to decrease byσ2(θ̃) =
∑m

i=1 σ2
i (θ̃), but rather byσi(θ̃) wherefi is the observ-

able function we pick. Thus, a more accurate proxy for the

information gain of a candidate point and observable func-
tion pair is:

variance-maxvarstraddle(θ̃)

= max
i

{

1.96σ2
i (θ̃)

}

−

∣

∣

∣

∣

∣

m
∑

i=1

fi(θ̃) − t

∣

∣

∣

∣

∣

. (4)

We choose the candidate point that maximizes this heuristic
and the correspondingfi.

3. Experiments

We now assess the accuracy with which our active learning
model reproduces synthetic target functions for the sam-
pling heuristics just described. This is done by computing
the fraction of test points in which the predictive model
(the sum of the kriging models associated with each ob-
servable function) agrees with the true target function about
on which side of the threshold the test points lie. This pro-
cess was repeated 20 times to account for variations due to
the random nature of the candidate generation process. The
first three target functions considered were sums of two ob-
servable functions, while the fourth was a sum of four ob-
servable functions. The kriging parameters for each model
were computeda priori from the observable functions. The
considered functions are:

Gaussian This problem consisted of determining the
95% acceptance region of two axis aligned perpendicular
two dimensional Gaussian distributions centered at the ori-
gin. Both Gaussians had diagonal covariance matrices with
on diagonal elements of 1 and 16. Since working in prob-
ability space results in many near-zero values, the problem
was considered in log-space. As such, the target function
was a 2 dimensional symmetric quadratic function, and the
level-set was a circle centered at the origin. The range of
the parameter space was (θ1, θ2 ∈ [−3.4, 3.4])

Sin2D The second problem consists of finding where the
two 2D sinusoidal observable functions

f1(θ1, θ2) = sin(10θ1) + cos(4θ2) − cos(3θ1θ2)

f2(θ1, θ2) = sin(10θ2) + cos(4θ1) − cos(3θ1θ2)

sum to zero whereθ1, θ2 ∈ [0, 2]. These observable func-
tions were chosen because 1) the target threshold winds
through the plot giving ample length to test the accuracy of
the approximating model, 2) the boundary is discontinuous
with several small pieces, 3) there is an ambiguous region
around(0.9, 1), where the true function is approximately
equal to the threshold, and the gradient is small and 4) there
are areas in the domain where the function is far from the
threshold and hence we can see whether algorithms refrain
from oversampling in these regions.
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Table 1.Number of samples required to achieve a 99% accuracy on the Gaussianand SimpleSin2D tests, and a 90% accuracy on the
Sin2D and 4-Sin2D tests based on 20 trials. Thevariance-maxvarstraddle heuristic consistently performs better than competitors.

Gaussian SimpleSin2D Sin2D 4-Sin2D

random > 1000 > 1000 > 1000 > 1000
variance 95.0±11.0 > 500 105.0±11.5 188.6±32.2

variance-straddle 89.5±5.0 157.9±12.3 90.4±9.0 72.5±12.0
sequential-straddle 76.2±3.5 150.3±6.5 87.0±7.3 98.1±14.0

variance-maxvarstraddle 71.7±3.3 127.3±6.8 82.9±10.2 54.9±16.9
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Figure 2.Predicted level-set (solid), true level-set (dashed) and experiments (squares, circle, triangles and x’s) for the 4-Sin2D func-
tion after sampling 100 points using the Variance heuristic (left), thesequential-straddle heuristic (center), and thevariance-
maxvarstraddle heuristic (right).

SimpleSin2D This problem is a simplified version of the
previous problem, where the observable functions

f1(θ1, θ2) = sin(4θ1) + cos(4θ2) − cos(θ1θ2)

f2(θ1, θ2) = sin(4θ2) + cos(4θ1) − cos(θ1θ2)

were chosen to reduce the problem’s semi-variances (again
θ1, θ2 ∈ [0 : 2]). Since problems with large semi-variances
result in large model variance estimates in the kriging mod-
els, such problems require extensive sampling to correctly
identify function level-sets. Performance on this function
highlights an algorithm’s ability to quickly rule out por-
tions of the function.

4-Sin2D This task consisted of finding where four 2D si-
nusoids sum to−2. The sinusoids chosen for this problem
were similar to those of the SimpleSin2D problem:

f1(θ1, θ2) = sin(4θ1) + cos(2θ2) − cos(3θ1)

f2(θ1, θ2) = sin(2θ2 − 2) + cos(2θ1) − cos(3θ1)

f3(θ1, θ2) = sin(3θ1θ2) + cos(2θ1) + 1

f4(θ1, θ2) = cos(θ1θ2) − sin(θ1θ2)

The resulting target function contains regions with both
high and low derivatives near the specified threshold.

Classification accuracy results for the four tests are given
in Table 1. variance-maxvarstraddle outperforms all
of the other heuristics on each of the target functions.
Unsurprisingly, the straddle-based heuristics beat the ran-
dom and variance-weighted heuristics, as both the random

and variance-weighted heuristics choose samples (roughly)
uniformly throughout the parameter space, while the
straddle-based heuristics focus on the level-set of interest.
Additionally, the advantage ofvariance-maxvarstraddle
oversequential-straddle grows as the number of observ-
able functions increases, as the relative cost of a bad choice
is increased. These results demonstrate that learning the
models independently allows for better overall prediction.

One surprising result of our experimentation is that the
sequential-straddle performs as well as thevariance-
straddle heuristic on the test functions which are sums of
two observable functions. We believe that this result illus-
trates the fact that thevariance-straddle heuristic is over
estimating the importance of the variance component of the
candidate points to the information gain of a point, while
the fact that there are only two observable functions re-
duces the efficiency of thesequential-straddle heuristic
only by a factor of two. Thevariance-straddle heuristic
will be as likely to choose a candidate point where the pre-
dicted observable functions are moderate but equal, as it is
to choose a point with a large predicted variance for one
of the observable functions, and zero variance for the other
observable functions. However, the second candidate has
much more information than the first, as selecting the sec-
ond candidate will give us the (approximately) exact value
of the target function, while selecting the first will only re-
duce the overall variance by a moderate amount. On the 4-
Sin2D task thevariance-straddle heuristic is able to make
use of the individual observable functions, but still does not
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do as well as thevariance-maxvarstraddle heuristic.

To illustrate the differences in sampling patterns between
these heuristics, we plot the samples chosen for the ob-
servable functions (with squares, circles, triangles and x’s,
respectively) with the true (dashed) and predicted (solid)
function level-sets for the 4-Sin2D task in Figure 2. The
variance-maxvarstraddle heuristic is much better at pick-
ing points than the other two heuristics. Note that the
variance-maxvarstraddle heuristic is able to learn that
some regions of the space are poor by sampling just one
of the observable functions; as such, its samples lie much
closer to the target level-set. This reinforces our hypothesis
that modeling the observable functions separately resultsin
additional learning opportunities.

4. Joint Statistical Analyses

Now let us look at a concrete application of this sampling
algorithm: joint statistical analyses. LetXi be a random
variable denoting a data source andxi be a generic observa-
tion of Xi. For each data set,Xi, letmi be a corresponding
model ofXi given someθ ∈ Θ. We are interested in con-
structing a confidence region for the true value of the pa-
rameter, denotedθ⋆, based on the observation thatXi = xi

for each model / data set pair.

For a single data set, consider testing the hypothesis that
θ⋆ = θ at level α for some arbitraryθ ∈ Θ. The as-
sociated acceptance region for the test,Ai(θ), is the set
of data values (model outputs) for which the test will not
reject the hypothesisθ⋆ = θ for model mi. Since we
are interested in tests with significance levelα, we require
Pθ(Xi ∈ Ai(θ)) ≥ 1 − α. We can then useAi to con-
struct a1−α confidence region,CAi

(xi), for θ⋆ based on
the observed dataxi: CAi

(xi) = {θ ∈ Θ|xi ∈ Ai(θ)}.

We consider two approaches to combine the individual con-
fidence tests above into joint confidence regions. In the first
we create a statistical model which simultaneously consid-
ers all data sets. For instance, when performing an analysis
on two data sets usingχ2 tests, we will have oneχ2 test
for data setA and a second for data setB. Since theχ2

test assumes that each of the data points have dependencies
given by the covariance matrix, we can combine the two
tests into a singleχ2 test of the form

[

~xA − ~mA

~xB − ~mB

]T [

ΣA ΣAB

ΣAB ΣB

]−1 [

~xA − ~mA

~xB − ~mB

]

∼ χ2
(a+b)

wherem†, x† and Σ† are the associated test model, ob-
served data and observed covariance of data set† given
some vector from the parameter space,a andb are the de-
grees of freedom of the tests associated with data setsA
andB respectively, andΣAB is the covariance of the data

points between data setsA andB. If data setsA andB are
independent, then all elements ofΣAB are zero and we can
write the above expression as:

(~xA − ~mA)T Σ−1
A (~xA − ~mA)

+ (~xB − ~mB)T Σ−1
B (~xB − ~mB) ∼ χ2

(a+b).

That is, the target function is merely the sum of the two
observable functions: the variance weighted sum of squares
for both data sets.

Another approach to performing simultaneous joint anal-
ysis is to combine the models’p-values. There are many
ways to combine test procedures, including using Bonfer-
roni corrections, the inverse normal method, and inverse
logit methods (Hedges, 1985). A common method to com-
bine p-values is Fisher’s method (Fisher, 1932). Fisher
noted that since ap-value,pi, has a Uniform distribution,
−2 log(pi) will have aχ2

(2) distribution. Again, using the

fact that the sum of independentχ2 random variables has a
χ2 distribution, the test becomes: rejectH0 if and only if

−2
k
∑

i=1

log(pi) ≥ C whereC is the critical value of aχ2
(2k)

distribution for some particular levelα. Again, we see that
the target function is the sum of observable functions.

Thus, given the modelsmi and data setsXi, we are in-
terested in locating thoseθ ∈ Θ, such that the the result-
ing modelsmi (i = 1, . . . ,m) are accepted by the chosen
hypothesis test. This, in turn, reduces to testing whether
the sum of a set of observable functions is below a spec-
ified threshold. Specifically, given a thresholdt, we want
to find the set of points,Θ′, where the target functionf is
equal or less than the threshold:Θ′ = {θ ∈ Θ|f(θ) ≤ t}.
However, note that we need only discover the boundary,
S = {θ ∈ Θ|f(θ) = t}, asS implicitly definesΘ′. There-
fore, using eitherχ2 tests or Fisher’s method, we can apply
the algorithm described in Section 2 to locate the bound-
aries of the1−α confidence region.

5. Cosmological Data Example

To illustrate our algorithm and its application to joint sta-
tistical analyses, we show how it can be applied to an anal-
ysis of eight cosmological parameters that affect the for-
mation and evolution of our universe using three data sets:
the Comic Microwave Background (CMB) power spectrum
as observed by Wilkinson Microwave Anisotropy Project
(WMAP) (Bennett, C. L., et al., 2003), the Davis, T. M., et
al. (2007) supernovae (SN) survey and a large scale struc-
ture survey (LSS) from Tegmark, M., et al. (2006).

While models for each of these data sets try to determine
what the Universe is formed of and how it has evolved, they
measure significantly different aspects of the Universe. The
CMB data set records temperature fluctuations in the Uni-
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Figure 3.Comparison of the confidence regions derived for WMAP (a), supernova (b), and LSS (c) data sets with those derived using
all three data sets together (d). Regions of solid color indicate values forΩM andΩΛ for which some combination of the remaining
parameters results in a model with probability greater than1−α. The WMAP and LSS models are 7 parameter models, while the
supernova is a 3 parameter model, and the combination model is an 8 parameter model.

verse just after the Big-Bang. The size and spatial prox-
imity of these temperature fluctuations depict the types and
rates of particle interactions in the early universe and hence
characterize the formation of large scale structure (galax-
ies, clusters, walls and voids) in the current observable uni-
verse. Meanwhile, the supernovae data measures the ex-
pansion of the universe as a function of time, in order to
constrain the total mass and eventual fate of the Universe.
Finally, the large scale structure survey measures the de-
gree of galaxy cluster clumping in order to determine the
relative importance of dark matter and Baryonic (normal)
matter. Combined, these data sets can be used to determine
the age, composition and eventual fate of the Universe, as
well as provide strong evidence for the presence of dark
energy — a large-scale negative gravitational force.

In this analysis we look at an eight dimensional parame-
ter space comprised of the optical depth (τ ), dark energy
mass fraction (ΩΛ), total mass fraction (Ωm), baryon den-
sity (ωb), dark matter density (ωdm), neutrino fraction (fn),
spectral index (ns) and galaxy bias (b). The CMB model
constrains the first seven parameters while the supernova
model constrainsωdm, ωB, ΩM andΩΛ. The LSS model
constrains all of the parameters except forτ .

Fisher’s method was used to combinep-values from each
of the three models. While for smallp-values the log of the
p-value goes to infinity, note that the algorithm is interested
in determining where the sum of thep-values corresponds
to the 95% quantile of aχ2

(6) distribution. Since this results
in t ≈ 12.6, the algorithm has no incentive to select points
which are expected to have near zerop-values.

Computing expected observations given parameter vectors
is fast for the supernovae and large scale structure models,
and hence we can quickly compute thep-values associated
with these two models usingχ2 tests. However, computing
the expected observations for the CMB data set is much
more time consuming. Typically one employs a numeri-

cal solver, such as CMBFast to approximate the Boltzmann
equation and yield the expected power spectrum.

To alleviate the problem posed by the computational costs
of CMBFast, we initialize the Gaussian process model as-
sociated with the WMAP data using the one millionp-
values derived by Bryan, B., et al. (2005). Bryan, B., et al.
(2005) uses confidence balls — a statistical procedure sim-
ilar to χ2 tests, generally with better inference properties
— to map out the level-set associated with the 95% con-
fidence region of the seven CMB parameters. Additional
models were selected using thevariance-maxvarstraddle
heuristic with one small change: If the heuristic selects the
observable function associated with the CMB data, we first
compute thep-values associated with the supernova and
large scale structure data sets to see if we can exclude the
parameter vector without needing to run CMBFast. That
is, we determine whether the sum of the logp-values from
the supernovae and large scale structure data sets alone is
larger than the threshold for the combined model. This
modification allows us to reduce the number of CMBFast
computations by about a factor of five. Using this modified
variance-maxvarstraddle heuristic, we sampled roughly
1.5 million additional parameter vectors, about 300,000 of
these points resulted in CMBFast runs. Note that 1.5 mil-
lion parameter vectors corresponds to a grid with roughly
six elements per side. Since the variance-based metrics
sample the entire parameter space, their prediction perfor-
mance is typically similar to this naive gird. Thus, using an
active learning metric that focuses on the boundary that we
are interested in (and ignores large parts of the parameter
space which can be proved to be infeasible) significantly
reduces the computational complexity of the algorithm.

In Figures 3(a)-3(c) we depict 95% confidence regions de-
rived using only a single data set projected into theΩM ver-
susΩΛ space. Confidence regions are derived by binning
the samples selected by the algorithm and including those
bins in the confidence region which contain points where
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f ≤ t, resulting in the blockiness in the diagrams. The fig-
ures illistrate that the shapes of the 95% confidence regions
for each of the data sources are quite different, validating
our supposition that different observable functions can be
used to efficiently reject parts of parameter space.

In Figure 3(d), depicts the 95% confidence region found
using the joint analysis for all three data sets; one and two
dimensional projections onto the other parameters can be
found in Bryan (2007). It is clear that using the combina-
tion of all three data sets dramatically improves the infer-
ences that can be made on the cosmological parameters’
values. In particular, note that the derived confidence re-
gion is significantly smaller than what would have been ob-
tained using a simple intersection. As a result, we cannot
blindly combine the WMAPp-values of Bryan, B., et al.
(2005) withp-values derived for the supernova and large
scale structure data sets, as the surface of the combined
target function is drastically different from the surfacesof
each of the models independently. Specifically, all of the
models in the Bryan, B., et al. (2005) data set can be re-
jected at the 95% confidence level by the supernova and
large scale structure data. This is not surprising; the anal-
ysis of Bryan, B., et al. (2005) used only CMBFast one
the WMAP data, and it is well known that CMBFast only
loosly fits the WMAP data (Spergel, D. et al., 2003). Thus
in order to accurately compute the 95% confidence regions
of the joint model (using all three data sets), we must sam-
ple new models in the multiple model framework, as we
did in Figure 3(d). Only then will we correctly learn the
true level-set of the composite target function.

6. Conclusions

We have described the problem of learning a target func-
tion based on a set of related observable functions. This
problem naturally arises in many situations including the
joint analysis of multiple data sets which describe a sin-
gle physical phenomenon. We have developed an algo-
rithm for locating the level set of this target function while
minimizing the number of experiments necessary. We de-
scribed and showed how several different heuristics for
choosing experiments from a set of candidates perform
on synthetic target functions. Our experiments indicate
that variance-maxvarstraddle outperforms both random
and variance-weighted heuristics typically applied to active
learning problems. Moreover,variance-maxvarstraddle
is better than both thesequential- andvariance-straddle
heuristics, as it appears to better approximate the informa-
tion gain of a candidate point.

Using thevariance-maxvarstraddle heuristic, we were
able to efficiently learn the level set of an eight dimen-
sional surface. This level-set corresponds to the 95% confi-
dence region of a joint analysis between three data sources.

Using the CMB, supernovae and large scale structure data
sets results in much tighter confidence regions than those
obtained using only a single source of data, allowing for
stronger scientific inferences. Standard ad hoc techniques
for combining evidence, such as intersecting the data, or
using weak priors do not result in such a significant reduc-
tion in the accepted parameter space.
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