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Abstract

We describe a manifold learning frame-
work that naturally accommodates super-
vised learning, partially supervised learn-
ing and unsupervised clustering as particu-
lar cases. Our method chooses a function by
minimizing loss subject to a manifold regu-
larization penalty. This augmented cost is
minimized using a greedy, stagewise, func-
tional minimization procedure, as in Gradi-
entboost. Each stage of boosting is fast and
efficient. We demonstrate our approach us-
ing both radial basis function approximations
and trees. The performance of our method is
at the state of the art on many standard semi-
supervised learning benchmarks, and we pro-
duce results for large scale datasets.

1. Introduction

Manifold Learning algorithms exploit geometric (or
correlation) properties of datasets in high-dimensional
spaces. The literature is too large to review in detail
here (163 references in a recent review (Zhu, 2006)).
Many different approaches have been pursued that uti-
lize manifold structure such as constructing an explicit
parametrization (e.g. (Tenenbaum et al., 2000; Roweis
& Saul, 2000; Donoho & Grimes, 2003)), introducing a
penalty term that imposes smoothness conditions on
functions restricted to the manifold (e.g. (Sindhwani
et al., 2006)), adjusting kernel smoothing bandwidths
to account for manifold properties (e.g. (Bickel & Li,
2007)), and infering labels for unlabeled data using a
harmonic smoother (e.g. (Zhu et al., 2003)).
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There is a rough distinction in semi-supervised learn-
ing between manifold based algorithms that expect
data to lie embedded in a space of lower intrisic di-
mensionality, and cluster-based algorithms that ex-
pect data to lie in clumps (the distinction seems to
explain some differences in performance on different
datasets (Chapelle et al., 2006)). There is some dis-
agreement about the benefits of using unlabeled data,
which may not always improve the asymptotic error
rate of a regression estimator (Lafferty & Wasserman,
2007). On the other hand, (Niyogi, 2008) argues that
manifold learning is useful insofar as the marginal of
the data Px can be linked with the conditional Py|x
via the manifold.

Computational Complexity is a common problem
for most semi-supervised approaches. Write l for the
number of labeled data items and u for the number
of unlabeled data items. Many algorithms scale as
badly as O((l+u)3) (Zhu, 2006). Transductive support
vector machines must solve a quadratic programming
problem in (l+u) variables (Joachims, 1999). Manifold
smoothing of an SVM solves a quadratic programming
problem in l variables, followed by a linear problem
in l + u variables; the situation is better for a linear
SVM if feature vectors are sufficiently sparse (Sind-
hwani et al., 2006). Harmonic smoothing solves a rel-
atively sparse linear system in l variables. This prob-
lem is relatively tractable, because the linear system
involves the Laplacian of the smoothing kernel and so
should be diagonally dominant (see (Dyn et al., 1986)
for relevant observations in the context of radial basis
functions). Each method must pay the cost of forming
the Laplacian. For functional approximation schemes
other than kernel smoothing, the complexity of current
manifold learning methods in the number of training
examples appears to be high. This is a problem – it is
natural to want to use a manifold regularization term
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with such methods as tree-structured classifiers, and
with very large datasets.

Gradient Boosting poses function approximation as
a variational problem, then uses a form of coordi-
nate ascent on that problem ((Friedman, 1999); sec-
tion 2). In this paper, we describe a variation on
gradient boosting that can exploit a manifold regu-
larization term, is fast and efficient for many forms of
functional approximation (section 2.1), provides out
of sample extensions (section 4), offers performance at
the state of the art on standard datasets, and is capa-
ble of handling very large datasets (section 6). In the
extreme case, when there is no supervision, the gen-
eralized method gracefully degrades into a clustering
method (section 4). Finally, we show that our frame-
work also easily extends to multi-class problems by
choosing suitable loss functions (section 5).

2. Semi-Supervised Boosting

We follow convention by minimizing the sum of an
expected loss and a regularization term. We must pre-
dict labels y ∈ Y for patterns x ∈ X . We assume a
probability distribution Px,y over X × Y.

We will further assume the support of the marginal Px

lies on a domainM⊂ X . Typically, this domain is of
lower intrinsic dimension than X ; the term manifold
is widely used to refer to such domains, though we
require no manifold properties.

Write the predictor as F (x), and the cost function as
ψ(y, F (x)). We would like to find the function mini-
mizer F ∗ = arg minF∈H V [F ], of the cost functional

V [F ] =
∫
ψ(y, F (x))dPx,y︸ ︷︷ ︸
Expected Loss

+ γM

∫
M
||∇MF (x)||2dPx︸ ︷︷ ︸

Manifold Regularization

(1)

restricted to some function family H. Our regulariza-
tion term is of the same form as that of (Sindhwani
et al., 2006), and encourages smoothness of the solu-
tion in regions of high probability density. We control
the complexity of the solution by choosingH and using
the shrinkage approach of (Friedman, 1999).

This expression is very general. There are many pos-
sible choices for ψ[y, F ]. Expressions such as |y − F |
and (y−F )2 are typically used for regression. Expres-
sions such as exp(−yF ) and the binomial log likelihood
log(1 + exp(−2yF )) penalize the margin yF , and are
typically used for classification.

2.1. ManifoldBoost Framework

2.1.1. Stagewise Functional Minimization (Px

Known)

Following the work of Friedman (Friedman, 1999), we
will find a additive solution of the form

FM (x) =
M∑

m′=0

fm′(x) (2)

We will proceed in a greedy fashion. Assume we have
a solution for M = m; we will then minimize V [Fm +
fm+1] with respect to fm+1. After (Friedman, 1999),
we obtain a descent direction from the first variation
of V

V [Fm + εf ] = V [Fm] + εδV [Fm, f ] +O(ε2) (3)

where
δV [Fm, f ] =

d

dε
V [Fm + εf ]|ε=0

Write 〈u, v〉 for the usual inner product in L2. Now
δV [Fm, f ] is a linear functional of f , so there is some
GV (Fm) — which we regard as the “gradient” of the
cost — such that δV [Fm, f ] = 〈GV (Fm), f〉. Now we
have that 〈GV (Fm), f〉 is equal to∫ {

f(x)
[∫

y
∂

∂uψ(y, u)
∣∣
u=Fm(x)

dPy|x

]
+2γM∇f(x)t∇Fm(x)

}
dPx (4)

Assuming sufficient regularity, recalling that Px = 0
on the boundary of the support of Px, and using the
first Green identity, we have that 〈GV (Fm), f〉 is equal
to∫ {

f(x)
[∫

y
∂

∂uψ(y, u)
∣∣
u=Fm(x)

dPy|x

]
+2γMf(x)∇2

MFm(x)

}
dPx (5)

where ∇2
M = −∇ · ∇M is the Laplace-Beltrami op-

erator. The optimal descent direction is a function f
that maximizes −〈GV (Fm), f〉 (subject, if necessary
to a norm constraint on f). The term fm+1 = αf is
obtained using line search, minimizing the true cost
V [Fm + αf ] with respect to α.

2.1.2. Finite Data

Generally, neither Px nor Px,y are known. Instead, we
have sample of labelled data {xi, yi}li=1, and of un-
labelled data {xi}ui=l+1. Now integrals become sums
over data points. Generally, {fm(x)} will belong to
a parametric family of functions (e. g. Radial Basis
functions, decision trees, etc)̇.

The Laplacian operator in equation 5 must be dis-
cretized. In high dimensions, we cannot triangulate
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the data set. A smoothed Laplacian is equivalent to
the difference between a short-scale average of the data
and a long-scale average (e.g. the use of unsharp mask-
ing in photography, or the difference of Gaussians in
computer vision). The graph Laplacian is a linear
operator that takes a function on the graph to the
weighted difference between the function value and the
average of the K nearest neighbours. This means it is
usual to approximate the Laplacian operator with the
graph Laplacian L (e.g. see (Sindhwani et al., 2006)).

Write the graph Laplacian as LM. The cost function
becomes

V [F ] =
1
l

l∑
i=1

ψ(yi, F (xi))

+
γM

(l + u)K

∑
i,j

F (xi)LMi,jF (xj) (6)

Again, assume we know Fm, and seek fm+1. We will
find a function f that maximizes −〈GV (Fm), f〉 then
we will weight this function using line search. The
inner product is 〈a, b〉 = 1

N

∑N
i=1 a(xi) · b(xj) and we

have that

〈GV (Fm), f〉 =
1
l

∑
i

∂

∂u
ψ(y, u)

∣∣∣∣
u=Fm(xi)

f(xi)

+
2γM

(l + u)2
∑
i,j

f(xi)LMi,jFm−1(xj)(7)

Now −〈GV , f〉 is linear in f , and so we should maxi-
mize subject to a norm constraint on f . If the norm is
fixed, then maximizing this expression is equivalent to
minimizing ||GV − f ||2 = ||GV ||2 − 2 〈GV , f〉 + ||f ||2.
This means any squared loss regression algorithm can
be used to find the optimal parameters. Our varia-
tional formulation explains why Friedman’s choosing
to make f parallel to the gradient GV and posing
the problem as squared error minimization is natu-
ral. Once the descent direction f is found, the final
fm+1 = αf is obtained using line search, minimizing
the true cost V [Fm + αf ].

3. Two Examples: Tree and RBF
ManifoldBoost Algorithms

We offer two example algorithms with calculations to
illustrate our extremely general formalism. For each
example, we consider the binary case (y ∈ {−1, 1},
y = 0 for unlabeled data), and use the negative
binomial log likelihood as the loss function (Fried-
man, 1999): ψ(y, F ) = log(1 + exp(−2yF )) For this
case, whatever classifier we use represents F (x) =
1
2 [log(p(y = 1|x))− log(p(y = −1|x))] and so at round

m, the inner product with the “gradient” becomes,

〈GV (Fm), f〉 =
1
l

∑
i

2yi

1 + exp(2yiFm(xi))
f(xi)

+
2γM

(l + u)K

∑
i,j

f(xi)LMi,jFm(xj) (8)

The cases now differ by the procedures used to choose
the optimal f

Tree-ManifoldBoost: As in L2 TreeBoost (Fried-
man, 1999), we use regression trees as base learners.
A tree has the form fm+1(x) =

∑S
s=1 ηm+1,sI[x ∈ Rs],

where I[·] = 1 if the expression inside is true, and
I[·] = 0 otherwise.

To minimize ||GV − f ||2, we must search for the pa-
rameters Rs (which determine the geometry of the
tree) and ηs (which determine weights within region).
Once a tree has been found, we fix Rs and min-
imize V (Fm(x) +

∑S
s=1 ηm,s[x ∈ Rs]) with respect

to {ηs}, using a standard continuous optimization
method (BFGS; see (Bertsekas, 1996)). In each round,
we use a small number of descent steps to prevent over-
fitting.

Algorithm 1 Tree ManifoldBoost Algorithm
1: F0(x) = 1/2[log(1 + y)− log(1− y)]
2: for m = 1 to M do
3: Compute GV as in (8)
4: Obtain regression tree {Rs,m} by minimizing∑

i(GV (xi)−
∑

s ηm,sI[xi ∈ Rm,s])2

5: Find {ηm,s} using BFGS and ∂V
∂ηs

, and fixing
{Rm,s}

6: Fm(x) = Fm−1(x) +
∑

s ηm,s[x ∈ Rm,s]
7: end for

The algorithm converges when M rounds have been
run, or the relative change in the cost function in a
round is below a threshold. Probability estimates for
each x can then be estimated by inverting the loss
function: p(y = 1|x) = 1/(1 + exp(−2FM (x))). This
in turn can be used for classification:

ỹi =
{

1 p(y = 1|x)k−1,1 > p(y = −1|x)k1,−1

−1 otherwise
(9)

where cost ka,b is the penalty for choosing label a when
b is the correct label.

Figure 1 shows a toy example for semisupervised clas-
sification taken from (Sindhwani et al., 2006) (two
moons dataset). The unlabeled datapoints are de-
picted in green and the diamonds represent the labeled
examples (one for each class). The algorithm also can
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Figure 1. Semi-supervised learning using Tree- and RBF-ManifoldBoost. first figure from left to right shows a toy
example introduced in (Sindhwani et al., 2006) (two moons dataset): the unlabeled datapoints are depicted in green, the
diamonds represent the labeled examples (one for each class). The output classification of both algorithm is the same
and is depicted on the second image (for datapoints). The third and fourth figures depict the likelihood predicted by
the classifiers for the whole space for the tree- and rbf-based classifier respectively.

provide likelihood estimates, as seen in the right fig-
ures.

RBF-ManifoldBoost: Tree functions are not the
only possible approximation to the “gradient”. Step
4 in algorithm 1 can be modified so that R radial ba-
sis function of width σ, each with a weight wr and
centered in a datapoint are chosen as approximation.
Again, a BFGS step can be performed to improve the
loss by fitting the weights wr. Algorithm 2 describes
this.

Algorithm 2 RBF ManifoldBoost Algorithm
1: F0(x) = 1/2[log(1 + y)− log(1− y)]
2: for m = 1 to M do
3: Compute GV as in (8)
4: Choose R RBFs greedily to minimize∑

i(GV (xi)−
∑

r wrRBFr,σ(xi)])2

5: Find {wr} using BFGS and ∂V
∂wr

6: Fm(x) = Fm−1(x) + ν
∑

r wrRBFr,σ(x)
7: end for

Complexity: The procedure itself is linear in n =
l+u, in the Laplacian neighborhoodK, the dimension-
ality of x and the number of rounds. The complexity
of the algorithm depends then on the base regressor,
and the computation of the Laplacian matrix. Influ-
ence trimming can also be used to get tenfold speedups
(Friedman, 1999), although the algorithm is still linear
in the number of datapoints.

4. Unsupervised Boosting

The essential step in semi-supervised learning is the
observation that similar data items should tend to
have similar labels, which means that semi-supervised
learning method should be capable of clustering. Our
framework can naturally be extended to unsupervised
learning, where one wishes to cluster data and the
choice of label for a cluster is arbitrary. As there are
no labeled data, the first term in equation 6 becomes

zero and the problem is,

F ∗ = arg min
F∈H

∑
i,j

F (xi)LMi,jF (xj) (10)

under the constraints
∑

i F (xi) = 0,
∑

i F (xi)2 = N
(this is a form of spectral clustering problem, see (Sind-
hwani et al., 2006); without the constraints, the prob-
lem is ill-posed). Our formalism yields a greedy
method for this problem, rather than the usual gen-
eralized eigenvalue problem. To manage constraints,
we use the Augmented Lagrangian method (Bertsekas,
1996), which adds a penalty in each round for con-
straint violations in the unconstrained problem. We
choose F ∗ to be

arg min
F∈H

∑
i,j

F (xi)Li,jF (xj) + λm
1

∑
i

F (xi) + . . .

λm
2

(∑
i

F (xi)2 −N

)
+
cm1
2

(∑
i

F (xi)

)2

+ . . .

cm2
2

(∑
i

F (xi)2 −N

)2

(11)

for non-decreasing sequences {cm1 , cm2 }Mm=1. Af-
ter each round, the values of the Lagrange mul-
tipliers are increased by the constraint violation
(Bertsekas, 1996) λm+1

1 ← λm
1 + cm1 (

∑
i F (xi)) and

λm+1 ← λm
1 + cm1 (

∑
i F (xi)2 −N). As before, BFGS

is applied in each round. Algorithm 3 describes the
tree-based version.

The algorithm converges to a local minimum of
the constrained problem. This formulation, unlike
ISOMAP, naturally takes care of out-of-sample evalu-
ation. Compared to (Sindhwani et al., 2006), the com-
putational complexity is greatly reduced. On the other
hand the solution is greedy, and there is no straightfor-
ward term for controlling the complexity of the func-
tion in the ambient space; this is achieved through the
depth of the trees used in the algorithm.
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Figure 2. Unsupervised learning. The framework can be extended to unsupervised learning. The same problem as in
figure 1 is presented without labels (left image). The result of the Tree-based algorithm is shown in the center image.
The plots on the right show the constraint violations go to zero as learning progresses. This figure is best viewed in color.

Algorithm 3 Unsupervised Tree ManifoldBoost Al-
gorithm
1: Initialize F0(x) randomly, with zero mean and low

variance.
2: for m = 1 to M do
3: Compute GV of the penalized, uncontrained

problem.
4: Obtain regression tree {Rm,s} by minimizing∑

i(GV (xi)−
∑

s ηm,s[xi ∈ Rm,s])2

5: Find {ηm,s} using BFGS and fixing {Rm,s}
6: Fm(x) = Fm−1(x) +

∑
s ηm,s[x ∈ Rm,s]

7: Update Lagrange multipliers using the constrain
violations.

8: end for

5. Multiclass Case

Algorithm 1 can be extended to K-class problems by
introducing a multinomial cost in equation 1,

ψ({y(c), F (c)(x)}Cc=1) = −
C∑

c′=1

y(c′) log p(c′)(x) (12)

where p(c)(x) represents the belief example x belongs
to class c, and y(c) is a binary variable which is one if
example x belongs to class c. As in (Friedman, 1999)
we use the symmetric multiple logistic transform

p(c)(x) = expF (c)(x) ·

(
C∑

c′=1

expF (c′)(x)

)−1

(13)

Smoothness of F (c) is enforced by defining the cost
V ({F (c)}) to be

1
l

∑
i

ψ({y(c)
i , F (c)(xi)}Cc=1) + . . .

1
C · (l + u) ·K

∑
c′

∑
i,j

γ
(c′)
M F (c′)(xi)LMi,jF (c′)(xj)

The inner product of f (c) with gradient of V becomes,
for class c,

〈G(c)
V (F (c)

m ), f〉 =
1
l

∑
i

(−y(c)
i + p(c)

m (xi))f(xi) (14)

+
2γMc

C · (l + u)2
∑
i,j

f(xi)LMi,jF (c)
m (xj)

Now one regression tree is fitted per class at each round
to approximate each descent direction. As in the two
class problem, the S regions {R(c)

m,s}Ss=1 defined by the
terminal nodes are fixed, and the parameters η(c)

m,s for
regions in each tree are learned in order to minimize
the total cost V . We use a couple of BFGS iterations
per round to find these parameters. In order to do
this, the derivatives of the cost with respect to η

(c)
m,s

have to be computed.

Once the final {F (c)
M (x)} are computed, the proba-

bility for a given example of each label can be esti-
mated and thus the label can be classified as ĉ(xi) =
arg minc

∑C
c′=1 kc,c′p

(c′)
M (x) for costs kc,c′ when label c

is assigned when label c′ is correct. The complexity of
this algorithm is also linear in the number of classes,
but it scales highly sub-linearly with the number of
rounds M when inluence trimming is used (Friedman,
1999).

6. Experiments and Discussion

6.1. Comparison to Other Regularized
Boosting Algorithms

Kegl et. al. (Kégl & Wang, 2005) introduce Reg-
Boost, an extension to AdaBoost which incorpo-
rates a weight decay that depends on a Laplacian reg-
ularizer. Our approach is different several senses: first,
ours is based on the GradientBoost framework while
theirs is based on AdaBoost, second, in the sense that
ManifoldBoost does not require manifold-regularized
base learners. This makes their approach limited in
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Figure 3. The framework also handles multiclass learning. Left figure shows another toy example (three rings): the
unlabeled datapoints are depicted in green, the diamonds represent the labeled examples (one for each class). The output
of the algorithm is depicted on the center figure. The blue classification function F 2(x) is shown on the right. This
figure is best viewed in color.

Algorithm 4 K-Tree ManifoldBoost Algorithm

1: Let p(c)
0 be the frequencies of each class c.

2: F
(c)
0 (x) = log p(c)

0 − 1
C

∑C
c′=1 log p(c)

0

3: for m = 1 to C do
4: Compute p(c)

m (x) as in eq. 13 for all c.
5: for c = 1 to C do
6: Compute G(c)

V as in (14)
7: Obtain regression tree {R(c)

m,s} by minimizing∑
i(G

(c)
V (xi)−

∑
s η

(c)
m,sI[xi ∈ R(c)

m,s])2

8: end for
9: Find {η(c)

m,s} using BFGS and ∂V
∂ηm,s

, and fixing

{R(c)
m,s} for all c.

10: F
(c)
m (x) = F

(c)
m−1(x) +

∑
s η

((c))m,sI[x ∈ R
(c)
m,s]

for all c.
11: end for

the types of learners to be used (they use stumps only).
Also, the ensemble classifier should be smooth on the
manifold, but regularizing each of the base learners
may result in over-smoothing of the overall solution.
We compare our results with (Kégl & Wang, 2005) on
standard UCI benchmark datasets. Whenever possi-
ble we tried to use the same configuration as (Kégl &
Wang, 2005)1. We set number of nearest neighbors
K = 8 and used binary weights to compute the graph
Laplacian. We used regression trees of fixed depth 3 as
learners. The datasets were normalized to zero mean
and unit variance. The learning rate was set to ν = 0.1
after (Friedman, 1999). Only γ was explored for dif-
ferent values. We used 5-fold cross validation for de-
termining parameters and 10-fold cross validation for
error estimation. Table 1 compares our performance
with that of AdaBoost, RegBoost, and (M. Belkin
& Niyogi, 2004) as reported in (Kégl & Wang, 2005).

In the fully supervised problems, there is a difference
1The breast cancer dataset was not used because (Kégl

& Wang, 2005) does not explain what metric they use for
categorical data in the Lalacian, making any comparison
meaningless.

in performance for the Sonar dataset, an impovement
in the Ionosphere dataset, and a very slight decrease in
performance in the Pima Indians dataset with respect
to RegBoost, well within a standard deviation. It
should be noted that the variance in the performance
of the algorithm is consistently smaller for our algo-
rithm. (Kégl & Wang, 2005) also tests the algorithm
under semi-supervision, using 100 labeled and 251 un-
labeled examples. We ran our algorithm under the
same conditions, using the stumps to prevent overfit-
ting. In this case our algorithm outperforms (Kégl &
Wang, 2005) and (M. Belkin & Niyogi, 2004), as our
mean performance over 10 runs is more than a stan-
dard deviation above theirs. No variance of results is
reported in (Kégl & Wang, 2005).

(Chen & Wang, 2008) proposes an interesting alter-
native approach to regularized boosting based on the
more traditional framework of boosting “weak” learn-
ers outlined in (Mason et al., 2000). As a consequence,
they need to assign pseudo-class labels to unlabeled
data (labels assigned with the current Ft(x)) while
learning the ensemble. In contrast, ManifoldBoost
uses base regressors to measure the confidence of the
prediction and does not commit to {−1,+1} classifi-
cation at each step. Smoothing this seems more natu-
ral in a formulation that penalizes second derivatives
(Laplacian cost).

6.2. Comparison to Other Semi-Supervised
Learning Algorithms

We measured the performance of our two-class RBF-
ManifoldBoost algorithm on the SSL data sets, a stan-
dard benchmark for semi-supervised learning problems
introduced in (Chapelle et al., 2006), and compared
with the 14 other state-of-the-art semi-supervised
learning algorithms discussed there. In table 2 we
present results for five data sets, 2 of which are cluster-
like and 3 manifold-like. On the manifold-like data
sets, we are at the state of the art and no single algo-
rithm does uniformly better than us. On the cluster-
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Table 1. Performance results of Tree-ManifoldBoost and different boosting approaches on standard UCI datasets, as
reported in (Kégl & Wang, 2005) (variance in parenthesis)

Ionosphere Pima Indians Sonar Ionosphere
Algorithm Train / Test Train / Test Train / Test (semisup.)
AdaBoost 0% / 9.2% (7.1) 10.9% / 25.3% (5.3) 0% / 32.5% (19.8) -
RegBoost 0% / 7.7% (6.0) 16.0% / 23.3% (6.8) 0% / 29.8% (18.8) 12%

Tree-ManifoldBoost 0% (0) / 6.5% (4.8) 6.5% (0.5) / 24.0% (5.2) 0% (0) / 18.7% (6.1) 10.4% (0.8)
Belkin et al., 04 2 - / - - / - - / - 18%

like data sets, our performance is good compared to
most other regularization-based and manifold learn-
ers but is not as good as the specialized clustering
algorithms Cluster-Kernel and SGT (Spectral Graph
Transducer).

Parameter search was performed following section
21.2.5 of (Chapelle et al., 2006) when possible, us-
ing the same ranges for γ, the RBF width σ, dis-
tance metric, K, etc. For the base regressors, we used
R ∈ {15, 30} as the numbers of RBFs, and M = 500
rounds. The learning rate was again chosen as ν = 0.1.
These parameters were obtained in small-scale experi-
ments and then fixed. Results reported are the means
over the different splits.

The running times for a MATLAB implementation on
a 2 GHz machine was in the order of minutes. Unfor-
tunately, running times for the other algorithms were
not reported in (Chapelle et al., 2006).

6.3. SecStr Data Set

We also ran experiments on the SecStr data set
(Chapelle et al., 2006), which is a problem of predict-
ing the secondary structure of protein sequences from
their amino acid chains. This is a large-scale and chal-
lenging data set with 83,000 labeled and 1.2 million
unlabeled examples. Semi-supervised algorithms have
made little improvement to this benchmark so far (Ta-
ble 3), and the best result is the manifold-regularized
learning algorithm (Sindhwani et al., 2006), which
yields a 29% error rate on a subset of the data with
10,000 labeled and 73,000 unlabeled examples.

Tree-ManifoldBoost with γ ∈ {0, 10−5, 10−3, 0.1, 1}
achieved similar performance on the same subset in
approximately 45 minutes of training time (after com-
puting the Laplacian matrix). We used stumps, K = 6
and ν = 0.05. No model selection was performed. We
used as similarity measure the Hamming distance be-
tween the best alignment of sequences. The results
reported are the mean over the 10 splits.

When we used the whole dataset (1.3 million se-

quences) with γ ∈ {0, 10−3, 1}, there is virtually no
performance improvement. This may be due to the
smaller parameter search space, or to peculiarities of
the dataset. When we analysed the structure of the
manifold on the labeled subset, we observed that al-
most 20% of sequences at distance 1 (that is, shifted
by one position to the left or right) had a different la-
bel. Therefore the manifold assumption is not strong
on this set.

As far as we know, this is the first time results are
reported on the complete SecStr dataset. Our algo-
rithm is efficient and therefore can handle datasets of
this size. Learning time is in the order of three hours
for 1.3 million samples (leaving aside the computa-
tion of the graph Laplacian, which took significantly
longer)

Table 3. Error rates on SecStr dataset. l is the number of
labeled examples.

l 100 1000 10000
SVM 44.59 33.71
Cluster Kernel 42.95 34.03
QC randsub (CMN) 42.32 40.84
QC smartonly (CMN) 42.14 40.71
QC smartsub (CMN) 42.26 40.84
Boosting (assemble) 32.21
LapRLS 42.59 34.17 28.55
LapSVM 43.42 33.96 28.53
Tree-ManifoldBoost (83K) 42.70 33.43 28.96
Tree-ManifoldBoost (1.3M) 43.28 33.42 29.07

7. Conclusion

We have presented a new boosting framework for reg-
ularized learning in a greedy, stage-wise procedure. It
is flexible enough to handle the whole range of super-
vision, from fully supervised classification to unsuper-
vised clustering. The framework is general, accepts
many different function approximation techniques, is
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Table 2. Error rates for data sets from (Chapelle et al., 2006). l is the number of labeled examples.

Manifold-like Cluster-like
l = 10 l = 100 l = 10 l = 100
BCI Digit1 USPS BCI Digit1 USPS g241c g241d g241c g241d

1-NN 49.00 13.65 16.66 48.67 3.89 5.81 47.88 46.72 43.93 42.45
SVM 49.85 30.60 20.03 34.31 5.53 9.75 47.32 46.66 23.11 24.64
21.2.8 MVU + 1-NN 47.95 14.42 23.34 47.89 2.83 6.50 47.15 45.56 43.01 38.20
21.2.8 LEM + 1-NN 48.74 23.47 19.82 44.83 6.12 7.64 44.05 43.22 40.28 37.49
21.2.4 QC + CMN 50.36 9.80 13.61 46.22 3.15 6.36 39.96 46.55 22.05 28.20
21.2.6 Discrete Reg. 49.51 12.64 16.07 47.67 2.77 4.68 49.59 49.05 43.65 41.65
21.2.1 TSVM 49.15 17.77 25.20 33.25 6.15 9.77 24.71 50.08 18.46 22.42
21.2.1 SGT 49.59 8.92 25.36 45.03 2.61 6.80 22.76 18.64 17.41 9.11
21.2.10 Cluster-Kernel 48.31 18.73 19.41 35.17 3.79 9.68 48.28 42.05 13.49 4.95
21.2.3 Data-Dep. Reg. 50.21 12.49 17.96 47.47 2.44 5.10 41.25 45.89 20.31 32.82
21.2.11 LDS 49.27 15.63 17.57 43.97 3.46 4.96 28.85 50.63 18.04 23.74
21.2.5 Laplacian RLS 48.97 5.44 18.99 31.36 2.92 4.68 43.95 45.68 24.36 26.46
21.2.7 CHM (normed) 46.90 14.86 20.53 36.03 3.79 7.65 39.03 43.01 24.82 25.67
RBF-ManifoldBoost 47.12 19.42 19.97 32.17 4.29 6.65 42.17 42.80 22.87 25.00

efficient and fast at each round of boosting, handles
multi-class and wholly unsupervised problems, and
produces results at the state of the art. We are work-
ing on understanding important aspects of the algo-
rithm, in particular, generalization, error bounds, con-
vergence and local minima.
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