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Abstract

Traditional methods for analyzing popula-
tion structure, such as the Structure pro-
gram, ignore the influence of mutational ef-
fects. We propose mStruct, an admixture
of population-specific mixtures of inheritance
models, that addresses the task of structure
inference and mutation estimation jointly
through a hierarchical Bayesian framework,
and a variational algorithm for inference. We
validated our method on synthetic data, and
used it to analyze the HGDP-CEPH cell line
panel of microsatellites used in (Rosenberg
et al., 2002) and the HGDP SNP data used
in (Conrad et al., 2006). A comparison of
the structural maps of world populations esti-
mated by mStruct and Structure is presented,
and we also report potentially interesting
mutation patterns in world populations es-
timated by mStruct, which is not possible by
Structure.

1. Introduction

The deluge of genomic polymorphism data, such as
the genome-wide multilocus genotype profiles of vari-
able number of tandem repeats (i.e., microsatellites)
and single nucleotide polymorphisms (i.e., SNPs), has
fueled the long-standing interest in analyzing patterns
of genetic variations.to reconstruct the ancestral struc-
tures of modern human populations, because such ge-
netic ancestral information can shed light on the evo-
lutionary history of modern populations and provide
guidelines for more accurate association studies and
other population genetics problems.

One of the state-of-the-art methods for population
structure analysis based on multilocus genotype data
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Figure 1. Population structural map inferred by Structure
on HapMap data consisting of 4 populations. The colors
represent different populations

is the program Structure, whose basic form is based
on a statistical formalism known as the admixture
model (Pritchard et al., 2000). Admixtures are in-
stances of a more general class of hierarchical Bayesian
models known as mixed membership models (Erosheva
et al., 2004), which postulate that genetic markers of
each individual are iid (Pritchard et al., 2000) or spa-
tially coupled (Falush et al., 2003) samples from multi-
ple population-specific fixed-dimensional multinomial
distributions (which we will call allele frequency pro-
files (Falush et al., 2003), or AP) of marker alleles.
Under this assumption, the admixture model identi-
fies each ancestral population by a specific AP (that
defines a unique allele frequency distribution for each
ancestral population for each marker) and displays the
fraction of contributions from each AP in a modern
individual chromosome as a structural map. Figure 1
shows an example of a structural map of four modern
populations inferred from a portion of the HapMap
multi-population dataset by Structure. In this popu-
lation structural map, each individual is represented
as a thin vertical line which shows the fraction of the
individual’s chromosome which originated from each
ancestral population, as given by a unique AP. This
method has been successfully applied to human ge-
netic data in (Rosenberg et al., 2002) and has unrav-
eled impressive patterns in the genetic structures of
world population.

However, since an AP merely represents the frequency
of alleles in an ancestral population, rather than the
actual allelic content or haplotypes of the alleles them-
selves, the admixture models developed so far based
on AP do not model genetic changes due to muta-
tions from the ancestral alleles. Indeed, a serious pit-
fall of the model underlying Structure, as pointed out
in (Excoffier & Hamilton, 2003), is that there is no
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mutation model for modern individual alleles with re-
spect to hypothetical common prototypes in the ances-
tral populations, i.e, every unique allele in the mod-
ern population is assumed to have a distinct ances-
tral frequency, rather than allowing the possibility of
it just being a descendent of some common ancestral
allele. Thus, while Structure aims to provide ancestry
information for each individual and each locus, there
is no explicit representation of “ancestors” as a phys-
ical set of “founding alleles”. Therefore, the inferred
population structural map emphasizes revealing the
contributions of abstract population-specific allele fre-
quency profiles, which does not directly reflect indi-
vidual diversity or the extent of genetic changes with
respect to the founders. Therefore, Structure does not
enable inference of the founding genetic patterns, the
age of the founding alleles, or the population diver-
gence time (Excoffier & Hamilton, 2003).

Another important issue in determining population
structure is to look for the presence of admixture, a
basic assumption of the Structure model. However,
as we shall see later, on the HGDP data, it produces
results that cluster individuals cleanly into one allele
frequency profile or the other, thus leading us to con-
clude that there was little or no admixture between
the human populations. While such a partitioning of
individuals would be desirable for clustering them into
groups, it does not offer us any biological insight into
the intermixing of the populations.

In this paper, we present mStruct (for structure un-
der mutations), based on an admixture of population-
specific mixtures of inheritance model (AdMim). Ad-
Mim is an admixture of mixtures model, which rep-
resents each ancestral population as a mixture of an-
cestral alleles each with its own inheritance process,
and each modern individual as an “ancestry propor-
tion vector” (ancestry vector or map vector) that in-
dicates membership proportions among the ancestral
populations. By a simple but important extension
to the LDA-like (Blei et al., 2003) admixture model
used by Structure, mStruct facilitates estimation of
both the structural map of populations (incorporat-
ing mutations) and the mutation rates of either SNP
or microsatellite alleles. A new variational inference
algorithm was developed for inference and learning.
We compare our method with Structure on both syn-
thetic genotype data, and on the microsatellite and
SNP genotype data of world populations (Rosenberg
et al., 2002; Conrad et al., 2006). Our results show the
presence of significant levels of admixture among the
founding populations. We also report interesting ge-
netic divergence in world populations revealed by the
mutation patterns we estimated.

2. The Statistical Model
2.1. Representation of Populations

To reveal the genetic composition of each modern in-
dividual in terms of contributions from hypothetical
ancestral populations via statistical inference on mul-
tilocus genotype data, one must first choose an appro-
priate representation of ancestral populations. Below,
we begin with a brief description of a commonly used
method, followed by a new method that we propose.

2.1.1. Population-Specific Allele Frequency
Profiles

Due to the polymorphic nature of genetic markers, an
intuitive statistic to characterize a population is the
frequencies of all observed alleles at all loci. For ex-
ample, we can represent an ancestral population k by
a unique set of population-specific multinomial dis-
tributions, βk ≡ {~βk

i ; i = 1 : I}, where ~βk
i =

[βk
i,1, . . . , β

k
i,L′

i
] is the vector of multinomial parame-

ters, also known as the allele frequency profile (Falush
et al., 2003), or AP, of the allele distribution at locus
i in ancestral population k; L′

i denotes the total num-
ber of observed marker alleles at locus i, and I denotes
the total number of marker loci. This representation,
known as population-specific ancestry proportion pro-
file, is used by the program Structure.

2.1.2. Population-Specific Mixtures of Ancestral
Alleles

A problem with the population-specific AP profile rep-
resentation is that it ignores the possibility of muta-
tions underlying the alleles observed in modern popu-
lations with respect to their ancestral alleles. To cap-
ture this, we propose to represent a population by
a genetically more realistic statistical model known
as the population-specific mixtures of ancestral alle-
les (MAA). For each locus i, an MAA for ancestral
population k is a triple {µk

i , δk
i , ~βk

i } consisting of a set
of ancestral (or founder) alleles µk

i = (µk
i,1, . . . , µ

k
i,Li

),
which can differ from their descendent alleles in the
modern population; a mutation rate δk

i associated with
the locus, which can be further generalized to be allele-
specific if necessary; and an AP ~βk

i which now repre-
sents the frequencies of the ancestral alleles. Here Li

denotes the total number of ancestral alleles at loci i.

An MAA is strictly more expressive than an AP, be-
cause the incorporation of a mutation model helps to
capture details about the population structure which
an AP cannot; and the MAA reduces to the AP when
the mutation rates become zero and the founders are
identical to their descendents. As we show shortly,
with an MAA, one can examine the mutation param-
eters corresponding to each ancestral population via
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Bayesian inference from genotype data; this might en-
able us to infer the age of alleles, and also estimate
population divergence times.

Let i ∈ {1, . . . , I} index the position of a locus in the
study genome, n ∈ {1, . . . , N} index an individual in
the study population, and e ∈ {0, 1} index the two
possible parental origin of an allele (in this study we
do not require strict phase information of the two al-
leles, so the index e is merely used to indicate diploid
data). Under an MAA specific to an ancestral popu-
lation k, the correspondence between a marker allele
Xi,ne and a founder µk

i,l ∈ µk
i is not directly observ-

able. For each allele founder µk
i,l, we associate with

it an inheritance model p(·|µk
i,l, δ

k
i,l) from which de-

scendants can be sampled. Then, given specifications
of the ancestral population from which Xi,ne

is de-
rived (denoted by hidden indicator variable Zi,ne), the
conditional distribution of Xi,ne under MAA follows
a mixture of population-specific inheritance model:
p(xi,ne

= l′ | Zi,ne
= k) =

∑L
l=1 βk

i,lp(xi,ne
|µk

i,l, δ
k
i,l).

Comparing to the counterpart of this function under
AP: p(xi,ne

= l′ | Zi,ne
= k) = βk

i,l′ , we can see that
the latter cannot explicitly model allele diversities in
terms of molecular evolution from the founders.

2.2. A New Admixture Model for Population
Structure

The concept of admixture arises when modeling ob-
jects (e.g., human beings) each comprising multiple
instances of some attributes (e.g., marker alleles), each
of which comes from a (possibly different) source dis-
tribution Pk(·|Θk), according to an individual-specific
admixing coefficient vector (a.k.a. map vector) ~θ.
The map vector represents the normalized contribution
from each of the source distributions {Pk ; k = 1 : K}
to the study object. For example, for every individ-
ual, the alleles at all marker loci may be inherited from
founders in different ancestral populations, each repre-
sented by a unique distribution of founding alleles and
the way they can be inherited. Formally, this scenario
can be captured in the following generative process:

1. For each individual n, draw the admixing vector:
~θn ∼ P (·|α), where P (·|α) is a pre-chosen map prior.

2. For each marker allele xi,ne ∈ xn

• 2.1: draw the latent ancestral-population-origin

indicator zi,ne ∼ Multinomial(·| ~θn);

• 2.2: draw the allele xi,ne |zi,ne = k ∼ Pk(·|Θk).

As discussed in the previous section, an ancestral pop-
ulation can be either represented as an AP or as an
MAA. These two different representations lead to two
different probability distributions for Pk(·|Θk) in the
last sampling step above, and thereby two different
admixtures of very different characteristics.

2.2.1. The Existing Model

In Structure, the ancestral populations are represented
by a set of population-specific APs. Thus the distri-
bution Pk(·|Θk) from which an observed allele can be
sampled is a multinomial distribution defined by the
rates of all observed alleles in the ancestral popula-
tion, i.e., xi,ne |zi,ne = k ∼ Multinomial(·|~βk

i ). Us-
ing this probability distribution in the general admix-
ture scheme outlined above, we can see that Structure
essentially implements an admixture of population-
specific allele rates model. But a serious pitfall of using
such a model, as pointed out in (Excoffier & Hamilton,
2003), is that there is no error model for individual al-
leles with respect to the common prototypes, i.e, every
unique measurement at a particular allele is assumed
to be a new allele, rather than allowing the possibility
of it just being the mutation of some common ancestral
allele at that marker.

2.2.2. The Proposed Model

We propose to represent each ancestral population by
a set of population-specific MAAs. Under this repre-
sentation, now the distribution Pk(·|Θk) from which an
observed allele can be sampled becomes a mixture of
inheritance models, each defined on a specific founder.
The ensuing sampling module to be plugged into the
general admixture scheme outlined above (to replace
step 2.2) becomes a two-step generative process:

• 2.2a: draw the latent founder indicator ci,ne |zi,ne =

k ∼ Multinomial(·|~βk
i );

• 2.2b: draw the allele xi,ne |ci,ne = l, zi,ne = k ∼
Pm(·|µk

i,l, δ
k
i,l),

where Pm() is a mutation model that can be flexibly
defined based on whether the genetic markers are mi-
crosatellites or single nucleotide polymorphisms. We
call this model an admixture of population-specific in-
heritance models (AdMim), while the previous model
is technically only an admixture of population specific
allele frequency profiles. Figure 2(a) shows a graphi-
cal model the overall generative scheme for AdMim, in
comparison with the admixture of population-specific
allele rates discussed earlier. From the figure, we can
clearly see that Structure is virtually identical to an
LDA model, while mStruct is an extended LDA model
which allows noisy observations.

For simplicity of presentation, in the model described
above we assume that for a particular individual,
the genetic markers at each locus are conditionally
iid samples from a set of population-specific fixed-
dimensional mixture of inheritance models, and that
the set of founder alleles at a particular locus is
the same for all ancestral populations( µk

i = µi).
Also our model assumes Hardy-Weinberg equilibrium
within populations. The simplifying assumptions of
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Figure 2. Graphical Models: the circles represent random
variables and diamonds represent hyperparameters.

unlinked loci, no linkage disequilibrium between loci
within populations can be easily removed by incorpo-
rating Markovian dependencies over ancestral indica-
tors Zi,ne and Zi+1,ne of adjacent loci, and over other
parameters such as the allele frequencies ~βk

i in exactly
the same way as in Structure. We can also introduce
Markovian dependencies over mutation rates at adja-
cent loci, which might be desirable to better reflect
the dynamics of molecular evolution in the genome.
We defer such extensions to a later paper.

2.3. Mutation Model

As described above, our model is applicable to almost
all kinds of genetic markers by plugging in an appro-
priate allele mutation model (i.e., inheritance model)
Pm(). We now discuss two mutation models, for mi-
crosatellites and SNPs, respectively.

2.3.1. Microsatellite Mutation Model

Microsatellites are the repeats of a small sequences in
DNA about 1-4 base pairs in length which are usually
represented as integer counts. The choice of a suitable
microsatellite mutation model is important, for both
computational and interpretation purposes. Below we
discuss the mutation model that we use and the biolog-
ical interpretation of the parameters of the mutation
model. We begin with a stepwise mutation model for
microsatellites widely used in forensic analysis (Valdes
et al., 1993; Lin et al., 2006).

This model defines a conditional distribution of a
progeny allele b given its progenitor allele a, both of
which take continuous values:

p(b|a) =
1
2
ξ(1− δ)δ|b−a|−1, (1)

where ξ is the mutation rate (probability of any mu-
tation), and δ is the factor by which mutation de-
creases as distance between the two alleles increases.
Although this mutation distribution is not stationary
(i.e. it does not ensure allele frequencies to be con-
stant over the generations), it is simple and commonly
used in forensic inference. To some degree δ can be
regarded as a parameter that controls the probabil-

ity of unit-distance mutation, as can be seen from the
following identity: p(b + 1|a)/p(b|a) = δ.

In practice, the two-parameter stepwise continuous
mutation model described above complicates the in-
ference process. We propose a discrete microsatellite
mutation model that is a simplification of Eq. 1, but
captures its main idea. We posit that: P (b|a) ∝ δ|b−a|.
It is not hard to show that normalizing this probability
mass function gives us the mutation model as:

P (b|a) =
1− δ

1− δa + δ
δ|b−a|. (2)

We can interpret δ as a variance parameter, the factor
by which probability drops as a fuction of the distance
between the mutated version b of the allele a.
Determination of founder set at each locus:
According to our model assumptions, there can be a
different number of founder alleles at each locus. This
number is typically smaller than the number of alle-
les observed at each marker since the founder alleles
are “ancestral”. To estimate the appropriate number
and allele states of founders, we fit finite mixtures of
microsatellite mutation models, and use the Bayesian
Information Criterion (BIC) to determine the cardi-
nality of the mixture.
Choice of mutation prior: In our model, the δ pa-
rameter, as explained above, is a population-specific
parameter that controls the probability of stepwise
mutations. Being a parameter that controls the vari-
ance of the mutation distribution, there is a possibility
that inference on the model will encourage higher val-
ues of δ to improve the log-likelihood, in the absence
of any prior distribution on δ. To avoid this situation,
and to allow more meaningful and realistic results to
emerge from the inference process, we impose on δ a
beta prior that will be biased towards smaller values
of δ. The beta prior will be a fixed one and will not
be among the parameters we estimate.

2.3.2. SNP Mutation Model

SNPs, or single nucleotide polymorphisms, represent
the largest class of individual differences in DNA. In
general, there is a well-defined correlation between the
age of the mutation producing a SNP allele and the
frequency of the allele. For SNPs, we use a simple
pointwise mutation model, rather than more complex
block models. Thus, the observations in SNP data are
only binary in nature (0/1). So, given the observed
allele b, we say that the probability of it being derived
from the founder allele a is given by:

P (b|a) = δI[b=a] × (1− δ)I[b 6=a]; a, b ∈ {0, 1}. (3)

In this case, the mutation parameter δ is the proba-
bility that the observed allele is not identical to the
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founder allele, but derived from it due to a mutation.

2.4. Inference and Parameter Estimation

2.4.1. Probability Distribution on the Model

For notational convenience, we will ignore the diploid
nature of observations in the analysis that follows.
With the understanding that the analysis is carried
out for the nth individual, we will drop the subscript
n. Also, we overload the indicator variables zi and
ci to be both, arrays with only one element equal to
1 , as well as scalars with a value equal to the index
at which the array forms have 1s. In other words:
zi ∈ 1, . . . ,K, ci ∈ 1, . . . , L, zi,k = I[zi = k], and
ci,l = I[ci = l].

The joint probability distribution of the the data and
the relevant variables under the AdMim model can
then be written as:

p
“
x, z, c, ~θ|α, β, µ, δ

”
= p

“
~θ|α
” IY

i=1

p
“
zi|~θ
”

p
“
ci|zi, ~βk=1·K

i

”
.

The marginal likelihood of the data can be com-
puted by summing/integrating out the latent vari-
ables. However, a closed-form solution to this sum-
mation/integration is not possible, and indeed exact
inference on hidden variables such as the map vector
~θ, and estimation of model parameters such as the mu-
tation rates δ under AdMim is intractable.(Pritchard
et al., 2000) developed an MCMC algorithms for ap-
proximate inference for their admixture model under-
lying Structure. We choose to apply a computationally
more efficient approximate inference method known as
variational inference (Jordan et al., 1999).

2.5. Variational Inference

We use a mean-field approximation for performing
inference on the model. This approximation method
approximates an intractable joint posterior p() of the
all hidden variables in the model by a product of
marginal distributions q() =

∏
qi(), each over only a

single hidden variable. The optimal parameterization
of qi() for each variable is obtained by minimizing the
Kullback-Leibler divergence between the variational
approximation q and the true joint posterior p. Using
results from the the Generalised Mean Field theory
(Xing et al., 2003), we can write the variational
distributions of the latent variables as follows:

q(~θ) ∝
KY

k=1

θ
αk−1+

PI
i=1 〈zi,k〉

k

q(ci) ∝
LY

l=1

 
KY

k=1

“
βk

i,lf(xi|µi,l, δ
k
i )
”〈zi,k〉

!ci,l

q(zi) ∝
KY

k=1

 
e〈log(θk)〉

 
LY

l=1

βk
i,lf(xi|µi,l, δ

k
i )

〈ci,l〉
!!zi,k

.

In the distributions above, the ‘〈〉’ are used to
indicate the expected values of the enclosed ran-
dom variables. A close inspection of the above
formulae reveals that these variational distribu-
tions have the form q(~θ) ∼ Dirichlet(γ1, . . . , γK),
q(zi) ∼ Multinomial(ρi,1, . . . , ρi,K), and q(ci) ∼
Multinomial(ξi,1, . . . , ξi,L), respectively, where the
parameters γk, ρi,k and ξi,l are given by the following
equations:

γk = αk +

IX
i=1

〈zi,k〉

ρi,k =
e〈log(θk)〉

“QL
l=1 βk

i,lf(xi|µi,l, δ
k
i )

〈ci,l〉
”

PK
k=1

“
e〈log(θk)〉

“QL
l=1 βk

i,lf(xi|µi,l, δk
i )

〈ci,l〉
””

ξi,k =

QK
k=1

`
βk

i,lf(xi|µi,l, δ
k
i )
´〈zi,k〉PK

k=1

„QK
k=1

“
βk

i,lf(xi|µi,l, δk
i )
”〈zi,k〉

«
and they have the properties: 〈log(θk)〉 = γk, 〈zi,k〉 =
ρi,k and 〈ci,l〉 = ξi,l, which suggest that they can be
computed via fixed point iterations. It can be shown
that this iteration will converge to a local optimum,
similar to what happens in an EM algorithm. Empiri-
cally, a near global optimal can be obtained by multi-
ple random restarts of the fixed point iteration. Typi-
cally, such a mean-field variational inference converges
much faster then sampling (Xing et al., 2003).

3. Hyperparameter Estimation

The parameters of our model, i.e., {µ, δ,β}, and the
Dirichlet hyperparameter α, can be estimated by max-
imizing the lower bound on the log-likelihood as a func-
tion of the current values of the hyperparameters, via a
variational EM algorithm. Due to space limits, details
of this empirical Bayes estimation scheme are available
in the extended version.
4. Experiments and Results
We validated our model on a synthetic microsatellite
dataset where the simulated values of the hidden map
vector θn of each individual and the population pa-
rameters {µk, δk, ~βk} of each ancestral population are
known as ground truth. The goal is to assess the per-
formance of mStruct in terms of accuracy and con-
sistency of the estimated map vectors and population
parameters, and test of the correctness of the infer-
ence and estimation algorithms we developed. We
also conduct empirical analysis using mStruct of two
real datasets: the HGDP-CEPH cell line panel of mi-
crosatellite loci and the HGDP SNP data, in compar-
ison with the Structure program (version 2.1).

4.1. Validations on Synthetic Data

We simulated 20 microsatellite genotype datasets us-
ing the AdMim generative process described in sec-
tion 2.2, with 100 diploid individuals from 2 ances-
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Figure 3. Ancestry spectra for a 3-population simulated
dataset. First panel shows the true ancestry proportion
vectors. Middle panel shows the estimate by mStruct.
Right panel shows the estimate from Structure .

tral populations, at 50 genotype loci. Each locus has
4 founding alleles, separated by adjustable distances;
the mutation parameter at each locus for both pop-
ulations had default value 0.1, but can be varied to
simulate different degrees of divergence. The founding
allele frequencies, ~βk

i , were drawn from a flat Dirich-
let prior with parameter 1. The map vectors θn were
sampled from a symmetric beta distribution with pa-
rameter α, allowing different levels of admixing. We
examine the accuracies of several estimates of interest
under a number of different simulation conditions, and
for each condition we report the statistics of the accu-
racies across 20 iid synthetic datasets. Due to space
limitations, we only report two experiments below; the
additional results on accuracy of ancestral alleles re-
covery and the ancestral-allele frequency estimation
are available in the full paper.

4.1.1. Accuracy of Population Map Estimate

The map vector θn reflects the proportions of con-
tributions from different ancestral population to the
maker-alleles of each individual. The display of the
map vectors of all individuals in a study population
gives a Map of population structure (see, e.g., Fig. 1
in the introduction), which has been the main output
of the Structure program . We compare the accuracy
of the estimated θn w.r.t. the ground truth recorded
during the simulation in terms of their L1 distances.

Figure 3 shows an example of this comparison, and we
can see that mStruct is visually more accurate than
Structure. Figure 4 shows the accuracy of the Map
estimate by mStruct on synthetic datasets simulated
with different properties, in comparison with that of
Structure. Fig. 4(a) shows that, under different de-
grees of biases of population admixing induced by the
Beta prior of θn, mStruct consistently outperforms
Structure. Specifically, as the value of the Beta prior
hyperparameter α increases, fewer individuals tend to
belong completely to only one population, and more
and more individuals become highly admixed. As the
figure shows, the performance of both methods de-
grades as we progress toward this end; however, the
severity of degradation of mStruct is much less than
that of Structure. mStruct remains robust and per-
forms better than Structure as the separations between
founding alleles decreases (Fig.4(b)), which tends to
increasingly confound the ancestral origins of modern

alleles. Finally, Fig. 4(c) shows how the presence of
mutations affects the performance of both methods.
At very low values of the mutation parameters, the
performances of both models are comparable; but as
the mutation parameter increases in magnitude, the
performance of Structure degrades significantly. On
the other hand, the decrease in accuracy for mStruct
is hardly noticeable. This shows that our model is
resistant to the confounding effect of large mutations.
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Figure 4. Accuracy of θ est. under different conditions.

4.1.2. Accuracy of Parameter Estimation.

An important aspect of guarantee and utility we desire
for our model and inference algorithm is that it should
offer consistent estimates of the population parameters
{µk, δk, ~βk} underlying the composition of the ances-
tral population and their inheritance processes. These
estimates offer important insight of the evolutionary
history and dynamics of modern population genotype
data. We have extensively investigated the robustness
and accuracy of all these estimates. Due to space lim-
itations, here we only report highlights of mutation
rate estimation.
Mutation parameter estimation: We evaluate
the performance at recovery of δk’s by a simple dis-
tance measure, (L1 distance measure), between the
true and inferred values. We expect that using the
beta prior described earlier improves the recovery
of the population-specific mutation parameters. As
shown in Figure 5, the estimates of δk’s are robust
and remain low-bias under different degree of admixing
(due to changing α) and different ancestor dispersion
(due to changing distances among the µk’s). The accu-
racy decreases as the value of the mutation parameter
itself increases, but remains respectable, as shown in
Figure. 5(c).
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Figure 5. Accuracy of microsatellite mutation para. est.

4.2. Empirical Analysis of Real Datasets

The HGDP-CEPH cell line panel (Cann et al., 2002;
Cavalli-Sforza, 2005) used in (Rosenberg et al.,
2002)contains genotype information from 1056 indvid-
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uals from 52 populations at 377 autosomal microsatel-
lite loci, along with geographical and population la-
bels. The HGDP SNP data (Conrad et al., 2006) con-
tains the SNPs genotypes at 2834 loci of 927 unrelated
individuals that overlap with the HGDP-CEPH data.
To make results for both types of data comparable, we
chose the set of only those individuals present in both
datasets. As in (Rosenberg et al., 2002), the choice of
the total number of ancestral populations is left to the
user, and here we only show results of K = 4 due to
space limitations.

4.2.1. Structural Maps from HGDP Data

We compare the structural maps inferred from both
the microsatellite and the SNP data using mStruct
and Structure (top panels in Figure 6). The structural
maps produced by both programs are quite similar in
the case of SNPs, but are very different for microsatel-
lites. The most obvious difference between the maps
produced by both programs is the degree of admix-
ing that the individuals in the program are assigned.
Structure assigns each geographical population to a
distinct profile. Thus, it seems to predict very little
admixing effect in modern human populations. While
useful for clustering, this might result in loss of po-
tentially useful information about actual evolutionary
history of populations. In contrast, the structure map
produced by mStruct for microsatellites suggests that
all populations share a common ancestral population
with a unique extra component that characterizes their
particular genotypes. It is interesting to note that clus-
tering individuals by the ancestry proportion vectors
due to mStruct will produce exactly the same cluster-
ing partitions as that due to Structure. The structural
maps produced in the case of SNP data are quite simi-
lar for both softwares, with results from mStruct again
predicting more admixture than Structure. It is also
interesting to see that the ancestry proportions for Eu-
ropean and Middle Eastern regions are more distinct
from each other in mStruct than in Structure, allow-
ing for better separation of the two geographical re-
gions. A possible cause for the inconsistency between
the results produced by mStruct for SNP data and mi-
crosatellite data could be the large difference between
their mutation rates, or due to the choice of a simplis-
tic SNP mutation model.This issue will be explored in
more detail in the full version of the paper.
4.2.2. Analysis of the Mutation Spectrums

Now we report a preliminary analysis of the evolu-
tionary dynamics reflected by the estimated mutation
spectrums of different ancestral populations (denoted
“am-spectrum”), and of different modern geograph-
ical populations (denoted “gm-spectrum”), which is
not possible by Structure. For the am-spectrum, we

compute the mean mutation rates over all loci and
founding alleles for each ancestral population as esti-
mated by mStruct. We estimate the gm-spectrum as
follows: for every individual, a mutation rate is com-
puted as the per-locus number of observed alleles that
are attributed to mutations, weighted by the muta-
tion rate corresponding to the ancestral allele chosen
for that locus. This can be computed by observing
the population-indicator (Z) and the allele-indicator
(C) for each individual. We then compute the popu-
lation mutation rates by averaging mutation rates of
all individuals having the same geographical label.

As shown in the gm-spectrums in Figure 6 (lower sub-
panels on the right), the mutation rates for African
populations are indeed higher than those of other mod-
ern populations. This indicates that they diverged ear-
lier, a common hypothesis of human migration. Other
trends in the gm-spectrums also reveal interesting in-
sights, which we do not have space to discuss. The
am-spectrums of SNP data in Figure 6 suggest that the
founder ancestral population that dominates modern
African populations has a higher mutation rate than
the other ancestral population, indicating that is the
older of the two ancestral populations. The mutation
estimates are largely consistent for both microsatellites
and SNPs in comparative order, but vastly different in
numerical values.

4.3. Model Selection
As with all probabilistic models, we face a tradeoff
between model complexity and the log-likelihood value
that the model achieves. In our case, complexity is
controlled by the number of ancestral populations we
pick, K.
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Unlike non-parametric or
infinite dimensional mod-
els (e.g., Dirichlet pro-
cesses etc.), for models
of fixed dimension, it is
not clear in general as
to what value of K gives
us the best balance be-
tween model complexity
and log-likelihood. In
such cases, different infor-
mation criteria are often used to determine the optimal
model complexity. To determine what number of an-
cestral populations fit the HGDP SNP and microsatel-
lite data best, we computed BIC scores for K=2 to
K=5 for both kinds of data separately. The results
are shown in Figure 7. The BIC curves for both SNPs
and microsatellites suggest K=4 as the best fit for the
data.
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Figure 6. Structural maps, mutation spectrums, from the HGDP data via mStruct and Structure.

5. Discussions
We have developed mStruct, which allows estimation
of genetic contributions of ancestral populations in
each modern individual in light of both population
admixture and allele mutation. The variational infer-
ence algorithm that we developed allows tractable ap-
proximate inference on the model. The ancestral pro-
portions of each individual enable representing pop-
ulation structure in a way that is both visually easy
to interpret, as well as amenable to further computa-
tional analysis. In conjunction with geographical loca-
tion, the inferred ancestry proportions could be used
to detect migrations,sub-populations etc quite easily.
Moreover, the ability to estimate population and locus
specific mutation rates also allows us to substantiate
evolutionary dynamics claims based on high/low mu-
tation rates in certain geographical population, or on
high/low mutation rates at certain loci in the genome.
While the estimates of mutation rates that mStruct
provides are not on an absolute scale, the comparison
of their relative magnitudes is certainly informative.
As of now, there remain a number of possible exten-
sions to the methodology we presented so far. It would
be instructive to see the impact of allowing linked loci
as in (Falush et al., 2003). We have not yet addressed
the issue of the most suitable choice of mutation pro-
cess, but instead have chosen one that is reasonable
and computationally tractable. It would be interesting
to combine mStruct with the nonparametric Bayesian
models based on the Dirichlet processes such as (Sohn
& Xing, 2007). Our model might be described as a
noisy-channel version of the LDA model, where the
observations are modified instances of the original al-
leles. It is not hard to imagine applications of this
model to other tasks such as image modeling or IR
tasks involving noisy data, with minor changes in the
distributions from which the observations are sampled.
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