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Abstract
The kernel stick-breaking process (KSBP) is em-
ployed to segment general imagery, imposing the
condition that patches (small blocks of pixels)
that are spatially proximate are more likely to
be associated with the same cluster (segment).
The number of clusters is not set a priori and
is inferred from the hierarchical Bayesian model.
Further, KSBP is integrated with a shared Dirich-
let process prior to simultaneously model mul-
tiple images, inferring their inter-relationships.
This latter application may be useful for sorting
and learning relationships between multiple im-
ages. The Bayesian inference algorithm is based
on a hybrid of variational Bayesian analysis and
local sampling. In addition to providing details
on the model and associated inference frame-
work, example results are presented for several
image-analysis problems.

1. Introduction
The segmentation of general imagery is a problem of long-
standing interest. There have been numerous techniques
developed for this purpose, including K-means and associ-
ated vector quantization methods (Ding & He, 2004), sta-
tistical mixture models (McLachlan & Basford, 1988), as
well as spectral clustering (Ng et al., 2001). This list of
existing methods is not exhaustive, although these methods
share attributes associated with most existing algorithms.
First, the clustering is based on the features of the image,
and when clustering these features one typically does not
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account for their physical location within the image (al-
though the location may be appended as a feature compo-
nent). Secondly, the segmentation or clustering of images
is typically performed one image at a time, and therefore
there is no attempt to relate the segments of one image to
segments in other images (i.e., to learn inter-relationships
between multiple images). Finally, in many of the tech-
niques cited above one must a priori set the number of an-
ticipated segments or clusters. The techniques developed
in this paper seek to perform clustering or segmentation in
a manner that explicitly accounts for the physical locations
of the features within the image, and multiple images are
segmented simultaneously (termed “multi-task learning”)
to infer their inter-relationships. Moreover, the analysis is
performed in a semi-parametric manner, in the sense that
the number of segments or clusters is not set a priori, and
is inferred from the data. There has been recent research
wherein spatial information has been exploited when clus-
tering (Figueiredo et al., 2007), but that segmentation has
been performed one image at a time, and therefore not in a
multi-task setting.

To address the goals elucidated above within a statistical
setting, we employ a class of hierarchical models related to
the Dirichlet process (DP) (Ferguson, 1973). The Dirichlet
process is a statistical prior that may be summarized suc-
cinctly as follows. Assume that the n-th patch is repre-
sented by feature vector xn, and the total image is com-
posed of N such feature vectors {xn}n=1,N . The feature
vector associated with each patch is assumed drawn from a
parametric distribution f(φn), where φn represents the pa-
rameters associated with the n-th feature vector. A DP prior
can be placed on φn, which is characterized by the non-
negative parameter α and the “base” distribution Go. We
adopt the stick-breaking construction developed by Sethu-
raman (Sethuraman, 1994), and the hierarchical model may
be expressed as
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xn|φn
ind∼ f(φn)

φn|G iid∼ G

G =
∞∑

h=1

πhδθh
(1)

πh = Vh

h−1∏

l=1

(1− Vl)

Vh
iid∼ Beta(1, α)

θh
iid∼ Go.

This is termed a “stick-breaking” representation of DP be-
cause one sequentially breaks off “sticks” of length πh

from an original stick of unit length (
∑∞

h=1 πh = 1).
As a consequence of the properties of the distribution
Beta(1, α), for relatively small α it is likely that only
a relatively small set of sticks πh will have appreciable
weight/size, and therefore when drawing parameters φn

from the associated G it is probable multiple φn will share
the same “atoms” θh (those associated with the large-
amplitude sticks). The parameter α therefore plays an im-
portant role in defining the number of clusters that are con-
stituted, and therefore in practice one typically places a
non-informative Gamma prior on α (Xue et al., 2007).

The form of the model in (1) imposes the prior belief that
the feature vectors {xn}n=1,N associated with an image
should cluster, and the data are used to infer the most prob-
able clustering distribution, via the posterior distribution on
the parameters {φn}n=1,N . Such semi-parametric cluster-
ing has been studied successfully in many settings (Xue
et al., 2007; Rasmussen, 2000). However, there are two
limitations of such a model, with these defining the focus
of this paper. First, while the model in (1) captures our
belief that the feature vectors should cluster, it does not im-
pose our additional belief that the probability that two fea-
ture vectors are in the same cluster should increase as their
physical locations within the image become more proxi-
mate; this is an important factor when one is interested in
segmenting an image into contiguous regions. Secondly,
typical semi-parametric clustering has been performed one
image or dataset at a time, and here we wish to cluster mul-
tiple images simultaneously, to infer the inter-relationships
between clusters in different images, thereby inferring the
inter-relationships between the associated multiple images
themselves.

As an extension of the DP-based mixture model, we here
consider the recently developed kernel stick-breaking pro-
cess (KSBP) (Dunson & Park, 2008), introduced by Dun-
son and Park. As detailed below, this model is similar to
that in (1), but now the stick-breaking process is augmented

to employ a kernel function to quantify the prior belief as-
sociated with spatially proximate patches. In (Dunson &
Park, 2008) a Markov chain Monte Carlo (MCMC) sampler
was used to estimate the posterior on the model parameters.
In the work considered here we are interested in relatively
large data sets, and therefore we develop an inference en-
gine that exploits ideas from variational Bayesian analysis
(Beal, 2003).

There are problems for which one may wish to perform
segmentation on multiple images simultaneously, with the
goal of inferring the inter-relationships between the differ-
ent images. This is referred to as multi-task learning (MTL)
(Thrun & O’Sullivan, 1996; Xue et al., 2007), where here
each “task” corresponds to clustering feature vectors from
a particular image. As presented below, it is convenient to
simultaneously cluster/segment multiple images by linking
the multiple associated KSBP models with an overarching
DP. There are at least three applications of MTL in the con-
text of image analysis: (i) one may have a set of images,
some of which are labeled, and others of which are unla-
beled, and by performing an MTL analysis on all of the
images one may infer labels for the unlabeled image seg-
mentation, by drawing upon the relationships to the labeled
imagery; (ii) by inferring the inter-relationships between
the different images, one may sort the images as well as
sort components within the images; (iii) one may identify
abnormal images and locations within an image in an un-
supervised manner, by flagging those locations that are al-
located to a segmentation component that is locally rare. A
similar scenario has been studied in (Sudderth et al., 2006),
where the spatial translations are handled with transformed
Dirichlet processes.

2. Kernel Stick-Breaking Process
2.1. KSBP prior for image processing

The stick-breaking representation of the Dirichlet process
(DP) was summarized in (1), and this has served as the
basis of a number of generalizations of the DP. The de-
pendent DP (DDP) proposed by MacEachern (MacEach-
ern, 1999) assumes a fixed set of weights, π, while allow-
ing the atoms θ = {θ1, · · · , θN} to vary with the predic-
tor x according to a stochastic process. Dunson and Park
(Dunson & Park, 2008) have proposed the kernel stick-
breaking process (KSBP), which is particularly attractive
for image-processing applications. Rather than simply con-
sidering the feature vector {xn}n=1,N , we now consider
{xn, rn}n=1,N , where rn is tied to the location of the pixel
or block of pixels used to constitute feature vector xn. We
let K(r, r′, ψ) → [0, 1] define a bounded kernel function
with parameter ψ, where r and r′ represent general loca-
tions in the image of interest. One may choose to place a
prior on the kernel parameter ψ; this issue is revisited be-
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low. A draw Gr from a KSBP prior is a function of position
r, and is represented as

Gr =
∞∑

h=1

πh(r; Vh, Γh, ψ)δθh

πh(r; Vh, Γh, ψ) = VhK(r, Γh, ψ)
∏h−1

l=1 [1− VlK(r, Γl, ψ)]

Vh
iid∼ Beta(a, b) (2)

Γl
iid∼ H

θh
iid∼ Go.

Dunson and Park (Dunson & Park, 2008) prove the valid-
ity of Gr as a probability measure. Comparing (1) and
(2), both priors take the general form of a stick-breaking
representation, while the KSBP prior possesses several
interesting properties. For example, the stick weights
πh(r; Vh,Γh, ψ) are a function of r. Therefore, although
the atoms {θh}h=1,∞ are the same for all r, the weights
effectively shift the probabilities of different θh based on
r. The basis functions Γh serve to localize in the space of
r regions (clusters) in which the weights πh(r;Vh, Γh, ψ)
are relatively constant, with the size of these regions tied to
the kernel parameter ψ.

If f(φn) is the parametric model (with parameter φn) re-
sponsible for the generation of xn, we now assume that the
augmented data {xn, rn}n=1,N are generated as

xn
ind∼ f(φn)

φn
ind∼ Grn (3)

Gr ∼ KSBP (a, b, ψ, Go,H).

The notation Gr ∼ KSBP (a, b, ψ, Go,H) is meant to
convey that Gr is drawn one time from the KSBP, and is
a parametric function of location r, and it is evaluated at
specific locations {rn}n=1,N .

The generative model in (3) states that two feature vectors
that come from the same region in the image (defined via
r) will have similar πh(r; Vh, Γh, ψ), and therefore they
are likely to share the same atoms θh. The settings of a
and b control how much similarity there will be in drawn
atoms for a given spatial cluster centered about a particular
Γh. If we set a = 1 and b = α, analogous to the DP, small
concentration parameter α and/or small kernel parameter ψ
will impose that πh is likely to be near one, and therefore
only a relatively small number of atoms θh are likely to be
dominant for a given cluster spatial center Γh. On the other
hand, if two features are generated from distant parts of a
given image, the associated atoms θh that may be promi-
nent for each feature vector are likely to be different, and

therefore it is of relatively low probability that these feature
vectors would have been generated via the same parameters
φ. It is possible that the model may infer two distinct and
widely separated clusters/segments with similar parameters
(atoms); if the Go within the KSBP is itself drawn from a
DP, as it will be below when analyzing multiple images,
widely separated clusters may share the exact same atoms.

For the case a = 1 and b = α, which we consider below, we
employ the notation Gr ∼ KSBP (α,ψ, Go,H). Below
we will also assume that f(φ) corresponds to a multivariate
Gaussian distribution.

2.2. Spatial correlation properties

As indicated above, the functional form of the kernel
function is important and needs to be chosen carefully.
A commonly used kernel is given as K(r, Γ, ψ) =
exp (−ψ‖r − Γ‖2) for ψ > 0, which allows the associated
stick weight to change continuously from Vh

∏h−1
l=1 (1−Vl)

to 0 conditional on the distance between r and Γ. By
choosing a kernel we are also implicitly imposing the de-
pendency between the priors of two samples, Gr and Gr′ .
Specifically, both priors are encouraged to share the same
atoms θh if r and r′ are close, with this discouraged other-
wise. Dunson and Park (Dunson & Park, 2008) derive the
correlation coefficient between two probability measures
Gr and Gr′ to be

corr{Gr, Gr′}

=

∑∞
h=1 πh(r; Vh, Γh, ψ)πh(r′; Vh, Γh, ψ)√∑∞

h=1 πh(r; Vh, Γh, ψ)2
√∑∞

h=1 πh(r′; Vh, Γh, ψ)2
.

The coefficient approaches unity in the limit as r → r′.
Since the correlation is a strong function of the kernel pa-
rameter ψ, below we will consider a distinct ψh for each
stick. This implies that the spatial extent within the image
over which a given stick is important will vary as a function
of the stick (to accommodate textural regions of different
sizes).

3. Multi-Task Image Segmentation with a
Hierarchical KSBP

We now consider the problem for which we wish to
jointly segment M images, where each image has an
associated set of feature vectors with location informa-
tion, in the sense discussed above. Aggregating the data
across the M images, we have the set of feature vectors
{xnm, rnm}n=1,Nm; m=1,M . The image sizes may be dif-
ferent, and therefore the number of feature vectors Nm may
vary between images. The premise of the model discussed
below is that the cluster or segment characteristics may be
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similar between multiple images, and the inference of these
inter-relationships may be of value. Note that the assump-
tion is that sharing of clusters may be of relevance for the
feature vectors, but not for the associated locations.

3.1. Model

A relatively simple means of sharing feature-vector clus-
ters between the different images is to let each image be
processed with a separate KSBP (αm, ψm, Gm,Hm). To
achieve the desired sharing of feature-vector clusters be-
tween the different images, we impose that Gm ≡ G
and G is drawn G ∼ DP (γ,Go). Recalling the stick-
breaking form of a draw from DP (γ, Go), we have G =∑∞

h=1 πhδθh
, in the sense summarized in (1). The discrete

form of G is very important, for it implies that the different
Gr will share the same set of discrete atoms {θh}h=1,∞. It
is interesting to note that for the case in which the kernel
parameter ψ is set such that K(r, Γh, ψ) → 1, the hierar-
chical KSBP (H-KSBP) model reduces to the hierarchical
Dirichlet process (HDP) (Teh et al., 2005).

Therefore, the H-KSBP model is represented as

xnm
ind∼ N (φnm)

φnm
ind∼ Grnm (4)

Gr ∼ KSBP (αm, ψm, G, Hm)
G ∼ DP (γ,Go),

where N (·) is a Gaussian distribution. Assume that G is
composed of the atoms {θh}h=1,∞, from the perspective of
the stick-breaking representation in (1). These same atoms
are shared across all {Grnm}n=1,Nm;m=1,M drawn from
the associated KSBPs, but with respective stick weights
unique to the different images, and a function of position
within a given image. The posterior inference allows one
to infer which clusters of features are unique to a particu-
lar image, and which clusters are shared between multiple
images. The density functions Hm are tied to the support
of the m-th image, and in practice this is set as uniform
across the image extent. The distinct αm, for each of which
a Gamma hyper-prior may be imposed, encourages that the
number of clusters (segments) may vary between the differ-
ent images, although one may simply wish to set αm = α
for all M tasks.

For notational convenience, in (4) it was assumed that the
kernel parameter ψm varied between tasks, but was fixed
for all sticks within a given task; this is overly restrictive.
In the implementation that follows the parameter ψhm may
vary across tasks and across the task-specific KSBP sticks.

3.2. Posterior inference

For inference purposes, we truncate the number of sticks
in the KSBP to T , and the number of sticks in the trun-
cated DP to K (the truncation properties of the stick-
breaking representation of DP are discussed in (Ishwaran
& James, 2001), although we emphasize that when trun-
cating KSBP one must take into account the draws from
the Beta distribution and the properties of the kernel,
to assure that the truncated set of sticks sum to one).
Due to the discreteness of G =

∑K
k=1 βkδθk

, each
draw of the KSBP, Grnm =

∑T
h=1 πhmδφhm

, can only
take atoms {φhm}h=1,T ; m=1,M from K unique possi-
ble values {θk}k=1,K ; when drawing atoms φhm from
G, the respective probabilities for {θk}k=1,K are given
by {βk}k=1,K , and for a given rnm the respective prob-
abilities for different {φhm}h=1,T ; m=1,M are defined by
{πhm}h=1,T ; m=1,M . In order to reflect the correspon-
dences between the data and atoms explicitly, we further
introduce two auxiliary indicator variables. One is znm,
this indicating which stick of the KSBP the feature vec-
tor xnm is associated, and the other is thm, this indicating
which mixing component θk the atom φhm is associated
with.

With this specification we can represent our H-KSBP mix-
ture model via a stick-breaking characterization. A graph-
ical representation of the proposed H-KSBP model is pro-
vided in Figure 1.

oG

k k

K

H

hmV hm hmt
T

ijz nmx

mN

M

nmr

Figure 1. A graphical representation of the H-KSBP mixture
model.

For the large-scale problems of interest here we employ
variational Bayesian (VB) inference, which has proven to
be a relatively fast (compared to MCMC) and accurate in-
ference tool for many models and applications (Beal, 2003;
Blei & Jordan, 2004). To employ VB, a conjugate prior is
required for all variables in the model. In the proposed
model, we however cannot obtain a closed form for the
variational posterior distribution of the node Vhm, because
of the the kernel function. Alternatively, motivated by
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the Monte Carlo Expectation Maximization (MCEM) al-
gorithm (Wei & Tanner, 1990), we develop a Monte Carlo
Variational Bayesian (MCVB) inference algorithm, where
the intractable nodes are approximated with Monte Carlo
samples from their conditional posterior distributions. The
resulting algorithm combines the benefits of both MCMC
and VB, and has proven to be effective for the examples we
have considered (some of which are presented here).

Given the H-KSBP mixture model detailed in Section
3.1, we can follow standard variational Bayesian infer-
ence (Beal, 2003) to infer the variables of interests. All
the updates are analytical except for Vhm, which is es-
timated with the samples from its conditional posterior
distributions. Due to the limited space, we only con-
sider the update for Vhm. To obtain the conditional pos-
terior distribution of Vhm, we rewrite znm = min{h :
Anm,h = Bnm,h = 1}, with two auxiliary variables
defined as: Anm,h ∼ Bernoulli(Vhm) and Bnm,h ∼
Bernoulli(K(rnm, Γhm, ψm)).

The conditional posterior distributions of Vhm are

Beta(1 +
∑

n:znm≥h

Anm,h, α +
∑

n:znm≥h

(1−Anm,h)),

where

p(Anm,h = Bnm,h = 0) =
(1−Vhm)(1−K(rnm,Γhm,ψm))

1−VhmK(rnm,Γhm,ψm)

p(Anm,h = 0, Bnm,h = 1) =
(1−Vhm)K(rnm,Γhm,ψm)
1−VhmK(rnm,Γhm,ψm)

p(Anm,h = 1, Bnm,h = 0) =
Vhm(1−K(rnm,Γhm,ψm))
1−VhmK(rnm,Γhm,ψm)

,

for h = 1, 2, · · · , znm − 1, and Anm,h = Bnm,h = 1 for
h = znm.

The hyper-parameters α, γ, and ψ are assumed to be con-
stant for inference of the other parameters. However, since
the model performance may be sensitive to the settings of
those hyper-parameters, we can relax this assumption by
placing non-informative priors. The updates are straight-
forward (Beal, 2003) and therefore omitted here.

3.3. Convergence

To monitor the convergence of our MCVB algorithm, we
compute the lower bound of the log model evidence at each
iteration. Because of the sampling of some variables, the
lower bound does not in general increase monotonically,
but we observed in all experiments that the lower bound
increases sequentially for the first several iterations, with
generally small fluctuations after it has converged to the
local optimal solution.

4. Experimental Results
We have applied the H-KSBP multi-task image-
segmentation algorithm to both synthetic and real images.
We first present results on synthesized imagery, wherein
we compare KSBP-based clustering of a single image
with associated DP-based clustering. We then consider
H-KSBP as applied to actual imagery, taken from a widely
utilized database. The hyper-priors in the model for the
examples are set as follows: Gamma priors, G(τ10, τ20)
and G(τ30, τ40), for α and γ with parameter τ10 = 1e−2,
τ20 = 1e−2, τ30 = 3e−2, τ40 = 3e−2, respectively; a
normal-Wishart prior, N(µk|µ0, η0Σk)W (Σk|w∗,Σ∗),
conjugate to the Gaussian distribution with µ0 = 0,
η0 = 1, w∗ = d + 2, Σ∗ = 5 × I; the discrete priors for
Γ and ψ with uniform weights over all candidates. The
stick-breaking truncations are K = 40, T = 40.

4.1. Single image segmentation

In this simple illustrative example, each feature vector is
associated with a particular pixel, and the feature is simply
a real number, corresponding to its intensity; the pixel lo-
cation is the auxiliary information within the KSBP, while
this information is not employed by the DP-based segmen-
tation algorithm. Figure 2 shows the original image and
the segmentation results of both algorithms. In Figure 2(a)
we note that there are five contiguous regions for which
the intensities are similar. There is a background region
with a relatively fixed intensity, and within this are four
distinct contiguous sub-regions, and of these there are pairs
for which the intensities are comparable. The data in Fig-
ure 2(a) were generated as follows. Each pixel in each re-
gion is generated independently as a draw from a Gaussian
distribution; the standard deviation of each of the Gaus-
sians is 10, and the background has mean intensity 5, and
the two pairs are generated with mean intensities of 40 and
60. The color bar in Figure 2(a) denotes the pixel ampli-
tudes. The DP and KSBP segmentation results are shown
in Figures 2(b) and 2(c), respectively. A distinct color is as-
sociated with distinct cluster parameters. In the DP results
we note that the four subregions are generally properly seg-
mented, but there is significant speckle in the background
region. The KSBP segmentation algorithm is beset by far
less speckle. Further, in the KSBP results there are five
distinct clusters (dominant KSBP sticks), where in the DP
results there are principally three distinct sticks (in the DP,
the spatially separated segments with the same features are
treated as one cluster, while in the KSBP each contiguous
region is represented by its own stick).

In the next set of results, on real imagery, we employ the
H-KSBP algorithm, and therefore at the task level segmen-
tation is performed as in Figure 2(c). Alternatively, using
the HDP model (Teh et al., 2005), at the task level one em-
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ploys clustering of the form in Figure 2(b). The relative
performance of H-KSBP and HDP is analyzed.
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Figure 2. A synthetic image example. (a) Original synthetic im-
age, (b) image-segmentation results of DP-based model, and (c)
image-segmentation results of KSBP-based model.

4.2. H-KSBP applied to a set of real images

Within the subsequent image analysis we employ features
constituted by the independent feature subspace analy-
sis (ISA) technique, developed by Hyvärinen and Hoyer
(Hyvärinen & Hoyer, 2000). These features have proven
to be relatively shift or translation invariant, which enables
them to be widely applicable to many type of images.

We test the H-KSBP model on a subset of images
from Microsoft Research Cambridge, available at
http://research.microsoft.com/vision/cambridge/recognition/.
There are seven types of images used in this database:
buildings, clouds, countryside, faces, fireworks, offices
and urban. Twenty images are randomly selected from
the database for each type, yielding a total of 140 images.
To capture textural information within the features, we
first divided each image into a contiguous 24 × 24-pixel
non-overlapping patches (more than 70,000 patches in
total) and then extract ISA features from each patch; color
images are considered, and the RGB colors are handled
within ISA feature extraction as in (Hoyer & Hyvärinen,
2000). Concerning learning the ISA independent feature
subspaces, we randomly select 150 patches out of each
of the 140 images from the seven classes, and these 150
image patches are used for basis training. The posterior
on the H-KSBP (and HDP) model parameters is inferred
based on the proposed MCVB algorithm, processing all
140 images simultaneously; as discussed in Section 2,
the HDP analysis is performed by a special setting of the
H-KSBP parameters. To mitigate the influence of random
samples and VB initialization, we perform the experiment
ten times and report the average results.

Borrowing the successful “bag of words” assumption in
text analysis (Blei & Lafferty, 2005), we assume each im-
age is a bag of atoms, which results in a measurable quan-
tity of inter-relationship between images, specifically simi-
lar images should share similar distribution over those mix-
ture components. An important aspect of the H-KSBP al-

gorithm is that while in text analysis the “bag of words”
may be set a priori, here the “bag of atoms” is inferred
from the data itself, within the clustering process. Related
concepts have been employed previously in image analysis
(Quelhas et al., 2007), but in that work one had to set the
canonical set of image atoms (shapes) a priori, which is
somewhat ad hoc.

As an example, for the data considered, we show one real-
ization of H-KSBP in Figure 3. In the figure, we display
canonical atom usage across all 140 images. Figure 3 is
a count matrix, where each square represents the relative
number of counts in a given image for a particular atom
(atoms indexed along the vertical axis in Figure 3).
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Figure 3. Matrix on the usage of atoms across the different im-
ages. The size of each box represents the relative frequency with
which a particular atom is manifested in a given image. These
results are computed via H-KSBP.
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Figure 4. Demonstration of different atoms as inferred by an ex-
ample run of the H-KSBP algorithm. Each row of the figure cor-
responds to one atom. Every two images form a set, with the orig-
inal images at left and areas assigns to a particular atom shown at
right.

Figure 4 gives a representation of most of the atoms. For
example the 4-th, 31-st and 39-th atoms are associated with
clouds and sky; the 38-th atom is principally modeling
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buildings; and the 11-th atom is associated with trees and
grasses. While performing the experiment, we also noticed
it was relatively easy to segment clouds, fireworks, coun-
tryside, and urban images while harder to obtain contigu-
ous segments within office images (these typically have far
more details, and less large regions of smooth texture; this
latter issue may be less an issue of the H-KSBP, but rather
of the features employed). An example of this difficulty
is observable in Figure 5, as office images are composed
of many different atoms. Fortunately, the office images
still tend to share similar usage of atoms so that they can
be grouped together (sorted) when quantifying similarities
between images based on the histogram over atoms (dis-
cussed next).

The results in Figure 5, in which both H-KSBP and HDP
segmentation results are presented, demonstrate general
properties observed when analyzing the images considered
here: (i) the segmentation characteristics of HDP were gen-
erally good, but on some occasions they were markedly
worse (less detailed) than those of H-KSBP; and (ii) the
H-KSBP was generally more sensitive to detailed textu-
ral differences in the images, thereby generally inferring
a larger number of principal atoms (increased number of
large sticks).
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Figure 5. Representative set of segmentation results, comparing
H-KSBP and HDP. While these two algorithms tend to generally
yield comparable segmentations for the images considered, the H-
KSBP is generally more sensitive to details, with this sometimes
yielding better segmentations (e.g., the top-level and bottom-right
results).

To demonstrate the image-sorting potential of the H-KSBP,
we compute the Kullback-Leibler (KL) divergence on the
histogram over atoms between any two images, by aver-
aging histograms of the form in Figure 3 over ten random
MCVB initializations. For each image, we rank its simi-
larity to all other images based on the associated KL diver-
gence. Performance is addressed quantitatively as follows.
For each of the 140 images, we quantify via KL divergence
its similarity to all other 139 images, wherein we achieve

in ordered list. In Figure 6 we present a confusion ma-
trix, which represents the fraction of the top-ten members
of this ordered list that are within the same class (among
seven classes) as the image under test.
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Figure 6. The confusion matrix over image types, generated using
H-KSBP.

As demonstrated in Figure 6, the H-KSBP performs well
in distinguishing clouds, faces and fireworks images. The
buildings and urban images often share some similar atoms,
mainly representing buildings, and therefore these are
somewhat confused (reasonably, it is felt). The offices im-
ages are often related to other relatively complex scenes.
Some typical image ranking results are given in Figure 7. It
was found that the HDP produced similar sorting results as
produced by H-KSBP (e.g., the associated confusion ma-
trix for HDP is similar to that in Figure 6), and therefore
the HDP sorting results are omitted here for brevity. This
indicates that while in some cases the HDP segmentation
results are inferior to those of H-KSBP, in general the abil-
ity of HDP and H-KSBP to sort images is comparable (at
least for the set of images considered).

The H-KSBP results on the 140-image database were per-
formed in non-optimized MatlabTM software, on a PC
with 3 GHz CPU and 2 GB memory. It required about 3
hours to compute one run of the MCVB code for 80 iter-
ations, with typically 40-50 iterations required to achieve
convergence. The H-KSBP and HDP algorithms were run
with comparable computation times.

5. Conclusions
The kernel stick-breaking process has been extended for
use in image segmentation. The algorithm explicitly im-
poses the belief that feature vectors that are generated from
proximate locations in an image are more likely to be as-
sociated with the same image segment. We have also ex-
tended the KSBP algorithm to the MTL setting, exploring
the inter-relationship of images by sharing the same mix-
ing components. Generally superior segmentation perfor-
mance of H-KSBP was observed relative to HDP, when
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Figure 7. Sample image sorting results, as generated by H-KSBP.
The top left image is the original image followed by the five most
similar images and then the five most dissimilar images.

segmenting multiple images simultaneously. In addition to
segmenting multiple images, the H-KSBP and HDP algo-
rithms also yield information about the inter-relationships
between the images, based on the underlying sharing mech-
anisms inferred among the associated clusters. For the im-
ages considered, it was found that the H-KSBP and HDP
yielded very similar sorting results.
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