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Abstract

Hierarchical decomposition promises to help
scale reinforcement learning algorithms naturally
to real-world problems by exploiting their under-
lying structure. Model-based algorithms, which
provided the first finite-time convergence guaran-
tees for reinforcement learning, may also play an
important role in coping with the relative scarcity
of data in large environments. In this paper, we
introduce an algorithm that fully integrates mod-
ern hierarchical and model-learning methods in
the standard reinforcement learning setting. Our
algorithm, R-MAXQ , inherits the efficient model-
based exploration of the R-MAX algorithm and
the opportunities for abstraction provided by the
MAXQ framework. We analyze the sample com-
plexity of our algorithm, and our experiments in
a standard simulation environment illustrate the
advantages of combining hierarchies and models.

1. Introduction

Reinforcement Learning (RL) algorithms tackle a very
challenging problem: how to find rewarding behaviors in
unknown environments (Sutton & Barto, 1998). An impor-
tant goal of RL research is to generalize these algorithms to
structured representations and to learn from limited experi-
ence. In this paper, we develop an algorithm that integrates
two important branches of RL research that, despite their
popularity, have rarely been studied in tandem.

The first of these two branches is hierarchical RL. Humans
cope with the extraordinary complexity of the real world in
part by thinking hierarchically, and we would like to imbue
our learning algorithms with the same faculty. In the RL
community, this impetus has taken shape as work on tem-
poral abstraction, in which temporally extended abstract
actions allow agents to reason above the level of primi-
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tive actions (Barto & Mahadevan, 2003). The advantages
of such methods include the ability to incorporate prior
knowledge and the creation of opportunities for state ab-
straction. Recent work in the automatic discovery of hi-
erarchy has focused on the ability to focus exploration in
novel regions of the state space (Şimşek & Barto, 2004).

The second branch is model-based RL, which directly es-
timates a model of the environment and then plans with
this model. Early work demonstrated that summarizing an
agent’s experience into a model could be an efficient way
to reuse data (Moore & Atkeson, 1993), and later work uti-
lized the uncertainty in an agent’s model to guide explo-
ration, yielding the first (probabilistic) finite bounds on the
amount of data required to learn near-optimal behaviors in
the general case (Kearns & Singh, 1998; Kakade, 2003).

Few RL researchers have tried to combine these two ap-
proaches, despite the intuitive appeal of learning hierarchi-
cal models of the world. Prior work includes adaptations
to the average-reward formulation (Seri & Tadepalli, 2002)
and to deterministic domains (Diuk et al., 2006). In this pa-
per, we introduce an algorithm that fully integrates modern
hierarchical-decomposition and model-learning methods in
the standard setting of discounted rewards and stochastic
dynamics. Section 2 details how we decompose high-level
models into lower-level models. Section 3 presents our al-
gorithm, which joins our model decomposition with the R-
MAX approach to learning primitive models. In Section 4,
we formally analyze our algorithm, R-MAXQ . Section 5
describes our empirical results. In Section 6 we discuss
related work more fully, and in Section 7 we conclude.

2. Hierarchies of Models

We begin by describing our recursive action decomposi-
tion, which defines how we plan at the high level given
learned models of primitive actions. Section 3 presents a
complete algorithm obtained by combining this decompo-
sition with a particular way of learning primitive models.

We adopt the standard semi-Markov decision process
(SMDP) formalism for describing temporally extended ac-
tions (Sutton et al., 1999), but we modify the notation to
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better reflect the recursive nature of hierarchical RL. We
define an SMDP as the conjunction〈S,A〉 of a finite state
spaceS and a finite action setA. Each actiona ∈ A is
associated with a transition functionP a and a reward func-
tion Ra. For convenience, we use amulti-timemodel (Sut-
ton et al., 1999), soP a(s, s′) =

∑∞
k=1 γk Pr(k, s′ | s, a),

whereγ ∈ (0, 1) is a discount factor andPr(k, s′ | s, a) is
the probability that executing actiona ∈ A in states ∈ S
will take exactlyk time steps and terminate in states′ ∈ S.
Similarly, Ra(s) = E

[
∑∞

k=0 γkrk

]

, whererk is the one-
step reward earned during thekth time step executinga.

If a ∈ A is aprimitive action, then it will always terminate
after exactly one time step, so

∑

s′ P a(s, s′) = γ for all
s ∈ S. Since we may construe a discount factor ofγ as
equivalent to terminating a trajectory with probability1−γ
after each time step, the “missing” transition probability
corresponds to the probability of termination.

In the RL setting, eachP a andRa is initially unknown, but
for eacha ∈ A that is acomposite action, we assume the
agent is given a set of terminal statesT a ⊂ S, a set of child
actionsAa, and a goal reward functioñRa : T a → R. A
composite actiona may be invoked in any states ∈ S \T a,
and upon reaching a states′ ∈ T a it terminates and earns an
internal reward ofR̃a(s′). It executes by repeatedly choos-
ing child actionsa′ ∈ Aa to invoke. The child actionsa′

may be primitive or composite. Whena′ terminates (and
assuminga does not terminate), thena selects another child
action. (In contrast to the original MAXQ framework, a
composite actiona only tests for termination upon the ter-
mination of a child actiona′.) A composite actiona selects
child actions to maximize the expected sum of the child
action rewardsRa′

and the goal rewards̃Ra.

Given the transition and reward functions for each of the
child actions, the optimal policy for the composite actiona
may be computed using the following system of Bellman
equations, for alls ∈ S anda′ ∈ Aa:

Qa(s, a′) = Ra′

(s) +
∑

s′∈S

P a′

(s, s′)V a(s′) (1)

V a(s) =

{

R̃a(s), if s ∈ T a

maxa′∈Aa(s) Qa(s, a′), otherwise,
(2)

where Aa(s) =
{

a′ ∈ Aa |primitive(a′) ∨ s /∈ T a′

}

.

Then the optimal policyπa : S → Aa is, for all s ∈ S:

πa(s) = argmaxa′∈Aa(s)Q
a(s, a′). (3)

Dietterich’s MAXQ framework computesQa(s, a′) by
decomposing this quantity intoQa(s, a′) = Ra′

(s) +
Ca(s, a′), whereCa is acompletion functionthat estimates
the reward obtained after executinga′ but before complet-
ing a. It recursively queries the child action forRa′

and

learnsCa locally using model-free stochastic approxima-
tion. Using the learnedπa, it simultaneously learns an ex-
ternal version ofCa that doesn’t include the internal goal
rewardsR̃a, so thata can reportRa to its own parents.

The key idea behind our model-based approach is to as-
sume that a composite actiona can query a childa′ for not
just Ra′

but alsoP a′

. Then the only unknown quantity in
Equation 1 isV a, which can be computed using standard
dynamic programming methods and stored locally. To sat-
isfy our assumption, each actiona, whether primitive or
composite, must be able to compute bothRa andP a. Prior
research into option models (Sutton et al., 1999) defined
Bellman-like equations, for alls ∈ S andx ∈ T a:

Ra(s) = Rπa(s)(s) +
∑

s′∈S\T a

Pπa(s)(s, s′)Ra(s′) (4)

P a(s, x) = Pπa(s)(s, x) +
∑

s′∈S\T a

Pπa(s)(s, s′)P a(s′, x), (5)

and for alls ∈ S andx ∈ S \ T a, P a(s, x) = 0. SinceP a

is a multi-time model, note that
∑

s′ P a(s, s′) < γ < 1,
where the “missing” transition probability corresponds to
the cumulative1 − γ probability of terminating (the entire
trajectory, not justa) marginalized over the random dura-
tion of the execution ofa. A key strength of our algorithm
is that it takes advantage of models to solve Equations 4
and 5 directly using dynamic programming, instead of us-
ing these equations to define update rules for stochastic ap-
proximation, as in prior work with option models.

Our decomposition provides a way to compute policies
and therefore high-level transition and reward models given
lower-level transition and reward models. To ground out
this process, models of the primitive actions must be avail-
able. However, ifRa andP a are available for each primi-
tive actiona, note that we could compute the optimal policy
of the system using standard (non-hierarchical) planning
algorithms. Nevertheless, we empirically demonstrate the
benefit of using hierarchies in Section 5. The next section
first presents our learning algorithm.

3. The R-MAXQ Algorithm

Equations 1–5 show how to compute abstract models from
primitive models, but a complete model-based RL algo-
rithm must specify how to estimate the primitive models.
We propose combining our hierarchical model decompo-
sition, inspired by the MAXQ value function decomposi-
tion, with the primitive models defined by the R-MAX al-
gorithm (Brafman & Tennenholtz, 2002), yielding a new
algorithm we call R-MAXQ .

R-MAX defines the transition and reward models for prim-
itive actions as follows. Letn(s, a) denote the number
of times primitive actiona has executed in states. Let
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n(s, a, s′) denote the number of times primitive actiona
transitioned states to states′. Finally, let r(s, a) denote
the cumulative one-step reward earned by each execution
of primitive actiona in states. Then the primitive transi-
tion and reward models are given by:

Ra(s) =

{

r(s,a)
n(s,a) , if n(s, a) ≥ m

V max, otherwise,
(6)

P a(s, s′) =

{

n(s,a,s′)
n(s,a) , if n(s, a) ≥ m

0, otherwise,
(7)

whereV max is an upper bound on the optimal value func-
tion andm is a threshold sample size.1 Given sufficient
data, R-MAX uses the maximum likelihood model, but it
otherwise uses an optimistic model that predicts a high-
reward terminal transition.2 By backing up these optimistic
rewards through the value function, the learned policy ef-
fectively plans to visit insufficiently explored states.

R-MAXQ works in the same way, except it computes a
hierarchical value function using its model decomposi-
tion instead of a monolithic value function using the stan-
dard MDP model. Optimistic rewards propagate not only
through the value functionV a at a given composite action
a but also up the hierarchy, via each action’s computed ab-
stract reward functionRa. Each local policy implicitly ex-
ploits or explores by choosing a child action with high ap-
parent value, which combines the child’s actual value and
possibly some optimistic bonus due to some reachable un-
known states. No explicit reasoning about exploration is
required at any of the composite actions in the hierarchy: as
in R-MAX , the planning algorithm is oblivious to its role in
balancing exploration and exploitation in a learning agent.
A key advantage of R-MAXQ is that its hierarchy allows it
to constrain the agent’s policy in a fashion that may reduce
unnecessary exploratory actions, as illustrated in Section 5.

Algorithms 1–4 give the R-MAXQ algorithm in detail. All
variables are global, except for the argumentsa and s,
which represent the action and state passed to each sub-
routine. All global variables are initialized to 0, except that
Ra(s) is initialized toV max for all primitive actionsa and
statess. Algorithm 1 is the main algorithm, invoked with
the root action in the hierarchy and the initial state of the
system. MAXQ recursively executes an actiona in the cur-

1The original Prioritized Sweeping algorithm (Moore & Atke-
son, 1993) used the same optimistic one-step model, but its
name became identified with its method for propagating changes
throughout the value function. The primary contribution of the
R-MAX algorithm was a derivation of the appropriate value ofm

given the desired error bounds.
2In effect, setting all the transition probabilities to 0 in Equa-

tion 5 gives the “missing” probability all to the implicit terminal
state. This trick works properly with the Bellman equations since
the terminal state has value 0; the optimism is reflected in the re-
ward for transitioning into this state.

rent states, returning the resulting states′ ∈ T a. Primitive
actions execute blindly; composite actions first update their
policy and then choose a child action to execute, until some
child leaves it in a terminal state.

Algorithm 1 R-MAXQ(a, s)

if a is primitive then
Executea, obtain rewardr, observe states′

r(s, a)← r(s, a) + r {record primitive data}
n(s, a)← n(s, a) + 1
n(s, a, s′)← n(s, a, s′) + 1
t← t + 1
Returns′

else {a is composite}
repeat

COMPUTE-POLICY(a, s)
s← R-MAXQ(πa(s), s) {recursive execution}

until s ∈ T a {or episode ends}
Returns

end if

Algorithm 2 updates the policy for composite actiona
given that the agent is in states. It first constructs aplan-
ning envelope: all the states reachable froms (at this node
of the hierarchy) and thus relevant to the value ofs. Once
the planning envelope has been computed and all the child
actions’ models have been updated on the envelope, the
value function and policy could be computed using value
iteration. Note that our implementation actually uses pri-
oritized sweeping (Moore & Atkeson, 1993) and aggres-
sive memoization, not shown in our pseudocode, to ame-
liorate the computational burden of propagating incremen-
tal model changes throughout the hierarchy.

Algorithm 2 COMPUTE-POLICY(a, s)

if timestamp(a) < t then
timestamp(a)← t
envelope(a)← ∅

end if
PREPARE-ENVELOPE(a, s)
while not convergeddo {value iteration}

for all s′ ∈ envelope(a) do
for all a′ ∈ Aa(s′) do

SetQa(s′, a′) using Eq. 1
end for
SetV a(s′) using Eq. 2

end for
end while
πa(s)← argmaxa′∈Aa(s)Q

a(s, a′) {Eq. 3}

Algorithm 3 computes the planning envelope for compos-
ite actiona by examining the given state’s successors under
any applicable child action’s transition model and recur-
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sively adding any new states to the envelope. This compu-
tation requires that these models be updated, if necessary.

Algorithm 3 PREPARE-ENVELOPE(a, s)

if s 6∈ envelope(a) then
envelope(a)← envelope(a) ∪ {s}
for all a′ ∈ Aa(s) do

COMPUTE-MODEL(a′, s)
for all s′ ∈ S |P a′

(s, s′) > 0 do
PREPARE-ENVELOPE(a, s′)

end for
end for

end if

Algorithm 4 updates the model for an actiona at some state
s. For composite actions, this requires recursively comput-
ing the policy and then solving Equations 4 and 5.

Algorithm 4 COMPUTE-MODEL(a, s)

if a is primitive then
if n(s, a) ≥ m then

Ra(s)← r(s,a)
n(s,a) {Eq. 6}

for all s′ ∈ S do
P a(s, s′)← n(s,a,s′)

n(s,a) {Eq. 7}
end for

end if
else {a is composite}

COMPUTE-POLICY(a, s)
while not convergeddo {dynamic programming}

for all s′ ∈ envelope(a) do
SetRa(s′) using Eq. 4
for all x ∈ T a do

SetP a(s′, x) using Eq. 5
end for

end for
end while

end if

4. Analysis of R-MAXQ

We now provide a very rough sketch of our main theoret-
ical result: R-MAXQ probably follows an approximately
optimal policy for all but a finite number of time steps. Un-
fortunately, this number may be exponential in the size of
the hierarchy. This section closes with a brief discussion of
the implications of this result.

The original R-MAX algorithm achieves efficient explo-
ration by using an optimistic model. Its model of any
given state-action pair is optimistic until it samples that
state-actionm times. By computing a value function from
this optimistic model, the resulting policy implicitly trades
off exploration (when the value computed for a given state

includes optimistic rewards) and exploitation (when the
value only includes estimates of the true rewards). Kakade
(2003) bounded the sample complexity of RL by first show-
ing that R-MAX probably only spends a finite number of
time steps attempting to reach optimistic rewards (explor-
ing). For the remaining (unbounded) number of time steps,
the algorithm exploits its learned model, but its exploitation
is near-optimal only if this model is sufficiently accurate.
Kakade then bounded the values ofm necessary to ensure
the accuracy of the model with high probability.

To be precise, let an MDP with finite state spaceS and fi-
nite action spaceA be given. Letε be a desired error bound,
δ the desired probability of failure, andγ the discount fac-
tor. Then R-MAX applied to an arbitrary initial state will

spendO
(

m|S||A|L
ε

log |S||A|
δ

)

time steps exploring, with

probability greater than1 − δ
2 , whereL = O

(

log ε
1−γ

)

. Fur-

thermore, there exists anm ∈ O
(

|S|L2

ε2
log |S||A|

δ

)

such

that when the agent is not exploring,V π∗

(st)− V πt(st) ≤
ε

1−γ
(Rmax − Rmin) with probability greater than1 − δ

2 ,
wherest andπt are the current state and policy at timet,
andRmax andRmin bound the reward function.

The hierarchical decomposition used by R-MAXQ com-
plicates an analysis of its sample complexity, but essen-
tially the same argument that Kakade used provides a loose
bound. We refer the interested reader to the proof of
Kakade (2003) for the gross structure of the argument,
and we merely sketch the necessary extensions here. A
key lemma is Kakade’sε-approximation condition (Lemma
8.5.4). The transition model̂P for an action is anε-
approximation for the true dynamicsP if for all statess ∈

S,
∑

s′∈S

∣

∣

∣
P̂ (s, s′)− P (s, s′)

∣

∣

∣
< ε. Theε-approximation

condition states that if a model has the correct reward func-
tion but only anε-approximation of the transition dynamics
for each action, then for all policiesπ and statess ∈ S,
∣

∣

∣
V̂ π(s)− V π(s)

∣

∣

∣
< εL

1−γ
.

Essentially, this condition relates the error bounds in the
model approximation to the resulting error bounds in the
computed value function. It allows the analysis of R-MAX

to determine a sufficient value ofm to achieve the desired
degree of near optimality. We must extend this condition
in two ways to adapt the overall proof to R-MAXQ . First,
R-MAXQ violates Kakade’s assumption of deterministic re-
ward functions. Define a model reward functionR̂ to be a
λ-approximation of the true reward functionR if for all

statess ∈ S,
∣

∣

∣
R̂(s)−R(s)

∣

∣

∣
< λ. Then it is straightfor-

ward to adjust Kakade’s derivation of theε-approximation
condition to show that the computed value function for any

given policy satisfiess ∈ S,
∣

∣

∣
V̂ π(s)− V π(s)

∣

∣

∣
< εL

1−γ
+ λ.
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Second, for a given composite actiona, we must relate
error bounds in the approximations ofRa′

and P a′

for
each childa′ ∈ Aa to error bounds in the approxima-
tions of Ra and P a. SinceRa is just the value func-
tion for πa but without the goal rewards (Equation 4),
we immediately obtain that the estimatedRa will be an
(

εL
1−γ

+ λ
)

-approximation. Equation 7 illustrates that for

everys′ ∈ T a, P a(·, s′) can be thought of as a value func-
tion estimating the expected cumulative discounted proba-
bility of transitioning intos′. The total error inP a(s, ·) will
be bounded by the sum of the errors for eachs′ ∈ T a, so it

can be shown thatP a is anO
(

|T a|εL
1−γ

)

-approximation.

These results bound the errors that propagate up from the
primitive actions in the hierarchy, but these bounds seem
quite loose. In particular, these bounds can’t rule out the
possibility that each level of the hierarchy might multiply
the approximation error by a factor of|T

a|L
1−δ

. Since the
amount of data required varies as the inverse square ofε, if
R-MAX requiresm samples of each action at each state
to achieve a certain error bound, R-MAXQ may require

m′ = O

(

m
(

TL
1−δ

)2h
)

samples of each primitive action

at each state to achieve the same error bound at the root of
the hierarchy, whereT is the maximum number of reach-
able terminal states for any composite action andh is the
height of the hierarchy: the number of composite tasks on
the longest path from the root of the hierarchy to a primitive
action (not including the root itself).

By adapting the remainder of Kakade’s proof, we can es-
tablish that R-MAXQ will probably converge to a (recur-
sively) near-optimal policy, although this guarantee re-
quires exponentially more data than R-MAX in the worst
case. We note that this guarantee applies to any choice of
hierarchy. It remains to be seen whether it might be pos-
sible to derive tighter bounds for specific classes of action
hierarchies. Furthermore, as Kakade (2003) notes in his
derivation, theε-approximation condition is perhaps unnec-
essarily stringent, since it gives the worst possible degrada-
tion in approximation quality over all possible policies.

In practice, implementations of R-MAX use far smaller val-
ues ofm than would be required to achieve useful theoreti-
cal guarantees. In this vein, we note that running R-MAXQ

will result in no more time spent in exploration than run-
ning R-MAX with the same value form. The hierarchical
decomposition only weakens the guarantees on the near-
optimality of the policy that R-MAXQ exploits. The exper-
iments described in the next section show that a good hier-
archy can even reduce the amount of time spent exploring,
with no appreciable deterioration in solution quality.

GET PUT

ROOT

north south east

pickup putdown

west

TO RED
NAVIGATE

(a) (b)

Figure 1.(a) Taxi domain, and (b) an action hierarchy for Taxi

5. Experiments

This section presents our empirical results, which show that
R-MAXQ outperforms both of its components, R-MAX and
MAXQ-Q. We discuss our findings in detail, to reveal how
precisely our algorithm benefits from combining model-
based learning and hierarchical decomposition.

For our experiments, we use the familiar Taxi domain (Di-
etterich, 2000). This domain consists of a5 × 5 gridworld
with four landmarks, labeledred, blue, green, and
yellow, illustrated in Figure 1a. The agent is a taxi that
must navigate this gridworld to pick up and deliver a pas-
senger. The system has four state variables and six primi-
tive actions. The first two state variables,x andy, give the
coordinates of the taxi in the grid. The third,passenger,
gives the current location of the passenger as one of the four
landmarks or astaxi, if the passenger is inside the taxi.
The final state variable,destination, denotes the land-
mark where the passenger must go. Four primitive actions,
north, south, east, andwest, each move the taxi in
the indicated direction with probability 0.8 and in each per-
pendicular direction with probability 0.1. Thepickup ac-
tion transfers the passenger into the taxi if the taxi is at the
indicated landmark. Theputdown action ends an episode
if the passenger is in the taxi and the taxi is at the desired
destination. Each episode begins with the taxi in a random
location, the passenger at a random landmark, and a des-
tination chosen randomly from the remaining landmarks.
Each action incurs a−1 penalty, except that unsuccessful
pickup andputdown actions cost−10, and a successful
putdown action earns a reward of 20.

The structure of the Taxi domain makes it conducive for
research into hierarchical RL. The optimal policy may be
described abstractly in four steps. First, navigate to the
landmark where the passenger is. Second, pick up the pas-
senger. Third, navigate to the destination landmark. Fi-
nally, put down the passenger. Navigation to each of the
landmarks constitute reuseable subtasks that hierarchical
algorithms can exploit. Dietterich (2000) expressed this do-
main knowledge in the task hierarchy shown in Figure 1b.
This hierarchy defines a navigational composite action for
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Figure 2.(a) Cumulative and (b) asymptotic performance of R-MAXQ , R-MAX , and MAXQ-Q on the Taxi domain, averaged over 100
independent trials. R-MAXQ and MAXQ-Q utilize the hierarchy shown in Figure 1b, but they do not use any explicit state abstraction.

each of the four landmarks. These actions include the four
primitive movement actions as children, and they terminate
upon reaching the coordinates corresponding to the respec-
tive landmark. TheGET andPUT composite actions each
have all four of their navigational composite actions as chil-
dren, as well aspickup or putdown, respectively.GET
terminates when the passenger is in the taxi, andPUT ter-
minates only when the episode does. TheROOT action only
includesGET andPUT as children, and likePUT it defines
no terminal states beyond those intrinsic to the domain. All
goal reward functions give 0 reward; each action simply
minimizes the costs earned before reaching their subgoals.

In our experiments with R-MAX and R-MAXQ we set the
threshold sample size atm = 5. Preliminary experiments
showed that larger values ofm did not signicantly improve
the final policy, although of course they led to more time
spent estimating the model. The only other parameter for
these algorithms is the stopping criterion for the dynamic
programming steps in Algorithms 2 and 4. In all cases, we
ran value iteration until the largest change was smaller than
ε = 0.001. We provided R-MAXQ and the original MAXQ-
Q algorithm with the hierarchy shown in Figure 1b as prior
knowledge. For our implementation of MAXQ-Q, we used
precisely the hand-tuned parameters Dietterich (2000) opti-
mized for the initial value function, learning rates, and tem-
perature decay (for Boltzmann exploration) for each action
in the hierarchy. We conducted 100 independent trials of
each condition of our experiments.

5.1. R-MAXQ versus R-MAX

We begin by comparing the performance of R-MAXQ and
R-MAX on the Taxi task. Our initial hypothesis was that
R-MAXQ would perform no better than R-MAX in the ab-
sence of state abstraction, since the model-based ability to

plan to explore might subsume the exploratory role that
options have played in many model-free RL implementa-
tions (Şimşek & Barto, 2004; Singh et al., 2005). Figure 2
reveals that in fact the two algorithms exhibit very different
learning curves. In particular, although R-MAX requires
many fewer episodes to converge to an optimal policy, R-
MAXQ earns much greater total reward.

We had overlooked the fact that the hierarchy used by R-
MAXQ doesn’t so much guide exploration as it constrains
it. In particular, note that the hierarchical agent can never
attempt theputdown action except at one of the four
landmark locations, since thePUT action only becomes
available when the agent is already at one of these loca-
tions, and the four navigational actions keep the agent in
this reduced set of states. The agent thus only attempts
theputdown action in 12 incorrect states, instead of the
396 explored by R-MAX . In addition, R-MAX attempts the
pickup action in 100 states in which R-MAXQ doesn’t,
when the passenger is already in the car. Since the penalty
for incorrect usage of these actions is -10, R-MAX loses
10(396 − 12 + 100)m = 24200 reward due to its wasted
exploration, accounting for the difference between the two
algorithms in Figure 2a. Furthermore, since theGET action
cannot navigate to an arbitrary location, R-MAXQ can’t at-
tempt thepickup action in a non-landmark location un-
til some episode randomly starts the agent there. In this
case the hierarchy can only postpone, not prevent, wasted
exploration. This effect explains the delayed convergence
relative to R-MAX : in later episodes R-MAXQ spends time
on exploration that R-MAX performed more eagerly.

5.2. R-MAXQ versus MAXQ-Q

Figure 2 also compares R-MAXQ with the original MAXQ-
Q algorithm. Of course, this comparison isn’t very fair,
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Figure 3.Cumulative performance of R-MAXQ , R-MAX , and
MAXQ-Q on the Taxi domain, using state abstraction. (The
asymptotic performance is qualitatively similar to that shown in
Figure 2b, although with faster convergence.)

since a primary goal of the MAXQ framework was to create
opportunities for state abstraction (Dietterich, 2000), which
we did not initially exploit. In fact, Dietterich identifiedthe
condition described in Section 5.1, which he called shield-
ing, as one that permits abstraction. For a more fair com-
parison, we allowed our implementation of MAXQ-Q to
use all the state abstractions in the Taxi domain identified
by Dietterich (2000), along with his optimized parameters.

We applied Dietterich’s notion of max node irrelevance to
allow R-MAXQ also to enjoy an explicit form of state ab-
straction as prior knowledge. Each action in the hierarchy
abstracts away state variables when our domain knowledge
indicates that doing so would not compromise the learned
model. However, whereas in MAXQ-Q an actiona only
reports its abstract reward functionRa to its parents, in R-
MAXQ it must also convey the abstract transition function
P a. Thus we only allow a composite action to ignore a state
variable if all of its children also ignore that state variable.

In the hierarchy shown in Figure 1b, the four primitive
movement actions and the four navigational actions can
abstract away thepassenger anddestination state
variables.GET andpickup ignoredestination, and
PUT andputdown ignorepassenger. However,ROOT
cannot ignore any state variables. When a child’s transition
function was more abstract than a parent’s model, the par-
ent assumed a very simple dynamic Bayes network (DBN)
factorization (Boutilier et al., 1995). For example,P north

setsx andy (each conditional on the previous values of
both variables), butpassenger anddestination re-
main constant. Figure 3 compares the performance of the
resulting algorithms. Both MAXQ-Q and R-MAXQ learn
much faster with state abstraction, with the model-based
nature of R-MAXQ continuing to give it an edge.

It is worthwhile to examine more closely how the hier-
archy interacts with state abstraction in the Taxi domain.
Consider how MAXQ-Q learns theROOT action. The
only values stored locally are the completion functions
Croot(·, GET) and Croot(·, PUT), which have different ab-
stract representations. The latter function is always equal to
0, since afterPUT terminates there is nothing to complete,
since the entire episode has terminated. Meanwhile, to
evaluateCroot(s, GET) the algorithm need only inspect the
passenger anddestination variables ofs, since the
values of these two variables before executingGET com-
pletely determine the remaining cost of completingROOT
afterGET terminates. Hence, MAXQ-Q only learns 16 val-
ues at theROOT node; to compute the value of a state it re-
cursively queriesRa and adds the appropriate completion
function (Dietterich, 2000).

R-MAXQ doesn’t apply any explicit state abstraction to
ROOT, but note that after executing either of its two child
actions, the result must be one of 12 nonterminal states:
with the taxi at one of four landmarks, the passenger in
the taxi, and the destination at one of the other three land-
marks. Hence, the planning envelope computed in Algo-
rithm 2 will always contain some subset of these 12 states
plus the current state. As with MAXQ-Q, the result dis-
tribution irrelevance ofGET allows R-MAXQ to store only
a small number of values locally. To compute the value
of a state, R-MAXQ also queries one-step values from its
children and then adds the appropriate successor state val-
ues. In this sense, these 12 states can be thought of as the
completion setof ROOT.

Figure 3 also shows the performance of standard R-MAX

with the same DBN factorization as R-MAXQ applied to
most of its actions (which are all primitive). Note that in the
absence of shielding,putdown cannot safely ignore the
passenger variable. The ability to abstract the primitive
models does reduce the amount of exploration that R-MAX

must perform, but the improvement is significantly smaller
than that of the other algorithms. This result gives more
support for motivating hierarchical decomposition with op-
portunities for state abstraction.

Some preliminary further experiments support the argu-
ments of Jong et al. (2008), who used model-free hierarchi-
cal algorithms to suggest that composite actions more reli-
ably improve RL performance when they replace instead of
augment primitive actions. We ran R-MAXQ with a hierar-
chy in which the root’s children included all six primitive
actions as well as the four navigational composite actions,
producing learning curves indistinguishable from those of
standard R-MAX in Figure 2. When the root action can ex-
ecute every primitive action, the planning envelope grows
to include too many states. Formalizing the properties of a
composite action’s completion set may help us understand
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how hierarchies can constrain planning envelopes without
sacrificing learning performance.

6. Related Work

Other algorithms have combined hierarchical RL with a
model-based approach, but not in the standard framework
of discounted rewards and stochastic dynamics. Diuk et al.
(2006) developed a model-based MAXQ algorithm for de-
terministic domains, allowing them to quickly sample the
effect of a composite action recursively: every action’s ef-
fect can be represented as a scalar reward and a single
successor state. Their algorithm also uses Dietterich’s ap-
proach to state abstraction, occasionally forcing it to re-
plan, since the effect of a child action may depend on state
variables not visible to the parent, making it seem nonde-
terministic. In contrast, R-MAXQ does not employ explicit
state abstraction, allowing it to save the value functions and
policies computed during one time step for all future time
steps. Our algorithm relies on the choice of hierarchy to
yield small planning envelopes, automatically achieving an
effective reduction in the size of the state space considered
during any one time step.

Seri and Tadepalli (2002) extended the MAXQ framework
to average-reward reinforcement learning, resulting in an
algorithm that learns a model to facilitate the computation
of the bias for each state from the average reward of the
current policy. However, the computation of the average
reward itself relies on stochastic approximation techniques,
and their algorithm does not have any formal guarantees
regarding its sample complexity.

7. Conclusions

The R-MAXQ algorithm combines the efficient model-
based exploration of R-MAX with the hierarchical decom-
position of MAXQ. Although our algorithm does not im-
prove upon the known formal bounds on the sample com-
plexity of RL, it retains a finite-time convergence guar-
antee. An empirical evaluation demonstrates that even a
relatively simple hierarchy can improve the cumulative re-
ward earned by constraining the exploration that the agent
performs, both within individual episodes of learning and
throughout an agent’s experience with its environment.
Even in the absence of explicit state abstraction, the struc-
ture of an action hierarchy can drastically reduce the ef-
fective state space seen by a given composite action dur-
ing a single episode. This implicit concept of a reduced
completion set, mirroring Dietterich’s explicitly abstracted
completion function, suggests future avenues of research,
both for improving the theoretical guarantees on the sam-
ple complexity of R-MAXQ and for guiding the discovery
of more useful hierarchies.
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