
No-Regret Learning in Convex Games

Geoffrey J. Gordon ggordon@cs.cmu.edu

Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213

Amy Greenwald amy@cs.brown.edu
Casey Marks casey@cs.brown.edu

Department of Computer Science, Brown University, Providence, RI 02912

Abstract

Quite a bit is known about minimizing differ-
ent kinds of regret in experts problems, and
how these regret types relate to types of equi-
libria in the multiagent setting of repeated
matrix games. Much less is known about the
possible kinds of regret in online convex pro-
gramming problems (OCPs), or about equi-
libria in the analogous multiagent setting of
repeated convex games. This gap is unfortu-
nate, since convex games are much more ex-
pressive than matrix games, and since many
important machine learning problems can be
expressed as OCPs. In this paper, we work
to close this gap: we analyze a spectrum of
regret types which lie between external and
swap regret, along with their corresponding
equilibria, which lie between coarse correlated
and correlated equilibrium. We also analyze
algorithms for minimizing these regret types.
As examples of our framework, we derive al-
gorithms for learning correlated equilibria in
polyhedral convex games and extensive-form
correlated equilibria in extensive-form games.
The former is exponentially more efficient
than previous algorithms, and the latter is
the first of its type.

1. Introduction

We wish to build agents that can learn to act effec-
tively in multiagent decision problems. We represent
such problems as general-sum games: each agent i is
given a feasible region Ai from which to choose an ac-
tion ai. The payoff to agent i depends not only on
i’s choice, but also on the actions a¬i chosen by other
agents. Since we are modeling learning, we assume

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

that each agent knows only its own feasible region and
observes only its own payoff structure. So, an agent
cannot simply compute an equilibrium of the game
and play it (even leaving aside the complexity of such
a computation and the problem of coordinating with
other agents on an equilibrium). All an agent can do is
learn a preferred course of action by playing the game
repeatedly and observing its own payoffs.

What, then, is an appropriate goal for a learning
agent? Unlike zero-sum games, general-sum games do
not have a well-defined value: even if we had com-
plete knowledge of the game and all players were com-
pletely rational, we would not be able to predict how
much payoff we should receive. Instead, researchers
have defined other goals for learning agents. One
popular one is regret minimization. For example, a
number of previous algorithms have been designed to
minimize external regret (defined in Sec. 2) in convex
games, including Generalized Gradient Descent (Gor-
don, 1999b), GIGA (Zinkevich, 2003), Follow the Per-
turbed Leader (Kalai & Vempala, 2003), Lagrangian
Hedging (Gordon, 2006), and algorithms based on
Fenchel duality (Shalev-Shwartz & Singer, 2006).

However, no external regret may not be a sufficient
goal: a set of agents can all achieve no external re-
gret (which guarantees that the empirical distribution
of joint play converges to the set of coarse correlated
equilibria, defined in Sec. 4) and still have an incentive
to change their play. For example, a no-external-regret
learner can consistently observe that its average pay-
off per trial would have been higher if it had chosen
action a′ every time that it actually played a, and yet
never switch to playing action a′ in these situations.
To avoid such behavior, we seek algorithms that pro-
vide guarantees stronger than no external regret. In
a seminal paper, Foster and Vohra (1997) present an
algorithm that exhibits no internal regret (defined in
Sec. 2) in matrix games, and further, show that if all
players achieve no internal regret, the empirical distri-
bution of joint play converges to the set of correlated



No-Regret Learning in Convex Games

equilibria (see Sec. 4). This guarantee rules out pre-
cisely the anomalous behavior described above.

Stoltz and Lugosi (2007) generalize these results to
convex games. Extending the framework of Greenwald
and Jafari (2003) for matrix games, they define a con-
tinuum of regret measures called Φ-regret, as well as
corresponding Φ-equilibria, for convex games. Given a
feasible region A, Φ is a collection of action transfor-
mations; that is, each φ ∈ Φ is a function from A to
itself. An agent calculates its Φ-regret by comparing
the losses it obtained during its past history of play to
the losses it would have obtained had it transformed
each action it played according to some φ ∈ Φ.

Different choices of Φ lead to different types of regret
and corresponding equilibria. In matrix games, the
only two regret types known to be of interest are the
above-mentioned external and internal regret. No in-
ternal regret is equivalent to no swap regret, in which
Φ is the set of all transformations from A to itself. In
convex games, by contrast, there is a much richer va-
riety of regret concepts. We identify and analyze two
novel regret types, which we call extensive-form and
finite-element regret. We also analyze linear regret.
Each of these regret types is distinct from the others
and from external and swap regret. In fact, they form
a progression: no swap regret (the strongest property)
implies no finite element regret, which implies no linear
regret, which implies no extensive-form regret, which
implies no external regret (the weakest property).

Different regret types require different regret-
minimization algorithms. For convex games, until re-
cently, most algorithms minimized only external re-
gret. More recently, Stoltz and Lugosi (2007) proved
the existence of a no-swap-regret algorithm, and Hazan
and Kale (2007) derived an algorithm that exhibits no
Φ-regret for any set Φ which is the convex hull of a fi-
nite set of transformations. Simultaneously and inde-
pendently, we developed an algorithm similar to Hazan
and Kale’s: our algorithm handled more-general rep-
resentations of transformation sets, but required exact
fixed-point calculations (Gordon et al., 2007).

Unfortunately, constructing an algorithm according to
Stoltz and Lugosi’s proof would be prohibitively ex-
pensive: both the time and space requirements would
grow exponentially with the number of rounds. And,
Hazan and Kale’s algorithm, which runs in time poly-
nomial in the number of corners of Φ, can also be pro-
hibitively expensive: for example, if A is the unit cube
in Rd and Φ is the set of linear transformations that
map A to itself, then Φ, which is the Cartesian product
of d copies of the unit L1 ball, has (2d)d corners.

In this work, we extend our earlier algorithms and
proofs, unifying them with Hazan and Kale’s. The
result is an algorithm which accommodates more-
efficient representations of Φ. In the example above,
the natural representation of Φ is as a set of d × d
matrices satisfying certain linear constraints. Using
this representation, our algorithm runs in time poly-
nomial in d—an exponential speedup. In general, we
can efficiently achieve no linear regret so long as we
can efficiently optimize over the set of linear mappings
from A to itself.

We also instantiate our algorithm for extensive-form
and finite-element regret. These regret types are im-
portant in practice: extensive-form regret corresponds
to extensive-form correlated equilibrium (Forges & von
Stengel, 2002), arguably the most natural notion of
equilibrium in extensive-form games. And, our no-
finite-element-regret algorithm, with a simple modi-
fication described below, guarantees that the empiri-
cal distribution of joint play converges to a correlated
equilibrium.

For extensive-form regret, our algorithm is polynomial
in the dimension of the action set A; we are not aware
of any prior no-extensive-form-regret algorithms. For
finite-element regret, our algorithm is polynomial in
the dimension of the action set and in the size of a
finite-element mesh that covers Φ. Although the nec-
essary mesh for some choices of Φ is quite large, our
algorithm is still by far the most efficient known that
guarantees convergence to correlated equilibrium.

2. The General Algorithm

When playing a repeated convex game, a single agent’s
learning problem is called an online convex pro-
gram (OCP): in each round t, the agent chooses an
action at ∈ A. At the same time, forces external to the
agent choose a convex loss function lt ∈ L. (A loss is
just a negative payoff.) The agent observes lt and pays
lt(at). The action space A is assumed to be a convex
and compact subset of Rd. The set L includes convex
loss functions with bounded subgradients. The com-
monly studied experts problem is a special case of
an OCP in which the feasible region is the probability
simplex in Rd.

A learning algorithm takes as input a sequence of
loss functions lt and produces as output a sequence of
actions at. Action at may depend on l1 . . . lt−1, but not
on lt or later loss functions. The learner’s objective is
to minimize its cumulative loss, Lt =

∑T
t=1 lt(at).

The minimum achievable loss depends on the specific
sequence lt. To measure how well a learning algorithm



No-Regret Learning in Convex Games

performs against a given sequence, we calculate its re-
gret. The simplest type of regret is called external
regret, and is defined as follows:

ρEXT
t = sup

a∈A

T∑
t=1

(lt(at)− lt(a))

That is, the external regret is the difference between
the actual loss achieved and the smallest possible loss
that could have been achieved on the sequence lt by
playing a fixed a ∈ A.

We say that an algorithm A exhibits no external re-
gret for feasible region A and set L if we can guarantee
that its average external regret per trial eventually falls
below any ε > 0, regardless of the particular sequence
lt. In other words, A exhibits no external regret if
there is a function f(T,A,L) which is o(T ) for any
fixed A and L, such that for all a ∈ A, t ≥ 1

T∑
t=1

lt(at) ≤
T∑

t=1

lt(a) + f(T,A,L) (1)

The function f can depend on A and L in complicated
ways, but usually depends on properties like the di-
ameter of A under some norm, or the length of ∂l(a)
under some norm for a ∈ A and l ∈ L.

More generally, an agent can consider replacing its se-
quence a1 . . . at with φ(a1) . . . φ(at), where φ is some
action transformation, that is, a measurable func-
tion that maps A into itself. If Φ is a set of such action
transformations, we define an algorithm’s Φ-regret as

ρΦ
t = sup

φ∈Φ

T∑
t=1

(lt(at)− lt(φ(at)))

and we say that it exhibits no Φ-regret if it satisfies
the following analogue of Eq. 1: for all φ ∈ Φ, t ≥ 1

T∑
t=1

lt(at) ≤
T∑

t=1

lt(φ(at)) + g(T,A,L,Φ) (2)

where g(T,A,L,Φ) is o(T ) for any fixed A, L, and Φ.

Note that external regret is just Φ-regret with Φ equal
to the set of constant transformations: i.e., ΦEXT =
{φx | x ∈ A}, where φx(a) = x. By setting Φ to
larger, more flexible transformation sets, we can define
stronger varieties of regret. However, before studying
any specific regret types in detail, we next discuss how
to achieve no Φ-regret for general Φ.

2.1. General Φ

In this section, we develop an algorithm A that ex-
hibits no Φ-regret for any suitable Φ ⊂ A 7→ A. The

algorithm itself is fairly simple, and embodies essen-
tially the same idea that was proposed earlier by Gor-
don et al. (2007) and Hazan and Kale (2007). How-
ever, we develop the idea here so that it applies to a
more general class of transformation sets Φ than con-
sidered previously, and provide a proof that it achieves
no Φ-regret under more general conditions. Our ex-
tra generality is crucial for developing efficient imple-
mentations for important choices of Φ including linear,
extensive-form, and finite-element transformations.1

Our Φ-regret minimizing algorithm A is described in
Fig. 1. It takes as input a sequence of loss functions
lt ∈ L and outputs a sequence of actions at ∈ A, which,
we will show, satisfies Eq. 2.

In designing A, we assume that we have access to sub-
routines A′ and A′′. The subroutine A′ computes ap-
proximate fixed points of transformations φ ∈ Φ. That
is, given any φ ∈ Φ and any ε > 0, A′ returns some
a ∈ A such that ‖a−φ(a)‖A ≤ ε. Here, ‖·‖A is an arbi-
trary norm on Rd. The subroutine A′′ is an external-
regret minimizing algorithm whose feasible region is
Φ; we assume that its regret bound is o(T ) whenever
we can provide a bound (in an appropriate norm) on
the subgradients of the loss functions it encounters.

Since algorithm A accesses the transformation set Φ
only through the subroutines A′ and A′′, it does not
depend on any special properties of Φ beyond the ex-
istence of these subroutines. To state our theorem,
though, we will embed Φ in a vector space, as follows.
Since A ⊂ Rd, we can write φ ∈ Φ as a d-tuple of
“coordinate” functions (ψ1, ψ2, . . . , ψd), ψi : A → R.
For all φ ∈ Φ and i = 1 . . . d, we assume ψi is a mem-
ber of some reproducing-kernel Hilbert space (RKHS)
H ⊂ A 7→ R.2 Finally, we assume that Φ is a convex
and compact subset of Hd.

To make these assumptions concrete, suppose for ex-
ample that Φ is the convex hull of a finite set of trans-
formations {φ1, . . . , φp}: i.e.,

Φ =
{∑p

j=1 αjφ
j | αj ≥ 0,

∑p
j=1 αj = 1

}
(This is the case treated by Hazan and Kale.) If we
take H to be the span of all of the coordinate functions
ψj

i , then Φ is a simplex in Hd with corners φj , for
j = 1 . . . p. (In general, Φ’s shape may be much more

1Hazan and Kale’s algorithm is efficient in the special
case of external transformations. Indeed, this section’s al-
gorithm specializes to their algorithm in this case.

2A Hilbert space is a (possibly infinite-dimensional) vec-
tor space that has an inner product. A reproducing-kernel
Hilbert space is a Hilbert space of real- or complex-valued
functions in which evaluation at the point a is a continuous
linear functional for any a.



No-Regret Learning in Convex Games

Given feasible region A, transformation set Φ, initial trans-
formation φ1 ∈ Φ, and subroutines A′ and A′′.

For t = 1, . . . , T :

1. Send transformation φt to the fixed-point algorithm
A′, along with accuracy parameter εt = 1/

√
t. Re-

ceive action at satisfying ‖φt(at)− at‖A ≤ εt.

2. Play at; observe loss function lt and incur loss lt(at).

3. Define mt : Φ 7→ R by mt(φ) = lt(φ(at)).

4. Send mt to the no-external-regret algorithm A′′. Re-
ceive transformation φt+1 ∈ Φ.

Figure 1. Algorithm A.

complicated than a simplex, as we will see for example
in the definition of ΦFE below.)

To bound the Φ-regret of algorithm A, we will need
bounds on the actions a and the loss-function subgra-
dients ∂l(a), for all l ∈ L and a ∈ A. In particular, we
will suppose that ‖a‖A ≤ C1 and ‖∂l(a)‖A∗ ≤ C2, for
any a ∈ A, any l ∈ L, and some constants C1, C2 > 0.
Here ‖ · ‖A∗ is the norm that is dual to ‖ · ‖A.

Theorem 1 Fix a convex and compact feasible region
A and a set of loss functions L satisfying the above
norm bounds, as well as a set of transformations Φ ⊂
Hd, where H ⊂ A 7→ R is a RKHS. Assume we are
given an algorithm A′′ which, for any set of possible
loss functions M with bounded subgradients, achieves
no external regret on Φ. Also assume we are given
an algorithm A′ which can compute an approximate
fixed point of any φ ∈ Φ. Then algorithm A, using
subroutines A′ and A′′, achieves no Φ-regret.

Proof: Define the set of functions M ⊂ Φ 7→ R as
M = {l(φ(a)) | l ∈ L, a ∈ A}. Note that each m ∈ M
is convex because each l ∈ L is convex and φ(a) is
linear in φ. Moreover, the norm of the subgradient of
any m ∈ M at any point φ ∈ Φ is bounded by C1C2.
(A proof of this fact, as well as a definition of the
appropriate norm, is given by Gordon et al. (2008).)

Because A′′ exhibits no external regret on Φ with the
bounded-subgradient set of potential loss functions M ,

T∑
t=1

mt(φt) ≤
T∑

t=1

mt(φ) + f(T,Φ,M) ∀φ ∈ Φ

where f is sublinear in T . So, by the definition of mt,
T∑

t=1

lt(φt(at)) ≤
T∑

t=1

lt(φ(at)) + f(T,Φ,M) ∀φ ∈ Φ

But, since ‖φt(at) − at‖A ≤ εt and ‖∂lt(at)‖A∗ ≤
C2, we have by Hölder’s inequality that lt(at) ≤

lt(φt(at)) + εtC2. So,
T∑

t=1

lt(at) ≤
T∑

t=1

(lt(φ(at))+εtC2)+f(T,Φ,M) ∀φ ∈ Φ

Since C2

∑T
t=1 εt = O(

√
T ), this is exactly the desired

no-Φ-regret guarantee. �

Clearly, the run-time of A depends on the run-times
of its subroutines. In particular, since A requires that
A′’s accuracy parameter ε approach 0 as T increases,
it is important that A′ run efficiently even for small ε.
We will discuss run-times in more detail in the con-
text of specific examples below. For now, we note
the following trivial generalization of a result due to
Hazan and Kale: if the fixed-point algorithm A′ is
a FPTAS, and if the no-external-regret algorithm A′′

runs in polynomial time, then A can process T actions
and loss functions in time polynomial in T . Hazan and
Kale allow run-times to be polynomial in the number
of corners of Φ (among other parameters); this ren-
ders their efficiency guarantees meaningless when Φ
has many corners. With our more-efficient represen-
tations of Φ, we can replace the dependence on the
number of corners with parameters like the dimension
of Φ and the norm bounds for a ∈ A and ∂l for l ∈ L;
since these latter parameters can be much smaller, the
result will be a much faster run-time.

As described so far, the algorithm A is deterministic
if its subroutines A′ and A′′ are. Below, we will also
define a randomized variant of A, to strengthen the
connection to game-theoretic equilibria.

2.2. Finite-dimensional Φ

We defined algorithm A in terms of a generic set of
transformations Φ ⊂ Hd, where H is a RKHS, and
each element of H is a real-valued function on A. (So,
each φ ∈ Φ is a d-tuple of real-valued functions on A,
which we interpret as a function from A to Rd.)

Because of the reproducing-kernel property, comput-
ing component ψi(a) of some φ ∈ Hd for a ∈ A is
the same as computing the inner product 〈ψi,K(a)〉.
In other words, each ψi is the composition of a fixed,
possibly-nonlinear functionK(·) with a linear mapping
〈ψi, ·〉. This is the so-called “kernel trick” (Cortes &
Vapnik, 1995): first, K computes a vector of features
of the action a. The inner product with ψi then com-
bines all of these features to produce the final output
ψi(a). To evaluate φ(a) in its entirety, we can compute
K(a) once, and then evaluate the d inner products
〈ψ1,K(a)〉, . . . , 〈ψd,K(a)〉.

In this paper, we are chiefly interested in cases where
the dimension of H is manageable, so that we can di-



No-Regret Learning in Convex Games

rectly write down and work with the transformations
φ ∈ Hd. So, for the remainder of the paper, we will
assume that H is isomorphic to Rp for some finite p.
We will also restrict our interest to linear loss func-
tions lt(a) = a · ∂lt. This is without loss of generality,
since we can achieve no regret for a sequence of convex
loss functions lt by working with appropriately-chosen
linear lower bounds on each lt (Gordon, 1999a).

With these additional assumptions, the steps of A can
be simplified: each derived loss function mt is linear,
and can be described by its subgradient as follows:

∂mt(φ) = ∂(lt(φ(at))) = ∂(φ(at) · ∂lt) = ∂ltK(at)T

The subgradient ∂mt is a d × p matrix, since ∂lt is
a d-vector and K(at) is a p-vector. Each transforma-
tion φ also corresponds to a d × p matrix (a d-tuple
of p-vectors). To evaluate the loss function mt on a
transformation φ, we take the dot product ∂mt · φ,
which is defined to be tr(∂mt

Tφ) = tr(K(at)∂ltTφ) =
tr(∂ltTφK(at)) = ∂lt

TφK(at).

As we will see in the next section, a number of interest-
ing transformation sets can be represented as d×p ma-
trices. Representing transformations and subgradients
in this way means we can manipulate them efficiently,
and, in turn, design efficient no-regret algorithms.

3. Specific Algorithms

We now instantiate our algorithm with various trans-
formation sets Φ. We define each Φ as a set of d×pma-
trices φ, together with a kernel function K : A 7→ Rp,
with the guarantee that φK(a) ∈ A for all a ∈ A and
φ ∈ Φ. To minimize each ensuing regret type, we go
on to identify efficient subroutines A′ and A′′ for find-
ing fixed points and achieving no external regret. (All
other calculations in our algorithm are O(pd), so these
subroutines will usually be what limits our efficiency.)

For completeness, we also mention ΦEXT, the set of
constant transformations on A, and ΦSWAP, the set
of all measurable transformations on A. ΦEXT is the
weakest form of regret of interest here, and ΦSWAP the
strongest. These are the only two regret types known
to be of interest in matrix games (no swap regret and
no internal regret are equivalent in this setting).

In convex games, however, there is a much richer va-
riety of interesting regret concepts. Below, we analyze
linear, finite-element, and extensive-form regret, corre-
sponding to transformation sets ΦLIN, ΦFE, and ΦEF.
As we will see, in general, ΦEXT ⊂ ΦEF ⊂ ΦLIN ⊂
ΦFE ⊂ ΦSWAP. So, no swap regret implies no finite-
element regret, which implies no linear regret, which
implies no extensive-form regret, which implies no ex-

ternal regret. We show in the long version of this paper
(Gordon et al., 2008) that these five regret varieties are
in fact distinct: it is possible to have, e.g., no ΦLIN-
regret while still having positive ΦFE-regret.

Linear Regret The set ΦLIN includes all linear
transformations that map A into itself. To achieve no
linear regret, we can take K to be the identity. Φ will
then be a set of square d× d matrices. To find a fixed
point of φ ∈ Φ, we choose an appropriate element of
the null space of φ−I, which takes time polynomial in
d. The more expensive task is to achieve no external
regret on Φ: depending on the form of A, Φ may or
may not lend itself to a description in terms of a small
number of simple constraints.

If A is a probability simplex, then Φ is the set
of stochastic matrices, which can be expressed with
O(d2) linear constraints on the entries of φ (this set-
ting yields an algorithm very similar to that of Blum
and Mansour (2005)). If A is a unit Euclidean ball,
then Φ consists of those matrices whose largest singu-
lar value is ≤ 1; this set can be represented using a sin-
gle semidefinite constraint. For general (convex com-
pact) A, the best choice may be to use either GIGA
or lazy projection (Zinkevich, 2003): the difficult step
in these algorithms is a Euclidean projection onto Φ,
which can be achieved via the ellipsoid algorithm.

Finite-Element Regret The finite-element trans-
formations only apply to polyhedral feasible regions
A. For finite-element regret, we will define K as a
mapping from a polyhedral feasible set A to a high-
dimensional space K(A) called the barycentric co-
ordinate space. To constructK(a), we first associate
each of the p corners of A with one dimension of Rp.
We then triangulate A by dividing it into mutually ex-
clusive and exhaustive d-simplices, so that each corner
of A is a corner of one or more simplices.

Now, to calculate K(a), we first determine the sim-
plex in which a lies (or choose one arbitrarily if it is
on a boundary) and calculate the weights of a with
respect to the d + 1 corners of that simplex. That
is, if j(1) . . . j(d + 1) are the indices of the corners
of the simplex containing a, and if cj(1) · · · cj(d+1) are
their coordinates, we find the weights b1 . . . bd+1 by
solving a =

∑
i bicj(i),

∑
i bi = 1. We then set entry

[K(a)]j(i) = bi for each corner j(i), and set all other
entries of K(a) to 0.

For example, if A = [0, 1]2, we can divide A into two
triangles, one with corners (0, 0), (0, 1), and (1, 1),
and the other with corners (0, 0), (1, 0), and (1, 1).
To calculate K( 1

3 ,
2
3 ), note that ( 1

3 ,
2
3 ) is in the first



No-Regret Learning in Convex Games

 1

 2

 3

 4

 5

 1

 2

 3

 4

 5

Figure 2. Illustration of barycentric coordinates and ΦFE.
A is the outer pentagon, triangulated into three simplices.
K(A) is a subset of the simplex in R5 (not shown). φ(A)
is the distorted pentagon. The × marks a fixed point of φ.

triangle. If we associate corners of A with dimen-
sions of K(A) in the order (0, 0), (0, 1), (1, 0), (1, 1),
then K( 1

3 ,
2
3 ) = ( 1

3 ,
1
3 , 0,

1
3 ), since these weights express

( 1
3 ,

2
3 ) as a convex combination of corners 1, 2, and 4.

Given this definition of K, ΦFE is the set of matrices
φ that map K(A) into A. If A is a simplex, then K
will be a linear mapping and ΦFE = ΦLIN. (In general,
ΦFE ⊃ ΦLIN.) For another example, see Fig. 2.

We note that ΦFE can be factored: it is the Cartesian
product of p copies of A, since it just needs to map
each corner of A to a point inside A. So, to achieve
no external regret in Φ, we can separately run p copies
of any no-external-regret algorithm for A. A typical
cost for doing so might be O(pd3).3 To find a fixed
point of φ, we just need to check each of its linear
pieces separately. Each individual check costs O(d3),
and there is one for each simplex in our mesh.

Extensive-Form Regret Let T be a player’s se-
quence tree, describing all possible sequences of
choices and observations in an extensive-form game
(e.g., Fig. 3 (left)). Suppose that each element of the
feasible region A is a sequence weight vector on
T (Forges & von Stengel, 2002), specifying a behav-
ior strategy for the game. Define an extensive form
transformation as follows: fix a set D of choice nodes
in T , along with pure-strategy sequence weight vec-
tors wb for each b ∈ D. If the original strategy is ever
about to play b ∈ D, the transformed strategy devi-
ates, and instead follows wb. We assume that there

3The precise cost will depend heavily on the shape of
A. For general A, most no-external-regret algorithms
have a step like solving an LP with feasible region A or
projecting onto A by minimum Euclidean distance. These
computations cost O(d3) if we assume that an appropriate
measure of the complexity of A is held constant.

are no b, b′ ∈ D with b′ an ancestor of b (so that all
b ∈ D are reachable), and that each b ∈ D has a
sibling a with wb(a) = 1. Extensive-form transfor-
mations are interesting since they correspond to the
incentive constraints in extensive-form correlated equi-
librium (Forges & von Stengel, 2002).

We show (Gordon et al., 2008) that each extensive
form transformation can be represented by a matrix
φ, whose rows and columns are indexed by choices,
so that any action w ∈ A is transformed into another
action φw ∈ A. The entries of φ are as follows:

φab =

 wb(a) if b � a and b ∈ D
1 if b = a and ∀b′ ∈ D, b 6∈ Tb′

0 otherwise

(Tb′ is the subtree of T rooted at b′, so that b 6∈ Tb′

means b is not a descendent of b′; b � a means b is an
ancestor or a sibling of an ancestor of a in T .) This
equation says that column b of φ is either: a copy of wb

with entries wb(a) replaced by 0s for b 6� a (if b ∈ D,
cases 1, 3); a single 1 on the diagonal (if neither b nor
any of its ancestors is in D, cases 2, 3); or all 0s (if
b 6∈ D, but one of b’s (strict) ancestors is in D, case 3).

Now, if we take ΦEF to be the convex hull of all such
φs, then ΦEF ⊂ ΦLIN, and no ΦEF-regret immediately
implies no regret vs. any extensive form transforma-
tion. (So, no ΦEF-regret is related to extensive-form
correlated equilibrium; see Sec. 4).

For example, if T is as shown in Fig. 3 (left), elements
of A are vectors of 4 sequence weights, one each for
a1 . . . a4. The weight for, e.g., a3 is P (a2 | root)P (a3 |
o2), the product of the conditional probabilities of all
choice nodes along the path from the root to a3. So,
strategy a1, a3 yields weights w = (1, 0, 0, 0)T, while
a2, a3 yields w′ = (0, 1, 1, 0)T.

The set ΦEF for this game is shown in Fig. 3 (right).
The parameters a, d, e, and f determine the probabil-
ity that each choice node is included in D: a ≥ 0 is
P (a1 ∈ D), d ≥ 0 is P (a2 ∈ D), e ≥ 0 is P (a3 ∈ D),
and f ≥ 0 is P (a4 ∈ D). If a1 ∈ D, parameters b and
c specify a strategy for the subtree rooted at a2. (If
a1 6∈ D, the game ends right after we reach D, and so
we need not specify further choices.) The inequalities
listed in Fig. 3 are consistency constraints: e.g., the
events a2 ∈ D and a3 ∈ D are mutually exclusive, so
we must have d+ e ≤ 1.

To represent the transformation “play a2, a3 instead
of a1,” we construct a matrix φ by setting a, b = 1
and c, d, e, f = 0. It is easy to verify that φw = w′

as expected. On the other hand, the transformation
“play a1 instead of a2” corresponds to ψ with d = 1
and a, b, c, e, f = 0; again, it is easy to check ψw′ = w.



No-Regret Learning in Convex Games

root

a1

o1

a3

a2

o2

a4

 1− a d 0 0
a 1− d 0 0
b 0 1− d− e f
c 0 e 1− d− f


Figure 3. ΦEF example. b + c = a, d + e ≤ 1, d + f ≤ 1,
and 0 ≤ a, b, c, d, e, f ≤ 1.

4. Regret and Equilibria

Algorithm A achieves no Φ-regret in an online convex
program, for any suitable Φ. In this section, we relate
this guarantee back to equilibria in convex games.

A game consists of a set of players N , a set of ac-
tions Ai for each player i ∈ N , and a payoff function
ri : ⊗iAi → R for each player i ∈ N . A matrix game
is one in which each action set is finite. A variant on
a matrix game is an experts game in which each ac-
tion set is a probability simplex. Generalizing experts
games, a convex game is one in which each action set
is a convex and compact subset of Euclidean space and
each payoff function is multi-linear. In experts games
and convex games, players can play interior points;
but, assuming polyhedral action sets (PAS), we can
generate a corresponding corner game by restricting
each player’s actions to the corners of its action sets.

Following Stoltz and Lugosi (2007), who generalize the
definition for matrix games given in Greenwald and
Jafari (2003), we define equilibria in convex games in
terms of transformation sets.

Definition 2 Given a game and a collection of trans-
formation sets, 〈Φi〉i∈N , with each Φi ⊆ ΦSWAP,
a probability distribution q over ⊗iAi is a 〈Φi〉i∈N -
equilibrium iff the expectation over a ∼ q satisfies

E [ri(φ(ai), a¬i)− ri(a)] ≤ 0 ∀i ∈ N, φ ∈ Φi (3)

Intuitively, an equilibrium is a distribution from which
no player prefers to deviate using any transformation
in its set. Taking each Φi to be the set of swap transfor-
mations defines correlated equilibria; taking each
Φi to be the set of external (i.e., constant) transfor-
mations defines coarse correlated equilibria. These
definitions lead to the following propositions, proved
by Marks (2008) and Gordon et al. (2007).

Proposition 3 A correlated equilibrium of the corner
game generated from a PAS convex game is also a cor-
related equilibrium of the convex game itself.

Proposition 4 For every correlated equlibrium in a
PAS convex game, the corresponding corner game has

a payoff-equivalent correlated equilibrium.

4.1. Repeated Games

As described above, we assume the agents play some
game repeatedly and learn by observing the relation-
ship between their actions and their payoffs. In re-
peated matrix games, Greenwald and Jafari (2003)
have shown that if each agent plays according to a no
Φi-regret algorithm, then the empirical distribution of
joint play converges to the set of 〈Φi〉i∈N -equilibria
with probability 1. The empirical distribution of
joint play at step t is the following distribution over
the joint action set, where at ∈ ⊗iAi is the joint action
played at time step t: zt(α) =

∣∣{τ | aτ = α}
∣∣/t. The

analogous result holds for 〈Φi〉i∈N -equilibrium in re-
peated convex games (e.g., Stoltz and Lugosi (2007)).

Because extensive-form games are one class of convex
games (Forges & von Stengel, 2002), this result im-
plies that, if the agents all play extensive-form regret-
minimization algorithms, their play will converge to
the set of extensive-form correlated equilibria. (Marks
(2008) also provides algorithms with this property,
using the less-efficient normal-form representation of
extensive-form games.)

We can also say something about convergence to full-
fledged correlated equilibria in repeated convex games:
define a randomized variant of A as follows. On
a trial where the deterministic algorithm would have
played āt, the randomized algorithm samples its play
at from any distribution D such that

ED(at) = āt ED(K(at)) = K(āt) (4)

(We still use āt, rather than at, in constructing mt.)
With such aD, if loss functions are linear, our Φ-regret
on A and external regret on Φ differ by a zero-mean
random variable; so, we can use standard stochastic
convergence results to prove:

Corollary 5 Under the conditions of Thm. 1, the ad-
ditional assumption (4), and restricting L to include
only linear loss functions, the randomized variant of A
achieves no Φ-regret with probability 1.

For ΦFE-regret, we can always find a D that satisfies
Equation (4); so (Gordon et al., 2007):

Corollary 6 If, in a repeated PAS convex game, each
agent plays only corner points and uses an algorithm
that achieves no internal regret for the corner game
(such as the randomized version of A with Φ = ΦFE),
then the empirical distribution of joint play converges
to the set of correlated equilibria of the convex game
with probability 1.



No-Regret Learning in Convex Games

To our knowledge, ours is the most efficient algorithm
which can make this claim, by a factor which is expo-
nential in the dimension d.

5. Discussion

We have presented several new forms of regret for on-
line convex programs, analyzed their relationships to
one another and to known regret types, and given the
first efficient algorithms that directly minimize some of
these forms of regret. These algorithms are by far the
most efficient known for several purposes, including
guaranteeing convergence to a correlated equilibrium
in a repeated convex game, and to an extensive-form
correlated equilibrium in an extensive-form game. By
contrast, most previous OCP algorithms only guaran-
tee convergence to coarse correlated equilibrium, an
outcome which may yield much lower payoffs and may
leave incentives for rational agents to deviate.

In the process of designing our algorithms, we derived
efficient representations of the transformation sets for
each of our regret types except ΦSWAP: we wrote each
as a nonlinear kernel mapping followed by a linear
transformation chosen from an appropriate set of ma-
trices. These representations may be of separate inter-
est for designing future algorithms. In this paper, we
were chiefly interested in cases where the dimension of
the kernel mapping was manageable, so that we could
directly work with the transformation matrices. How-
ever, it would be very interesting to try to design “ker-
nelized” no-Φ-regret algorithms. In such algorithms
we would never explicitly write down a transforma-
tion φ, but instead represent it in terms of observed
actions and loss functions, thereby making it feasible
to use very high-dimensional sets of transformations.

Important application areas for OCPs and convex
games include multi-agent planning (in which the fea-
sible region for each player is a set of plans, and inter-
actions include contending for resources) and learning
in extensive-form games such as poker. We are partic-
ularly interested in extensive-form games; this appli-
cation requires further developments such as learning
efficiently from bandit feedback and abstracting large
games into smaller representations which we can work
with in real time.

Acknowledgments

The authors would like to thank Martin Zinkevich for
very helpful discussions during an early phase of this
work. This work was supported in part by a grant from
DARPA’s Computer Science Study Panel program and
in part by a grant from the Sloan Foundation.

References

Blum, A., & Mansour, Y. (2005). From external to internal
regret. Proceedings of the Conference on Computational
Learning Theory (COLT).

Cortes, C., & Vapnik, V. N. (1995). Support-vector net-
works. Machine Learning Journal, 20, 273–297.

Forges, F., & von Stengel, B. (2002). Computationally effi-
cient coordination in game trees (Technical Report LSE-
CDAM-2002-02). London School of Economics and Po-
litical Science, Centre for Discrete and Applicable Math-
ematics.

Foster, D., & Vohra, R. (1997). Regret in the on-line deci-
sion problem. Games and Economic Behavior, 21, 40–
55.

Gordon, G., Greenwald, A., & Marks, C. (2008). No-regret
learning in convex games (Technical Report CS-08-03).
Brown University, Department of Computer Science.

Gordon, G., Greenwald, A., Marks, C., & Zinkevich, M.
(2007). No-regret learning in convex games (Technical
Report CS-07-10). Brown University, Department of
Computer Science.

Gordon, G. J. (1999a). Approximate solutions to Markov
decision processes. Doctoral dissertation, Carnegie Mel-
lon University.

Gordon, G. J. (1999b). Regret bounds for prediction prob-
lems. Proceedings of the ACM Conference on Computa-
tional Learning Theory.

Gordon, G. J. (2006). No-regret algorithms for online con-
vex programs. Advances in Neural Information Process-
ing Systems (NIPS), 19.

Greenwald, A., & Jafari, A. (2003). A general class of no-
regret algorithms and game-theoretic equilibria. Pro-
ceedings of the 2003 Computational Learning Theory
Conference (pp. 1–11).

Hazan, E., & Kale, S. (2007). Computational equivalence
of fixed points and no regret algorithms, and convergence
to equilibria. Advances in Neural Information Processing
Systems (NIPS), 20.

Kalai, A., & Vempala, S. (2003). Efficient algorithms for
online decision problems. Proceedings of the 16th Annual
Conference on Learning Theory.

Marks, C. (2008). No-regret learning and game-theoretic
equilibria. Ph.D. Dissertation, Department of Computer
Science, Brown University, Providence, RI.

Shalev-Shwartz, S., & Singer, Y. (2006). Convex repeated
games and Fenchel duality. Advances in Neural Infor-
mation Processing Systems (NIPS), 19.

Stoltz, G., & Lugosi, G. (2007). Learning correlated equi-
libria in games with compact sets of strategies. Games
and Economic Behavior, 59, 187–208.

Zinkevich, M. (2003). Online convex programming and
generalized infinitesimal gradient ascent. Proceedings of
the 20th International Conference on Machine Learning.


