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Abstract

We propose a new stopping condition for a Sup-
port Vector Machine (SVM) solver which pre-
cisely reflects the objective of the Leave-One-
Out error computation. The stopping condition
guarantees that the output on an intermediate
SVM solution is identical to the output of the op-
timal SVM solution with one data point excluded
from the training set. A simple augmentation
of a general SVM training algorithm allows one
to use a stopping criterion equivalent to the pro-
posed sufficient condition. A comprehensive ex-
perimental evaluation of our method shows con-
sistent speedup of the exact LOO computation by
our method, up to the factor of 13 for the linear
kernel. The new algorithm can be seen as an ex-
ample of constructive guidance of an optimiza-
tion algorithm towards achieving the best attain-
able expected risk at optimal computational cost.

1. Introduction

of a solver attainable within a given time budget (Bottou &
Bousquet, 2008).

The asymptotic analysis in (Bottou & Bousquet, 2008) pro-
vides upper bounds on the time required to reach a cer-
tain expected risk by a given algorithm. From the practi-
cal point of view, it is desirable to havenstructivanflu-
ence over a learning algorithms, by choosing its parame-
ters, such as e.g. learning rate or stopping conditions, to
reach the best attainable expected risk. The present contri
bution provides an example of such a constructive mecha-
nism by developing optimal stopping conditions for SVM
training using a particular estimator of an expected risk —
the leave-one-out (LOO) error. Although exact computa-
tion of a LOO error is hardly used for large-scale learning
due to its computational burden, our method is feasible for
“small-scale” learning with “expensive” data (e.g. in lyiei
formatics or finance), especially when accurate estimation
of expected risk is required.

The LOO is known to provide an unbiased estimator of
the generalization error (Lunts & Brailovskiy, 1967). The
naive computation of the LOO error, i.e. by explicit re-
learning after exclusion of each single example, is in all bu

The interrelation between a computational complexity andhe simplest cases impractical. The problem of speeding up
a generalization ability of learning algorithms has seldom@ computation of a LOO error has received significant at-
been considered in machine learning. Since the solutiont&ntion. The following approaches exist:

to a majority of learning problems are obtained by iter-
ative optimization algorithms, solution accuracy plays an
important role in the estimation of expected risk (Bartlett
& Mendelson, 2006). In practice, the available computa-
tional resources necessitate a tradeoff between apprexima
tion accuracy determined by the choice of a class of func-
tions, estimation error determined by a finite set of exam-
ples, and an optimization error determined by the accuracy
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e LOO bounds provide an estimate of the LOO error

given an optimal solution of the SVM training prob-
lem ((Joachims, 2000; Vapnik & Chapelle, 2000;
Jaakkola & Haussler, 1999; Zhang, 2001)). These
bounds are computationally efficient but imprecise. In
practice, if an accurate estimate of the classification
accuracy is needed, exact computation of the LOO er-
ror is unavoidable.

Incremental SVM (Cauwenberghs & Poggio, 2000)
allows one to exactly determine for each candidate
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training point —after obtaining the optimal SVM so- 7 = {1,...,m}. By the Representer theorem (Scholkopf
lution — whether or not it will be a LOO error. This & Smola, 2002), the optimal SVM classifigi{x; w*, b*)
approach avoids explicit re-training, but incrementalcan be expressed in the form

unlearning of points is complicated and requires spe-

cial organization of matrix operations (Laskov et al.,
2007).

Loose stopping conditions based on thEKT allow
one to speed up the LOO computatioeforeobtain-

ing an optimal solution. Such methods, (e.g. (Lee

& Lin, 2000; Martin et al., 2004)) use fairly simple
heuristics, but lack theoretical justification that would
connect the to a precision of the LOO computation.

As it is illustrated in the examples in Section 2, these

methods can also be imprecise.

In this contribution we propose a new stopping condition

for an SVM solver whichprecisely reflectdhe objective
of the LOO error computation. Our main result, given in
Theorem 1, provides a sufficient condition for which the

output on an intermediate SVM solution is identical to theR ¢ €R™)

output of the optimal SVM solution with one data point ex-
cluded from the training set. Although this sufficient con-

dition cannot be computed in practice, we propose a simple ¥:

augmentation of a general SVM training algorithm which

+1 if > auyik(z,z) +b6>0,
) _ i€z
flw; o, b) = =1 if > ayik(zr,z) +b <0,
€T

(2)
wherea = (ay, ..., a,)T € R™, b € R. Substituting (2)
to (1) allows to find the optimal SVM classifier by solving
a convex QP task

(a*,b", &%) = argmin F(a,b,§)
(a,b,6)eA

3)
where the convex objective function reads

F(a,b,€) = %Z Zaiajyiyjk(xi, xj) + CZ@- )

i€Z jeT i€Z

and the convex feasible seit contains all(ac € R™,b €
satisfying
( > oyyik(zi, x;) +b> > 1-&, i€Z,
JET
& = 0, iel.

allows one to use a stopping criterion equivalent to the pro-

posed sufficient condition.

2. Leave-One-Out Error Estimate For
Support Vector Machines Classifier

Let X be a set of inputs an@’ {-1,+1} a set
of labels of an analyzed object. Let furth@ky
{(z1,y1)s -, (Tm,ym)} € (X x V)™ be a finite train-
ing set i.i.d. sampled from unknowf(x,y). The goal is
to learn a classifief : X — ) minimizing the probability
of misclassification?[f] = [V (y, f(z))dP(z,y) where
Vy,y') = 1fory # ¢ andV (y,y’) = 0 otherwise.

Kernel Hilbert Space (RKHS) viaa mdp: X — H which
is implicitly defined by a kernel functiok: X x X —

R (Scholkopf & Smola, 2002). The classifier is assumed to

be linear, i.e.f(x;w,b) = (w, ®(z)) + b, wherew € H,

b € R are unknown parameters afd-) denotes an inner
product in RKHS. Becausg&|[f] cannot be minimized di-
rectly due to the unknowR(z, y), the SVMs replace| f]
by a regularized risk its minimization leads to

)
where C' € R* is a regularization constant,

V(yi, f(x;w,)) = max(0,1 — y; f (z;; w, b)) is a convex
piece-wise linear approximation &f(y;, f(x;; w,b)) and

1 .
Slwl3+C Y V(i flaiw,b))
i€l

(w*,b*) = argmin
weH,beR

Minimizing the regularized risk (1) (or QP task (3) respec-
tively) allows to find parametergx, b) of the SVM classi-
fier provided the hyper-parameters, i.e., the kernel fancti

k and the regularization constatit are known. This is not
the case in practice and the hyper-paramei€rg;) must

be optimized as well. A common approach is to select the
best(C, k) from a given finite se® by minimizing some
performance measure. The é®ts usually created by rea-
sonably discretizing the hyper-parameters space. As the
performance measure, the LOO er®foo|f] is a com-
mon choice.

_ Let(a*(r),b*(r), £*(r)) denote the optimal solution of the
%rimal QP task (3) with--th example removed from the

training set which is equivalent to solving the task

(o™ (r), b%(r),€7(r))

argmin  F(a, b, &),
(a,b,€)eA(T)

(4)

where A(r) = AN {(e,b,&) | o = 0}, ie., A(r) de-
notes the original feasible sgt enriched by an additional
constrainty,, = 0. The LOO error estimator is defined as

Ri00lf (e 57)] = — S Vye, flas o (1), (1))
rel
©)

The major practical disadvantage of the LOO error is its
high computational cost. A naive approach to compute
LOO requires solvingn different QP tasks (4). In some



Stopping Conditions for Exact Computation of Leave-One-Ot Error in Support Vector Machines

cases, however, the valygzx,; a*(r),b*(r)) can be im-  where3 is a convex feasible set which containsale R™
mediately derived from the optimal solutiqa*, b*,£*) satisfying
computed from the entire training set. Table 1 summarizes

the known sufficiency checks; the implication 1 is gener- Zaiyi =0, and 0<; <C,i€eT.
ally known and the implications 2, 3 are due to (Joachims, ieT
2000).

We will use G(«) to denote the objective function of (6).
1. If o = 0 theny, = f(z,; a*(r),b*(r)). Having o* computeq, the re_zmaining primal variables
(b*,£&€*) can be obtained easily from the Karush-Kuhn-
2. Ify, # f(z,; a*,b%) theny, # f(xq;a*(r),b*(r)). | Tucker (KKT) optimality conditions (e.g., (Boyd & Van-
denberghe, 2004)). Similarly, the minimizer (r) of the
N QP task (4) is obtained by solving the dual

3. Let R? be an upper bound ok(z,z) — k(z,2’),
Vz,x' € X, and let(a*, b*, £*) be a stable solutio
which means that there exist at least éne Z such a*(r) = argmax G(a) (7)
that0 < o} < C. Inthis case, iRa;R? + & < 1 aEB(r)

theny, = f(xz,; a*(r),b*(r)).
whereB(r) = BN {a | o, = 0} and the primal variables
Table 1.Sufficiency checks for computing(z,; a*(r),b*(r))  (b"(r),£"(r)) can be again obtained by the KKT condi-
directly from (a*, b*, £*). tions. From the optimization point of view, the QP tasks (6)
and (7) are equivalent since the latter can be converted to
A portion of the training examples for which the sufficiency the former simply by excluding the-th variable. Thus
checks apply depends on the problem at hand (for empiricale now concentrate only on the optimization of the QP
study see (Martin et al., 2004)). (Joachims, 2000) proposetfsk (6).
using the sufficiency checks to compute an upper bound on
the LOO error callega-estimator. It has been empirically Algorithm 2 Commonly used iterative QP solver
shown, that in general thgx-estimator is not sufficiently 1. |nitialize ¢t := 0 anda® < B.
precise for the hyper-parameter tuning (Duan et al., 2003).2: ¢+ .= ¢t 4+ 1 .
Algorithm 1 shows a standard procedure of computing the 3: Updatea*"Y — a(¥, i.e., finda® € B such that
LOO error exactly with the use of the sufficiency checks to Glat=V) < G(a®),
reduced the number of cases when the solution of the QPy: |f () satisfies the:-KKT conditions (8) halt other-
task (4) is required. wise go to 2.

Algorithm 1 Computation of the LOO Error

1: Solve the QP task (3) to obtafm*, b*, £*).

2: Apply the sufficiency checks from Table 1 to compute
f(zp; a*(r),b*(r)) from (a*, b*, £*).

3: For examples unresolved in Step 2 solve the QF?
task (4) to obtairf{a* (), b*(r)).

4: Compute the LOO error by (5 using
f(zr;a*(r),b*(r)), r € Z obtained in Steps 2
and 3.

A framework of a commonly used QP solver optimiz-
ing (6) describes Algorithm 2. Among the most popu-
lar methods which fit to the framework of Algorithm 2
elong the Sequential Minimal Optimizer (SMO) (Platt,
998), SVM"9"* (Joachims, 1998) and other decomposi-
tion methods (e.g. (Vapnik, 1995; Osuna et al., 1997)). All
these solvers iteratively increase the dual criterigfax)
until the solution satisfies stopping conditions. A relaxed
version of the KKT optimality conditions is the most fre-

. . L guently used stopping criterion: let> 0 be a prescribed
Algorithm 1 requires the use of an optimization methOdnumber andv,(a) = 1 — y; ZjeI a;y;k(zi,z;); then a

solving the QP tasks (3) and (4) exactly, i.e., producingecyor, ¢ 3 satisfies the relaxed KKT conditions (e.g.
the optimal solutions. Although such optimization meth'(Keerthi et al., 2001)) if there existe R such that
ods exist, they are applicable only for very small problems. B

In practice, the QP tasks are solved only approximately via Vila)+by; < e, fif a; =0,

their dual representation which is more suitable for opti- —Vila)+by; < e, if a; =C, (8)
mization due to a simpler feasible set. In particular, the | —v,(a)+by;| < e, if 0<a; <C.
minimizera* of the primal QP task (3) can be equivalently

computed by solving the dual QP task The tightness of the stopping conditions (8) is controlled

by ¢ > 0; hereafter we will refer to (8) as the KKT
o* = argmax (Z a; — EZ Zaiajyiyjk(xi,wj)), conditions. An advantage of theKKT is their simplic-
aEB et 2 el jeT ity and a low computational overhead?(m) operations

(6) sinceV,(«) is usually available during the course of the
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QP solver. A disadvantage of theKKT conditions is a Banana

tricky choice ofs. Provideds = 0, the solutiono satisfy- 0.1 ‘ 4000
ing thee-KKT conditions is guaranteed to be optimal. The ;
practically applicable QP solvers, however, are guarahtee )
to halt in a finite number of iterations only far> 0. A
typically used value is = 0.001, e.g., in software pack-
agesSV M9 ((Joachims, 1998)) @vmi i b ((Chang & 0.05
Lin, 2001)). To our knowledge, there is no theoretical resul
connecting > 0 to the value oR 00 [f (-; &, b*)] which

is the only desired outcome of the entire computation.

Rroo

We will illustrate the impact of when the LOO error esti-

. : . - 0
mator is used for a model selection. &&tbe a given finite -4
set of hyper-parametets = (C, k). Let Rpo0(0,¢) de-
note the LOO error estimate computed for givemising
Algorithm 1 with a QP solver in Algorithm 2. Thus the
estimated LOO erroR.o0 (6, €) is a function of both the
hyper-parameter8 ande. For a fixed value > 0, the
model selection produces the hyper-parameters

14000
112000
110000
18000

0(c) = argmin R 00(0,¢) . (9) 16000
7ee 14000

time [s]

12000

Figure 1 plots the behavior ofR;00(0(c),e) and

Rroo(0(107%),¢), as well as the cost of the LOO error
computation as a function af for three datasets selected
from the IDA repository (cf. Section 5). Image

The “golden truth” expected risk is given by the left-most 0.04 ‘ ‘ —x
plots in the graphs (using = 10~* for both model se-
lection and risk estimation). The dashed line representing
Rroo(0(1071), ) shows that the expected risk is slightly
overestimated provided we use high accuracy for model
selection and variable accuracy for risk estimation. The
solid line representind?;o0(0(e),e) shows that a low-
accuracy LOO computation used in model selection even-
tually results in overfitting, as a model is selected that
grossly underestimates the expected risk. Interestingly,
both plots coincide until a certain breakdown point beyond
which the low-accuracy LOO estimation runs aground. The
breakdown point varies between001 and 0.1 depend-

ing on a dataset. This suggests that a commonly used Legend
e = 0.001 is a reasonable setting to obtain an accurate
estimate. It is, however, clear from the timing plots that
knowing the right accuracy could significantly lower the x----x Rpoo(8(107%),¢)
computational cost.

8——185 Rroo(f(e),¢)

- CPUtime

3. Exact Computation of the LOO Error

In this section we show that a response of the optimal clasFigure 1.Influence of the parameterof thee-KKT conditions on
sifier f(x,; a*(r), b*(r)), required when the LOO error is the LOO error estimate and the required computational tione f
being computed, can be obtained without the need to solviree _data sets (Banana, German and Image) selected from IDA
the QP task (4) (or its dual (7)) optimally. Let us define "SPOSItOTY-
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three convex sets

Ayr) = A 0 {(@0,€) | T awgik(i, ) +b> 0},

Ao(r) = Alr) 0 {(e,0,€) | T aigik(i, ) +b =0},

A-(r) = A@) 0 {(@,0,8) | Y aik(ai, @) +b< 0},
i€l

(10)

Notice, that to computé(z,; a*(r), b*(r ))We do not nec-

“(r),€"(r)) but

essarily need to know the optimak*(r), b
it suffices to determine whethéa*(r), b

“(r),€"(r)) be-

The problem (12) is a convex QP task its dual reads

50 = o, (S5 S S btk i)
BeBo(r) ieT jeT

(13)

wherek'(z;, z;) = k(z;, z;) — k(zr, ;) — k(zr, z;) —

k(xy,z,) andBy(r) is a convex feasible set which contains
all B € R™ satisfying

0<6,<C,ieZ\{r}, and B,=0.

longs to.A () U Ag(r) or to A_(r). Our method is based We will use H(3) to denote the objective function of (13).
on a simple observation which can be formally stated byBy the weak duality theorem, the inequaliy(c, b, §) >

the following theorem:

Theorem 1 For any (&, b, €) € A(r) which satisfy

A, b, € i F(a,b,€), 11
F(e,b,€) < B (o, 0,€) (11)
the equationf (z,; é, b) = f(x,; a*(r), b*(r)) holds.

Proof 1 We proof Theorem 1 by transposition: we show

that f(z.;é,b) # f(ze;a*(r),b*(r)) implies the as-
sumption (11) is violated. Without loss of generality let
f(xy;é,b) = +1 and f(z,; o (r),b*(r)) = —1. Letus
define three vectors

~() eo-(E7) o= ()
o= 5|, oo = v |, 6o=1| b |.
£ £ (r) &o

With a slight abuse of notation, we will handieas a func-
tion of a single argumer® € R*"*!. Then the assump-
tions f(z,; &,b) = +1 and f(z,; a*(r),b*(r)) = —11is
equivalent tod € A, (r) U Ay(r) and@*(r) € A_(r).
From (10) it follows that for any@ € A, (r) U Ao(r)
and 6*(r) € A_(r) there existsr € [0,1] such that
6o = (1 — 7)8 + 70*(r)) € Ao(r). SinceF is convex,
T €[0,1] andF(6*) < F(6) we can write

F(0y) <

< (1=7)F(0) +TF(6*(r))
<

max { F(6), F(*(r))}

which shows that there exifdy € Ay(r) such that

F(0y) < F(@). Using the original notation, this is equiv-
alent toF'(a, by, £9) < F(é, b, €). However, this contra-
dicts the assumption (11) which was to be shown.

F(é) )

By Theorem 1, any tripleta, B,E) € A(r) satisfying the
condition (11) determines a classifigfz; &, b) which has
the same response on the inpytas the optimal classifier
f(z;a*(r), b*(r)). From a practical point of view, this re-

H(B) holds for any(a,b,&) € Ag(r) andB8 € By(r).
This allows us to derive the following useful corollary:

,b,€) € Ao(r) and B € Bo(r)

b,&) < H(B).
= f(zr; a®(r),

Notice, that the condition (14) is satisfiable except for a
very rare degenerate cases. It is easy to show, that if
the condition (14) is not satisfiable then the error estimate
V (yr; f(zr; a*(r),b*(r)) is unstable anyway since there
exists an optimal classifief(x; a*(r), b*(r)) its separat-

ing hyperplane passes through the tested pgint

Corollary 1 For any (&
which satisfy
F(a,

the equationf (z,; &, b)

(14)
b*(r)) holds.

4. Algorithm

A direct application of Corollary 1 would require solving

a mixed set of one quadratic and many linear inequalities.
We are not aware of any simple and efficient algorithm to
solve such task. Instead, we show how to use Corollary 1
to derive a novel stopping condition for a standard itegativ
QP solver (cf. Algorithm 2).

Algorithm 3 Proposed QP solver

1: Initialize t := 0, ¥ € B(r) andB® € By(r).
2. t:=t+1.
3: Updatea''"1) — ol ie., finda" e A(r) such

thatG(a*~V) < G(a®).

. If a® satisfies the-KKT conditions then halt other-
wise continue to Step 5.

: For fixeda(®) compute feasiblé*) and&®) minimiz-
ing F(a®,b,£).

: Updateg(—b — g1 ie., findB® e By(r) such
thatH(B~V) < H(BW).

7 If F(a® p® ¢®) < H(B®) holds then halt other-

wise go to Step 2.

(o]

sult cannot be used directly due to the unknown value of

the right hand side of the inequality (11), i.e.,
F(o,b,€) .

min

12
(ee,b,6)€Ao(r) (12)

The proposed method is described by Algorithm 3 which,
compared to a standard QP solver, involves three additional
Steps 5, 6 and 7. In Step 5, the algorithm computes the
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primal variables(¢®, b)) minimizing F(a®,b®") £®)  repository'.
which amounts to a simple optimization problem sin¢€

is known. In Step 6, the algorithm maximizes the aux-
iliary criterion H(3®") w.rt. 3®. Finally, in Step 7,
the algorithm checks whethéf(3(*)) has become greater
thanF (a®,b®) ¢(): as soon as this occurs the algorithm
halts sincef (z,; a®,b®) = f(z,;a*(r),b*(r)) is guar-
anteed according to Corollary 1. The&KKT conditions are
retained in Step 3 of Algorithm 3 since the condition (14)
need not be satisfiable in general.

The standard approach computes the LOO error using the
procedure described by Algorithm 1. An iterative QP
solver with thes-KKT conditions (Algorithm 2) is called
whenever the solution of the QP task is required. In partic-
ular, we used the Improved SMO algorithm (Keerthi et al.,
2001) to implement the QP solver. In addition, we imple-
menteda-seeding approach (DeCoste & Wagstaff, 2000)
which re-uses the solutiom* (obtained in Step 1 of Algo-
rithm 1) to efficiently set up the initial solution of the QP
The proposed Algorithm 3 is intended to be used for com-solver (initialization ofa(®) in Step 1 of Algorithm 2).

putation of f (x; & (r), b"(r)), 1.€., it is called in Step 4 The proposed approach uses the same procedure for com-

of Algorithm 1 calculating the LOO error, as a replacementputing the LOO error except for a different OP solver used
for the standard QP solver. In terms of accuracy of comput: . )
) . in Step 4 of Algorithm 1. As the QP solver, we applied
ing the LOG error, the proposed algorithm cannot performthe roposed Algorithm 3 which involves optimization of
worse than the standard one. If th&KKT conditions are prop 9 P

t t t
satisfied earlier than the proposed stopping condition theltg(%QEP ;as(ifr(e%(u)igevgri.r:. gt(e;%igd) g?:féﬁ r(e)s)pvgg.tf\./ely
both the solvers find an identical classifier. In the OppOy agair? used the Improved SMO algorith;”n to optimizé
site case, however, the response of the classifier found bé(a(ﬂ) w.rt. a® € B(r) and its straightforward modifi-
the proposed algorithm is guaranteed to be optimal. AIbei'E:altion to o'p.ti.mizeH(B(O) wirt. 80 € By(r) (Bo(r) does
the proposed algorithm provides a theoretical guarantee fonot contain the equality con.s.tr.aint thus%\singlg variaate c
the found solution to be optimal, from the practical point

of view both the algorithms will produce an identical LOO be updated).

error estimate for a sufficiently low. We will empirically =~ The experiments were carried out in Matlab 6 environment
show, however, that the proposed algorithm is numericallyrunnig on the Linux machine with the AMD K8 2.2GHz
more efficient though it optimizes two QP tasks simulta-processor. Algorithms 1,2 and 3 were implemented in C.
neously compared to the standard approach. The high
efficiency is achieved by the proposed stopping conditio
which is often satisfied earlier than the&KKT condition.

The IDA repository consists df3 artificial and real-world
rbinary classification problems collected from UCI, DELVE
and STATLOG repositories (c.f. (Ratsch et al., 2001)). For
To increase the numerical performance we also impleeach dataset, there ar@0 random realizations of training
mented the following simple efficiency test. The proposedand testing set (except for Image and Splice sets, where it
algorithm is not applied on a single example but rather oris 20). The training parts of the first realizations are used
a set of examples which cannot be resolved by the suffifor model selection. The best hyper-paramet€ts:) were
ciency checks. We experimentally observed, that the effiselected from a finite s€& by minimizing an average LOO
ciency of the proposed algorithm can be reliably estimatedrror R,0o. The average LOO errdk ;o0 is computed
from a few examples. This allows us to switch to using theover the5 realizations.
standard QP solver when the efficiency of the proposed a
gorithm is low. The efficiency test, implemented in Step
4 of Algorithm 1, works as follows: We apply the pro-
gosed Algorithm 3 on the first/ examples. Le?Mprec 9 9 x{k | k(z,2') — (z,2’)} and, in the case of the
enote the number of examples for which Algorithm 3 halt - i log(500)
in Step 7 (i.e., the proposed stopping condition was apRBF kernel® = {C | 011_ 107 N i =0,...,T}x
plied). If Mp,e./M < 0.5 we switch from using Algo- (¥ | k(z,2") = exp(=271|[z—a’[|%),i = 0,...,T}. Hav-
rithm 3 to using the standard Algorithm 2. We empirically N9 the model selected, the classifier is trained for éll

found M = 10 to be a good choice number in all our ex- realizations of the training sets and the testing erroris-co
periments. puted on the corresponding testing set. The reported ¢estin

errors Rpgr are averages accompanied with the standard
deviations computed over tH80 realizations.

l\_/Ve considered two separate model selection problems for
the linear and the RBF kernel. In the case of the liner ker-
nel, the model was select frof = {C' | C = 10% ,i =

5. Experiments X
_ _ _ Table 2 shpws the average LOO errdsoo and the test-

In this section, we experimentally evaluate the proposeghg errorsiysr for the best selected models. We experi-

method for computing the LOO error compared to the stanmentally verified, that both the standard and the proposed

dard approach on the datasets from the IDA benchmar
http://ida.first.fraunhofer.de/projects/bench/benatka.htm
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approach yielded identical LOO errors since a low value o . Classification performance
e = 0.001 was used in the-KKT conditions. Therefore Linear kernel RBF kernel
the errors listed in Table 2 apply for both the approacheg Rroo Rrst Rroo Rrst

Banana | 41.40 | 47.80 (£4.58

L . .. Breast 27.20 | 29.00 (£4.83
nel are very similar to the errors reported in (Ratsch et al.| pigpetis | 22.05 | 23.44 (+1.70) | 21.50 | 23.27 (+1.65

855 | 10.43 (£0.44)

(1)

2001) for the SVM classifier with the RBF kernel tuned| Flare 32.85 | 32.33 (£1.82) | 32.31 | 34.04 (£2.04)
( )

)

We also found that the classification errors for the RBF ker 93 00 | 26.06 (£4.91

)

( )

o

by the5-fold cross-validation. Interestingly, the linear ker- | German | 24.91 | 24.06 (+2.22) | 23.71 | 23.61 (+2.23

nel achieves in some cases comparable performance as ﬁhFJeart 14-24 15-2421 (i3~231) 123~543 15~155 (ii3-36

more complex RBF kernel. We can also observe, that the 293¢ 5.48 | 15.34 (£0.84) | 2.94 | 3.15 (£0.63)
5 _ Ring. 23.45 | 24.59 (£0.67) | 1.10 | 1.60 (£0.11)

average LOO erroréi, oo for the linear kernel are very Splice 15.36 | 16.20 (£0.59) | 10.60 | 10.95 (+0.64)

good estimators of the testing errdis sr. Thyroid | 8.43 | 10.16 (£2.60) | 2.29 | 4.87 (£2.28)

)

. . _ Titanic 21.20 | 23.01 (+4.62 15.47 | 23.99 (£3.47)
Table 3 summarizes the numerical efficiency of the proy twono. | 250 | 2.90 (£0.27) | 2.25 | 2.59 (£0.18)

posed approach and the standard one. The efficiency wasyave. 10.90 | 12.95 (£0.54) | 8.85 | 10.50 (£0.43)
measured in terms of the computational time and the num-
ber of kernel evaluations. The reportgdne is the overall  Tapje 2 Classification performance of the best models selected by
computational time spent by a given algorithm to calculateminimizing the LOO error estimate.

all the LOO errors needed for the model selection. E.g.
in the case of the RBF kernel it was necessary to comput
5x 64 = 320 LOO error estimatess(stands for the number
of the training set realizations arid is the cardinality of
0). Similarly, the number of kernel evaluatioh&er Eval

is the overall value normalized to the number of training These results demonstrate the importance of investigating
datam, i.e., KerEval is the number of columns of the ker- relationships between the optimization accuracy and the
nel matrix. In the case of the standard approach, we listegxpected risk estimation in machine learning, as suggessed
the absolute values @fime andKerEval. In the case of by recent work (Bartlett & Mendelson, 2006; Bottou &
the proposed approach, we listed the gained speed up corBousquet, 2008). To our knowledge, the new algorithm
puted as the ratiStandard/ Proposed. The last column is the first theoretically justified constructive instrurhem

of Table 3 contains the valu@rec being the percentage of guide an optimization algorithm — for the particular case of
the cases when the proposed stopping condition was satithe SVM QP solver and the LOO error — towards achieving
fied earlier then the-KKT conditions, i.e., inPrec cases the best attainable expected risk at optimal computational
the computed LOO error is theoretically guaranteed to beost. Future work should explore more general mecha-
optimal. nisms of relating parameters of optimization algorthms de-

loyed in machine learning with the estimation of expected
It can be seen, that the proposed method was never slowgrky 9 P

(up to the rounding error in computing the speed up) than =

the standard algorithm both in terms of the computational

time and the kernel evaluations. A higher performance waé\Cknowledgements
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averaget times faster than the standard approach. The besyork was also supported bBundesministeriumiif Bil-
performance was achieved for the Image dataset when thgung und Forschungnder the project REMIND (FKZ 01-
speed up was nearl. For RBF kernel, the average speed IS07007A).

up was slightly higher tha®, and, in the best case the speed

up wasb for the Banana dataset. It shows that while the ef-

ficiency gained for the RBF kernel is only moderate, in theRe}CerenceS

case of the linear kernel it is much appealing. Bartlett, P., & Mendelson, S. (2006). Empirical minimiza-
tion. Probability Theory and Related Field$35 311—
334.

fitting due to imprecise optimization. Our experiments on
3 datasets from the IDA repository achieved the average
speedup of 2 to 4 times and the maximal speedup of up to
the factor of 13.

6. Conclusions

The new stopping conditions for an SVM solver proposedB°tiou; L., & Bousquet, O. (2008). The tradeoffs of large
in this contribution allow to determine an optimal solution ~ SC@l€ learning. Imdvances in neural information pro-
accuracy needed for exact computation of a LOO error. Our C€SSiNg systemsol. 20. Cambridge, MA: MIT Press. to
new algorithm allows one to significantly reduce complex- aPPear.

ity of the LOO error computation without a risk of over- Boyd, S., & Vandenberghe, L. (2004Convex optimiza-
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Standard approach] _ Proposed approach machine learning practical. In Scholkopf et B. al. (Ed.),
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Thyroid 21.6 8.2 3.2 5.2 66.0 ’
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