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Abstract

Previous algorithms for learning lexicographic
preference models (LPMs) produce a “best
guess” LPM that is consistent with the observa-
tions. Our approach is more democratic: we do
not commit to a single LPM. Instead, we approx-
imate the target using the votes of a collection
of consistent LPMs. We present two variations
of this method—variable voting and model vot-
ing—and empirically show that these democratic
algorithms outperform the existing methods. We
also introduce an intuitive yet powerful learning
bias to prune some of the possible LPMs. We
demonstrate how this learning bias can be used
with variable and model voting and show that the
learning bias improves the learning curve signif-
icantly, especially when the number of observa-
tions is small.

1. Introduction

Lexicographic preference models (LPMs) are one of the
simplest preference representations. An LPM defines an
order of importance on the variables that describe the ob-
jects in a domain and uses this order to make preference
decisions. For example, the meal preference of a vegetar-
ian with a weak stomach could be represented by an LPM
such that a vegetarian dish is always preferred over a non-
vegetarian dish, and among vegetarian or non-vegetarian
items, mild dishes are preferred to spicy ones. Previous
work on learning LPMs from a set of preference obser-
vations has been limited to autocratic approaches: one of
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many possible LPMs is picked heuristically and used for
future decisions. However, it is highly likely that auto-
cratic methods will produce poor approximations of the tar-
get when there are few observations.

In this paper, we present a democratic approach to LPM
learning, which does not commit to a single LPM. Instead,
we approximate a target preference using the votes of a col-
lection of consistent LPMs. We present two variations of
this method: variable voting and model voting. Variable
voting operates on the variable level and samples the con-
sistent LPMs implicitly. The learning algorithm based on
variable voting learns a partial order on the variables where
all linearizations correspond to an LPM consistent with the
observations. Model voting explicitly samples the consis-
tent LPMs and employs weighted voting where the weights
are computed using Bayesian priors. The additional com-
plexity of voting-based algorithms is tolerable: both algo-
rithms have low-order polynomial time complexity. Our
experiments show that these democratic algorithms outper-
form more than half of the LPMs that can be produced by
an autocratic algorithm, greatly increasing the chance of a
positive outcome.

To further improve the performance of the learning algo-
rithms when the number of observations is small, we in-
troduce an intuitive yet powerful learning bias. The bias
defines equivalence classes on the variables, indicating the
most important set of variables, the second most important
set, and so on. We demonstrate how this learning bias can
be used with variable and model voting and show that the
learning bias improves the learning curve significantly on
appropriate problems, especially when the number of ob-
servations is small.

In the rest of the paper, we give some background on LPMs,
then introduce our voting-based methods. We then intro-
duce the learning bias and show how we can generalize the
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voting methods to utilize such a bias. Finally, we present
the results of our experiments, followed by related work
and concluding remarks.

2. Lexicographic Decision Models

In this section, we briefly introduce the lexicographic pref-
erence model (LPM) and summarize previous results on
learning LPMs. Before going into the definition of an LPM,
we state that we only consider binary variables whose do-
main is {0, 1}.! Like others before us, we assume that the
preferred value of each variable is known. Without loss of
generality, we will assume that 1 is always preferred to 0.

Given a set of variables, X = {X;...X,}, an object A
over X is a vector of the form [z1,...,2,]. We use the
notation A(X;) to refer the value of X; in the object A.
A lexicographic preference model L on X is a total order
on a subset R of X. We denote this total order with ..
Any variable in R is relevant with respect to £; similarly,
any variable in X — R is irrelevant with respect to L. If A
and B are two objects, then the preferred object given L is
determined as follows:

e Find the smallest variable X * in =, such that X* has
different values in A and B. The object that has the
value 1 for X™ is the most preferred.

e If all relevant variables in £ have the same value in A
and B, then the objects are equally preferred (a tie).

Example 1 Suppose X1 < Xo < Xg is the total order
defined by an LPM L, and consider objects A = [1,0,1, 1],
B =10,1,0,0], C =1[0,0,1,1] and D = [0,0,1,0]. A is
preferred over B because A(X1) = 1, and X1 is the most
important variable in L. B is preferred over C because
B(Xs) = 1 and both objects have the same value for X1.
Finally, C and D are equally preferred because they have
the same values for the relevant variables.

An observation o = (A, B) is an ordered pair of objects,
connoting that A is preferred to B. In many practical ap-
plications, however, preference observations are gathered
from demonstration of an expert who breaks ties arbitrar-
ily. Thus, for some observations, A and B may actually be
tied. An LPM L is consistent with an observation (A, B)
iff £ implies that A is preferred to B or that A and B are
equally preferred.

The problem of learning an LPM is defined as follows.
Given a set of observations, find an LPM £ that is con-
sistent with the observations. Previous work on learning
LPMs was limited to the case where all variables are rel-
evant. This assumption entails that, in every observation

!'The representation can easily be generalized to monotonic
preferences with ordinal variables such that 1 corresponds to a
preference on the increasing order and 0 on decreasing order.

Algorithm 1 greedyPermutation

Require: A set of variables X and a set of observations O.
Ensure: An LPM that is consistent with O, if one exists.
l: for i =1,...,n do
2:  Arbitrarily pick one of X; € X such that
MISS(X;,0) = minx, e x MISS(Xy, O)
3:  7w(Xj) := i, assign the rank ¢ to X
4:  Remove X; from X
5:  Remove all observations (A,B) from O such that
A(X;) # B(X;)
6: Return the total order C on X such that X; < Xj iff
m(X;) < 7(X;)

(A, B), Ais strictly preferred to B, since ties can only hap-
pen when there are irrelevant attributes.

Schmitt and Martignon (2006) proposed a greedy algo-
rithm that is guaranteed to find one of the LPMs that is
consistent with the observations if one exists. They have
also shown that for the noisy data case, finding an LPM
that does not violate more than a constant number of the
observations is NP-complete. Algorithm 1 is Schmitt and
Martignon’s greedy variable-permutation algorithm, which
we use as a performance baseline. The algorithm refers to a
function MISS(X;, O), which is defined as [{(A4, B) € O :
A(X;) < B(X;)}|; that is, the number of observations vi-
olated in O if the most important variable is selected as X;.
Basically, the algorithm greedily constructs a total order by
choosing the variable at each step that causes the minimum
number of inconsistencies with the observations. If multi-
ple variables have the same minimum, then one of them is
chosen arbitrarily. The algorithm runs in polynomial time,
specifically O(n?m), where n is the number of variables
and m is the number of observations.

Dombi et al. (2007) have shown that if there are n variables,
all of which are relevant, then O(nlogn) queries to an or-
acle suffice to learn an LPM. Furthermore, it is possible to
learn any LPM with O(n?) observations if all pairs differ
in only two variables. They proposed an algorithm that can
find the unique LPM induced by the observations. In case
of noise due to irrelevant attributes the algorithm does not
return an answer.

In this paper, we investigate the following problem: Given
a set of observations with no noise, but possibly with arbi-
trarily broken ties, find a rule for predicting preferences that
agrees with the target LPM that produced the observations.

3. Voting Algorithms

We propose a democratic approach for approximating the
target LPM that produced a set of observations. Instead
of finding just one of the consistent LPMs, it reasons with
a collection of LPMs that are consistent with the observa-
tions. Given two objects, such an approach prefers the one
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that a majority of its models prefer. A naive implementa-
tion of a voting algorithm would enumerate all LPMs that
are consistent with a set of observations. However, since
the number of models consistent with a set of observations
can be exponential, the naive implementation is infeasible.

In this section, we describe two methods—variable voting
and model voting—that sample the set of consistent LPMs
and use voting to predict the preferred object. Unlike ex-
isting algorithms that learn LPMs, these methods do not
require all variables to be relevant or observations to be tie-
free. The following subsections explain the variable voting
and model voting methods and summarize some of our the-
oretical results.

3.1. Variable Voting

Variable voting uses a generalization of the LPM represen-
tation. Instead of a total order on the variables, variable
voting reasons with a partial order (=) to find the preferred
object in a given pair. Among the variables that are dif-
ferent in both objects, the ones that have the smallest rank
(and are hence the most salient) in the partial order vote to
choose the preferred object. The object that has the most
“1” values for the voting variables is declared to be the
preferred one. If the votes are equal, then the objects are
equally preferred.

Definition 1 (Variable Voting) Suppose X is a set of vari-
ables and = is a partial order on X. Given two objects, A
and B, the variable voting process with respect to =< for
determining which of the two objects is preferred is:

e Define D, the set of variables that differ in A and B.

e Define D*, the set of variables in D that have the
smallest rank among D with respect to <.

e Define N 4 as the number of variables in D* that favor
A (i.e., that have value 1 in A and 0 in B) and Ng, as
the number of variables in D* that favor B.

e [f Ny > Np, then A is preferred. If Ny < Np, then
B is preferred. Otherwise, they are equally preferred.

Example 2 Suppose < is the partial order {X5, X35} <
{X1} < {X4,X5}. Consider objects A = [0,1,1,0,0]
and B = [0,0,1,0,1]. D is {X2, X5}. D* is {Xa} be-
cause Xo is the smallest ranking variable in D with respect
to <. Xy favors A because A(Xs3) = 1. Thus, variable
voting with < prefers A over B.

Algorithm 2 presents the algorithm learnVariableRank,
which learns a partial order < on the variables from a set
of observations such that variable voting with respect to
=< will correctly predict the preferred objects in the ob-
servations. Specifically, it finds partial orders that define
equivalence classes on the set of variables. The algorithm

Algorithm 2 [earnVariableRank

Require: A set of X of variables, and a set O of observations
Ensure: A partial order on X.
I: II(z) =1,Vz e X
2: while IT can change do
for Every observation (A, B) € O do
Let D be the variables that differ in A and B
D* ={z € D|Vy € D,II(z) <TI(y)}
V4 is the set of variables in D* that are 1 in A.
Vg is the set of variables in D* that are 1 in B.
if |V| > |Va| then
for z € Vg such that II(z) < | X| do
10: II(z) = I(z) + 1;
11: Return partial order < on X such that x < y iff II(z) <
I(y).

R A A

Table 1. The rank of the variables after each iteration of the for-
loop in line 3 of the algorithm learnVariableRank.

Observations X | Xo | Xs | X4 | X5
Initially 1 1 1 1 1
0,1,1,0,0],[1,1,0,1,1] | 2 1 1 2 2
0,1,1,0,1],[1,0,0,1,0] | 2 1 1 2 2
1,0,1,0,0],00,0,1,1,1] | 2 1 1 3 |3

maintains the minimum possible rank for every variable
that does not violate an observation with respect to vari-
able voting. Initially, all variables are considered equally
important (rank of 1). The algorithm loops over the set of
observations until the ranks converge. At every iteration
and for every pair, variable voting predicts a winner. If it
is correct, then the ranks stay the same. Otherwise, the
ranks of the variables that voted for the wrong object are
incremented, thus reducing their importance 2. Finally, the
algorithm builds a partial order < based on the ranks such
that < y if and only if « has a lower rank than y.

Example3 SM[)pOSE X = {Xl,XQ,X3,X4,X5} and
O consists of ([0,1,1,0,0],[1,1,0,1,1]), ([0,1,1,0,1],
[1,0,0,1,0]) and ([1,0,1,0,0],[0,0,1,1,1)). Table 1 il-
lustrates the ranks of every variable in X after each iter-
ation of the for-loop in line 3 of the algorithm learnVari-
ableRank. The ranks of the variables stay the same during
the second iteration of the while-loop, thus, the loop termi-
nates. The partial order < based on ranks of the variables
is the same as the order given in Example 2.

We next summarize our theoretical results about the algo-
rithm learnVariableRank.

Correctness: Suppose =< is a partial order returned by
learnVariableRank(X , O). It can be shown that any LPM
L such that - is a topological sort of < is consistent with

*In our empirical results, we also update the ranks when the
prediction was correct but not unanimous. This produces a heuris-
tic speed-up without detracting from the worst case guarantees.
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O. Furthermore, learn VariableRank never increments the
ranks of the relevant variables beyond their actual rank in
the target LPM. The ranks of the irrelevant variables can be
incremented as far as the number of variables.

Convergence: learnVariableRank has a mistake-bound
of O(n?), where n is the number of variables, because each
mistake increases the sum of the potential ranks by at least
1 and the sum of the ranks the target LPM induces is O(n?).
This bound guarantees that given enough observations (as
described in the background section), learnVariableRank
will converge to a partial order =< such that every topologi-
cal sort of =< has the same prefix as the total order induced
by the target LPM. If all variables are relevant, then < will
converge to the total order induced by the target LPM.

Complexity: A very loose upper bound on the time com-
plexity of learnVariableRank is O(n®m), where n is the
number of variables and m is the number of observations.
This bound holds because the while-loop on line 2 runs at
most O(n?) times and the for-loop in line 3, runs for m ob-
servations. The time complexity of one iteration of the for-
loop is O(n); therefore, the overall complexity is O(n3m).
We leave the investigation of tighter bounds and the aver-
age case analysis for future work.

3.2. Model Voting

The second method we present employs a Bayesian ap-
proach. This method randomly generates a sample set, .S,
of distinct LPMs, that are consistent with the observations.
When a pair of objects is presented, the preferred one is
predicted using weighted voting. That is, each £ € S casts
a vote for the object it prefers, and this vote is weighted
according to its posterior probability P(L|S).

Definition 2 (Model Voting) Let U be the set of all LPMs,
O be a set of observations, and S C U be a set of LPMs
that are consistent with O. Given two objects A and B,
model voting prefers A over B with respect to S if

> PLISVEsp > D PILIS)VGaay, D
LeU L£LeU

where V(ffb B) is 1 if A is preferred with respect to L, and

0 otherwise. V(%,> «) is defined analogously. P(L|[S) is the
posterior probability of L being the target LPM given S,
calculated as discussed below.

We first assume that all LPMs are equally likely a priori.
In this case, given a sample S of size k, the posterior prob-
ability of an LPM £ will be 1/k if and only if £ € S, and 0
otherwise. Note that if .S is maximal this case degenerates
into the naive voting algorithm. However, it is generally not

Algorithm 3 sampleModels

Require: A set of variables X, a set of observations O, and
rulePrefix, an LPM to be extended.
Ensure: An LPM (possibly aggregated) consistent with O.
1: candidates is the set of variables {Y : Y ¢ rulePrefiz |
V(A,B) € O,A(Y)=10rA(Y) = B(Y)}.
while candidates # () do
if O = () then
return (rulePrefix, ).
Randomly remove a variable Z from candidates .
Remove any observation (C,D) from O such that
C(Z) # D(Z).
7:  Extend rulePrefix: rulePrefix = (rulePrefix, Z).
8:  Recompute candidates.
9: return rulePrefix

AR

feasible to have all consistent LPMs—in practice, the sam-
ple has to be small enough to be feasible and large enough
to be representative.

In constructing .S, we exploit the fact that many consistent
LPMs share prefixes in the total order that they define on
the variables. We wish to discover and compactly repre-
sent such LPMs. To this end, we introduce the idea of ag-
gregated LPMs. An aggregated LPM, (X1, Xo ..., Xk, %),
represents a set of LPMs that define a total order with the
prefix X; < Xs < ... < Xj. Intuitively, an aggre-
gated LPM states that any possible completion of the prefix
is consistent with the observations. The algorithm sam-
pleModels in Algorithm 3 implements a “smart sampling”
approach by constructing an LPM that is consistent with
the given observations, returning an aggregated LPM when
possible. We start with an arbitrary consistent LPM (such
as the empty set, which is always consistent) and add more
variable orderings extending the input LPM. We first iden-
tify the variables that can be used in extending the prefix—
that is, all variables X; such that in every observation, ei-
ther X; is 1 in the preferred object or is the same in both
objects. We then select one of those variables randomly
and extend the prefix. Finally, we remove the observations
that are explained with this selection and continue with the
rest of the observations. If at any point, no observations
remain, then we return the aggregated form of the prefix,
since every completion of the prefix will be consistent with
the null observation. Running sampleModels several times
and eliminating duplicates will produce a set of (possibly
aggregated) LPMs.

Example 4 Consider the same set of observations O as
in Example 3. Then, the LPMs that are consistent with O
are as follows: (), (X2), (X2, X3), (X2, X3, X1, *), (X3),
(X3, X1,%), (X3,X2) and (X3, X2, X1,%). To illustrate
the set of LPMs that an aggregate LPM represents, con-
sider (Xo, X3, X1, %), which has a total of 5 extensions:
(X2, X3, X1),  (Xoy X3, X1, Xa), (X2, X3, X1, X5),
(XQ,Xg,Xl,X4,X5), (XQ,Xg,Xl,X5,X4). Every
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time the algorithm sampleModels runs, it will randomly
generate one of the aggregated LPMs: (Xo, X35, X1, %),
(X3, X1,%*), or (Xs,Xs,X1,%). Note that the shorter
models that are not produced by sampleModels are all
sub-prefixes of the aggregated LPMs and it is easy to
modify sampleModels to return those models as well.

An aggregate LPM in a sample saves us from enumerat-
ing all possible extensions of a prefix, but it also introduces
complications in computing the weights (posteriors) of the
LPMs, as well as their votes. For example, when compar-
ing two objects A and B, some extensions of an aggregate
LPM might vote for A and some for B. Thus, we need
to find the total number of LPMs that an aggregate LPM
represents and determine what proportion of them favor A
over B (or vice versa), without enumerating all extensions.
Suppose there are n variables and £ is an aggregated LPM
with a prefix of length k. Then, the number of extensions
of L is denoted by F and is equal to f,,_x, where f,, is
defined to be:

fm:i(T>xi!=§:(nS71_)!i)!. @

=0 =0

Intuitively, f,, counts every possible permutation with at
most m items. Note that f,, can be computed efficiently
and that the number of all possible LPMs when there are n
variables is given by f,.

Consider a pair of objects A and B. We wish to deter-
mine how many extensions of an aggregate LPM L =
(X1, Xs, ..., Xk, *) would vote for one of the objects. We
will call the variables X ... X}, the prefix variables. If A
and B have different values for at least one prefix variable,
then all extensions will vote in accordance with the small-
est such variable. Suppose all prefix variables are tied and
m is the set of all non-prefix variables. Then, m is com-
posed of three disjoint sets a, b, and w, such that a is the
set of variables that favor A, b is the set of variables that
favor B, and w is the set of variables that are neutral (that
is, that have the same value in A and B).

An extension £’ of £ will produce a tie iff all variables in
a and b are irrelevant in £’. The number of such exten-
sions is f,,|. The number of extensions that favor A over
B is directly proportional to |a|/(|a| + |b]). The number of
extensions of £ that will vote for A over B is denoted by
N £> 5> which is given by:

e _ _ lal _
NA>B - |b| + |a| X (fm f\w|) (3)

The number of extensions of £ that will vote for B over A
is computed similarly. Note that the computation of N £> B
N%. 4, and F can be done in linear time by caching the
recurrent values.

Table 2. The posterior probabilities and number of votes of all

LPMs in Example 5.
LPMs P(L|S1) | P(L|S2) | N5og5 | Njoa
0 1/31 0 0 0
(X2) 1731 0 ] 0
(X2, X3) 1731 0 1 0
(X2, X3, X1,%) | 5/31 5126 5 0
(X3) 1/31 0 0 0
(X3, X1, %) 16/31 16/26 7 7
(X3, X2) 1731 0 1 0
(X3, X0, Xq,%) | 5/31 5126 5 0

Algorithm 4 modelVote

Require: A set of LPMs, S, and two objects, A and B.
Ensure: Returns either one of A or B or tie.

1: Initialize sampleSize to the number of non-aggregated

LPMsin S.

2: for every aggregated LPM L € S do

3 sampleSize+=Fr.

4: Vote(A) = 0; Vote(B) = 0;

5: for every LPM L € S do
6:  if £ is not an aggregate rule then
7 winner is the object L prefers among A and B.
8 Increment Vote(winner) by 1/sampleSize.
9
0

else
1 if A and B differ in at least one prefix variable of £
then
11: L™ is an extension of £ referring only the prefix.
12: winner is the object L™ prefers among A and B
13: Vote(winner) += Fr /sampleSize.
14: else
15: Vote(A) += Ni. g /sampleSize.
16: Vote(B) += N 4 /sampleSize.

17: if Vote(A) = Vote(B) then

18:  Return a tie

19: else

20:  Return the object obj with the highest Vote(obj).

Example 5 Suppose X and O are as defined in Example
3. The first column of Table 2 lists all LPMs that are con-
sistent with O. The second column gives the posterior prob-
abilities of these models given the sample S, which is the
set of all consistent LPMs. The third column is the pos-
terior probability of the models given the sample Sy =
{(Xa, X3, X1, %), (X3, X1,%), (X3, X2, X1,%)}.  Given
two objects A = [0,1,1,0,0] and B = [0,0,1,0,1], the
number of votes for each object based on each LPM is
given in the last two columns. Note that the total number
of votes for A and B does not add up to the total number of
extensions of (X3, X1, %) because two of its extensions—
(X3, X1) and (X3, X1, X4)—prefer A and B equally.

Algorithm 4 describes modelVote, which takes a sample of
consistent LPMs and a pair of objects as input, and predicts
the preferred object using the weighted votes of the LPMs
in the sample.
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Returning to Example 5, the reader can verify that model
voting will prefer A over B. Next, we present our theoreti-
cal results on the sampleModels and modelVote algorithms.

Complexity: The time complexity of sampleModels is
bounded by O(n?m), where n is the number of variables
and m is the number of observations: the while-loop in line
2 runs at most n times; at each iteration, we have to pro-
cess every observation, each time performing computations
in O(n) time. If we call sampleModels s times, then the to-
tal complexity of sampling is O(sn?m). For constant s,
this bound is still polynomial. Similarly, the complexity of
modelVote is O(sn) because it considers each of the s rules
in the sample, counting the votes of each rule, which can
be done in O(n) time.

Comparison to variable voting: The set of LPMs that
is sampled via learnVariableRank is a subset of the LPMs
that sampleModels can produce. The running example in
the paper demonstrates that sampleModels can generate the
LPM (X3, X1, x); however, none of its extensions is con-
sistent with the partial order learnVariableRank returns.

4. Introducing Bias

In general, when there are not many training examples for
a learning algorithm, the space of consistent LPMs is large.
In this case, it is not possible to find a good approxima-
tion of the target model. To overcome this problem, we can
introduce bias (domain knowledge), indicating that certain
solutions should be favored over the others. In this section,
we propose a bias in the form of equivalence classes over
the set of attributes. These equivalence classes indicate the
set of most important attributes, second most important at-
tributes, and so on. For example, when buying a used car,
most people consider the most important attributes of a car
to be the mileage, the year, and the make of the car. The
second most important set of attributes is the color, number
of doors, and body type. Finally, perhaps the least impor-
tant properties are the interior color and the wheel covers.
We now formally define a learning bias and what it means
for an LPM to be consistent with a learning bias.

Definition 3 (Learning Bias) A learning bias B for learn-
ing a lexicographic preference model on a set of variables
X is a total order on a partition of X. B has the form
FEy < Ey < ... < Eg, where U;E; = X. Intuitively, B
defines a partial order on X such that for any two variables
x € Eyandy € Ej, x < yiff B; < E;. We denote this
partial order by <p.

Definition 4 Suppose that X = {X1,...X,} is a set of
variables, B a learning bias, and L an LPM. L is consistent
with B iff the total order T, is consistent with the partial

order <p.

Intuitively, an LPM that is consistent with a learning bias
respects the variable orderings induced by the learning bias.
The learning bias prunes the space of possible LPMs. The
size of the partition determines the strength of the bias;
for example, if there is a single variable per set, then the
bias defines a specific LPM. In general, the number of
LPMs that is consistent with a learning bias of the form
Ey < By < ... < By can be computed with the following
recursive formula:

G(le1 .- -er,]) = fe, 1! x (G([e2, ... ex]) — 1), (4)

where e; = |E;| and the base case for the recursion is
G([]) = 1. The first term in the formula counts the number
of possible LPMs using only the variables in F';, which are
the most important variables. The definition of consistency
entails that a variable can appear in . iff all of the more
important variables are already in C ~, hence the term e; .
Note that the recursion on G is limited to the number of
sets in the partition, which is bounded by the number of
variables; therefore, it can also be computed in linear time
by caching precomputed values of f.

To illustrate the power of a learning bias, consider a learn-
ing problem with nine variables. Without a bias, the total
number of LPMs is 905,970. If a learning bias partitions
the variables into three sets, each with three elements, then
the number of LPMs consistent with the bias is only 646.
A bias with four sets, where the first set has three variables
and the rest have two, limits the number to 190.

We can easily generalize the learnVariableRank algorithm
to utilize the learning bias, by changing only the first line of
learnVariableRank which initializes the ranks of the vari-
ables. Given a bias of the form S < ... < Sg, the gener-
alized algorithm assigns the rank 1 (most important rank)
to the variables in Sy, rank |S7| + 1 to those in S, and so
forth. This initialization ensures that an observation (A, B)
is used for learning the order of variables in a class .S; only
when A and B have the same values for all variables in
classes Sy . ...S;_1 and have different values for at least one
variable in S;.

The algorithm modelVote can also be generalized to use a
learning bias B. In the sample generation phase, we use
sampleModels as presented earlier, and then eliminate all
rules whose prefixes are not consistent with the bias. Note
that even if the prefix of an aggregated LPM L is consistent
with a bias, this may not be the case for every extension of
L. Thus, in the algorithm modelVote, we need to change
any references to Fz and N5_p (or N5_ ) with F5 and

LB LB : .
N g (or Ng~,), respectively, where:

e ¥ is the number of extensions of £ that are consis-
tent with B3, and
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o N 1§’<BB is the number of extensions of £ that are con-
sistent with B and prefer A. (IV éfA is similar.)

Suppose that B is a learning bias F, < ... < E,,. LetY
denote the prefix variables of an aggregate LPM L and E},
be the first set such that at least one variable in E, is not in
Y. Then, F8 = G([|Ex — Y|, |Ers1 =Y, ... |Epn —Y]]).

When counting the number of extensions of £ that are con-
sistent with B and prefer A, we again need to examine
the case where the prefix variables equally prefer the ob-
jects. Suppose Y is as defined as above and D; denotes
the set difference between E; and Y. Let D; be the first
non-empty set and Dy, be the first set such that at least one
variable in Dy, has different values in the two objects. Obvi-
ously, only the variables in Dj, will influence the prediction
of the preferred object. If

e ¢ is the set of variables in D}, that favor A, b is the
set of variables in D, that favor B, and w is the set of
variables in D;, that are neutral,

, the cardinality of D;, and

then N f’fB, the number of extensions of £ that are consis-
tent with B and prefer A, can be computed as follows:

la]

NEB
A>B " al + o]

x (FE —G([dj...dx—1,|w]]). (5

5. Experiments

In this section, we explain our experimental methodology
and discuss the results of our empirical evaluations. We
define the prediction performance of an algorithm P with
respect to a set of test observations 7' as:

Correct(P,T) 4 0.5 x Tie(P,T)
T

performance(P,T) =
(6)

where Correct(P,T) is the number of observations in T
that are predicted correctly by P and Tie(P, T) is the num-
ber of observations in 7" that P predicted as a tie. Note that
an LPM returned by greedyPermutation never returns a tie.
In contrast, variable voting with respect to a partial order in
which every variable is equally important will only return
ties, so the overall performance will be 0.5, which is no bet-
ter than randomly selecting the preferred objects. We will
use MV, V'V, and G to denote the model voting, variable
voting, and the greedy approximations of an LPM.

Given sets of training and test observations, (O,T), we
measure the average and worst performances of V'V, MV
and GG. When combined with learnVariableRank, V'V is a
deterministic algorithm, so the average and worst perfor-
mances of V'V are the same. However, this is not the case
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Figure 1. The average and worst prediction performance of the
greedy algorithm, variable voting and model voting.

for MV with sampling, because sampleModels is random-
ized. Even for the same training and test data (O, T), the
performance of MV can vary. To mitigate this, we ran
MYV 10 times for each (O, T') pair, and called sampleMod-
els S times on each run (thus the sample size is at most S),
recording the average and worst of its performance. The
greedy algorithm G is also randomized (in line 2, one vari-
able is picked arbitrarily), so we ran G 200 times for every
(O,T), recording its average and worst performance.

For our experiments, the control variables are R, the num-
ber of relevant variables in the target LPM; I, the number
of irrelevant variables; No, the number of training observa-
tions; and N7, the number of test observations. For MV ex-
periments we used sample sizes (S) of 50 and 200. Larger
sample sizes (e.g. 800) slightly improved performance, but
are omitted for space. For fixed values of R and I, an LPM
L is randomly generated. (If a bias B is given, then L is
also consistent with B.) We randomly generated No and
Nt pairs of objects, each with I + R variables. Finally, we
labeled the preferred objects according to L.

Figure 1a shows the average performance of G, MV with
two different sample sizes and V'V for R = 15, I = 0, and
Np = 20, as Np ranges from 2 to 20. Figure 1b shows the
worst performance for each algorithm. In these figures, the
data points are averages over 20 different pairs of training
and test sets (O, T'). The average performance of V'V and
MYV is better than the average performance of GG, and the
difference is significant at every data point. Also, note that
the worst case performance of GG after seeing two observa-
tions is around 0.3, which suggests a very poor approxima-
tion of the target. V'V and MV’s worst case performances
are much better than the worst case performance of G, jus-
tifying the additional complexity of the algorithms MV



Democratic Approximation of Lexicographic Preference Models

and VV. We have observed the same behavior for other
values of R and I, and have also witnessed a significant
performance advantage for MV over V'V in the presence
of irrelevant variables when training data is scarce. Space
limitations prevent us from presenting these results.

Figure 2 shows the positive effect of learning bias on the
performance of voting algorithms for R = 10, I = 0,
and Ny = 20, as Np ranges from 2 to 20. In ad-
dition, this experiment aims to show that bias does not
undermine the advantage voting algorithms held over the
greedy algorithm in the unbiased case. To this end we
have trivially generalized G to produce LPMs that are
consistent with a given bias. The data points are av-
erages over 20 different pairs of training and test sets
(O,T). We have arbitrarily picked two biases: Bj
{Xl,X27X3,X4,X5} < {X67X7,X8,X9,X10} and
By ¢ {X1, X2, X3} < {X4, X5} < {X6, X7, X5} <
{Xg, X10}. The performance of V'V improved greatly with
the introduction of learning biases. B is a stronger bias
than B; and prunes the space of consistent LPMs more than
Bi. As aresult, the performance gain due to By is greater
than that due to B;. The difference between the bias curves
and the non-bias curve is statistically significant except at
the last point. Note that the biases are particularly effective
when the number of training observations is small. The
worst case performance of G with biases By and By are
also shown in Figure 2. For both biases, the worst case per-
formance of G is significantly lower than the performance
of V'V with the corresponding bias. We obtained very sim-
ilar results with MV but due to space constraints we can
not include them in this paper.

6. Related Work

Lexicographic orders and other preference models have
been utilized in several research areas, including multicrite-
ria optimization (Bertsekas & Tsitsiklis, 1997), linear pro-
gramming , and game theory (Quesada, 2003). The lexico-
graphic model and its applications were surveyed by Fish-
burn (1974). The most relevant existing work for learn-
ing and/or approximating LPMs is by Schmitt and Mar-
tignon (2006) and Dombi et al. (2007), which were summa-
rized in Section 2. Another analogy, described by Schmitt
and Martignon (2006), is between LPMs and decision lists
(Rivest, 1987). Specifically, it was shown that LPMs are a
special case of 2-decision lists, and that the algorithms for
learning these two classes of models are not directly appli-
cable to each other.

7. Conclusions and Future Work

In this paper, we presented democratic approximation
methods for learning a lexicographic preference model
(LPM) given a set of preference observations. Instead of
committing to just one of the consistent LPMs, we main-
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Figure 2. The effect of bias on VV and G.

tain a set of models and predict based on the majority of
votes. We described two such methods: variable voting and
model voting. We showed that both methods can be imple-
mented in polynomial time and exhibit much better worst-
and average-case performance than the existing methods.
Finally, we have defined a learning bias that can improve
performance when the number of observations is small and
incorporated this bias into the voting-based methods, sig-
nificantly improving their empirical performance.

The future directions of this work are twofold. First, we
plan to generalize our algorithms to learn the preferred val-
ues of a variable as well as the total order on the variables.
Second, we intend to develop democratic approximation
techniques for other kinds of preference models.
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