
Space-indexed Dynamic Programming:

Learning to Follow Trajectories

J. Zico Kolter kolter@cs.stanford.edu

Adam Coates acoates@cs.stanford.edu

Andrew Y. Ng ang@cs.stanford.edu

Yi Gu guyinet@stanford.edu

Charles DuHadway duhadway@stanford.edu

Computer Science Department, Stanford University, CA 94305

Abstract

We consider the task of learning to accu-
rately follow a trajectory in a vehicle such
as a car or helicopter. A number of dynamic
programming algorithms such as Differential
Dynamic Programming (DDP) and Policy
Search by Dynamic Programming (PSDP),
can efficiently compute non-stationary poli-
cies for these tasks — such policies in general
are well-suited to trajectory following since
they can easily generate different control ac-
tions at different times in order to follow the
trajectory. However, a weakness of these
algorithms is that their policies are time-
indexed, in that they apply different policies
depending on the current time. This is prob-
lematic since 1) the current time may not
correspond well to where we are along the
trajectory and 2) the uncertainty over states
can prevent these algorithms from finding
any good policies at all. In this paper we
propose a method for space-indexed dynamic
programming that overcomes both these diffi-
culties. We begin by showing how a dynam-
ical system can be rewritten in terms of a
spatial index variable (i.e., how far along the
trajectory we are) rather than as a function
of time. We then use these space-indexed dy-
namical systems to derive space-indexed ver-
sion of the DDP and PSDP algorithms. Fi-
nally, we show that these algorithms perform
well on a variety of control tasks, both in sim-
ulation and on real systems.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

1. Introduction

We consider the task of learning to accurately follow
a trajectory, for example in a car or helicopter. This
is one of the most basic and fundamental problems in
reinforcement learning and control. One class of ap-
proaches to this problem uses dynamic programming.
These algorithms typically start at the last time-step
T of a control task, and compute a simple (say, lin-
ear) controller for that time-step. Then, they use dy-
namic programming to compute controllers for time-
steps T − 1, T − 2 and so on down to time-step 1.
Some examples of algorithms in this family include
(Jacobson & Mayne, 1970; Bagnell et al., 2004; Atke-
son & Morimoto, 2003; Lagoudakis & Parr, 2003), and
all of them output time-varying/non-stationary poli-
cies that choose the control action as a function of
time. Given that following a trajectory requires one to
choose very different control actions at different parts
of the trajectory — for example, the controls while
driving a car on a straight part of the trajectory are
very different from the controls needed during a turn –
these dynamic programming algorithms therefore ini-
tially seem well-suited for trajectory following.

However, a weakness in the naive dynamic program-
ming approach is that the control policies are time-
indexed. That is, these algorithms output a sequence
of controllers π1, π2, . . . , πT and execute controller πt

at time t. However, as time passes, the uncertainty
over the state increases, and this can greatly degrade
controller performance. For example, suppose we are
driving a car around a track with both straight and
curved portions, and suppose that the controller at
time t assumed the car was on a curved portion. If,
due to the natural stochasticity of the environment,
the car was actually on a straight portion of the track
at this time, the resulting controller would perform
very poorly, and this problem increases over time. This



Space-indexed Dynamic Programming

problem can be alleviated slightly be “re-indexing” the
controllers by state during execution. That is, at time
t we do not necessarily execute controller πt, but in-
stead we examine all the controllers π1, . . . , πT , and
execute the controller whose corresponding state is
closest to the current state — several variations on
this approach exist, and we will discuss them further
in Section 5. However, there are two fundamental lim-
itations of this general method. First, because we are
executing a different policy from the one learned by
dynamic programming, it is difficult to provide any
of the performance guarantees that often accompany
the purely time-indexed dynamic programming algo-
rithms. Second, and more fundamentally, the uncer-
tainty over states in the distant future often make it
extremely difficult to learn any good policy using the
time-indexed algorithms. This means that regardless
of how we re-index the controllers during execution,
we are unlikely to obtain good performance.

In this paper we propose a method for space-indexed
dynamic programming that addresses both these con-
cerns. More precisely, we will define a spatial index
variable d that measures how far we have traveled
along the target trajectory. Then, we will use policies
πd that depend on d — where we are along the trajec-
tory — rather than the current time t. In order to learn
such policies, we define the notion of a space-indexed
dynamical system, and show how various dynamical
systems can be rewritten such that their dynamics are
indexed by d instead of by time t. This then allows us
to extend various dynamic programming algorithms
to produce space-indexed policies — in particular, we
develop a space-indexed versions of the Differential
Dynamic Programming (DDP) (Jacobson & Mayne,
1970) and Policy Search by Dynamic Programming
(PSDP) algorithms (Bagnell et al., 2004). Finally, we
successfully apply this method to several control tasks,
both in simulation and in the real world.

The remainder of this paper is organized as follows.
In Section 2 we show how to transform a standard
(time-indexed) dynamical system into a space-indexed
dynamical system. Using this transformation, in Sec-
tion 3 we develop space-indexed versions of the DDP
and PSDP algorithms. In Section 4 we present ex-
perimental results on several control tasks. Finally, in
Sections 5 and 6 we discuss related work and conclude
the paper.

2. Space-indexed Dynamical Systems

Standard dynamic programming algorithms are very
efficient because they know in advance that the policies
π1, . . . , πT will be executed in a certain sequence (and
that each policy will be executed only once), and can

thus solve for them in reverse order. The key difficulty
of generalizing a dynamic programming algorithm to
the space-indexed setting is that it is difficult to know
in advance where in space (i.e., how far along the tra-
jectory) the vehicle will be at each step, and thus which
space-indexed policy will be executed when. For ex-
ample, if the vehicle is currently at space-index d, then
there is no guarantee that executing policy πd for one
time-step will put the vehicle in space-index d+1. But
if πd might be executed multiple times before switch-
ing to πd+1, then in general its parameters cannot be
solved for in closed form during the dynamic program-
ming backup step, and require some complex policy
search instead. In this section we discuss a method for
addressing this problem. Specifically, we will rewrite
the dynamics of a system so that the states and transi-
tions are indexed by the spatial-index variable d rather
than by the time t.

Suppose we are given a general non-linear dynamics
model in the form of a (possibly stochastic) differen-
tial equation ṡ = f(s, u), where s ∈ R

n denotes the
state vector u ∈ R

m denotes the control input, and ṡ

denotes the derivative of the state vector with respect
to time. While some classical control algorithms op-
erate directly on this differential equation, a common
technique in reinforcement learning and control is to
create a discrete-time model of the system

st+1 = F (st, ut) + wt

by numerical integration, where st and ut denote the
state and input at time t respectively, and wt is a zero-
mean IID noise term (typically taken to be Gaussian
with some prespecified covariance, for example). A
simple but very common method for achieving this
discretization is by Euler integration. In this case the
state evolves as

st+∆t = st + f(st, ut)∆t + wt

where ∆t is the integration time constant (the vari-
ance of wt will scale linearly with the time constant
as well). Note that even though the system evolves in
continuous time, by making the decision to model it
as a discrete-time system, we have made a decision to
explicitly represent the state only at certain instants
in time (t = ∆t, t = 2∆t, . . .).

When transitioning to a space-indexed dynamical sys-
tem, we instead will explicitly represent the state
only when it is at certain points along the trajectory.
We begin by representing the time-indexed state as
st = [xt, θt]

T
, where x ∈ R

p represents what we refer
to as the spatial portions of the state (in this paper
we typically consider the spatial portions of the state
to be the 2D or 3D position). Now, assume we are



Space-indexed Dynamic Programming

Figure 1. Figure illustrating space-indexed dynamics.

given a target trajectory in the space of x, such as the
curved path shown in Figure 1. We choose a total of
D discrete points along the trajectory, and designate
the target state at these points as x⋆

1, x
⋆
2, . . . , x

⋆
D. In

the space-indexed dynamical system, we will explicitly
represent the state only when the state lies on a hy-
perplane which is orthogonal to the target direction of
travel and which passes through the one of the target
points x⋆

d. More formally, we let ẋ⋆
d be the instanta-

neous direction of motion (along the target trajectory)
at point d. We will then explicitly represent the state
only when (x−x⋆

d)
T ẋ⋆

d = 0. This situation is depicted
in Figure 1.

Because we constrain the state in this manner, our
space-indexed state will have a different set of variables
as our time-indexed state. In particular, we represent
the space-indexed state as s̃d = [td, ℓd, θd]

T
where td ∈

R denotes the time of the system, ℓd ∈ R
p−1 denotes

the lateral deviation from the target trajectory — for
x ∈ R

p a point satisfying the constraint that (x −
x⋆

d)
T ẋ⋆

d = 0 can be represented using p− 1 dimensions
and this gives the lateral deviation term — and θd

denotes the non-spatial portions of the state as before.
The time variable td is kept for completeness, but it
can be ignored if the policies do not depend on time.

Now we can rewrite the dynamics so that they are in-
dexed by space rather than time; this will give us an
equation for computing s̃d+1 from s̃d. For simplicity,
we develop an Euler integration-like method, but the
technique could also be extended to higher-order nu-
merical integration methods. Rather than simulating
the system forward by a fixed time step, we solve for
∆t such that the next state will lie exactly on the d+1
plane. Temporarily ignoring the noise term, we solve

(ẋ⋆
d+1)

T (x + ẋ∆t − x⋆
d+1) = 0

for ∆t. Note that a positive solution for ∆t may not
always exist, but it typically does except in degener-
ate cases, when the vehicle starts moving perpendic-
ular or backward with respect to the desired direc-

tion, and this is unlikely given any reasonable con-
troller. When ∆t > 0 does exist, we can compute
st+∆t = st + f(st, ut)∆t and use this to find the next
space-indexed state

s̃d+1 = [td + ∆t, ℓd+1, θt+∆t]
T

where ℓd+1 is xt+∆t −x⋆
d+1 expressed in the R

p−1 sub-
space defined by the plane through x⋆

d+1. This gives
us our final space-indexed simulator in the form

s̃d+1 = F̃ (s̃d, ud) + w̃d (1)

where w̃d is a noise term. Although the distribution
of w̃d is in general quite complex, we can apply meth-
ods from stochastic calculus to efficiently draw sam-
ples from this distribution. However, in practice we
find that a simpler approximate approach works just as
well: we compute st+∆t as above, assuming no noise,
then add noise as in the time-indexed model. This will
result in a point that may no longer lie exactly on the
space-index plane, so lastly we form the line between
the states st and st+∆t and let s̃d+1 be the point where
this line intersects the d + 1 plane.

3. Space-indexed Dynamic

Programming

In this section we use the techniques presented in the
previous section to develop space-indexed versions of
the Differential Dynamic Programming (DDP) and
Policy Search by Dynamic Programming (PSDP) al-
gorithms. We begin by defining notation. Let S be
the state space and A be the action space (so that in
the context of the dynamical system above, S = R

n

and A = R
m). Since, as described above, there ex-

ists a one-to-one mapping from time-indexed states to
space-indexed states, all the quantities below can be
equivalently expressed in terms of the space-indexed
state. A reward function is a mapping R : S → R

and a policy is a mapping π : S → A. Given a non-
stationary sequence of policies (πt, . . . , πT ) we define
the value function

Vπt,...πT
(s) = 1

T
E[

∑T

i=t R(si)|st = s; (πt, . . . , πT )].

3.1. Space-indexed DDP

We first review (time-indexed) DDP briefly. DDP ap-
proximates the dynamics and cost function of a system
along a specific sequence of states. Given an initial
controller πinit, DDP simulates the system to gener-
ate a sequence of states s1, . . . , sT . It then linearizes
the dynamics around these points to obtain a time-
varying linear dynamical system, and forms a second-
order (quadratic) approximation to the reward func-
tion. This system can then be solved by the Linear



Space-indexed Dynamic Programming

Quadratic Regulator (LQR) algorithm (Anderson &
Moore, 1989), which results in a new controller and a
new sequence of states. This process is repeated until
convergence.

Space-indexed DDP proceeds in the same manner.
Given some initial controller πinit and space-indexed
dynamical system of the form (1)1, we simulate the
system forward for D space-indexes, resulting in a set
of states s̃1, . . . , s̃D. Using our dynamics model, we
form the first order Taylor expansion of the dynamics
at each point along the trajectory, which results in the
(space-indexed) linearized dynamics:

s̃d+1 = Ads̃d + Bdud.

As in standard DDP, we form a quadratic approxima-
tion of the reward function Rd(s̃) = −s̃T Qds̃, where
Qd is some (usually PSD) matrix. This reduces the
problem to an LQR problem, which can be solved ef-
ficiently using a backward recursion.

3.2. Space-indexed PSDP

We now briefly review PSDP. As input, PSDP takes a
time horizon T , a restricted policy class Π, and a se-
quence of baseline distributions over the states space
µ1, . . . , µT , where we can informally think of µt as
providing a distribution over which states would be
visited at time t by a “good” policy. Given policies
πt+1, . . . , πT , PSDP computes (or approximates via
Monte-Carlo sampling and parameter search)

πt = arg maxπ∈Π Es∼µt
[Vπ,πt+1...πT

(s)]. (2)

By starting with t = T and proceeding down to t = 1,
the algorithm is able to generate a sequence of policies
that can perform well on the desired task. The space-
indexed version of PSDP proceeds exactly as above,
replacing the time t with the space index d and using
the space-indexed simulator to generate the Monte-
Carlo samples.

Just as in the time-indexed version, the space-indexed
version of PSDP comes with nontrivial performance
guarantees, formalized by the theorem below. The
theorem follows immediately from the equivalent the-
orem for the time-indexed version of PSDP, and from
the fact that the space-indexed dynamics and reward
function do not depend on time.

Theorem 3.1 [following (Bagnell et al., 2004)] Sup-
pose π = (π1, . . . , πD) is a policy returned by an ǫ-
approximate version of state-indexed PSDP where on

1For the DDP algorithm, we ignore the noise term w̃d

because by the principle of certainty equivalence, the op-
timal controller for LQR does not depend on the vari-
ance/magnitude of the noise (Anderson & Moore, 1989).

each step the algorithm obtains πd such that

Es∼µd
[Vπd,πd+1,...,πD

(s)] ≥

arg max
π∈Π

Es∼µd
[Vπ,πd+1...πD

(s)] − ǫ

Then for all πref ∈ ΠD,

Vπ(s0) ≥ Vπref
(s0) − Dǫ − Ddvar(µ, µπref

)

where µ is the baseline distribution over space-index
states (without the time component) provided to
SI-PSDP, dvar denotes the average variational dis-
tance, and µπref

is the state distribution induced by
πref .

This bound not only provides a performance guarantee
for the space-indexed PSDP algorithm, it also helps to
elucidate the advantage of space-indexing over time-
indexing. The bound implies that to make PSDP and
SI-PSDP perform as well as possible, it would be best
to provide them with µπ⋆ , the baseline distribution
of the optimal controller, as the baseline distribution.
But for time-indexed PSDP, the natural stochasticity
of the environment can cause this distribution to be
highly spread out over the state space, even for the
optimal policy. Therefore, when performing the maxi-
mization (2), it is likely that no policy in the class will
perform very well, since this would require a policy
that could operate well over many different regions of
the state space. Thus, regardless of whether or not we
re-index the resulting controllers by state during exe-
cution, the time-indexed version of PSDP would fail to
find a good policy. In contrast, if we are doing a good
job following the trajectory, then we would expect that
the distribution over states at each space-index would
be much tighter, allowing the space-indexed PSDP to
perform much better.

4. Experiments

4.1. Autonomous Driving

We begin by considering the problem of autonomously
and accurately following a trajectory with a car, such
as that shown in Figure 4. Our first set of experiments
were carried out in a simulator of the vehicle, built
following (Rossetter & Gerdes, 2002) (with model pa-
rameters such as the vehicle dimensions, total weight,
etc). To follow the desired trajectory, we applied the
space-indexed DDP algorithm described above.

Prior to the work presented in this paper, significant
engineering effort went into a hand-designed trajec-
tory following controller; this was an initial version
of the controller described in (Hoffmann et al., 2007),
which was a hand-optimized, linear, regulation con-
troller that computes its actions as a function of state



Space-indexed Dynamic Programming

−20 −10 0 10 20 30 40 50 60
−10

0

10

20

30

40

50

X [m]

Y
 [m

] Target trajectory
Linear regulation controller
Space−indexed DP

40 45 50 55 60 65 70

2

4

6

8

10

12

14

16

18

20

X [m]

Y
 [m

]

Target trajectory
Linear regulation controller
Space−indexed DP

Figure 2. Comparison of the regulation controller and
space-indexed controller. The figure below is a magnifi-
cation of one of the turns.

−50 −40 −30 −20 −10 0 10 20 30 40 50

−50

−40

−30

−20

−10

0

10

20

30

40

50

 

 
Target trajectory
Time−indexed DP

−40 −30 −20 −10 0 10 20 30 40
−30

−20

−10

0

10

20

X [m]

Y
 [m

]

 

 
Target trajectory
Time−indexed DP

−50 −40 −30 −20 −10 0 10 20 30 40 50

−50

−40

−30

−20

−10

0

10

20

30

40

50

X [m]

Y
 [m

]

 

 
Target trajectory
Linear regulation controller
Space−indexed DP

−40 −30 −20 −10 0 10 20 30 40
−30

−20

−10

0

10

20

X [m]

Y
 [m

]

 

 

Target trajectory

Linear regulation controller

Space−indexed DP

Figure 3. Two example trajectories where a time-indexed
controller (above) performs significantly worse than the
space-indexed controller (below).

features such as lateral error, orientation error, and
so on. We used this controller to generate an initial
trajectory for our space-indexed DDP algorithm; how-
ever, the results of space-indexed DDP were actually
very insensitive to the choice of this initial controller.

Figure 2 shows the performance of the space-indexed
DDP algorithm and the hand-tuned controller in sim-
ulation, when following an oval-like track at 30mph,
along with a magnified view of the show the perfor-
mance on one of the turns. We see that space-indexed
DDP outperforms the hand-tuned controller; our con-
troller has an RMS lateral error 0.26m, whereas the
hand-tuned controller’s RMS error is 1.18m.

Figure 3 shows a comparison between the performance
of space-indexed and time-indexed dynamic program-

−20 −10 0 10 20 30 40 50 60 70

−50

−40

−30

−20

−10

0

10

X [m]

Y
 [m

]

Target trajectory
Space−indexed DP

Figure 4. Picture of the vehicle used for experiments (left),
and trajectory from a run on the actual car (right).

Figure 5. Autonomous RC car.

ming. Due to the stochasticity of the simulator, the
actual state st, for large t, is increasingly unlikely to
be close to where the t-th step of the linearization oc-
curred. Therefore the linearized approximation is less
likely to be an accurate approximation of the “local”
dynamics at time t. This is reflected in the figures:
the time-indexed controllers initially perform well, but
as time passes the controllers start to be executed at
incorrect points along the trajectory, eventually lead-
ing the vehicle to veer off course. Using the space-
indexed controller, however, the vehicle is able to ac-
curately track the trajectory even for an arbitrarily
long amount of time. For this relatively simple tra-
jectory following task, re-indexing the time-indexed
controllers by their spatial state, as described in the
introduction, does perform well. However, as we will
demonstrate in the next section, for more complex con-
trol tasks this is not the case.

We also tested our method on the actual vehicle; the
vehicle itself is described further in (Thrun & al.,
2006). Figure 4 shown a typical result from an ac-
tual run on the vehicle moving at 10mph. The RMS
error on the actual vehicle was about 0.17m, and the
target and actual trajectories are indistinguishable in
the figure.

4.2. Autonomous Driving with Obstacles

We next consider the more challenging control task
of following a trajectory in the presence of obsta-
cles. For this task we evaluated our methods on an
RC car, shown in Figure 5. Since we want to learn
a single controller that is capable of avoiding obsta-



Space-indexed Dynamic Programming

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

 

 

Target Trajectory

Obstacles

Space−Indexed PSDP

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

 

 

Target Trajectory

Obstacles

Time−Indexed PSDP

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

 

 

Target Trajectory

Obstacles

Time−Indexed PSDP w/ Reindexing

Figure 6. Trajectories taken by the real RC car on a course with obstacles, using space-indexed PSDP (left), time-indexed
PSDP (middle), and time-indexed PSDP with re-indexing by space (right).

cles placed at arbitrary points along the trajectory,
DDP is a poor algorithm (DDP learns a controller
for a single fixed trajectory, but in this task we need
to follow different trajectories depending on the lo-
cation of the obstacles). Therefore, we apply the
space-indexed version of PSDP to this task. Videos of
the resulting controllers for this task are available at:
http://cs.stanford.edu/∼kolter/icml08videos.

In greater detail, we applied the space-indexed PSDP
algorithm as follows. The native action space for the
car domain is a two-dimensional input specifying the
velocity and steering angle (between -28 degrees and
28 degrees), but for our task we kept the velocity fixed
at 1.5 m/s and discretized the commanded steering
angle into five equally spaced angles. To generate the
initial distribution for PSDP, µ1, . . . , µD, we sampled
2000 different trials in a simulator of the car, using a
PD controller. Then, for each space index from D − 1
down to 1, we (approximately) solved the optimization
problem (2) by first trying each possible action for each
of the 2000 sampled states, then executing the learned
controller for all subsequent space-indices to compute
the resulting cost of the policy.2 We then tried to
learn the optimal action as a linear function of vari-
ous state features; in particular, each controller was
of the form: usteer = arg maxi wT

i φ(s) where wi ∈ R
n

is a weight vector learned by a multi-class SVM-like
algorithm3, and φ(s) ∈ R

n is a feature vector. In our

2We used a cost function (i.e., negative reward), of

C(sd) = θ1ℓ
2 + θ2(1 − dist/θ3)1{dist < θ3}

where dist denotes the distance to the nearest obstacle, 1 is
the indicator function, and θ1, . . . , θ3 are parameters that
trade off the relative cost of deviating from the trajectory
and getting close to obstacles. For our experiments, we
used θ1 = 1000, θ2 = 500 and θ3 = 0.5.

3Algorithmic details: the PSDP algorithm with discrete
actions leads to a cost-sensitive, k-class learning problem
with examples form {φ(s(i)) ∈ R

n, c(i) ∈ R
k}, i = 1, . . . m

where φ(s(i)) are the features, and c
(i)
j represents the cost

of classifying example i as belonging to class j. We approx-
imately solve this problem with a support vector machine-
like algorithm, which bears some similarly to previous work

Table 1. Average costs and collision counts for the simu-
lated RC car with obstacles, averaged over 1000 runs.

Algorithm Cost Collisions

SI-PSDP 56.17 ± 0.43 51

TI-PSDP 58.39 ± 0.40 181
TI-PSDP w/
re-indexing

58.19 ± 0.37 212

Hand-tuned
PD Controller

58.35 ± 0.34 231

setting the features comprised of 1) the x and y loca-
tion of the car, 2) the sine and cosine of the current car
orientation, 3) 16 exponential RBF functions, spaced
uniformly around the car, indicating the presence of
an obstacle, and 4) a constant term. In addition to
the space-indexed version, we also evaluated the per-
formance of a pure time-indexed version, and a time-
indexed version where we re-index the controllers as
follows: at time t rather than execute the controller
πt, we examine all the controllers π1, . . . , πT and ex-
ecute the controller πt′ with minimum distance from
the current state to the mean of the distribution µt′ .

Table 1 shows the average cost incurred and total num-
ber of collisions for the different controllers in 1000
simulated trials, where each trial had three randomly
placed obstacles on the trajectory. As can be seen,
the space-indexed version outperforms all the other
variants of the algorithm as well as a hand-tuned PD
controller that we previously spent a good deal of time
trying to tune. The performance benefits of the space-
indexed controller become even more pronounced on
the real system. Figure 6 shows typical resulting tra-
jectories from the space-indexed controller, the pure
time-indexed controller, and the time-indexed con-
troller with re-indexing. Due to the stochasticity of

in cost-sensitive SVM earning (Geibel et al., 2004). The
algorithm finds the solution to the optimization problem:

min
w,ξ≥0

Pk

j=1
1
2
‖wj‖

2 + C
Pm

i=1

Pk

j,l=1(c
(i)
j − c

(i)
l )+ξi,j,l

s.t. (wl − wj)
T φ(s(i)) ≥ 1 − ξi,j,l ∀i, j, k.



Space-indexed Dynamic Programming

Figure 7. Tempest autonomous helicopter.

the real domain, the pure time-indexed approach per-
forms very poorly. Re-indexing the controllers helps
significantly, but the space-indexed version still per-
forms substantially better (an incurred cost of 49.32
for space-indexed versus 59.74 for time-indexed with
re-indexing, and the latter controller will nearly always
hit at least one of the obstacles on the track). As seen
in the figure, the space indexed version is able to track
the trajectory well, while reliably avoiding obstacles.

4.3. Autonomous Helicopter Flight

We also apply these ideas to a simulated autonomous
helicopter. This work used a stochastic simulator of
the autonomous helicopter shown in Figure 7, and we
considered the problem of making accurate, high-speed
(5m/s) turns on this helicopter. We applied the space-
indexed PSDP algorithm to this task due to the fact
that the policy search setting allowed us to greatly
restrict the class of control policies πd under consid-
eration (the space of all control policies for helicopter
flight is very large, so we wanted to limit the risk of un-
expected behavior). In particular, the “actions” of the
controllers corresponded to picking a location of set
point x⋆ which is then fed into a regulation controller,
such as those described in (Bagnell & Schneider, 2001;
Ng et al., 2004). Space constraints preclude a full de-
scription of the environment and algorithm, but the
overall algorithm proceeds as in the previous section.

Figure 8 shows a typical result of applying the space-
indexed PSDP algorithm to this task, along with the
trajectory taken by a simple linear regulation con-
troller. By varying the set point differently at different
points along the trajectory, the space-indexed PSDP
algorithm follows the trajectory much more accurately.

5. Related Work

The idea that a control policy should be dependent on
the system’s spatial state is by no means a new idea in
the reinforcement learning and control literature. In
the Markov Decision Process (MDP) formalism (Put-
erman, 1994), a policy is a mapping from states (which
typically describe the spatial state of the system) to
actions. In light of this observation, many classical
dynamic programming algorithms such as value iter-

−2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

X [m]

Y
 [m

]

Target trajectory
Space−indexed DP
Linear regulation controller

0
2

4
6

8
10

0
2

4
6

8
10

12

0

1

2

X [m]Y [m]

Z
 [m

]

Figure 8. Comparison of the regulation controller and
space-indexed controller in the helicopter simulation. The
figure below shows the trajectories in three dimensions.

ation or policy iteration can be viewed as perform-
ing dynamic programming on spatial states. However,
in high-dimensional, continuous state spaces, the well-
known “curse of dimensionality” renders a naive appli-
cation of these algorithms intractable. Indeed, it is this
reality that often motivates the jump to the trajectory
following approach, where we want to find polices that
perform well along the trajectory in particular.

There are also a number of methods for trajectory fol-
lowing. A common approach is to design a “regulation
controller” that can keep the vehicle stable at a spec-
ified position x⋆. By smoothly moving x⋆ along the
target trajectory, we can cause the vehicle to move
along this path (Franklin et al., 1995; Dorf & Bishop,
2000). This approach works well when the regulation
controller has very high bandwidth – i.e., if it can track
x⋆ almost exactly as it varies — and is successful in
application areas such as control of robot arms. But
in more general settings in which the actual state x of
the vehicle tends to lag well behind changes to x⋆, one
often ends up manually and laboriously adjusting the
regulation controller to try to obtain proper trajectory
following performance. There are methods for com-
pensating for this lag such as feedback linearization
(Sastry, 1999), and there have also been many meth-
ods devised for trajectory following on specific systems
(Egerstedt & Hu, 2000; Johnson & Calise, 2002). How-
ever, we know of no method for trajectory following in
the general case of the nonholonomic, underaccuated
vehicles that we consider.

The idea of partitioning the state space into regions,
and using different controllers in the different regions,
is a common practice in control, and often is referred
to as gain-scheduling (Leith & Leithead, 2000). Taken



Space-indexed Dynamic Programming

in the general sense, the algorithm we present in this
paper can be viewed as a method for gain-scheduling,
though more often the term is used for a particular
application of this approach to the contexts of lin-
ear parameter varying systems. Such methods typ-
ically linearize the dynamical system around certain
operating points, learn controllers at each point, and
smoothly interpolate between controllers at various lo-
cations. However, the focus of this work is often to
prove stability of such controllers using Lyapunov the-
ory, and the overall approach is substantially different
from what we consider here.

Model predictive control (MPC) (Garcia et al., 1989)
(indirectly) addresses the issue of state uncertainty in-
creasing over time, by explicitly computing new con-
trollers at every time step in an online manner. How-
ever, MPC is generally orthogonal to the ideas we
present here, since one could just as easily use a space-
indexed dynamic programming method for the local
controller in MPC. Furthermore, MPC can often times
be computationally impractical to run real-time. An
alternative approach is to use a local control method,
such as DDP, in order to estimate the value function
along several trajectories, and use these local estimates
to build an approximate global model of the value
function (Atkeson, 1994; Tassa et al., 2007). How-
ever, since these methods employ DDP, which is a
time-indexed algorithm, they can potentially suffer the
same problems as time-indexed methods in general.

6. Conclusions

In this paper we presented a space-indexed dynamic
programming method for trajectory following. We
showed how to convert standard time-indexed dynam-
ical systems into equivalent space-indexed dynamical
systems, and used this formulation to derive space-
indexed versions of two well-known dynamic program-
ming algorithms, DDP and PSDP. Finally, we success-
fully applied these methods to several control tasks,
and demonstrated superior performance compared to
their time-indexed counterparts.

Acknowledgments. This work was supported by
the DARPA Learning Locomotion program under con-
tract number FA8650-05-C-7261. We thank the anony-
mous reviewers for helpful comments, Sam Schreiber
and Quan Gan for assistance with the RC car, Pieter
Abbeel for assistance with the helicopter domain,
Mark Woodward, Mike Montemerlo, Gabe Hoffmann,
David Stavens and Sebastian Thrun for assistance with
the DARPA Grand Challenge vehicle.

References

Anderson, B. D. O., & Moore, J. B. (1989). Optimal con-
trol: Linear quadratic methods.

Atkeson, C., & Morimoto, J. (2003). Nonparametric repre-
sentation of policies and value functions: A trajectory-
based approach. NIPS 15.

Atkeson, C. G. (1994). Using local trajectory optimizers to
speed up global optimization in dynamic programming.
Neural Information Processing Systems 6.

Bagnell, J., & Schneider, J. (2001). Autonomous heli-
copter control using reinforcement learning policy search
methods. Proceedings of the International Conference on
Robotics and Automation.

Bagnell, J. A., Kakade, S., Ng, A. Y., & Schneider, J.
(2004). Policy search by dynamic programming. Neural
Information Processing Systems 16.

Dorf, R., & Bishop, R. (2000). Modern control systems,
9th edition. Prentice-Hall.

Egerstedt, M., & Hu, X. (2000). Coordinated trajectory
following for mobile manipulation. Proceedings of the
Internation Conference on Robotics and Automation.

Franklin, G., Powell, J., & Emani-Naeini, A. (1995). Feed-
back control of dynamic systems. Addison-Wesley.

Garcia, C., Prett, D., & Morari, M. (1989). Model predic-
tive control: theory and practice — a survey. Automat-
ica, 25, 335–348.

Geibel, P., Brefeld, U., & Wysotzki, F. (2004). Percep-
tron and SVM learning with generalized cost models.
Intelligent Data Analysis, 8.

Hoffmann, G., Tomlin, C., Montemerlo, M., & Thrun, S.
(2007). Autonomous automobile trajectory tracking for
off-road driving: Controller design, experimental valida-
tion and racing. Proc. 26th American Control Conf.

Jacobson, D., & Mayne, D. (1970). Differential dynamic
programming. Elsevier.

Johnson, E., & Calise, A. (2002). A six degree-of-freedom
adaptive flight control architecture for trajectory follow-
ing. Proceedings of the AIAA Guidance, Navigation, and
Control Conference.

Lagoudakis, M., & Parr, R. (2003). Reinforcement learning
as classification: Leveraging modern classifiers. Proceed-
ings of the Int’l Conf on Machine Learning.

Leith, D., & Leithead, W. (2000). Survey of gain-
scheduling analysis and design. International Journal
of Control, 73, 1001–1025.

Ng, A. Y., Kim, H. J., Jordan, M., & Russell, S. (2004).
Autonomous helicopter flight via reinforcement learning.
Neural Information Processing Systems 16.

Puterman, M. L. (1994). Markov decision processes: Dis-
crete stochastic dynamic programming. Wiley.

Rossetter, E., & Gerdes, J. (2002). Performance guaran-
tees for hazard based lateral vehicle control. Proceedings
of the International Mechanical Engineering Conference
and Exposition.

Sastry, S. (1999). Nonlinear systems. Springer.

Tassa, Y., Erez, T., & Smart, W. (2007). Receding horizon
differential dynamic programming. NIPS 20.

Thrun, S., & al. (2006). Winning the DARPA Grand Chal-
lenge. J. of Field Robotics. accepted for publication.


