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Abstract feedback requirement may be undesirable. The traditional
approach also does not guarantee the agent’s performance

Partially Observable Markov Decision Processes . S . 4 L
(POMDPs) have succeeded in planning domains that during training. We identify and address three limitations

require balancing actions that increase an agent's in the fraditional approach in this work:

knowledge and actions that increase an agent’s re- 1. Gathering sufficient training data for supervised leagni
ward. Unfortunately, most POMDPs are defined with may be prohibitively expensive.

a large number of parameters which are difficult to 2. Most approaches require the agent to experience a large
specify only from domain knowledge. In this paper, penalty (i.e., make critical mistakes) to discover the con-
we present an approximation approach that allows us  sequences of a poor decision.

to treat the POMDP model parameters as additional 3 Accurate numerical reward feedback is especially hard to
hidden state in a “model-uncertainty” POMDP. Cou- obtain from people, and inverse reinforcement learning
pled with model-directed queries, our planner actively (jgentifying the reward model without explicit reinforce-
learns good policies. We demonstrate our approach on ment) poses its own challenges (Ng & Russell, 2000).

several POMDP problems. o ]
Our objective is to propose a framework for simultaneous

) learning and planning in POMDPs that overcomes the lim-
1. Introduction itations above, allowing us to build agents that behave ef-

Partially Observable Markov Decision ProcessesfecnveIyIn domains with model uncertainty.

(POMDPs) have succeeded in many planning doWe now discuss how our approach will address each of
mains because they can reason in the face of uncertaintfhese three issues. To address the issue of long training
optimally trading between actions that gather informationperiods, we adopt a Bayesian reinforcement learning ap-
and actions that achieve a desired goal. This ability hagroach and express model-uncertainty as additional hid-
made POMDPs attractive in real-world problems such aslen state. Bayesian methods (Dearden et al., 1999; Strens,
dialog management (Roy et al., 2000), but such problem2000; Poupart et al., 2006; Jaulmes et al., 2005) have re-
often require a large number of parameters that are difficulteived recent attention in reinforcement learning because
to specify from domain knowledge alone. Recent advancethey allow experts to incorporate domain knowledge into
can solve POMDPs with tens of thousands of states (Shamiriors over models. Thus, the system begins the learn-
et al., 2007), but learning in POMDPs remains limited toing process as a robust, functional (if conservative) agent
small problems (Jaulmes et al., 2005). while learning to adapt online to novel situations. The do-

Traditional reinforcement learning approaches (Watk'nsmam knowledge specified as a prior can also provide the
- : INg app ' agent with a basic understanding of potential pitfalls. Our

tga%lfgregloe,\tﬂaljlﬁi?)?f;iﬁ\slerg'iﬁr;:?Jih?oorggggrf;r nr']r;%/vork builds on previous Bayesian reinforcement learning
q 9 approaches in that we provide both practical approximation

to be provided after each of the agent’s actions. If Ieamin%chemes as well as guarantees on correctness and conver-

must occur through interaction with a human expert, thegence

Appearing inProceedings of the 25" International Conference  To ensure robustness toward catastrophic mistakes, we de-
on maCh"t‘ﬁ '—eaf/”'”Q: Helsinki, Finland, 2008. Copyright 2008 ye|op an active learning scheme that determines when addi-
y the author(s)/owner(s). tional training is needed (typically active learning inves



Bayes Risk for Active Learning in POMDPs

asking for a few labels from unlabeled data; in this work,2. The POMDP Model
the ‘label’ corresponds to asking for the optimal action at a ,
particular point in time). If the agent deems that modelA POMDP consists of the n-tupleS,4,0,7,Q,Ry}. S,
uncertainty may cause it to take undue risks, it queriegls and O are sets of states, actions, 2and observations.
an expert regarding what action it should perform. These € transition functiof’(s’|s, a) is a distribution over the
queries both limit the amount of training required and al-States the agent may transition to after taking aciifrom

low the agent to infer the potential consequences of an actates. The observation functloﬁ(o|_s, a)isa distribution
tion without executing it. Depending on the domain, we OVer Observations that may occur in state after taking
can imagine that different forms of information are most@ctiona. The reward functiori(s, a) specifies the imme-
readily available. For example, in a navigation task, it maydiate reward for each state-action pair. The fagter [0, 1)

be straight-forward to query a state oracle (i.e., a GPS sy<Veighs the importance of current and future rewards.

tem) for a location. Similarly, rewards may be easy to meain the POMDP model, the agent must choose actions based
sure based on quantities such as energy usage or time & past observations; the true state is hidden. The belief,
goal. However, in other domains—particularly when work- 3 probability distribution over states, is a sufficientistat

ing with human-robot interaction and dialog managementor a history of actions and observations. The belief at time
systems—policy information may be more accurate; a hu 4+ 1 can be computed from the previous beligf,the last
man user may know what he wishes the agent to dO, bLﬁctiona' and Observation' by app|y|ng Bayes rule:

may be unable to provide the agent with an accurate state

representation (which is often complex, for optimization b0 (8)=9(0]s, a) Z T(s|s',a)by(s")/Pr(olb,a), (1)
purposes). In these domains, asking for policy informa- e

tion, instead of a traditional reward signal, also sid@ste

the issue of getting explicit reward feedback from a humarwherePr(o|b,a)=>"_, . s Q(o|s’, a)> ,c s T(s'|s, a)by(s).

user, which can also be inaccurate (Millet, 1998). In thislf the goal is to maximize the expected discounted reward,

work, we deal exclusively with policy-based queries. then the optimal policy is given by:
We are still left with the inverse reinforcement learning Vib) = mak Q:(b, a), 2)

problem, as the user’s response regarding correct actions
provides only implicit information about the underlying re
ward. To date, Bayesian reinforcement learning has suc-

ceeded in learning observation and transition distrimstio \yhere the value functiol’ (b) is the expected discounted
(Jaulmes et al., 2005; Poupart et al., 2006), where updatggward that an agent will receive if its current belief snd
have closed forms (such as updating Dirichlet counts); preg) (s, o) is the value of taking actiomin beliefb. The exact
vious inverse reinforcement learning work (Ng & Russell, sojution to equation 3 is only tractable for tiny problents, s

2000) does not extend to the partially observable case. T@e use a point-based approximation (Pineau et al., 2003).
overcome this issue, we use a non-parametric approach to

model distributions over POMDPs; we demonstrate our ap3. Modeling POMDP Uncertainty
proach on several standard problems.

Qi(b,a) = R(b,a)+v Y Pr(ob,a)Vi(b™), (3)
0€0

We assume that the sef§ A, andO are known. The
We describe two practical contributions. First, we pro-pOMDP learning problem is to determine the parameters
pose an approximation based on minimizing the immediof 7", O, andR that describe the dynamics and objective of
ate Bayes risk for choosing actions when transition, obserthe problem domain. A Bayesian approach is attractive in
vation, and reward models are uncertain. The Bayes riskhany real-world settings because we may have strong no-
criterion avoids the computational intractability of oy tions regarding certain parameters, but the value of those
large, continuous-valued POMDPs; we show it performsparameters may be difficult to specify exactly. We place
well in a variety of problems. Second, to gather informa-a prior over the model parameters to express our domain

tion about the model without assuming state observabilknowledge, and improve upon this prior with experience.
ity, we introduce the notion aheta-queries. These meta-

queries accelerate learning and help the agent to infer thig the state, action, and observation sets are discretad
consequences of a potential pitfall without experienciagi ¢! @ré collections of multinomial distributions. As conju-
effects. They are a powerful way of gaining information, 9ate priors, Dirichlet distributions are a natural choiée o
but they make the strong assumption that they will be anPrior for 7 and 2. We use a uniform prior over expert-
swered. Fortunately, a number of decision-making probSPecified ranges for the reward functiéin Together these
lems exist where this assumption is reasonable, partigular Priors specify a distribution over POMDP models. To build
in collaborative human-machine tasks (e.g. automated dig POMDP that incorporates the model parameters into the

logue systems and shared robot control scenarios). hidden state, we consider the joint state spitice: Sx M,
where M is the space of models as described by all valid

values for the model parameters. Althoughis contin-
uous and high dimensional, the transition modelféris
simple (assuming the true model is static).
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The formulation above makes the agent aware of the un-
certainty in the model parameters, and by trying various
actions, it will be able to reduce uncertainty both in its
state and in the parameters. However, the model informa
tion provided by the standard actions may be weak, and w|
would like the agent to be able to explicitly reduce model

Table 1. POMDP active learning approach.
ACTIVE LEARNING WITH BAYES RISK

"¢ Sample POMDPs from a prior distribution.
e Complete atask choosing actions based on BayesFisk:

[¢)

uncertainty in a safe manner. To allow for active learning — Use the POMDP samples to compute the action
we augment the action spack of our original POMDP with minimal Bayes risk (Section 4.1).

with a set of meta-querigs;,, }. The meta-queries consult — If the risk is larger than a giveq, perform a

an oracle (e.g., a domain expert) for the optimal action at meta-query (Section 4.1).

a particular time step. We assume that the expert has ac-  — Update each POMDP sample’s belief based|on
cess to the history of actions and observations (as does the the observation received (Section 4.2).

agent), as well as the true POMDP model, and thus can adl-e Once a task is completed, update prior (Section 4.p):
vise the agent on the optimal action at any particular time|

The agent begins by confirming the action it thinks is best — Use a kernel incorporating action-observation
I . ) ., history to propagate POMDP samples.
I think a; is the best action. Should | dg? — Weight POMDPs based on meta-query history.

If the oracle answers to the negative, the agent follows with

N . Performance and termination bounds are in 4.3 and 4.4.
what it thinks is next best:

“Then | think a; is best. Is that correct?” 4.1. Bayes-Risk Action Selection

until it receives an affirmative response. The ordered fist 0'-9:} the IOSSL@(@ a”; b) of taking actiona in modelm be
actions helps give the expert a sense of the agent's uncefm (b @) — @7, (b, a”), wherea is the optimal action in
tainty; if the agent s uncertain, the expert might advise it Peliefb according to modeh.. Given a beliep, (m) over
gather information rather than risk an incorrect decidion. Models, the expected logsy [L] is the Bayes risk:

Meta-queries may be applied in situations where an expert . X X X

is available to guide the agent. Unlike the oracle of Jaulmes BR(a) = /M(Qm(bm’ @) = Qi (b @) Jpas (m), (4)
et al. (2005), the meta-queries ask for policy information, ) ]

not state information, which can be important if optimiza- Where M is the space of models,;, is the current be-
tion procedures make the state-space unintuitive to the uséief according to modein, anday, is the optimal ac-
(e.g., Williams and Young (2005)). In human-robotinterac-tion for the current belieb,,, according to modein. Let
tion, it may also simply be more natural to ask “I think you @' = argmaxa,c 4 BR(a) be the action with the least risk.
want me to go to the coffee machine. Should | go there?1n the passive learning scenario, our agent just perfarms

which may be more natural than "Please enter your mostreg ihe risk of the least-risky action is large, the agent may
cent statement” or “Please enter our position coordinates. || incur significant losses. We would like our agent to be

We can think of these meta_queries S|mp|y as additiona{SGﬂSitiVG to the absolute magnitude of the risks that itsake
actions and simply attempt to solve the model-uncertaintyn the active learning scenario, the agent performs a meta-
POMDP with this augmented action space. However, sucKuery if BR(a’) is less than-¢, that is, if the least expected
an approach quickly becomes intractable. Therefore, wé0ss is more than the cost of the meta-query. The series of
will treat the meta-query as a special action to be takerneta-queries ywll lead us to choose the correct action and
if the other actions are too risky. We take the cosaf ~ thusincur no risk.

querying the user to be a fixed parameter of the problem. Intuitively, our criterion selects the least risky actioown

and hopes that the uncertainty over models will be resolved
4. Solution Techniques at the next time step. We can rearrange equation 4 to get:

Table 1 summarizes our two-part approach to solving the _ X
model-uncertainty POMDP. First, given a history of ac- BR(a) _/MQ(bm’a)pM(m)_/Afg(bm’am)pM(m)' ®)
tions and observations, the agent must select the next ac-
tion. Second, the agent must update its distribution ovefhe second term is independent of the action choice; to
the model parameters given additional interactions wigh th maximizeBR(a), one may simply maximize the first term:
environment. In the most general case, both steps are in-
tractable via standard POMDP solution technigties. Ver =max [ Q(by,a)par(m). (6)

M

*Our simulations used a shortened meta-query for speed. ) o .
2Analytic updates are possible if the distributions takeéaier ~ The Bayes risk criterion is similar to th@uvpp heuris-
forms (Poupart & Vlassis, 2008), but even here pruning islede tic (Littman et al., 1995), which uses the approximation

to keep the solutions to a tractable size. V(b) = max ), Q(s,a)b(s) to plan in known POMDPs.
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In our case, the belief over states) is replaced by a be- To obtain a confidencé when calculating if the Bayes

lief over modelw,, (m) and the action-value function over risk is greater than-£, we combine these bounds, setting
states)(s, a) is replaced by an action-value function over ¢, = £ — epp, and computing the appropriate number of
beliefsQ (b, a). In theQwmpp heuristic, the agent assumes samples: from equation 8. We note however that the Ho-
that the uncertainty over states will be resolved after theeffding bounds used to derive this approximation are quite
next time step. Our Bayes-risk criterion may be viewedloose; for example in the shuttle POMDP problem, we used
as similarly assuming that the next action will resolve the200 samples, whereas equation 8 suggested over 3000 sam-
uncertainty over models. ples may have been necessary even with a perfect POMDP

Though similar, the Bayes risk action selection criterionSO|Ver'

differs fromQpp in two important ways. First, our ac- . s
tions come from POMDP solutions and thus do fully con-4-2- Updating the Model Distribution

sider the uncertainty in the POMDP state. Unli®é/pp,  As described in Section 3, we initially placed Dirichlet-pri
we do not act on the assumption that our state uncertaintyrs over the transition and observation parameters and uni-
will be resolved after taking the next action; our approx-form priors over the reward parameters. As our agent in-
imation supposes that only the model uncertainty will beteracts with the environment, it receives two sources of in-
resolved. Thus, if the model stochasticity is an importantormation to update its prior: a history of actions and
factor, our approach will take actions to reduce state uncefppservations and a set of meta-queries (and respo@ses)
tainty. This observation is true regardless of whether thezjven, andQ, the posteriop |,  over models is:

agent is passive (does not ask meta-queries) or active.

In the active learning setting, the second difference is Patin.@(mih, Q) oc p(@lm)p(him)par(m), ®)

the meta-query. Without the meta-query, while the agenwhereQ andh are conditionally independent given be-

may take actions to resolve state uncertainty, it will nevercause they are both computed from the model parameters.
take actions to reduce model uncertainty. However, metal he historyh is the sequence of actions and observations
queries ensure that the agent rarely (with probabifity Sincep,s was last updated. The s@tis the set ofill meta-
takes a less thag-optimal action in expectation. Thus queries asked (and the expert's responses). Each source

the meta-queries make the learning process robust from tHeoses a different challenge when updating the posterior.

start and allow the agent to resolve model uncertainty. If the agent were to have access to the hidden under-

lying state, then it would be straightforward to compute
Approximation and bounds: = The integral in equation 4 p,,, (m|h) o p(h|m)pa(m); we simply need to add
is computationally intractable, so we approximate it with acounts to the appropriate Dirichlet distributions. Howeve
sum over a sample of POMDPs from the space of modelsiwhen the state sequence is unknown, the problem becomes

more difficult; the agent must use its belief over the state

BR(a) =~ Z(Q(bi, a) — Q(bi,a))par(mi)  (7) sequence to update the posterior. Thus, it is best to perform

the update when it is most likely to be accurate. For ex-
ample, in a robot maze scenario, if the robot is lost, then
There are two main sources of approximation that can leadstimating its position may be inaccurate. However, once
to error in our computation of the Bayes risk: the robot reaches the end of the maze, it knows both its start

and end position, providing more information to recover its

n- path. We focus on episodic tasks in this work and update
the belief over models at the completion of a task.

%

e Error due to the Monte Carlo approximation of the i
tegral in equation 4: Note that the maximum value of
the Q(bi, a) — Q(b;, a}) is trivially upper bounded by The meta-query information poses a different challenge:

M and lower bounded by zero. Applying the questions provide information about the policy, but our
the Hoeffding bound with sampling erref and confi- ~ priors are over the model parameters. The meta-queries
dences, we will requiren,,, samples’ truncate the original Dirichlet as models inconsistenhwit
meta-query responses have zero likelihood. We approxi-
(Rmax — min(Rumin, £))2 1 mate the posterior with a particle filter.
Ny = log ~ (8)
2(1 — v)2e2 ]

4.2.1. DURING A TASK: UPDATING PARTICLE WEIGHTS

e Error due to the point-based approximation@fb;,a): ~ Recall that sequential Monte Carlo techniques let us repre-
The difference)(b;, a) — Q(b;, a}) may have an error of ~ sentadistribution at timeusing a set of samples from time

uptoepp — 2(Rma,{:5n2nn)53 , wheres is the sampling t — 1 using the following procedure (Moral et al., 2002):

density of the belief points. This result is directly from my ~ K(mg_1,my), (10)
the error bound due to Pineau et al. (2003).

PM,t(mt) (1)

W = We—-1
! ! o t—1(me—1) K (me—1,my)’

3An error of e with confidencel meansPr(z — & > ¢] < 4.
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whereK (m, m’) is an arbitrary transition kernel apd; is ~ our distribution over models, so this sum approximates an
the probability of the modek. under the true posterior. expectation over all models.

Sampling a new model requires solving a POMDP, whichNext, we update our Dirichlet counts based on both the

is computationally expensive and thus may be undesirablprobability that a POMDP assigns to a particular state and

while an agent is in the process of completing a task. Thushe probability of that POMDP. Given an actiarand ob-

we do not change our set of samples during a task (that iservationo corresponding to time, we would update our

K(m,m') = §,,(m’) whered() is the Dirac delta func- Dirichlet count fora, s, in the following manner:

tion). We begin at timg — 1 with a set of modelsn;

and weightsy; that represent our current belief over mod- Q.50 = Qo,s,a + P(8) (13)

els. If a meta-query occurs at tinte thenpys,.(m)

p(Q¢|m)pari—1(m), and the weight update reduces to for each states. This update combines prior knowledge
about the parameters—the original valueagf, ,—with

wy = wi—1p(Q¢|m). (12) " new information from the current episods).

In theory, thep(Q|m) should be a delta function: either

the modelm produces a policy that is consistent with the Resampling Models. As is standard in sequential Monte

meta-query £(Q|m) = 1), or it does notf(Q|m) = 0).  Carlo techniques, we begin by resampling models accord-

In practice, approximation techniques used to compute thing to their weightsw;. Thus, a model with high weight

model’s policy are imperfect (and expert advice can be inmay get selected many times for inclusion in the resam-

correct) so we do not want to penalize a model that occapled set of models, while a model with low weight may

sionally acts incorrectly. We model the probability of see-disappear from the sample set since it is no longer repre-

ing k incorrect responses imtrials as a binomial variable sentative of the posterior. Once resampled, each model has

with parametep., wherep, is the probability a model fails  equal weight. Before we begin the next task, we perturb

a meta-query due to the approximate solver. This value ithe models with the following transition kernel:

hard to characterize, of course, and is problem-specific; we

usedp, = 0.3 in our tests. e Draw a samplen’ frompyy ..
e With probabilityp,, replacem with m/’
4.2.2. BETWEEN TASKS RESAMPLING PARTICLES. ¢ With probability1 — py,, take the convex combination of

the model parameters of andm’ so thatm’ = p-m’ +
(1 — p) - m with the convexity parameter being chosen
uniformly at random oo, a.

Over time, samples taken from the original prior may no
longer represent the posterior well. Moreover, if only a few
high weight samples remain, the Bayes risk may appear

smaller than it really is because most of the samples are igve reduce the probability;, from 0.9 to 0.4 as the inter-
the wrong part of the space. We also need to update thgctions continue, encouraging large exploration earier o
models based on the history information, which we haveand fine-tuning in later interactions. We seto 0.2 in
ignored so far. We do both these steps at the end of a taskyyr experiments. Based on this sampling procedure, the
weight (keeping in mind that after resampling, all models

Action-Observation Histories: Dirichlet Update. We had equal weight) of the transitioned modelis given by:
first discuss how to update the postenidm|h) in closed

form. Recall that updating the Dirichlet counts given ac- p(QIm")parn(m’)

tions and observations requires knowing the underlying Wy X N’ (14)
; : p(Q[m)pa (m)K (m, m’)

state history, and our agent only has access to history of

actions and observations. We therefore update our paramgrere, K (m, m') = py, - parpn(m') if we keep the newly-

ters using an online extension of the standard EM algorithngampled model and arfd(m, m’) = (1—pk)-Parin(m’) /a

(Sato, 1999). In the E-step, we estimate a distribution oveff we perturbm via a convex combination.

state sequences in the episode. In the M-step, we use this

distribution to update counts on our Dirichlet priors. On—4 3. Performance Bounds

line EM guarantees convergence to a local optimum. e

i : . Let V* be the value of the optimal policy under the true
For the E-step, we first esimate the true state history. TW(FnodeI. From our risk criteriorﬁl, the gxpe}::ted loss at each

sources of uncertainty are present: model stochasticity an_ tion is no more thag. However, with probabilitys, in

\Lxlvri]tﬁmr)(\alvsn ;]:??glnﬁ)?(rjaerlngttgéi‘as-rt?ci(tz omﬁ:tﬁstg?hixzfgézg?gwe worst case, the agent may choose a bad action that takes
P Y, to an absorbing state in which it receivBs,;,, forever.

forward-backward algorithm to obtain a distribution over
states for each sample. Next, we combine the distribution$o determine the expected discounted reward, we consider
for each sample based on the sample’s weight. For exana two-state Markov chain. In state 1, the “normal” state,
ple, suppose a sampled model assigns a probapijlityto  the agent receives a rewardBf— £, whereR is the value
being in states. Then the expected probabilifis) of be-  the agent would have received under the optimal policy. In
ing in statesis p(s) = Y. w;p;(s). The samples represent state 2, the agent receives,;,. Equation 15 describes the
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transitions in this simple chain and the values of the states We desirej, to be withine, of p), = p, — ¢, with prob-

%1
Vs

R—¢
Rmin

i

nl (15)

0 1

+7‘1—5 5‘

Solving this system and noting that the agent begins in state
2.

1 with probabilityl — § and state 2 with probability, the
lower boundl”’ on the expected value is

§

Rmin

n(v 1_7)+(1—n)1_7,
(1=0)(1 =) =~(1 =)~

*

Vv’

(16)
(17)

n

4.4. Model Convergence

Given the algorithm in Table 1, we would like to know if 3.
the learner will eventually stop asking meta-queries. We

state that the model isonverged if BR(a’) > —¢ for all
histories (wheré is the cost of a meta-query). Our conver-

gence argument involves two steps. First, let us ignore the
reward model and consider only the observation and tran-
sition models. As long as standard reinforcement learning

conditions—periodic resets to a start state and informatio
about all states (via visits or meta-queries)—hold, therpri

ability 5,. Using the Chernoff bound, = e~"*a<a/3,
we sete, to 2/3p, to minimize the samples needed:

np > —27/4- (py) > log d,. (18)

Computing Bayes Risk from a Conservative Poste-
rior. We next compute the Bayes risk for each belief
given a hypothesized set &finteractions. We do not
knowa priori the response to the interactions, so we use
the maximum-entropy Dirichlet posterior to compute the
posterior Bayes risk (that is, assign theounts to as-
sign an equal number of counts to each variable). We
compute the Bayes risk of each belief from this posterior
and accepk if p, < pq.

Correction for Approximate Bayes Risk. Recall that
we approximate the Bayes risk integral with a sum over
sampled POMDP models, and the number of modg|s
required is given by equation 8. We must correct for the
error induced by this approximation. Section 4.1 tells
us if a beliefb has riskBR(a) < —¢ with confidence

0. Suppose we sample, beliefs, and the true fraction
of beliefs in which meta-queries are askegjs Due to
misclassifications, however, the expected value we will

will peak around some value (perhaps to a local extremum) Observe is only1 — d)p,. We can then apply a second
in a bounded number of interactions from the properties Chernoff bound to determine that with probabilityno

of the online EM algorithm (Sato, 1999). We next argue ™More tharg(l —d)n,
that once the observation and transition parameters have
converged, we can bound the meta-queries required for the

reward parameters to converge.

Observation and Transition Convergence. To discuss

beliefs will be misclassified.Let

Pq = Pq(1 = 2(1 = 9)), (19)

be the minimum fraction of beliefs queries we expect to
observe requiring meta-queries if the true fractiop,is

the convergence of the observation and transition distriouThus, to test ifk: interactions lead to a probability of,

tions, we apply a weaker sufficient condition than the con

for meta-queries with confidendg, we computey; from

vergence of the EM algorithm. We note that the numbe€duation 19, sample, beliefs uniformly from equation 18,

of interactions bounds the number of meta-queries, sincéPdate the Dirichlet posteriors to be maximum-entropy
we ask at most one meta-query for each normal interac?oSteriors, sample the,, models from equation 8, and fi-
tion. We also note that the counts on the Dirichlet pri-Nally compute the posterior Bayes risk for each belief. If
ors increase monotonically. Once the Dirichlet parameter€ss than a,-proportion of beliefs require meta-queries,
are sufficiently large, the variance in the sampled model§h€nk is an upper bound on the number of remaining meta-
will be small; even if the mean of the Dirichlet distribution uéries with probability, and confidence, .

shifts with time, no additional meta-queries will be asked. o
-~ ) ] ] Reward Convergence. The cost of a meta-query limits
The specific convergence rate of the active learning will dethe reward resolution. Suppose a POMBFhas an opti-

pend heavily upon the problem. However, we can check ifna| policyr with valueV'. If we adjusted all the rewards by

k additional interactions are sufficient such that the probagome smalt,., then the value of the same poligywill dif-
bility of asking a meta-query ig, with confidence,. To  fer from 1 by at most;< (since we will receive at worst
do so, we will sample random beliefs and test if less than 3 less reward at each time step). This value is a lower-
pq-proportion have a Bayes risk greater tifan bound on the optimal policy in the new POMDP. Thus, a
POMDP with all its rewards withifl —~)¢ of P will have

a policy of valuel” + . In this way, the valu€ imposes a
minimal level of discretization over the reward space.

€r

1. Sampling a Sufficient Number of Beliefs.To test if k
interactions lead to a probabilify, of additional meta-
queries with confidencé,, we compute the Bayes risk
for n, beliefs sampled uniformly. If fewer than,
pqny beliefs require meta-queries affenteractions, we
accept the value ok. We sample from the posterior
Dirichlet givenk interactions and estimagg = ng/ny.

The rewards are bounded betweRp;, and R,,.«. If our
reward space hasdimensions, then our discretization will

*This bound requires, > 2 log 1, but we will find that our
final bound forn; is greater than this value.
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yield at mos(%)d POMDPs. (Intuitively, the dis- 5.2. Learning Continuous Parameters
cretization involves limiting the precision of the sampled
rewards.) Since each meta-query invalidates at least o
POMDP, we must eventually stop asking meta-queries.

Table 2 shows our approach applied to several standard
SompP problems (Littman et al., 1995). For each prob-
lem, between 50-200 POMDP samples were initially taken
from the prior over models. The sampled POMDPs were
5. Results solved very approximately, using relatively few belief

i ) _ ) points (500) and only 25 partial backups. The policy oracle
We first solve a discretized model-uncertainty POMDP ,caq a solution to the true model with many more belief
solved directly to show the utility of meta-queries. We ”etioints (1000-5000) and 250 full backups. We took this so-
couple the meta-queries with our Bayes-risk criterion for|,tion to be the optimal policy. During a trial, which con-
learning with with continuous-valued unknown parameterssined until either the task was completed or a maximum

_ _ number of iterations was reached, the agent had the choice
5.1. Learning Discrete Parameters of either taking a normal action or asking a meta-query and
_then taking the supplied optimal action. POMDPs were re-

In domains where model uncertainty is limited to a few, dis . X
l%ampled at the completion of each trial.

crete parameters, we may be able to solve for the comple
model-uncertainty POMDP using standard POMDP meth-The non-learner (control) always used its initial samptes t
ods. We consider a simple POMDP-based dialog managenake decisions, using the Bayes-risk criterion to select an
ment task (Doshi & Roy, 2007) where the reward is un-action from the policies of the sampled models. lIts prior
known. We presume the correct reward is one of four (disdid not change based on the action-observation histories
crete) possible levels and that the meta-query had a fixethat it experienced, nor did it ask any meta-queries to gain
associated cost. Figure 1 compares the performance of thlditional information. The passive learner resampled its
optimal policy with meta-queries (left column), an opti- POMDP set after updating its prior over transitions and ob-
mal policywithout meta-queries (middle column), and our servations using the forward-backward algorithm. The ac-
Bayes risk policywith meta-queries (right column). The tive learner used both the action-observation historigs an
difference in median performance is small, but the varianceneta-queries for learning. None of the systems received ex-
reduction from the meta-queries is substarttial. plicit reward information, but the active learner used meta

gueries to infer information about the reward model. The

Unfortunately, discretizing the model space does not scal allway problem was too large for the agent to learn (af-
increasing from 4 to 48 possible reward levels, we could ni{* y prob o dJ g
er 50 repetitions, it still queried the oracle at nearlyrgve

longer obtain high-quality global solutions using stamdar S ) . ;
techniques. Next, we present results using our Bayes-risﬁtep)’ in these results we provided the agent with possible

action selection criterion when we no longer discretize thepUccessor states. The smarter prior seemed reasonable as
map and may be easier to obtain for a new environment

parameter space and instead allow the parameters to tal ; . .
on continuous values within prespecified ranges an to the robot's dynamics. Depending on the problem,
' tasks required an average of 7 to 32 actions to complete.

Table 2. Mean difference between optimal (under the true model)

Total Reward in Directly Solved and accrued rewards (smaller = better).
Model-Uncertainty POMDP
100 Problem States Control Passive  Active
. :;j :;j Tiger 2 46.5 50.7 333
" Shuttle 8 10.0 10.0 2.0
g Hj Gridworld-5 26 33.1 102 21.4
: Hallway 57 1.0 1.0 0.08
s Figure 2 shows the performance of the three agents on
the shuttle problem (a medium-sized standard POMDP).
h MetsQueriesand Direct  NoMetaQueries  MetaQueries and Sayes In each case, the agent began with observation and tran-
solution Fisk sition priors with high variance but peaked toward the cor-

Figure 1. Boxplot of POMDP learning performance with a dis- et yalye (thatis, slightly better than uniform). We ceeht
crete set of four possible models. The medians of the p_el'c'ethese priors by applying a diffusion filter to the ground-
ar':e cor:n parab_le, ?Ut the active Iear_T_Er (Il_fﬁ) ma!<eks fev_vetz;k:hs truth transition and observation distributions and uskreg t
than the passive learner (center). The Bayes risk actie result as our initial Dirichlet parameters. All reward pri-
criterion (right) does not cause the performance to suffer. ors were uniform between the minimum and maximum re-
ward values of the ground-truth model. The active learner

5Although the Bayes risk approximation appears higher, theStarted (and remained) with good performance because it
difference in performance in both median and variance ifigieg used meta-queries when initially confused about the model.
ble between the optimal policy and the Bayes risk approdionat ~ Thus, its performance was robust throughout.
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POMDP Learning on Shuttle allowed our agent to behave robustly even with uncer-

T tain knowledge of the POMDP model. We analyzed the
il o pobve e | theoretical properties of our algorithm, but also included
No Learning several practical approximations that rendered the method

tractable. Finally, we demonstrated the approach on sev-
eral problems from the POMDP literature. In our future
work, we hope to develop more efficient POMDP sampling
schemes—as well as heuristics for allocating more compu-
Proportion of Interactions with Meta-Queries tation to more promising solutions—to allow our approach
to be deployed on larger, real-time applications.

Difference in Median Reward
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