
Reinforcement Learning with Limited Reinforcement:
Using Bayes Risk for Active Learning in POMDPs

Finale Doshi FINALE@MIT.EDU

Massachusetts Institute of Technology, Boston, USA

Joelle Pineau JPINEAU@CS.MCGILL .CA

McGill University, Montreal, Canada

Nicholas Roy NICKROY@MIT.EDU

Massachusetts Institute of Technology, Boston, USA

Abstract
Partially Observable Markov Decision Processes
(POMDPs) have succeeded in planning domains that
require balancing actions that increase an agent’s
knowledge and actions that increase an agent’s re-
ward. Unfortunately, most POMDPs are defined with
a large number of parameters which are difficult to
specify only from domain knowledge. In this paper,
we present an approximation approach that allows us
to treat the POMDP model parameters as additional
hidden state in a “model-uncertainty” POMDP. Cou-
pled with model-directed queries, our planner actively
learns good policies. We demonstrate our approach on
several POMDP problems.

1. Introduction

Partially Observable Markov Decision Processes
(POMDPs) have succeeded in many planning do-
mains because they can reason in the face of uncertainty,
optimally trading between actions that gather information
and actions that achieve a desired goal. This ability has
made POMDPs attractive in real-world problems such as
dialog management (Roy et al., 2000), but such problems
often require a large number of parameters that are difficult
to specify from domain knowledge alone. Recent advances
can solve POMDPs with tens of thousands of states (Shani
et al., 2007), but learning in POMDPs remains limited to
small problems (Jaulmes et al., 2005).

Traditional reinforcement learning approaches (Watkins,
1989; Strehl et al., 2006; Even-Dar et al., 2005) to learning
in MDP or POMDP domains require a reinforcement signal
to be provided after each of the agent’s actions. If learning
must occur through interaction with a human expert, the
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feedback requirement may be undesirable. The traditional
approach also does not guarantee the agent’s performance
during training. We identify and address three limitations
in the traditional approach in this work:

1. Gathering sufficient training data for supervised learning
may be prohibitively expensive.

2. Most approaches require the agent to experience a large
penalty (i.e., make critical mistakes) to discover the con-
sequences of a poor decision.

3. Accurate numerical reward feedback is especially hard to
obtain from people, and inverse reinforcement learning
(identifying the reward model without explicit reinforce-
ment) poses its own challenges (Ng & Russell, 2000).

Our objective is to propose a framework for simultaneous
learning and planning in POMDPs that overcomes the lim-
itations above, allowing us to build agents that behave ef-
fectively in domains with model uncertainty.

We now discuss how our approach will address each of
these three issues. To address the issue of long training
periods, we adopt a Bayesian reinforcement learning ap-
proach and express model-uncertainty as additional hid-
den state. Bayesian methods (Dearden et al., 1999; Strens,
2000; Poupart et al., 2006; Jaulmes et al., 2005) have re-
ceived recent attention in reinforcement learning because
they allow experts to incorporate domain knowledge into
priors over models. Thus, the system begins the learn-
ing process as a robust, functional (if conservative) agent
while learning to adapt online to novel situations. The do-
main knowledge specified as a prior can also provide the
agent with a basic understanding of potential pitfalls. Our
work builds on previous Bayesian reinforcement learning
approaches in that we provide both practical approximation
schemes as well as guarantees on correctness and conver-
gence.

To ensure robustness toward catastrophic mistakes, we de-
velop an active learning scheme that determines when addi-
tional training is needed (typically active learning involves
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asking for a few labels from unlabeled data; in this work,
the ‘label’ corresponds to asking for the optimal action at a
particular point in time). If the agent deems that model
uncertainty may cause it to take undue risks, it queries
an expert regarding what action it should perform. These
queries both limit the amount of training required and al-
low the agent to infer the potential consequences of an ac-
tion without executing it. Depending on the domain, we
can imagine that different forms of information are most
readily available. For example, in a navigation task, it may
be straight-forward to query a state oracle (i.e., a GPS sys-
tem) for a location. Similarly, rewards may be easy to mea-
sure based on quantities such as energy usage or time to
goal. However, in other domains—particularly when work-
ing with human-robot interaction and dialog management
systems—policy information may be more accurate; a hu-
man user may know what he wishes the agent to do, but
may be unable to provide the agent with an accurate state
representation (which is often complex, for optimization
purposes). In these domains, asking for policy informa-
tion, instead of a traditional reward signal, also side-steps
the issue of getting explicit reward feedback from a human
user, which can also be inaccurate (Millet, 1998). In this
work, we deal exclusively with policy-based queries.

We are still left with the inverse reinforcement learning
problem, as the user’s response regarding correct actions
provides only implicit information about the underlying re-
ward. To date, Bayesian reinforcement learning has suc-
ceeded in learning observation and transition distributions
(Jaulmes et al., 2005; Poupart et al., 2006), where updates
have closed forms (such as updating Dirichlet counts); pre-
vious inverse reinforcement learning work (Ng & Russell,
2000) does not extend to the partially observable case. To
overcome this issue, we use a non-parametric approach to
model distributions over POMDPs; we demonstrate our ap-
proach on several standard problems.

We describe two practical contributions. First, we pro-
pose an approximation based on minimizing the immedi-
ate Bayes risk for choosing actions when transition, obser-
vation, and reward models are uncertain. The Bayes risk
criterion avoids the computational intractability of solving
large, continuous-valued POMDPs; we show it performs
well in a variety of problems. Second, to gather informa-
tion about the model without assuming state observabil-
ity, we introduce the notion ofmeta-queries. These meta-
queries accelerate learning and help the agent to infer the
consequences of a potential pitfall without experiencing its
effects. They are a powerful way of gaining information,
but they make the strong assumption that they will be an-
swered. Fortunately, a number of decision-making prob-
lems exist where this assumption is reasonable, particularly
in collaborative human-machine tasks (e.g. automated dia-
logue systems and shared robot control scenarios).

2. The POMDP Model

A POMDP consists of the n-tuple{S,A,O,T ,Ω,R,γ}. S,
A, and O are sets of states, actions, and observations.
The transition functionT (s′|s, a) is a distribution over the
states the agent may transition to after taking actiona from
states. The observation functionΩ(o|s, a) is a distribution
over observationso that may occur in states after taking
actiona. The reward functionR(s, a) specifies the imme-
diate reward for each state-action pair. The factorγ ∈ [0, 1)
weighs the importance of current and future rewards.

In the POMDP model, the agent must choose actions based
on past observations; the true state is hidden. The belief,
a probability distribution over states, is a sufficient statistic
for a history of actions and observations. The belief at time
t + 1 can be computed from the previous belief,bt, the last
actiona, and observationo, by applying Bayes rule:

ba,o
t+1(s)=Ω(o|s, a)

∑

s′∈S

T (s|s′, a)bt(s
′)/Pr(o|b, a), (1)

wherePr(o|b, a)=
∑

s′∈S Ω(o|s′, a)
∑

s∈S T (s′|s, a)bt(s).
If the goal is to maximize the expected discounted reward,
then the optimal policy is given by:

Vt(b) = max
a∈A

Qt(b, a), (2)

Qt(b, a) = R(b, a) + γ
∑

o∈O

Pr(o|b, a)Vt(b
a,o), (3)

where the value functionV (b) is the expected discounted
reward that an agent will receive if its current belief isb and
Q(b, a) is the value of taking actiona in beliefb. The exact
solution to equation 3 is only tractable for tiny problems, so
we use a point-based approximation (Pineau et al., 2003).

3. Modeling POMDP Uncertainty

We assume that the setsS, A, andO are known. The
POMDP learning problem is to determine the parameters
of T , Ω, andR that describe the dynamics and objective of
the problem domain. A Bayesian approach is attractive in
many real-world settings because we may have strong no-
tions regarding certain parameters, but the value of those
parameters may be difficult to specify exactly. We place
a prior over the model parameters to express our domain
knowledge, and improve upon this prior with experience.

If the state, action, and observation sets are discrete,T and
Ω are collections of multinomial distributions. As conju-
gate priors, Dirichlet distributions are a natural choice of
prior for T andΩ. We use a uniform prior over expert-
specified ranges for the reward functionR. Together these
priors specify a distribution over POMDP models. To build
a POMDP that incorporates the model parameters into the
hidden state, we consider the joint state spaceS′ = S×M ,
whereM is the space of models as described by all valid
values for the model parameters. AlthoughS′ is contin-
uous and high dimensional, the transition model forM is
simple (assuming the true model is static).
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The formulation above makes the agent aware of the un-
certainty in the model parameters, and by trying various
actions, it will be able to reduce uncertainty both in its
state and in the parameters. However, the model informa-
tion provided by the standard actions may be weak, and we
would like the agent to be able to explicitly reduce model
uncertainty in a safe manner. To allow for active learning,
we augment the action spaceA of our original POMDP
with a set of meta-queries{qm}. The meta-queries consult
an oracle (e.g., a domain expert) for the optimal action at
a particular time step. We assume that the expert has ac-
cess to the history of actions and observations (as does the
agent), as well as the true POMDP model, and thus can ad-
vise the agent on the optimal action at any particular time.
The agent begins by confirming the action it thinks is best:

“I think ai is the best action. Should I doai?”

If the oracle answers to the negative, the agent follows with
what it thinks is next best:

“Then I thinkaj is best. Is that correct?”

until it receives an affirmative response. The ordered list of
actions helps give the expert a sense of the agent’s uncer-
tainty; if the agent is uncertain, the expert might advise itto
gather information rather than risk an incorrect decision.1

Meta-queries may be applied in situations where an expert
is available to guide the agent. Unlike the oracle of Jaulmes
et al. (2005), the meta-queries ask for policy information,
not state information, which can be important if optimiza-
tion procedures make the state-space unintuitive to the user
(e.g., Williams and Young (2005)). In human-robot interac-
tion, it may also simply be more natural to ask “I think you
want me to go to the coffee machine. Should I go there?”
which may be more natural than “Please enter your most re-
cent statement” or “Please enter our position coordinates.”

We can think of these meta-queries simply as additional
actions and simply attempt to solve the model-uncertainty
POMDP with this augmented action space. However, such
an approach quickly becomes intractable. Therefore, we
will treat the meta-query as a special action to be taken
if the other actions are too risky. We take the costξ of
querying the user to be a fixed parameter of the problem.

4. Solution Techniques

Table 1 summarizes our two-part approach to solving the
model-uncertainty POMDP. First, given a history of ac-
tions and observations, the agent must select the next ac-
tion. Second, the agent must update its distribution over
the model parameters given additional interactions with the
environment. In the most general case, both steps are in-
tractable via standard POMDP solution techniques.2

1Our simulations used a shortened meta-query for speed.
2Analytic updates are possible if the distributions take certain

forms (Poupart & Vlassis, 2008), but even here pruning is needed
to keep the solutions to a tractable size.

Table 1. POMDP active learning approach.
ACTIVE LEARNING WITH BAYES RISK

• Sample POMDPs from a prior distribution.
• Complete a task choosing actions based on Bayes risk:

– Use the POMDP samples to compute the action
with minimal Bayes risk (Section 4.1).

– If the risk is larger than a givenξ, perform a
meta-query (Section 4.1).

– Update each POMDP sample’s belief based on
the observation received (Section 4.2).

• Once a task is completed, update prior (Section 4.2):

– Use a kernel incorporating action-observation
history to propagate POMDP samples.

– Weight POMDPs based on meta-query history.

Performance and termination bounds are in 4.3 and 4.4.

4.1. Bayes-Risk Action Selection

Let the lossLm(a, a∗; b) of taking actiona in modelm be
Q∗

m(b, a) − Q∗
m(b, a∗), wherea∗ is the optimal action in

beliefb according to modelm. Given a beliefpM (m) over
models, the expected lossEM [L] is the Bayes risk:

BR(a) =

∫

M

(Q∗
m(bm, a) − Q∗

m(bm, a∗
m))pM (m), (4)

whereM is the space of models,bm is the current be-
lief according to modelm, and a∗

m is the optimal ac-
tion for the current beliefbm according to modelm. Let
a′ = arg maxa∈A BR(a) be the action with the least risk.
In the passive learning scenario, our agent just performsa′.

If the risk of the least-risky actiona′ is large, the agent may
still incur significant losses. We would like our agent to be
sensitive to the absolute magnitude of the risks that it takes.
In the active learning scenario, the agent performs a meta-
query ifBR(a′) is less than−ξ, that is, if the least expected
loss is more than the cost of the meta-query. The series of
meta-queries will lead us to choose the correct action and
thus incur no risk.

Intuitively, our criterion selects the least risky action now
and hopes that the uncertainty over models will be resolved
at the next time step. We can rearrange equation 4 to get:

BR(a)=

∫

M

Q(bm, a)pM (m)−

∫

M

Q(bm, a∗
m)pM (m). (5)

The second term is independent of the action choice; to
maximizeBR(a), one may simply maximize the first term:

VBR = max

∫

M

Q(bm, a)pM (m). (6)

The Bayes risk criterion is similar to theQMDP heuris-
tic (Littman et al., 1995), which uses the approximation
V (b) = max

∑

s Q(s, a)b(s) to plan in known POMDPs.



Bayes Risk for Active Learning in POMDPs

In our case, the belief over statesb(s) is replaced by a be-
lief over modelspM (m) and the action-value function over
statesQ(s, a) is replaced by an action-value function over
beliefsQ(bm, a). In theQMDP heuristic, the agent assumes
that the uncertainty over states will be resolved after the
next time step. Our Bayes-risk criterion may be viewed
as similarly assuming that the next action will resolve the
uncertainty over models.

Though similar, the Bayes risk action selection criterion
differs fromQMDP in two important ways. First, our ac-
tions come from POMDP solutions and thus do fully con-
sider the uncertainty in the POMDP state. UnlikeQMDP ,
we do not act on the assumption that our state uncertainty
will be resolved after taking the next action; our approx-
imation supposes that only the model uncertainty will be
resolved. Thus, if the model stochasticity is an important
factor, our approach will take actions to reduce state uncer-
tainty. This observation is true regardless of whether the
agent is passive (does not ask meta-queries) or active.

In the active learning setting, the second difference is
the meta-query. Without the meta-query, while the agent
may take actions to resolve state uncertainty, it will never
take actions to reduce model uncertainty. However, meta-
queries ensure that the agent rarely (with probabilityδ)
takes a less thanξ-optimal action in expectation. Thus
the meta-queries make the learning process robust from the
start and allow the agent to resolve model uncertainty.

Approximation and bounds: The integral in equation 4
is computationally intractable, so we approximate it with a
sum over a sample of POMDPs from the space of models:

BR(a) ≈
∑

i

(Q(bi, a) − Q(bi, a
∗
i ))pM (mi) (7)

There are two main sources of approximation that can lead
to error in our computation of the Bayes risk:

• Error due to the Monte Carlo approximation of the in-
tegral in equation 4: Note that the maximum value of
the Q(bi, a) − Q(bi, a

∗
i ) is trivially upper bounded by

Rmax−min(Rmin,ξ)
1−γ and lower bounded by zero. Applying

the Hoeffding bound with sampling errorǫs and confi-
denceδ, we will requirenm samples:3

nm =
(Rmax − min(Rmin, ξ))

2

2(1 − γ)2ǫ2s
log

1

δ
(8)

• Error due to the point-based approximation ofQ(bi, a):
The differenceQ(bi, a)−Q(bi, a

∗
i ) may have an error of

up toǫPB = 2(Rmax−Rmin)δB

(1−γ)2 , whereδB is the sampling
density of the belief points. This result is directly from
the error bound due to Pineau et al. (2003).

3An error ofǫ with confidenceδ meansPr[x − x̂ > ǫ] < δ.

To obtain a confidenceδ when calculating if the Bayes
risk is greater than−ξ, we combine these bounds, setting
ǫs = ξ − ǫPB, and computing the appropriate number of
samplesn from equation 8. We note however that the Ho-
effding bounds used to derive this approximation are quite
loose; for example in the shuttle POMDP problem, we used
200 samples, whereas equation 8 suggested over 3000 sam-
ples may have been necessary even with a perfect POMDP
solver.

4.2. Updating the Model Distribution

As described in Section 3, we initially placed Dirichlet pri-
ors over the transition and observation parameters and uni-
form priors over the reward parameters. As our agent in-
teracts with the environment, it receives two sources of in-
formation to update its prior: a historyh of actions and
observations and a set of meta-queries (and responses)Q.
Givenh andQ, the posteriorpM|h,Q over models is:

pM|h,Q(m|h, Q) ∝ p(Q|m)p(h|m)pM (m), (9)

whereQ andh are conditionally independent givenm be-
cause they are both computed from the model parameters.
The historyh is the sequence of actions and observations
sincepM was last updated. The setQ is the set ofall meta-
queries asked (and the expert’s responses). Each source
poses a different challenge when updating the posterior.

If the agent were to have access to the hidden under-
lying state, then it would be straightforward to compute
pM|h(m|h) ∝ p(h|m)pM (m); we simply need to add
counts to the appropriate Dirichlet distributions. However,
when the state sequence is unknown, the problem becomes
more difficult; the agent must use its belief over the state
sequence to update the posterior. Thus, it is best to perform
the update when it is most likely to be accurate. For ex-
ample, in a robot maze scenario, if the robot is lost, then
estimating its position may be inaccurate. However, once
the robot reaches the end of the maze, it knows both its start
and end position, providing more information to recover its
path. We focus on episodic tasks in this work and update
the belief over models at the completion of a task.

The meta-query information poses a different challenge:
the questions provide information about the policy, but our
priors are over the model parameters. The meta-queries
truncate the original Dirichlet as models inconsistent with
meta-query responses have zero likelihood. We approxi-
mate the posterior with a particle filter.

4.2.1. DURING A TASK: UPDATING PARTICLE WEIGHTS

Recall that sequential Monte Carlo techniques let us repre-
sent a distribution at timet using a set of samples from time
t − 1 using the following procedure (Moral et al., 2002):

mt ∼ K(mt−1, mt), (10)

wt = wt−1
pM,t(mt)

pM,t−1(mt−1)K(mt−1, mt)
, (11)
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whereK(m, m′) is an arbitrary transition kernel andpM is
the probability of the modelm under the true posterior.

Sampling a new model requires solving a POMDP, which
is computationally expensive and thus may be undesirable
while an agent is in the process of completing a task. Thus,
we do not change our set of samples during a task (that is,
K(m, m′) = δm(m′) whereδ() is the Dirac delta func-
tion). We begin at timet − 1 with a set of modelsmi

and weightswi that represent our current belief over mod-
els. If a meta-query occurs at timet, then pM,t(m) ∝
p(Qt|m)pM,t−1(m), and the weight update reduces to

wt = wt−1p(Qt|m). (12)

In theory, thep(Q|m) should be a delta function: either
the modelm produces a policy that is consistent with the
meta-query (p(Q|m) = 1), or it does not (p(Q|m) = 0).
In practice, approximation techniques used to compute the
model’s policy are imperfect (and expert advice can be in-
correct) so we do not want to penalize a model that occa-
sionally acts incorrectly. We model the probability of see-
ing k incorrect responses inn trials as a binomial variable
with parameterpe, wherepe is the probability a model fails
a meta-query due to the approximate solver. This value is
hard to characterize, of course, and is problem-specific; we
usedpe = 0.3 in our tests.

4.2.2. BETWEEN TASKS: RESAMPLING PARTICLES.

Over time, samples taken from the original prior may no
longer represent the posterior well. Moreover, if only a few
high weight samples remain, the Bayes risk may appear
smaller than it really is because most of the samples are in
the wrong part of the space. We also need to update the
models based on the history information, which we have
ignored so far. We do both these steps at the end of a task.

Action-Observation Histories: Dirichlet Update. We
first discuss how to update the posteriorp(m|h) in closed
form. Recall that updating the Dirichlet counts given ac-
tions and observations requires knowing the underlying
state history, and our agent only has access to history of
actions and observations. We therefore update our parame-
ters using an online extension of the standard EM algorithm
(Sato, 1999). In the E-step, we estimate a distribution over
state sequences in the episode. In the M-step, we use this
distribution to update counts on our Dirichlet priors. On-
line EM guarantees convergence to a local optimum.

For the E-step, we first estimate the true state history. Two
sources of uncertainty are present: model stochasticity and
unknown model parameters. To compute the expectation
with respect to model stochasticity, we use the standard
forward-backward algorithm to obtain a distribution over
states for each sample. Next, we combine the distributions
for each sample based on the sample’s weight. For exam-
ple, suppose a sampled model assigns a probabilitypi(s) to
being in states. Then the expected probabilitŷp(s) of be-
ing in states is p̂(s) =

∑n
i wipi(s). The samples represent

our distribution over models, so this sum approximates an
expectation over all models.

Next, we update our Dirichlet counts based on both the
probability that a POMDP assigns to a particular state and
the probability of that POMDP. Given an actiona and ob-
servationo corresponding to timet, we would update our
Dirichlet count forαo,s,a in the following manner:

αo,s,a = αo,s,a + p̂(s) (13)

for each states. This update combines prior knowledge
about the parameters—the original value ofαo,s,a—with
new information from the current episode,p̂(s).

Resampling Models. As is standard in sequential Monte
Carlo techniques, we begin by resampling models accord-
ing to their weightswi. Thus, a model with high weight
may get selected many times for inclusion in the resam-
pled set of models, while a model with low weight may
disappear from the sample set since it is no longer repre-
sentative of the posterior. Once resampled, each model has
equal weight. Before we begin the next task, we perturb
the models with the following transition kernel:

• Draw a samplem′ from pM|h.
• With probabilitypk, replacem with m′

• With probability1 − pk, take the convex combination of
the model parameters ofm andm′ so thatm′ = p ·m′ +
(1 − p) · m with the convexity parameter being chosen
uniformly at random on[0, a].

We reduce the probabilitypk from 0.9 to 0.4 as the inter-
actions continue, encouraging large exploration earlier on
and fine-tuning in later interactions. We seta to 0.2 in
our experiments. Based on this sampling procedure, the
weight (keeping in mind that after resampling, all models
had equal weight) of the transitioned modelm′ is given by:

wt ∝
p(Q|m′)pM|h(m′)

p(Q|m)pM (m)K(m, m′)
, (14)

where,K(m, m′) = pk · pM|h(m′) if we keep the newly-
sampled model and andK(m, m′) = (1−pk)·pM|h(m′)/a
if we perturbm via a convex combination.

4.3. Performance Bounds

Let V ∗ be the value of the optimal policy under the true
model. From our risk criterion, the expected loss at each
action is no more thanξ. However, with probabilityδ, in
the worst case, the agent may choose a bad action that takes
it to an absorbing state in which it receivesRmin forever.

To determine the expected discounted reward, we consider
a two-state Markov chain. In state 1, the “normal” state,
the agent receives a reward ofR − ξ, whereR is the value
the agent would have received under the optimal policy. In
state 2, the agent receivesRmin. Equation 15 describes the
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transitions in this simple chain and the values of the states:

∣

∣

∣

∣

V1

V2

∣

∣

∣

∣

=

∣

∣

∣

∣

R − ξ
Rmin

∣

∣

∣

∣

+ γ

∣

∣

∣

∣

1 − δ δ
0 1

∣

∣

∣

∣

∣

∣

∣

∣

V1

V2

∣

∣

∣

∣

. (15)

Solving this system and noting that the agent begins in state
1 with probability1 − δ and state 2 with probabilityδ, the
lower boundV ′ on the expected value is

V ′ = η(V ∗ −
ξ

1 − γ
) + (1 − η)

Rmin

1 − γ
, (16)

η = (1 − δ)(1 − γ)(1 − γ(1 − δ))−1. (17)

4.4. Model Convergence

Given the algorithm in Table 1, we would like to know if
the learner will eventually stop asking meta-queries. We
state that the model isconverged if BR(a′) > −ξ for all
histories (whereξ is the cost of a meta-query). Our conver-
gence argument involves two steps. First, let us ignore the
reward model and consider only the observation and tran-
sition models. As long as standard reinforcement learning
conditions—periodic resets to a start state and information
about all states (via visits or meta-queries)—hold, the prior
will peak around some value (perhaps to a local extremum)
in a bounded number of interactions from the properties
of the online EM algorithm (Sato, 1999). We next argue
that once the observation and transition parameters have
converged, we can bound the meta-queries required for the
reward parameters to converge.

Observation and Transition Convergence. To discuss
the convergence of the observation and transition distribu-
tions, we apply a weaker sufficient condition than the con-
vergence of the EM algorithm. We note that the number
of interactions bounds the number of meta-queries, since
we ask at most one meta-query for each normal interac-
tion. We also note that the counts on the Dirichlet pri-
ors increase monotonically. Once the Dirichlet parameters
are sufficiently large, the variance in the sampled models
will be small; even if the mean of the Dirichlet distribution
shifts with time, no additional meta-queries will be asked.

The specific convergence rate of the active learning will de-
pend heavily upon the problem. However, we can check if
k additional interactions are sufficient such that the proba-
bility of asking a meta-query ispq with confidenceδq. To
do so, we will sample random beliefs and test if less than a
pq-proportion have a Bayes risk greater thanξ.

1. Sampling a Sufficient Number of Beliefs.To test ifk
interactions lead to a probabilitypq of additional meta-
queries with confidenceδq, we compute the Bayes risk
for nb beliefs sampled uniformly. If fewer thannq =
pqnb beliefs require meta-queries afterk interactions, we
accept the value ofk. We sample from the posterior
Dirichlet givenk interactions and estimatêpq = nq/nb.

We desirêpq to be withinǫq of p′q = pq − ǫq with prob-

ability δq. Using the Chernoff boundδq = e−nbp′

qǫ2q/3,
we setǫq to 2/3pq to minimize the samples needed:

nb > −27/4 · (pq)
−3 log δq. (18)

2. Computing Bayes Risk from a Conservative Poste-
rior. We next compute the Bayes risk for each belief
given a hypothesized set ofk interactions. We do not
knowa priori the response to the interactions, so we use
the maximum-entropy Dirichlet posterior to compute the
posterior Bayes risk (that is, assign thek counts to as-
sign an equal number of counts to each variable). We
compute the Bayes risk of each belief from this posterior
and acceptk if p̂q < pq.

3. Correction for Approximate Bayes Risk. Recall that
we approximate the Bayes risk integral with a sum over
sampled POMDP models, and the number of modelsnm

required is given by equation 8. We must correct for the
error induced by this approximation. Section 4.1 tells
us if a beliefb has riskBR(a) < −ξ with confidence
δ. Suppose we samplenb beliefs, and the true fraction
of beliefs in which meta-queries are asked ispq. Due to
misclassifications, however, the expected value we will
observe is only(1 − δ)pq. We can then apply a second
Chernoff bound to determine that with probabilityδ, no
more than2(1 − δ)nb beliefs will be misclassified.4 Let

p′′q = pq(1 − 2(1 − δ)), (19)

be the minimum fraction of beliefs queries we expect to
observe requiring meta-queries if the true fraction ispq.

Thus, to test ifk interactions lead to a probability ofpq

for meta-queries with confidenceδq, we computep′′q from
equation 19, samplenb beliefs uniformly from equation 18,
update the Dirichlet posteriors to be maximum-entropy
posteriors, sample thenm models from equation 8, and fi-
nally compute the posterior Bayes risk for each belief. If
less than apq-proportion of beliefs require meta-queries,
thenk is an upper bound on the number of remaining meta-
queries with probabilitypq and confidenceδq.

Reward Convergence. The cost of a meta-query limits
the reward resolution. Suppose a POMDPP has an opti-
mal policyπ with valueV . If we adjusted all the rewards by
some smallǫr, then the value of the same policyπ will dif-
fer from V by at most ǫr

1−γ (since we will receive at worst
ǫr less reward at each time step). This value is a lower-
bound on the optimal policy in the new POMDP. Thus, a
POMDP with all its rewards within(1−γ)ξ of P will have
a policy of valueV ± ξ. In this way, the valueξ imposes a
minimal level of discretization over the reward space.

The rewards are bounded betweenRmin andRmax. If our
reward space hasd dimensions, then our discretization will

4This bound requiresnb >
3

δ
log 1

δ
, but we will find that our

final bound fornb is greater than this value.
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yield at most(Rmax−Rmin

(1−γ)ξ )d POMDPs. (Intuitively, the dis-
cretization involves limiting the precision of the sampled
rewards.) Since each meta-query invalidates at least one
POMDP, we must eventually stop asking meta-queries.

5. Results

We first solve a discretized model-uncertainty POMDP
solved directly to show the utility of meta-queries. We next
couple the meta-queries with our Bayes-risk criterion for
learning with with continuous-valuedunknown parameters.

5.1. Learning Discrete Parameters

In domains where model uncertainty is limited to a few, dis-
crete parameters, we may be able to solve for the complete
model-uncertainty POMDP using standard POMDP meth-
ods. We consider a simple POMDP-based dialog manage-
ment task (Doshi & Roy, 2007) where the reward is un-
known. We presume the correct reward is one of four (dis-
crete) possible levels and that the meta-query had a fixed
associated cost. Figure 1 compares the performance of the
optimal policy with meta-queries (left column), an opti-
mal policywithout meta-queries (middle column), and our
Bayes risk policywith meta-queries (right column). The
difference in median performance is small, but the variance
reduction from the meta-queries is substantial.5

Unfortunately, discretizing the model space does not scale;
increasing from 4 to 48 possible reward levels, we could no
longer obtain high-quality global solutions using standard
techniques. Next, we present results using our Bayes-risk
action selection criterion when we no longer discretize the
parameter space and instead allow the parameters to take
on continuous values within prespecified ranges.

Figure 1. Boxplot of POMDP learning performance with a dis-
crete set of four possible models. The medians of the policies
are comparable, but the active learner (left) makes fewer mistakes
than the passive learner (center). The Bayes risk action selection
criterion (right) does not cause the performance to suffer.

5Although the Bayes risk approximation appears higher, the
difference in performance in both median and variance is negligi-
ble between the optimal policy and the Bayes risk approximation.

5.2. Learning Continuous Parameters

Table 2 shows our approach applied to several standard
POMDP problems (Littman et al., 1995). For each prob-
lem, between 50-200 POMDP samples were initially taken
from the prior over models. The sampled POMDPs were
solved very approximately, using relatively few belief
points (500) and only 25 partial backups. The policy oracle
used a solution to the true model with many more belief
points (1000-5000) and 250 full backups. We took this so-
lution to be the optimal policy. During a trial, which con-
tinued until either the task was completed or a maximum
number of iterations was reached, the agent had the choice
of either taking a normal action or asking a meta-query and
then taking the supplied optimal action. POMDPs were re-
sampled at the completion of each trial.

The non-learner (control) always used its initial samples to
make decisions, using the Bayes-risk criterion to select an
action from the policies of the sampled models. Its prior
did not change based on the action-observation histories
that it experienced, nor did it ask any meta-queries to gain
additional information. The passive learner resampled its
POMDP set after updating its prior over transitions and ob-
servations using the forward-backward algorithm. The ac-
tive learner used both the action-observation histories and
meta-queries for learning. None of the systems received ex-
plicit reward information, but the active learner used meta-
queries to infer information about the reward model. The
Hallway problem was too large for the agent to learn (af-
ter 50 repetitions, it still queried the oracle at nearly every
step); in these results we provided the agent with possible
successor states. The smarter prior seemed reasonable as
a map and may be easier to obtain for a new environment
than to the robot’s dynamics. Depending on the problem,
tasks required an average of 7 to 32 actions to complete.

Table 2. Mean difference between optimal (under the true model)
and accrued rewards (smaller = better).

Problem States Control Passive Active
Tiger 2 46.5 50.7 33.3
Shuttle 8 10.0 10.0 2.0
Gridworld-5 26 33.1 102 21.4
Hallway 57 1.0 1.0 0.08

Figure 2 shows the performance of the three agents on
the shuttle problem (a medium-sized standard POMDP).
In each case, the agent began with observation and tran-
sition priors with high variance but peaked toward the cor-
rect value (that is, slightly better than uniform). We created
these priors by applying a diffusion filter to the ground-
truth transition and observation distributions and using the
result as our initial Dirichlet parameters. All reward pri-
ors were uniform between the minimum and maximum re-
ward values of the ground-truth model. The active learner
started (and remained) with good performance because it
used meta-queries when initially confused about the model.
Thus, its performance was robust throughout.
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Figure 2. Performance of the non-learner, passive learner, and ac-
tive learner on the shuttle problem.

6. Discussion and Conclusion

One recent approach to MDP model learning, the Beetle al-
gorithm (Poupart et al., 2006), converts a discrete MDP into
a continuous POMDP with state variables for each MDP
parameter. However, their analytic solution does not scale
to handle the entire model as a hidden state in POMDPs.
Also, since the MDP is fully observable, Beetle can easily
adjust its prior over the MDP parameters as it acquires ex-
perience; in our POMDP scenario, we needed to estimate
the possible states that the agent had visited. Recently the
authors have extended Beetle to partially observable do-
mains (Poupart & Vlassis, 2008), providing similar ana-
lytic solutions to the POMDP case. The work outlines effi-
cient approximations but results are not provided.

Prior work in MDP and POMDP learning has also con-
sidered sampling to approximate a distribution over un-
certain models. Dearden et. al. (1999) discusses sev-
eral approaches for representing and updating priors over
MDPs using sampling and value function updates. Strens
(2000) shows that in the MDPs, randomly sampling only
one model from a prior over models, and using that model
to make decisions, is guaranteed to converge to the op-
timal policy if one resamples the MDP sufficiently fre-
quently from an updated prior over models. More recently,
in the case of POMDPs, Medusa (Jaulmes et al., 2005)
avoids the problem of knowing how to update the prior
by occasionally requesting the true state based on model-
uncertainty heuristics. It converges to the true model but
may make several mistakes before convergence. Our risk-
based heuristic and policy queries provide correctness and
convergence guarantees throughout the learning process.

We developed an approach for active learning in POMDPs
that can robustly determine a near-optimal policy. Meta-
queries—questions about actions that the agent is think-
ing of taking—and a risk-averse action selection criterion

allowed our agent to behave robustly even with uncer-
tain knowledge of the POMDP model. We analyzed the
theoretical properties of our algorithm, but also included
several practical approximations that rendered the method
tractable. Finally, we demonstrated the approach on sev-
eral problems from the POMDP literature. In our future
work, we hope to develop more efficient POMDP sampling
schemes—as well as heuristics for allocating more compu-
tation to more promising solutions—to allow our approach
to be deployed on larger, real-time applications.
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