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Abstract

We relate compressed sensing (CS) with
Bayesian experimental design and provide
a novel efficient approximate method for
the latter, based on expectation propaga-
tion. In a large comparative study about lin-
early measuring natural images, we show that
the simple standard heuristic of measuring
wavelet coeflicients top-down systematically
outperforms CS methods using random mea-
surements; the sequential projection optimi-
sation approach of (Ji & Carin, 2007) per-
forms even worse. We also show that our own
approximate Bayesian method is able to learn
measurement filters on full images efficiently
which outperform the wavelet heuristic. To
our knowledge, ours is the first successful at-
tempt at “learning compressed sensing” for
images of realistic size. In contrast to com-
mon CS methods, our framework is not re-
stricted to sparse signals, but can readily be
applied to other notions of signal complexity
or noise models. We give concrete ideas how
our method can be scaled up to large signal
representations.

1. Introduction

There has been a lot of recent interest in the area
of compressed sensing (CS) (Candes et al., 2006;
Donoho, 2006), where it is argued that if signals can
be expected to be compressible due to sparseness after
some linear transform, then they can be reconstructed
from a number of measurements significantly below the
Nyquist/Shannon limit, if the measurement design is
not too regular. In this paper, we relate CS to the
more general notion of statistical (Bayesian) experi-
mental design.
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Through this view, characteristics of signals and al-
gorithms, defined in an abstract mathematical way in
the CS literature so far, become understandable and
workable. The experimental design approach applies
to signals of low complexity in general, not only to
sparse ones. It has the potential to clearly outper-
form the randomised designs, favoured by theoretical
CS arguments, in cases where signals are not well-
described by common CS assumptions. For exam-
ple, CS has been viewed with some scepticism so far
by researchers in computer vision and image statistics
(Weiss et al., 2007). While images exhibit transform
sparsity to some degree, purely random measurement
designs can be suboptimal for them. The reason is that
there is more to low-level image statistics than spar-
sity. Much of this knowledge can be modeled tractably
(Simoncelli, 1999) and could therefore be incorporated
into a Bayesian experimental design architecture. To
our knowledge, the current CS reconstruction schemes
are purely estimation-based and lack proper represen-
tations of uncertainty (which is what fundamentally
drives experimental design), and the theory deals ex-
clusively with signals which are wunstructured except
for random sparsity. We present experimental results
sheding more light on the relationship between CS
and images. Similar to (Weiss et al., 2007), we find
that standard approaches to linear image measure-
ment (wavelet coefficients) give significantly better re-
construction results than using random measurements
favoured by CS, even if modern CS reconstruction al-
gorithms are applied. Yet, our experimental evidence
is more substantial than theirs. Beyond that, we show
that our efficient approximation to sequential Bayesian
design can be used to learn measurements which in-
deed outperform measuring wavelet coefficients top-
down. Our method provides a practically efficient so-
lution to the problem posed in (Weiss et al., 2007),
namely how to learn measurement filters automatically
from data (using very little concrete knowledge about
the signal class) which perform close to or even bet-
ter than “standard” ones obtained through decades of
research and experience. In contrast, the uncertain
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components analysis algorithm suggested by them re-
quires a large database of image patches to be run, and
could hardly be scaled up to the realistic dimensions
treated here!.

An approximate Bayesian approach to compressed
sensing has been presented in (Ji & Carin, 2007), mak-
ing use of sparse Bayesian learning (SBL) (Tipping,
2001). Our method is based on a different, more gen-
eral inference approximation, expectation propagation
(Minka, 2001), and outperforms theirs very signifi-
cantly, for prediction based on the same design and,
even more so, for sequential design optimisation, as
we show in comparative experiments below. More-
over, strongly underdetermined problems (many more
variables than observations) are dealt with more effi-
ciently in our framework. In addition, our framework
is generalised easily to non-Gaussian observation likeli-
hoods, skew prior terms, and generalised linear models
(Gerwinn et al., 2008), and our methodology, our com-
parisons, as well as our discussion here have a broader
scope. Our method is an extension of the scheme in
(Seeger et al., 2007). However, the applications to
images considered here are orders of magnitude larger
than theirs, and several novel ideas are proposed here
in order to increase computational efficiency substan-
tially. While much work has been done in statistics on
experimental design for the classical Gaussian-linear
model, Gaussian priors are entirely inappropriate for
images?, and designs optimized for them are subopti-
mal (see also (Seeger et al., 2007)). We are not aware
of existing methods for the model used here, which
scale comparable to ours, with the exception of (Ji &
Carin, 2007).

A different approach for optimising measurement de-
sign is given in (Elad, 2007), where X is designed a
priori with the aim of making its rows maximally de-
coherent. In our setup, X is designed sequentially,
using Bayesian information criteria.

The structure of the paper is as follows: The exper-
imental design view on CS is detailed in Section 2.
Our framework for approximate inference is described
in Section 3, where we also show how to apply it to
large problems, especially in sequential experimental
design. Our approach is validated through a series of
experiments, comparing it to (Ji & Carin, 2007) and
common CS methods on artificial data (Section 4.1),

!Their experiments are on 4 x 4 image patches, while
ours run efficiently on 64 x 64 images.

2Reconstruction under the Gaussian-linear model is
simply the method of least squares, often referred to as
“linear reconstruction”. Much of the improved perfor-
mance through CS is due to the use of non-linear sparse
reconstruction techniques.

and analysing the suitability of CS and Bayesian ex-
perimental design on natural images (Section 4.2).

2. Compressed Sensing and
Experimental Design

Compressed sensing (CS) (Candes et al., 2006;
Donoho, 2006) can be motivated as follows. Sup-
pose a signal, such as an image or a sound waveform,
is measured and then transferred over some channel
or stored. Traditionally, the measurement obeys the
Nyquist/Shannon theorem, allowing for an exact re-
construction of the (band-limited) signal if there is no
measurement noise. However, what follows is usually
some form of lossy compression, exploiting redundan-
cies and non-perceptibility of losses. Given that, can
the information needed for a satisfactory reconstruc-
tion not be measured below the Nyquist frequency
(this is called undersampling)? In many key applica-
tions today, the measurement itself is the main bottle-
neck for cost reductions or higher temporal /spatial res-
olution. Recent theoretical results indicate that under-
sampling should work well if randomized designs are
used, and if the signal reconstruction method specifi-
cally takes the “compressibility” into account.

Bayesian experimental design encompasses the CS
problem. Here, the “compressibility” of signals is en-
coded in a prior distribution, under which signals of
low complexity in general, or high (transform) sparsity
in particular, have most mass. While an undersam-
pling violates the Nyquist theorem, signals can often
still be reconstructed if they are sufficiently likely un-
der the prior. But not every way of undersampling will
do. Experimental design is concerned with optimising
the measurement structure (called design), so as to
obtain the desired information at the lowest possible
cost. This is easily explained by considering the model
of interest here. Let u € R™ be latent variables (pixels
of an image), and let y € R™ be noisy measurements
thereof. The model class of interest is

P(uly) < N(y|Xu,oI) [ ti(si), s=Bu. (1)

=1

The likelihood P(y|u) is Gaussian and underdeter-
mined (n > m). The prior® is a product of univariate
non-Gaussian potentials ¢;(s;). It is computationally
advantageous, yet not essential, that the logt; be con-
cave (Seeger, 2008), and in this paper we use Laplacian

3We do not require that the prior potential is actually

a normalisable distribution over w, the models of inter-
est here are of the undirected Markov random field (or
“energy-based”) type.
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potentials
T s
tz(sz) = 56 T‘s’|7 (2)

which are of this sort. If number of image pixels n
is large, it is important for computational efficiency
that matrix-vector multiplications (MVMs) with B
and BT (less important: with X, X7) can be done
efficiently, and that B does not have to be stored ex-
plicitly.

The unknown signal u (an image for now) should be
“compressible”, i.e. it should exhibit transform spar-
sity*: after some fixed linear mapping B, such as a
wavelet transform, s = Bwu has many coefficients s;
close to zero. An image coder would set these to ex-
actly zero, thereby compressing the image. “Expected
transform sparsity” is encoded in a sparsity prior, in
our case the product of Laplacians (2). As opposed to
a Gaussian, a Laplace distribution concentrates more
mass close to zero, forcing coefficients to be very small.
On the other hand, the Laplacian also has more mass
in the tails, which allows for occasional large values.
These points are explained further in (Seeger, 2008;
Tipping, 2001).

Next, the design is X, the measurement matrix. In
our example, each row of X is a linear filter speci-
fying a single image measurement. In this paper, we
assume that all rows of X have unit norm®. The prob-
lem of experimental design is how to choose X among
many candidates of the same cost, so that subsequent
measurements allow for the best reconstruction of w.
This decision has to be taken without doing real mea-
surements for most candidates. In a Bayesian variant,
the posterior distribution P(u|y) encodes all present
knowledge. To score a candidate X, (new rows of
X)), assume for the moment that the outcome y, is
known. We can measure the decrease in uncertainty
from P(uly) to P(uly,y.) by the entropy difference
H[P(u|y)] — H[P(u|y, y.)]. Not knowing y., we in-
tegrate it out using P(y.|y) = [ P(y.|u)P(uly) du.
This expected information score drives the optimisa-
tion of the design. It is clear that such scores are fun-
damentally based on the posterior as representation of
uncertainty, so that algorithms which merely estimate
good solutions from given data cannot be used directly
in order to compute them®. With such methods, either

“In our experiments, we use an extended notion of spar-
sity, see Section 3.2.

When designing X, it is important to keep its rows
of the same scale. Otherwise, a measurement can always
be improved (at fixed noise level 02) simply by increasing
its norm. Put differently, we place a prior on X which is
uniform over all matrices with rows of unit norm.

5Tt is one thing to learn to predict well, yet a different
issue to estimate its own uncertainty well, and methods

rough rules of thumb have to be followed to obtain a
design (“make it random” in CS), or many measure-
ments have to be taken in a trial-and-error fashion. In
Bayesian experimental design, a permanently refined
uncertainty representation is used to avoid uninforma-
tive data sampling, so often many fewer real measure-
ments are required.

3. Approximate Inference

Bayesian inference is in general not analytically
tractable for models of the form (1), and has to be
approximated. Moreover, the applications of inter-
est here demand a high efficiency in many dimensions
(n = 4096 in the natural image experiments here). Im-
portantly, Bayesian experimental design does not only
require inference just once, but many times in a se-
quential fashion. We make use of the expectation prop-
agation (EP) method (Minka, 2001), together with a
robust and efficient representation for Q(u) ~ P(uly).
Our framework has previously been used in a differ-
ent context (Seeger, 2008), where details can be found
which are omitted here. As a novelty, we will show here
how the framework can be run efficiently for large n,
and how sequential design optimisation can be done
orders of magnitude faster.

In EP, the posterior P(uly) is approximated by a
Gaussian Q(u) with free (variational) parameters b,
7, which are formally introduced by replacing ¢;(s;)
by t;(s;) = ebisi—misi/2 i (1). The distribution Q(w)
is represented by lower triangular L and -,

LL" = ¢ XTX +BTIIB = Covgu] ™,
~ = LYo ?XTy+ B"b), II = diag,

so that Eg[u] = L=T~. The (b;, ;) are then updated
sequentially by matching the Gaussian moments of the
tilted distributions

Py(u) o< N(y|Xw,o”T) [ £5(s5)Ei(50)" "a(s:)"
J#i
with the new @Q'(u). Here, n € (0,1] is a fractional
parameter”. In each local update, we need to compute
the non-Gaussian moments of the marginal }51(51)7 and
to update the Q(u) representation, which is done by an
O(n?) Cholesky update of L. Note that (Ji & Carin,
2007) employ the variational mean field approxima-
tion of (Tipping, 2001), which is specific to sparse lin-
ear models (more precisely, all ¢; have to be Gaussian

employing “premature sparsification” often perform badly

w.r.t. the latter (see Section 4.1).

"p = 1 gives standard EP, but choosing < 1 can in-
crease the robustness of the algorithm on the sparse linear
model significantly (Seeger, 2008). We use n = 0.9 in all
our experiments.
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scale mixtures, thus even functions), while EP can be
applied with little modification to models with skew
priors or non-Gaussian skew likelihoods as well (Ger-
winn et al., 2008).

In our applications of sequential design, we need to
score the informativeness of new candidates x, (as row
of X), which we do by the entropy difference (see Sec-
tion 2). If @’ is the approximate posterior after in-
cluding ., then 2H[Q'] = log|Covg [u]| + C, where
Q' differs from @ in that (X)7X' = XTX + z.xT,

and w — 7’. We approximate the entropy difference
by assuming that @' = 7, whence

H[Q] — H[Q'] = %log (14 0%zl Covglulz.) .

Since ||z.|| = 1 by assumption, this score is maximized
by choosing x. along the principal (leading) eigendi-
rection® of Covg[u]. The same score is used by (Ji &
Carin, 2007).

3.1. Large-Scale Applications

There are two major issues with trying to apply our
method for large sizes n. First, the EP site updates
are done in random sweeps over n sites, because it is
not clear which particular site ordering leads to fastest
convergence. This problem is severe in our sequential
design application to natural images, since there are
many small changes to X, y (individual new mea-
surements), after each of which EP convergence has
to be regained. We approach it by forward scoring
many site candidates before each EP update, thereby
always updating the one which gives the largest pos-
terior change. This is detailed just below. Second,
the robust @) representation of (Seeger, 2008) is of size
O(n?), and each update costs O(n?). We sketch a dif-
ferent representation of size O(m?) below, which can
be used to drive our framework as well. In contrast, (Ji
& Carin, 2007) use a heuristic of setting many of the 7;
to oo early in the iteration, which leads to much worse
results than we obtain (see Section 4.1, Section 4.2).

Our selective updating scheme for EP hinges on the
fact that we can maintain all site marginals h, p,
Q(s;) = N(h;, pi), up to date at all times. For a site
i, we can quantify the change of @ through an update
there by D[Q'(s;) || Q(s;)] (Q" the posterior after the
update at ), which can be computed in O(1). Impor-
tantly, DIQ'(u) ]| Q(u)] = DIQ'(s:) | Q(s:)] (because
Q(uls;) = Q'(u|s;)), so the score precisely measures
the global amount of change Q@ — @Q’. We maintain
a list of candidate sites, which are scored before each
EP update, and the update is done for the winner

8We compute x. by the Lanczos algorithm.

only. The list is then evolved by replacing the lower
half of worst-scoring sites by others randomly drawn
from {1,...,q}. Importantly, the marginals h, p can
be updated along with the representation, at the ex-
pense of only one additional L backsubstitution and
MVM with B. Namely, if 7, = m; + Am;, b, = b+ Ab;,
and w := BL™"(L~'B].), then

’ A’ITi

o . w Abz - thﬂ'l
p=p 1+ piAﬂ'i

L+ pi AT
Here, L’lBij; has to be computed for the L update

anyway. This idea is used in the experiments described
in Section 4.2.

!/
ow, h'=

For large n, storing an nxn matrix in memory becomes
prohibitive. In a less costly representation, we exploit
m < n. We require’ that B = I. The Woodbury
formula gives

Covglu] ="' - ' XTL-"L' XTI,

where LLT = I + XII"' X7, so L (different from
above) is of size m? only. An EP update requires
O(m?) and two MVMs with X, rather than O(n?)
above. While this representation is exact, it is numer-
ically less robust to update than the O(n?) one.

3.2. Image Model. Other Methods

In this section, we provide further details about the
concrete model we use in our experiments with natu-
ral images. Our prior encourages two different notions
of sparsity in an image. First, a multi-scale wavelet
transform of w should be sparse, modeling the obser-
vation that natural images can be compressed well in
a wavelet domain. Second, the finite differences in the
horizontal and vertical direction should exhibit spar-
sity, accounting for spatial smoothness often found in
images'®. A frequently used penalty term for the lat-
ter is the L; norm of the image gradient, also known
as total variation.

Our model is an instance of (1), where all ¢; are Lapla-
cian (2). s, and therefore B, decompose into two dif-
ferent parts: BT = (B(P)T B(t")T) Equivalently, the
prior is the product of two potentials. The transform
sparsity potential is a sparsity prior on the wavelet
coefficients of u. Note that the Laplace distribution
is a sensible candidate to fit wavelet coeflicient his-
tograms from natural images (Simoncelli, 1999). Thus,

9More generally, BTIIB must be easy to invert. If B

is invertible and B~*-MVM feasible, we represent Q(s)
rather than Q(u).

10Recall what we mean by sparsity from Section 2: most
coefficients are forced to be small, by allowing some to be
large. Occasional large components in the gradient corre-
spond to edges in the image.
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B®P) ¢ R™ " i a multi-scale orthonormal wavelet
transform, and the potential is exp(—7sp||BCP u|;).
The total variation potential is a Laplace prior on the
image gradient, i.e. the differences between horizontal
and vertical pixel neighbours''. B(t) ¢ R2(n—vn)xn jg
a sparse structured matrix, mapping the image u to its
gradient. Here, we assume that n = 22* for simplicity.
The total variation potential is exp(—74,| B ul,).

Therefore, we have ¢ &~ 3n for the size of s. Also, the
potentials come with different scale parameters 7p,
Tp. Importantly, neither of B®P), B() has to be
stored in memory, and MVM with B or BT can be
done in O(n).

We also briefly describe the methods we compare
against. Most of them come with a transform spar-
sity potential only, so that s = B®P)y. The method
of (Ji & Carin, 2007) is called SBL here. In L,
reconstruction, 8 = argmin{||s|, | XB®PTs = y},
w = BGP)T5, For Ly we just solve the normal equa-
tions, while for L; this is a linear program. Note that
the latter is used in many CS publications (Candes
et al., 2006; Donoho, 2006). A method with trans-
form sparsity and total variation potential, called
L1 + TV here, is given by the following quadratic pro-
gram: @ = argmin §[ly — Xull3 + 7,02 BPu; +
Ti0 2| B u||; (Candes & Romberg, 2004). We used
the following code in our experiments:

SBL: www.ece.duke.edu/~shji/BCS.html
Ly: www.acm.caltech.edu/1l1lmagic/
L; +TV: www.stanford.edu/~mlustig/

4. Experiments

In this section, we provide experimental results for dif-
ferent instances of our framework, comparing to CS
and approximate Bayesian methods on synthetic data
(Section 4.1), and on the task of measuring natural
images (Section 4.2).

4.1. Artificial Setups

It is customary in the CS literature to test methods on
synthetic data, generated following the “truly sparse
and otherwise unstructured” assumptions under which
asymptotic CS theorems are proven. We do the same
here, explicitly using the “(non-)uniform spikes” (Ji &
Carin, 2007), but cover some other heavy-tailed dis-
tributions as well. It seems that not many signals of
real-world interest are strictly and randomly sparse, so

"This potential on its own is not normalisable as distri-
bution over u, being invariant against adding a constant
to all pixels.

that studies looking at the robustness of CS theoreti-
cal claims are highly important. In this section, signals
are sparse as such, so that B = I and u = s here. We
compare methods described in Section 3.2. It is im-
portant to stress that all methods compared here (ex-
cept for L) are based on exactly the same underlying
model (1) with B = I, and differences arise only in the
nature of computations (approximate Bayesian versus
maximum a-posteriori optimisation) and in whether X
is sequentially designed (EP, SBL) or chosen at ran-
dom (L, reconstruction; we follow CS theory (Candes
et al., 2006; Donoho, 2006) and sample rows of X uni-
formly of unit norm). Results are shown in Figure 1.

a) Gaussian

b) Laplacian

7 0.7
4050 75 100 125 150 180 40 50 75 100 125 150 180
d) Decaying

—&— SBL (rand)
—— SBL* (opt)

Reconstruction error

7 .0
40 50 75 100 125 150 180 4050 75 100 125 150 180

e) Uniform sparse f) Random sparse

-©-L2 (rand)
- - -L1 (rand)

S EP* (opt)

105 o008 1~°<" 66 OGOGeO
0.5 0.5
0.0 00— i

40 50 75 100 110 40 50 75 100 110

Number of measurements

Figure 1. Comparison on 6 random synthetic signals u €
R3'2, Shown are La-reconstruction errors (mean+std.dev.
over 100 runs). All methods start with same random initial
X (m = 40), then “(rand)” add random rows, “(opt)” op-
timise new rows sequentially. Noise variance o2 = 0.005,
prior scale 7 = 5. SBL: (Ji & Carin, 2007), Lp: L, re-
construction, EP: our method. (a-c): i.i.d. zero mean, unit
variance Gaussian, Laplacian (Eq. 2), Student’s ¢ (3 d.o.f.).
(d): § of u; =0, § exponential decay 1,...,0, % minus
that, randomly permuted. (e-f): 20 u; # 0 at random;
(e) uniform spikes, u; € {£1}; (f): non-uniform spikes,
u; ~ 1+ [t|, t ~ N(0,1); as in (Ji & Carin, 2007). Distri-
butions in (d-f) normalised to unit variance.

The “sparsity” (or super-Gaussianity) of the signal dis-
tributions increases from (1a) to (le-f). For Gaussian
signals (1a), Lo reconstruction based on random mea-
surements is optimal. While all CS methods and SBL
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(random and designed) lead to large errors, EP with
design matches the Lo results, thus shows robust be-
haviour. For Laplacian and Student’s t signals (1b-
c), designed EP outperforms Lo reconstruction signif-
icantly, while even the CS L; method still does worse
than simple least squares. SBL performs poorly in all
three cases with signals not truly sparse, thus is not
robust against rather modest violations of the strict
CS assumptions. Its non-robustness is also witnessed
by large variations across trials.

On the other hand, Ly performs badly on truly sparse
signals. In all cases (1d-f), EP with design signifi-
cantly outperforms all other methods, including de-
signed SBL, with special benefits at rather small num-
bers of measurements. SBL does better now with truly
sparse signals, and is able to outperform L.

From the superior performance of EP with design on
all signal classes, we conclude that experimental de-
sign can sequentially find measurements that are sig-
nificantly better than random ones, even if signals are
truly sparse. Moreover, the superior performance is
robust against large deviations away from the under-
lying model, more so even than classical Ly or Lo esti-
mation. The poor performance of SBL (Ji & Carin,
2007) seems to come from their desire for “prema-
ture sparsification”. During their iterations, many ;
are clamped to +oo early for efficiency reasons. This
does not hurt mean predictions from current observa-
tions much, but affects their covariance approximation
drastically: most directions not supported by the data
right now are somewhat ruled out for further mea-
surements, since posterior variance along them (which
should be large!) is shrunk in their method. In con-
trast, in our EP method, none of the m; become very
large with modest m, and our covariance approxima-
tion seems good enough to successfully drive experi-
mental design. Without premature sparsification, our
scheme is still efficient, since the most relevant site
updates are found actively, and the need to eliminate
variables does not arise.

4.2. Natural Images

In this section, we are concerned about finding linear
filters which allow for good reconstruction of natural
images from noisy measurements thereof. Since nat-
ural images exhibit sparsity in wavelet or Fourier do-
mains, CS theory seems to suggest that random mea-
surements should be well-suited for this purpose, and
there have been considerable efforts to develop hard-
ware which can perform such random measurements
cost-efficiently (Duarte et al., 2008). On the other
hand, much is known about low level natural image

statistics, and powerful linear measurement transforms
have emerged there, such as multi-scale wavelet trans-
forms, based on which natural image reconstruction
should be substantial better than for random measure-
ments (Weiss et al., 2007).

The sparsity of images in a wavelet domain is highly
structured, there is a clear ordering among the coeffi-
cients from coarse to fine scales: natural images typ-
ically have much more energy in the coarse-scale co-
efficients, and coefficients with very small values are
predominantly found in the fine scales. In our ex-
periments, we employ a simple heuristic for linearly
measuring images, called wavelet heuristic in the se-
quel: every measurement computes a single wavelet
coefficient, and the sequential ordering of the mea-
surements is deterministic top-down, from coarse to
fine scales'?. This ordering is a pragmatic strategy: if
mainly the coarse-scale coefficients are far from zero,
they should be measured first'>. Do state-of-the-art
CS reconstruction algorithms, based on random linear
image measurements, perform better than simple Lo
reconstruction based on the wavelet heuristic? And
how does Bayesian sequential design perform on this
task, if the model described in Section 3.2 is used?
Note that no prior knowledge about typical ordering
or dependence among wavelet coefficients in encoded
in this model either. Results of our study are given in
Figure 2.

In fact, we started our exploration with what is shown
in (2a), where 100 initial filters are drawn at random
(except for Lo(heur)). Intrigued by the fact that the
wavelet heuristic method Lg(heur) outperformed all
CS variants significantly, we tried to give them a head-
start, supplying m = 100,200,400 wavelet heuristic
measurements initially (2b-d). However, the system-
atic under-performance of methods which have spar-
sity regularizers built in, yet do random rather than
wavelet measurements, remains consistently present.
From these results we conclude, much as (Weiss et al.,
2007) argued on theoretical grounds, that if natural
images are to be measured successively by unit norm,
but otherwise unconstrained linear filters, then draw-
ing these filters at random leads to significantly worse

12This ordering follows the recursive definition of such

transforms: downsampling by factor two (coarse), horizon-
tal differences, vertical differences, diagonal corrections at
each stage. Our ordering is coarse — horizontal — vertical
— diagonal, descending just as the transform does.

13Note that another problem with common CS assump-
tions applied to images is that the typical scale of coef-
ficients along a coarse-to-fine ordering follows a smooth
power law, it does not exhibit the abrupt drop from “signif-
icantly above noise level” to “exactly zero” often required
by CS theory.
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a) 100 random initial measurements b) 100 initial Wavelet measurements

—=—SBL (rand)
16 —SBL* (opt)

»

TR Qmimn i )
100 200 400 600 800 1024 100 200 400 600 800 1024

c) 200 initial Wavelet measurements d) 400 initial Wavelet measurements

= ==L1 (rand)
='='L1+TV (rand)
=e=L2 (heur)
——EP (heur)

- EP* (opt)

=)

1024 100 200 400 600 800 1024
Number of measurements

i (IR b
raeen e

100 200 400 600 800

Figure 2. Experiments for measuring natural images (64 x
64 = 4096 pixels). Shown are Lg-reconstruction errors av-
eraged over 25 grayscale images typically used in computer
vision research (from decsai.ugr.es/cvg/dbimagenes/)
(£1std.dev. for “x”). Noise level o® = 0.005. SBL: (Ji &
Carin, 2007), Lp: L, reconstruction, L; + TV: Lasso with
TV /wavelet penalties, EP: our method. True o? supplied,
T parameters chosen optimally for each method individu-
ally: 7sp = 7o = 0.075 (L1 + TV), 75 = 0.075, 7¢, = 0.5
(EP). New rows of X random unit norm (rand), actively
designed (opt), acc. to wavelet heuristic (heur).

(a): Start with m = 100, X random unit norm. (b-d):
Start with m = 100, 200,400, X acc. to wavelet heuristic.

reconstructions than using standard wavelet coefficient
filters top-down. While CS theorems are mathemati-
cally intriguing, and while there certainly are impor-
tant applications that benefit from these results™, lin-
ear image measurement is probably not among them.

On the other hand, the wavelet heuristic method is
significantly outperformed by our EP method, where
X is designed sequentially. In (2a), EP quickly re-
covers from the suboptimal initial random X. More-
over, even when started from the same point as the
wavelet heuristic (2b-d), the designed measurements
lead to improvements over the heuristic immediately.

"The theoretical CS setting is more extreme than what
is really required here, in that there is no prior knowledge
about where the non-zeros will lie. We speculate that more
suitable applications could lie in steganography, spam or
intrusion detection, where a signal has to be detected which
has been hidden by an adversary.

EP(heur) is doing EP reconstruction, but based on
the same measurements as Ly (heur). While it slightly
outperforms Ly reconstruction, the significant differ-
ence is due to the choice of the measurements. Our
method therefore provides an efficient solution to the
problem posed in (Weiss et al., 2007), namely how to
learn measurements automatically from data, starting
from little concrete domain knowledge. On the par-
ticular problem of measuring images linearly, our find-
ings should be put into perspective, by noting that
the Ly wavelet heuristic is vastly faster to compute!®.
Moreover, X is optimised sequentially, particular to
the image u (but without knowing the underlying u),
while the wavelet heuristic filters are always the same.
Finally, the final X is is dense and unstructured. How-
ever, our method can be used in the same way to ad-
dress applications where strong structural constraints
on allowable X are present, and where wavelet (or
purely random) measurements are not an option.

In this setting, SBL (Ji & Carin, 2007) performs much
worse than all other methods tried, whether using ran-
dom, wavelet or designed measurements. Results for
SBL in cases (b-d) were even worse and are not in-
cluded to facilitate comparison among the others. This
is most probably an extreme instance of the problem
noted in Section 4.1. Premature sparsification, in light
of not strictly sparse signals, leads to poor results even
with random X. Their covariance estimates seem too

bad to steer sequential design in a useful direction'®.

Finally, the deterioration of L, when adding random
to initial wavelet measurements, is somewhat puz-
zling, especially since it does not happen for L; +TV.
These additional measurements provide novel informa-
tion about the true u, so a valid inference method
should rather improve.

5. Discussion

We have shown how to address the compressive sensing
problem with Bayesian experimental design, where de-
signs are optimised to rapidly decrease uncertainty and
do not have to be chosen at random. In a large study

I5EP sequential design is still very efficient. A typical
run on one image took 53 min (on 64bit 2.33GHz AMD),
for n = 4096 and ¢ = 12160 sites: 16785 initial EP updates,
then 308 increments of X by 3 rows each, with on average
only 8.8 site updates needed to regain EP convergence (up
to 85 updates after some increments).

Tn cases (b-d), top wavelet coefficients are measured
initially, so their method confidently starts with a highly
over-sparse solution and fails. Note that, as opposed to EP,
we restarted the SBL code after each new measurement,
so that poor current solutions are not inherited when new
data is obtained.
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about linearly measuring natural images, we show that
CS reconstruction methods based on randomly drawn
filters are outperformed significantly by standard least
squares reconstruction measuring coarse-scale wavelet
coefficients. Our findings suggest that the applicabil-
ity of CS results (with their insistence on strict and
unstructured signal sparsity) to natural image appli-
cations should be reconsidered. We also show that
our Bayesian sequential design method, starting from
a model with little domain knowledge built in, is able
to find filters with significantly better reconstruction
properties than top-down wavelet coefficients. Our
findings indicate that efficient Bayesian experimental
design techniques are highly promising for CS applica-
tions of different kinds just as well.

Why do random measurement filters enjoy good prop-
erties in CS theory, but are not useful in the case
of natural images? We think that this seeming con-
tradiction really comes from an erroneous “extrapola-
tion” of what CS theorems really mean. Any structure
apart from a randomly distributed sparsity pattern is
ignored there. Also, they are minimaz results, in that
the reconstruction error for the worst sparsity pattern
is bounded. But undersampled image reconstruction
is not a worst-case problem, and much is known about
the sparsity structure of natural images. It may be
that L; or Ly + TV are minimax methods (for known
B), but that does not imply much about their typi-
cal performance. We suspect that our doubts about
CS with random measurements extend beyond natu-
ral images to other signals of common interest in nor-
mal non-adversarial situations, since interest in a sig-
nal class implies that statistical knowledge about them
beyond random sparsity has been obtained.

Our experience with the method of (Ji & Carin, 2007),
which we compare against in our study, raises another
more speculative, yet interesting point. Several meth-
ods very frequently used in machine learning today
can loosely be summarised as trying to detect very
sparse solutions early on, mainly with the aim of high
computational efficiency. For example, SBL (Tipping,
2001) is much more aggressive in this respect than our
EP method here. Early sparsification does not seem
to hurt mean prediction performance much, and thus
is embraced for efficiency. However, our experiences
here indicate that it is the covariance (or uncertainty)
estimates that can be badly hurt by such sparsity-by-
elimination processes, and that in contexts such as ex-
perimental design, where covariances are more impor-
tant than predictive means, their application should
probably be avoided. The challenge is then to de-
velop methods that run efficiently without eliminating
many variables early on, and our selective site updat-

ing method for EP is a step in that direction.
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