Bayes Optimal Classification for Decision Trees

Siegfried Nijssen

SIEGFRIED.NIJSSENQCS.KULEUVEN.BE

K.U. Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium

Abstract

We present an algorithm for exact Bayes op-
timal classification from a hypothesis space of
decision trees satisfying leaf constraints. Our
contribution is that we reduce this classifica-
tion problem to the problem of finding a rule-
based classifier with appropriate weights. We
show that these rules and weights can be
computed in linear time from the output of a
modified frequent itemset mining algorithm,
which means that we can compute the classi-
fier in practice, despite the exponential worst-
case complexity. In experiments we compare
the Bayes optimal predictions with those of
the maximum a posteriori hypothesis.

1. Introduction

We study the problem of Bayes optimal classification
for density estimation trees. A density estimation tree
in this context is a decision tree which has a probabil-
ity density for a class attribute in each of its leaves.
One can distinguish two Bayesian approaches to den-
sity estimation using a space of such trees.

In the first approach a single mazimum a posteriori
(MAP) density estimation tree is identified first:

T = arg max P(T|X,),

where X and ¢ together constitute the training data.
The posterior probability P(T|X, %) of a hypothesis T
is usually the product of a prior and a likelihood. The
MAP hypothesis can then be used to classify a test
example z’ using the densities in the leaves.

The second approach is to marginalize over all possible
trees, instead of preferring a single one:

arg max P(c|z’, X, 7) = arg max Z P(cl2’, T)P(T|X, 7).
T

Appearing in Proceedings of the 25" International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

Predictions that are performed using this second ap-
proach are called Bayes optimal predictions. It has
been claimed that “no single tree classifier using the
same prior knowledge as an optimal Bayesian classifier
can obtain better performance on average” (Mitchell,
1997). The Bayesian point of view is that Bayesian
averaging cancels out the effects of overfitted models
(Buntine, 1990), and “solves” overfitting problems.

This claim was challenged by Domingos (2000).
Domingos demonstrated experimentally that an en-
semble of decision trees that are weighted according to
posterior probabilities performs worse than uniformly
weighted hypotheses. It was found that one overfitting
tree usually dominates an ensemble.

However, these results were obtained by sampling from
the hypothesis space. Even though Domingos argued
that similar issues should also occur in the truly op-
timal approach, this claim could not be checked in
practice as the exact computation of Bayes optimal
predictions was considered to be impractical. Indeed,
in (Chipman et al., 1998) it was already claimed that
“exhaustive evaluation ... over all trees will not be
feasible, except in trivially small problems, because
of the sheer number of trees”. Similar claims were
made in other papers studying Bayesian tree induction
(Buntine, 1992; Chipman et al., 1998; Angelopoulos &
Cussens, 2005; Oliver & Hand, 1995), and have led to
the use of sampling techniques such as Markov Chain
Monte Carlo sampling.

In this paper we present an algorithm that can be used
to evaluate Domingos’ claim in a reasonable number
of non-trivial settings. Our algorithm allows us to ex-
actly compute the Bayes optimal predictions given pri-
ors that assign non-zero probability to trees that sat-
isfy certain constraints. An example of a constraint is
that every leaf covers a significant number of examples;
this constraint has been used very often in the liter-
ature (Buntine, 1992; Quinlan, 1993; Chipman et al.,
1998; Angelopoulos & Cussens, 2005; Oliver & Hand,
1995).

Our algorithm is an extension of our earlier work, in

Bayes Optimal Classification for Decision Trees

which we developed the DL8 algorithm for determining
one tree that maximizes accuracy (Nijssen & Fromont,
2007). DLS8 is based on dynamic programming on
a pre-computed lattice of itemsets, and scans these
itemsets decreasing in size. Its time complexity is lin-
ear in the size of the lattice. In this paper we extend
this algorithm to a Bayesian setting. From a technical
point of view, the main contribution is that we prove
that a different pass over the lattice allows us to per-
form Bayes optimal predictions without increasing the
asymptotic complexity of building the lattice.

The task that our algorithm addresses is similar to the
task addressed in (Cleary & Trigg, 1998). Compared
to this earlier work, we study the more common Dirich-
let priors also considered in (Chipman et al., 1998;
Angelopoulos & Cussens, 2005); furthermore, by ex-
ploiting the link to itemset mining, our algorithm is
more efficient, and its results are more interpretable.

The paper is organized as follows. Notation and con-
cepts are introduced in Section 2. Bayes optimal clas-
sification is formalized in Section 3. We show how to
map this problem to the problem of finding itemsets
and building a classifier with weighted rules in Sec-
tion 4. Experiments are performed in Section 5.

2. Preliminaries

Before we are ready to formalize our problem and our
proposed solution, we require some notation. We re-
strict ourselves to binary data; we assume that data
is converted in this form in a preprocessing step. The
data is stored in binary matrix X, of which each row
2}, corresponds to one example. Every example Ty has
a class label y; out of a total number of C class labels.
Class labels are collected in a vector ¥.

We assume that the reader is familiar with the concept
of decision trees (see (Breiman et al., 1984; Quinlan,
1993) for details). Essential in our work is a link be-
tween decision trees and itemsets. Itemsets are a con-
cept that was introduced in the data mining literature
(Agrawal et al., 1996). If 7 is a domain of items, I C T
is an itemset. In our case, we assume that we have two
types of items: for every attribute there is a positive
item ¢ that represents a positive value, and a negative
item —i that represents a negative value. An example
Z can be represented as an itemset

{ila; = 1} U {~i]z; = 0}.

Thus, for a data matrix with n columns, we have
that 7 = Zpos U Zpeg, where Z,0s = {1,2,...n} and
Tneg = {—1,72,...—m}. We overload the use of the C
operator: when [is an itemset, and Z is an example,

we use I C ¥ to denote that I is a subset of ¥ after
translating & into an itemset.

Every sequence of test outcomes in a decision tree,
starting from the root of the tree to an arbitrary node
deeper down the tree, can be represented as an itemset.
For instance, a decision tree with B in the root, and
A in its right-hand branch can be represented by:

T= {@7 {B}. {—B},{-B,A},{-~B,~A}}.

Every itemset in T corresponds to one node in the
tree. By 7 we denote all subsets of 27 that represent
decision trees. A decision tree structure is an element
T € T. Consequently, when T is a decision tree we can
write I € T to determine if the itemset I corresponds
to a path occurring in the tree.

An itemset is an unordered set: given an itemset in
a tree, we cannot derive from this itemset in which
order its tests appear in the tree. This order can only
be determined by considering all itemsets in a tree 7T'.

We are not always interested in all nodes of a tree. The
subset of itemsets that correspond to the leaves of a
tree T will be denoted by leaves(T); in our example,

leaves(T) = {{B},{—B, A},{—-B,-A}}.

The most common example of a decision tree is the
classification tree, in which every leaf is labeled with a
single class. In a density estimation tree, on the other
hand, we attach a class distribution to each leaf, rep-
resented by a vector 9_}; for each class ¢ this vector
contains the probability ;. that examples & O I be-
long to class c. All the parameters of the leaves of
a tree are denoted by ®. The vectors in © are thus
indexed by the itemsets representing leaves of the tree.

For the evaluation of a tree T on a binary matrix X, it
is useful to have a shorthand notation for the number
of examples covered by a leaf:

f(I,X) = { @k 2 1}];

usually we omit the matrix X in our notation, as we
assume the training data to be fixed. We call f(I,X)
the frequency of I. Class-based frequency is given by:

fC(vaag) = |{fk|fk 2 Iayk = C}| °

The frequent itemset mining problem is the problem
of finding all 7 C 7 such that f(I) > ~, for a given
threshold v. Many algorithms for computing this set
exist (Agrawal et al., 1996; Goethals & Zaki, 2003).
They are based on the property that the frequency
constraint is anti-monotonic. A binary constraint p on
itemsets is called anti-monotonic iff VI’ C I : p(I) =

Bayes Optimal Classification for Decision Trees

true = p(I') = true. Consequently, these algo-
rithms do not need to search through all supersets
I’ O I of an itemset I that is found to be infrequent.

One application of itemsets is in the construction of
rule-based classifiers (CMAR (Li et al., 2001) is an
example). Many rule-based classifiers traverse rules
sequentially when predicting examples. Here, we study
a rule-based classifier that derives a prediction from all
rules through voting. Such a classifier can be seen as a
subset P C 27 of itemsets, each of which has a weight
vector w(I). We predict an example & by computing

arg max E
c

{IeP|ICZ}

we(I),

where we thus pick the class that gets most votes of
all rules in the ruleset; each rule votes with a certain
weight on each class. The aim of this paper is to show
that we can derive a set of itemsets P and weights (1)
for all I € P such that the predictions of the rule-based
classifier equal those of a Bayes optimal classifier. The
rules in P represent all paths that can occur in trees
in the hypothesis space.

3. Problem Specification

In this section we formalize the problem of Bayes op-
timal classification for a hypotheses space of decision
trees. Central in the Bayesian approach is that we first
define the probability of the data given a tree structure
T and parameters O:

PHX,T.0)= []
Icleaves(T)

C
L)
c=1

In Bayes optimal classification we are interested in
finding for a particular example &’ the class y’ which
maximizes the probability

y' = argmax P(c|?,X,¥) (1)

= argmax » / P(c|#,T,®)P(T,B|X,)d®,
¢ rer/®

where we sum over the space of all decision trees and
integrate over all possible distributions in the leaves of
each tree. Applying Bayes’ rule on the second term,
and observing that ©® is dependent on the tree T, we
can rewrite this into

TeT

(2)
in this formula P(T|X) is the probability of a tree
given that we have seen all data except the class labels.

Z/ P(c|?,T,©)P(§T,®,X)P(O|T,X)P(T|X)dO;
[C]

Our method is based on the idea that we can constrain
the space of decision trees by manipulating this term.

A first possibility is that we set P(T|X) = 0if there is a
leaf I € leaves(T) such that f(I) < v, for a frequency
threshold ~. We call such leaves small leaves. The
class estimates of a small leaf are often unreliable, and
it is therefore common in many algorithms to consider
only large leaves.

Additionally, we can set P(T|X) = 0 if the depth of
the decision tree exceeds a predefined threshold.

Both limitations impose hard constraints on the trees
that are considered to be feasible estimators. We de-
note trees in 7 that satisfy all hard constraints by L.

In the simplest case we can assume a uniform distribu-
tion on the trees that satisfy the hard constraints. Ef-
fectively, this would mean that we set P(O|T,X) =1
in Equation 2 for all T € £. However, we will study
a more sophisticated prior in this paper to show the
power of our method. The aim of this prior, which was
proposed in (Chipman et al., 1998), is to give more
weight to smaller trees; it can be seen as a soft con-
straint. This prior is defined as follows.

P(TX) =] Proae(I,T,X)
IeT

Here, the term P40 (1, T, X) is defined as follows.

| Preay(I,X), if I is a leaf in T
Proae(I, T, X) = { Pintern(I,X), if I is internal in T’
where
0, if f(I)<~or|I|>6;
Prear(I,X)=1¢ 1, else if |I| = 4§ or e(I) = 0;
1—a(l+ 1))~ otherwise;
and
0, if f(I)<~or|I|>4§
Pintern (I; X) = or 6(1) = 0;

a(l+[1])=7/e(D),

Here e([) is the size of the set {i € Zpos|f (L U7) >y A
f(IU—%) > ~}, which consists of all possible tests that
can still be performed to split the examples covered by
itemset 1.

otherwise;

The term a(1 + |I])~” makes it less likely that nodes
at a higher depth are split. The term e(I) determines
how many tests are still available if a test is to be
performed. We assume that tests are apriori equally
likely, independent of the order in which the previous
tests on the path have been performed. An alternative
could be to give more likelihood to tests that are well-
balanced.

Bayes Optimal Classification for Decision Trees

Note that Peqr and Pntern are computed for an item-
set I almost independently from the tree T: we only
need to know if I is a leaf or not.

As common in Bayesian approaches, we assume that
the parameters in every leaf of the tree are Dirichlet
distributed with the same parameter vector @, i.e.

r@OIT,X)=P@OT)=][]
Icleaves(T)

Dir(6;|a@),

where

Dir(6;]a@) = % [0

and I' is the gamma function.

c

Finally, it can be seen that
P(C|fla T, 6) = HI(T,f/)ca

where I(T,Z") is the leaf of T for which I C 7.

We now have formalized all terms of Equation 2.

4. Solution Strategy

An essential step in our solution strategy is the con-
struction of the set

P={ITeL,IecT},

which consists of all itemsets in trees that satisfy the
hard constraints. Only these paths are needed when
we wish to compute the posterior distribution over
class labels, and are used as rules in our rule-based
classifier. The weights of these rules are obtained by
rewriting the Bayesian optimization criterion for a test
example ' (Equation 1) as

arg max E
c

{IeP|IC&}

we(I)

wc(I) = Z (H Pnode(IaT7X)>

TeL, has leaf 1 \I€T

/ 6. [Dir@la][or 40 . 3)
(C]

I'cleaves(T) c

The idea behind this rewrite is that the set of all trees
in £ can be partitioned by considering in which leaf a
test example ends up. An example ends in exactly one
leaf in every tree, and thus every tree belongs to one
partition as determined by that leaf. We sum first over

all possible leaves that can contain the example, and
then over all trees having that leaf. The weights of the
rules in our classifier consist of the terms w,(I), and
will be computed from the training data in the training
phase; the sum of the weights w.(I) is computed for a
test example in the classification phase.

This rewrite shows that in the training phase we need
to compute weights for all itemsets that are in P. We
will discuss now how to compute these.

In the formulation above we multiply over all leaves,
including the leaf that we assumed the example ended
up in. Taking this special leaf apart we obtain:

we) =Well) > 1 ve.n: @
TeL, has leaf 11'€T,I'#1

where
Woll) = Preas (I,X) / 010 Dir (B @) [o1,
0r c

and
Pintern(I,X) if I is internal in T

Pieas (I,X) [5, Dir(6716) T1, 61" d},
otherwise.

V(I,T) =

This rewrite is correct due to the fact that we can move
the integral of Equation 3 within the product over the
leaves: the parameters of the leaves are independent
from each other.

Let us write the integrals in closed form. First consider
We.(I). As the Dirichlet distribution is the conjugate
prior of the binomial distribution, we have

WC(I) =
r Qe o1+ fo o
‘Pleaf(lax)%/g QICHHIC 1+f (I)dQI:
C I c

Qe

I, ac) [1.T(ae + fU(D))
Pieay (I, X) [T (o) T(X, e + f1(I))

Here f/,(I) = fo(I) if c# ¢, else fL.(I) = fo(I) + 1.

Similarly, we can compute V(I,T) as follows.

‘/;ntern (I) = Pintern (I7 X)u
if I is internal in T

V(I,T): Weaf(l): Py VL. D(actfo (D))
Pleaf(Ia X) IT. l"c(az)l—‘(czc acc+f:(1)) ’
otherwise.

The remaining question is now how to avoid summing
all trees of Equation 4 explicitly. In the following,
we will derive a dynamic programming algorithm to

Bayes Optimal Classification for Decision Trees

implicitly compute this sum. We use a variable that is
defined as follows.

wny= Y [v, (5)

Tec() I'eT
Here we define £(I) as follows:
L) ={{I' eT|I' DI} all T € L for which I € T};

thus, £(I) consists of all subtrees that can be put be-
low an itemset I while satisfying the hard constraints.
As usual, we represent a subtree by listing all its paths.

For this variable we will first prove the following.

Theorem 1. The following recursive relation holds
for u(I):

U(I) = Vieaf (I)+
> Vintern(Du(I Ud)u(I U —).

i€Tpos S.t. TUi, JU—IEP

Proof. We prove this by induction. Assume that for
all itemsets |I| > k our definition holds. Let us fill in
our definition in the recursive formula, then we get:

U(I) = Vieaf (I)+

2 PR

1€Lp0s, S.6. TUL,JU—EP TeL(IUi) T'eL(IU—i)

‘/intern(l) H V(IlvT) H V(IlvT/);

I'eT rer

This can be written as Equation 5 to prove our claim:
the term for Vj.qr corresponds to the possibility that
I is a leaf, the first sum passes over all possible tests
if the node is internal, the second and third sum tra-
verse all possible left-hand and right-hand subtrees;
the product within the three sums is over all nodes in
each resulting tree. O

We can use this formula to write w.(I) as follows.

Theorem 2. The formula w.(I) can be written as:

U’C(I) = WC(I)
1]

S] Vinternm, . omiabu{m, . mioy,).

rell(I) i=1

Here, TI(I) contains all permutations (m1,...,7,) of
the items in I for which it holds that V1 < i < n :
{7T1, . ,ﬂ'i}, {71'1, P _'7Ti} cP.

Proof. The set of permutations II(I) consists of all (or-
dered) paths that can be constructed from the items in
I and that fulfill the constraints on size and frequency.
Each tree T € £ with I € T must have exactly one of
these paths. Given one such path, Equation 4 requires
us to sum over all trees that contain this path. Each
tree in this sum consists of a particular choice of sub-
trees for each sidebranch of the path. Every node in a
tree T € £ with I € T is either (1) part of the path to
node I or (2) part of a sidebranch; this means that we
can decompose the product Hl,eTJ,;H V(I',T), which
is part of Equation 4, into a product for nodes in side-
branches, and a product for nodes on the path to I.
The term for nodes on the path is computed by

11|
WC(I) H ‘/intern({ﬂh ceey 771'71});
=1

considering the side branches, wu(Il) sums over
all possible subtrees below sidebranches of the
path {m,...,m,}; using the product-of-sums rule
that H?:l Z;Zl Q5 = 217111:1 ce Z;:":l Tlay " Oniy,
where 27:1 oy; corresponds to a wu-value of a

sidebranch, we can deduce that the product
lI:kll u({m1,...,mi_1,-m;}) sums over all possible
combinations of side branches. O

Given their potentially exponential number it is unde-
sirable to enumerate all permutations of item orders
for every itemset. To avoid this let us define

o(l) =
11|

ST Vintera (s oo Pu{m, - w1, ~mi}),

rel(I) k=1

such that w.(I) = W.(I)v(I).

Theorem 3. The following recursive relation holds.

1, if I=10,

Dier s.t. 1—iuniep Vintern(I —1)
u(I —iU=i)v(I —1i), otherwise.

o(l) =

Proof. This can be shown by induction: if we fill in
our definition of v(I) in the recursive formula we get

Z Vintern (I - 'L)U(I —t U _‘Z)
i€l s.t. I—iU—ieP
[I]—1

S I Vintern(m, . oo Hu({m, .

rell(I—i) k=1

, Tk)

Both sums together sum exactly over all possible per-
mutations of the items; the product is exactly over all
terms of every permutation. O

Bayes Optimal Classification for Decision Trees

Algorithm 1 Compute Bayes Optimal Weights

—

input The set of itemsets P and for all I € P : f(I)
output The weight vectors W(I) for all I € P
1: % Bottom-up Phase
2: Let n be the size of the largest itemset in P
3: for k:=n downto 0 do
4: for all I € Ps.t. |I| =k do
5: ul[l] := Vieas (1)
6: for all i € Zpos s.t. TU4, ITU—i € P do
7 ull] := u[I] + Vintern(Hu[I U dull U =i
8 end for
end for
10: end for
11: % Top-down Phase
12: (0] :=1
13: for k:=1to n do
14: for all T € Ps.t. |I| =k do

15: v[I]:=0

16: forallieclst. I —iU—ie P do

17: v[I] := v[I] + Vintern(I — 9)u[l — i U —i]v[l — i
18: end for

19: for c:=1 to C do

20: well] := We(I)v[I]

21: end for

22: end for

23: end for

A summary of our algorithm is given in Algorithm 1.
The main idea is to apply the recursive formulas for
u(I) and v(I) to perform dynamic programming in two
phases: one bottom-up phase to compute the u(I) val-
ues, and one top-down phase to compute the v(I) val-
ues. Given appropriate data structures to perform the
look-up of sub- and supersets of itemsets I, this pro-
cedure has complexity O(|P|6C). As |P| = O(n2™),
where n is the number of examples in the training data
and m the number of attributes, this algorithm is ex-
ponential in the number of attributes.

After the run of this algorithm, for a test example we
can compute q.(Z') = > ;. we(I) for every c. We can
easily compute the exact class probability estimates

from this: P(y’ = ¢|@,X,) = zj/céi,()f/)'

To compute the set P of paths in feasible trees, we can
modify a frequent itemset miner (Goethals & Zaki,
2003), as indicated in our earlier work (Nijssen &
Fromont, 2007). We replace the itemset lattice post-
processing method of (Nijssen & Fromont, 2007) by
the algorithm for computing Bayes optimal weights.

Compared to the OB1 algorithm of Cleary & Trigg
(1998), the main advantage of our method is its clear
link to frequent itemset mining. OB1 is based on the
use of option trees, which have a worst case complexity
of O(nm!) instead of O(n2™). Cleary et al. suggest
that sharing subtrees in option trees could improve
performance; this exactly what our approach achieves

in a fundamental way. The link between weighted rule-
based and Bayes optimal classification was also not
made by Cleary et al., making the classification phase
either more time or space complex. We can interpret
predictions by our approach by listing the (maximal)
itemsets that contribute most weight to a prediction.

5. Experiments

We do not perform a feasibility study here, as we did
such a study in earlier work (Nijssen & Fromont, 2007).

We performed several experiments to determine the
importance of the a and [parameters of the size
prior. We found that the differences between values
a, B € {0.5,0.6,0.7,0.8,0.9,0.95} were often not sig-
nificant and choose o = 0.80 and 3 = 0.80 as defaults.
We also experimented with a uniform prior. We choose
a = (1.0,...,1.0) as default for the Dirichlet prior.
This setting is common in the literature.

All comparisons were tested using a corrected, two-
tailed, paired t—test with a 95% confidence interval.

Artificial Data In our first set of experiments we
use generated data. We use this data to confirm the
influence of priors and the ability of the Bayes optimal
classifier to recognize that data can best be represented
by an ensemble of multiple trees.

A common approach is to generate data from a model
and to compute how well a learning algorithm recov-
ers this original model. In our setting this approach is
however far from trivial, as it is hard to generate a re-
alistic lattice of itemsets: Calders (2007) showed that
it is NP-hard to decide if a set of itemset frequencies
can occur at all in data. Hence we used an alternative
approach. The main idea is that we wish to generate
data such that different trees perform best on different
parts of the data. We proceed as follows: we first gen-
erate n tree structures (in our experiments, all trees
are complete trees of depth 7; the trees do not yet
have class labels in their leaves); from these n trees we
randomly generate a database of given size (4000 ex-
amples with 15 binary attributes in our experiments,
without class labels). We make sure that every leaf in
every tree has at least v examples (3% of the training
data in our experiments). Next, we iterate in a fixed
order over these trees to assign classes to the exam-
ples in one leaf of each tree; in each tree we pick the
leaf which has the largest number of examples without
class, and assign a class to these examples, taking care
that two adjacent leaves get different majority classes.
We aim for pure leaves, but these are less likely for
higher numbers of generating trees.

Bayes Optimal Classification for Decision Trees

20% Training 30% Training

Accuracy
o
|4
3
o
&
2
Accuracy

Mo
<t

1 2 3 4 1 2 3 4

Nr Generating Trees Nr Generating Trees

40% Training

50% Training

& OPT-Size
¥V OPT-Unif
- MAP-Size
-A MAP-Unif

Accuracy

ki

i Nr Ge iting Ti
Nr Generating Trees r Generating Trees

Figure 1. Results on artificial data.

The results of our experiments are reported in Fig-
ure 1. The accuracies in these experiments are com-
puted for 20 randomly generated datasets. Each fig-
ure represents a different fraction of examples used as
training data; remaining examples were as test data.
The learners were run using the same depth and sup-
port constraints as used to generate the data.

We can learn the following from these experiments.

As all our datasets were created from trees with max-
imal height, the prior which prefers small trees per-
forms worse than the one which assigns equal weight
to all trees. If the amount of training data is small,
the size prior forces the learner to prefer trees which
are not 100% accurate for data created from one tree.

In all cases, the Bayes optimal approach is significantly
more accurate than the corresponding MAP approach,
except if the data was created using a single tree; in
this case we observe that a single (correct) tree is dom-
inating the trees in the ensembles.

The more training data we provide, the smaller the
differences between the approaches are. For the correct
prior the optimal approach has a better learning curve.

Additional experiments (not reported here) for other
tree depths, dataset sizes and less pure leaves con-
firm the results above, although sometimes less pro-
nounced.

UCI Data In our next set of experiments we de-
termine the performance of our algorithm on common
benchmark data, using ten-fold cross validation.

The frequency and depth constraints in our prior in-
fluence the efficiency of the search; too low frequency
or too high depth constraints can make the search in-
feasible. Default values for § that we considered were
4, 6 and oo; for v we considered 2, 15 and 50. We re-
laxed the constraints as much as was computationally
possible; experiments (not reported here) show that
this usually does not worsen accuracy.

As our algorithm requires binary data, numeric at-
tributes were discretized in equifrequency bins. Only
a relatively small number of 4 bins was feasible in
all experiments; we used this value in all datasets to

avoid drawing conclusions after parameter overfitting.
Where feasible within the range of parameters used,
we added results for other numbers of bins to investi-
gate the influence of discretization.

The experiments reported in Figure 1 help to provide
more insight in the following questions:

(Q1) Is asingle tree dominating a Bayes optimal clas-
sifier in practice?

(Q2) Are there significant differences between a uni-
form and a size-based prior in practice?

(Q3) Is the optimal approach overfitting more in
practice than the traditional approach, in this
case Weka’s implementation of C4.57

(Q4) What is the influence of the 4-bin discretization?

To get an indication about (Q1) we compare the opti-
mal and MAP predictions. We underlined those cases
where there is a significant difference between optimal
and MAP predictions. We found that in many cases
there is indeed no significant difference between these
two settings; in particular when hard constraints im-
pose a high bias, such as in the Segment and Vote
data, most predictions turn out to be equal. If there is
a significant difference, the optimal approach is always
the most accurate.

To answer (Q2) we highlighted in bold for each dataset
the system that performs significantly better than all
other systems. In many cases, the differences between
the most accurate settings are not significant; how-
ever, our results indicate that a uniform prior performs
slightly better than a size prior in the Bayes optimal
case; the situation is less clear in the MAP setting.

Answering (Q3), we found not many significant dif-
ferences between J48’s and Bayes optimal predictions
in those cases where we did not have to enforce very
hard constraints to turn the search feasible. This sup-
ports the claim of Domingos (2000) that Bayes optimal
predictions are not really much better. However, our
results also indicate that there is no higher risk of over-
fitting either. The optimal learner does not perform as
well as J48 in those cases where the search is only fea-
sible for high frequency or low depth constraints, and

Bayes Optimal Classification for Decision Trees

Accuracy
Dataset ¥ 0 | Bins || Opt - Size | MAP - Size | Opt - Unif | MAP - Unif J48
Anneal 2 6 4 0.814+0.02 0.8040.01 0.824+0.03 0.81+0.03 0.8240.04
Anneal 15 6 10 0.86+0.04 0.86+0.04 | 0.86+0.04 0.85+0.04 | 0.89+0.03
Anneal 2 4 10 0.81+0.02 0.814+0.01 0.81+0.01 0.81+0.01 | 0.89+0.03
Balance 2 | oo 4 || 0.814+0.04 0.76+0.06 | 0.84+0.03 0.83+£0.03 | 0.76+0.06
Balance 2| o© 10 0.80+0.03 0.744+0.06 | 0.85+0.03 0.79+0.03 0.784+0.03
Heart 2 6 4 || 0.8240.07 0.79+0.05 | 0.84+0.05 0.73+£0.08 | 0.78+0.06
Heart 2 4 10 0.81+0.06 0.7940.05 | 0.81+0.06 0.78+0.04 0.7940.05
Vote 15 4 — || 0.954+0.03 0.96+0.02 | 0.95+0.03 0.94+0.03 | 0.96+0.02
Segment 15 4 4 0.78+0.02 0.7840.02 0.784+0.02 0.784+0.02 | 0.95+0.02
P-Tumor 2 | oo — || 0.404+0.05 0.37£0.05 | 0.43+0.05 0.37+£0.05 | 0.40+0.05
Yeast 2 6 4 0.524+0.03 0.524+0.03 | 0.53+0.03 0.524+0.03 0.5440.05
Yeast 2 4 10 0.51+0.03 0.5040.03 0.49+0.03 0.49+0.03 | 0.58%+0.03
Diabetes 2 6 4 0.75+0.06 0.744+0.06 | 0.75+0.05 0.71+0.05 0.7440.06
Diabetes 2 4 10 || 0.76+0.05 0.75+0.04 | 0.774+0.05 0.75+£0.05 | 0.74+£0.06
Tonosphere || 15 4 4 0.87+0.06 0.8740.06 0.87+0.06 0.87+0.05 0.8610.07
Tonosphere || 15 4 10 || 0.91+0.04 0.914+0.04 | 0.9040.03 0.88+0.03 | 0.92+0.03
Vowel 50 6 4 0.424+0.04 0.404+0.04 | 0.41+£0.07 0.38+0.05 | 0.78=+0.04
Vehicle 50 6 4 || 0.67+0.03 0.66+0.03 | 0.66+0.03 0.65+£0.03 | 0.70+0.04

Table 1. Experimental results on UCI data. A result is highlighted if it is the best in its row; significant winners of com-
parisons between MAP and Opt settings are underlined. Bins are not indicated for datasets without numeric attributes.

thus quite unrealistic priors; in (Nijssen & Fromont,
2007) we found that under the same hard constraints
J48 is not able to find accurate trees either, and often
finds even worse trees in terms of accuracy.

To provide more insight in (Q4), we have added results
for different discretizations. In the datasets where we
used harder constraints to make the search feasible, a
negative effect on accuracy is observed compared to
J48. Where the same hard constraints can be used we
observe similar accuracies as in J48. The experiments
do not indicate that a higher number of bins leads to
increased risks of overfitting.

6. Conclusions

Our results indicate that instead of constructing the
optimal MAP hypothesis, it is always preferable to
use the Bayes optimal setting; even though we found
many cases in which the claim of Domingos (2000) is
confirmed and a single tree performs equally well, in
those cases where there is a significant difference, the
comparison is always in favor of the optimal setting.
The computation of both kinds of hypothesis remains
challenging if no hard constraints are applied, while
incorrect constraints can have a negative impact.

Acknowledgments S. Nijssen was supported by the EU
FET IST project “IQ”, contract number FP6-516169.

References

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., &
Verkamo, A. I. (1996). Fast discovery of association
rules. In Advances in knowledge discovery and data min-
ing, 307-328.

Angelopoulos, N., & Cussens, J. (2005). Exploiting infor-

mative priors for Bayesian classification and regression
trees. Proceedings of IJCAI (pp. 641-646).

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone,
C. J. (1984). Classification and regression trees. Statis-
tics/Probability Series. Belmont, California, U.S.A.

Buntine, W. (1990). A theory of learning classification
rules. Doctoral dissertation, Sydney.

Buntine, W. (1992). Learning classification trees. Statistics
and Computing 2 (pp. 63-73).

Chipman, H. A., George, E. I., & McCulloch, R. E. (1998).
Bayesian CART model search. Journal of the American
Statistical Association, 93, 935-947.

Cleary, J. G., & Trigg, L. E. (1998). Ezperiences with
OB1, an optimal Bayes decision tree learner (Technical
Report). University of Waikato.

Domingos, P. (2000). Bayesian averaging of classifiers and
the overfitting problem. Proceedings of ICML (pp. 223—
230).

Goethals, B., & Zaki, M. J. (Eds.). (2003). Proceedings
of the ICDM 2003 FIMI workshop, vol. 90 of CEUR
Workshop Proceedings. CEUR-WS.org.

Li, W., Han, J., & Pei, J. (2001). CMAR: Accurate and
efficient classification based on multiple class-association
rules. Proceedings of ICDM (pp. 369-376).

Nijssen, S., & Fromont, E. (2007). Mining optimal decision
trees from itemset lattices. Proceedings of KDD (pp.
530-539).

Mitchell, T. (1997).
McGraw-Hill.

Oliver, J. J., & Hand, D. J. (1995). On pruning and averag-
ing decision trees. Proceedings of ICML (pp. 430—437).

Quinlan, J. R. (1993). C4.5: Programs for machine learn-
ing. Morgan Kaufmann.

Machine learning. New York:

