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Abstract

What type of algorithms and statistical tech-
niques support learning from very large datasets
over long stretches of time? We address this
question through a memory bounded version of
a variational EM algorithm that approximates in-
ference in a topic model. The algorithm alter-
nates two phases: “model building” and “model
compression” in order to always satisfy a given
memory constraint. The model building phase
expands its internal representation (the number
of topics) as more data arrives through Bayesian
model selection. Compression is achieved by
merging data-items in clumps and only caching
their sufficient statistics. Empirically, the re-
sulting algorithm is able to handle datasets that
are orders of magnitude larger than the standard
batch version.

1. Introduction
Consider a collection of surveillance cameras monitoring at
an airport. The cameras learn a model of their environment
without supervision. Moreover, they learn for many years
without significant interruption. Gradually, as more data is
captured, the cameras build a joint model of visual object
categories.

This problem is akin to the way children learn to under-
stand the world through the continuous process of mostly
unsupervised learning. As children grow up they build an
increasingly sophisticated internal representation of object
categories that continuously restructures itself.
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In this paper we ask ourselves: What statistical techniques
are suitable for this “lifelong learning task”? First, we need
a class of models that can naturally expand as more data
arrives, i.e. it’s capacity should not be bounded a priori.
Second, these models should allow efficient learning algo-
rithms, both in terms of time and space. For instance, we
should not have to store every single piece of information
that has been captured. Our technique must produce a se-
quence of model estimates that reflect new information as
it arrives, and the time required to produce each model up-
date must scale modestly as more data is acquired. Finally,
we require that the sequence of learned models are suffi-
ciently similar to those that would be produced by a batch
algorithm with access to the entire history of data observed
at the time of each model update.

Nonparametric Bayesian techniques such as the Dirichlet
Process (DP) (Ferguson, 1973) and the Hierarchical Dirich-
let Process (HDP) (Teh et al., 2006) satisfy our first desider-
atum, in that they naturally increase their model complex-
ity with the available data. However, most existing Non-
parametric Bayesian approaches are batch algorithms: they
require every single data-point to be stored and revisited
during learning. A batch algorithm could be naively ap-
plied to the continuous learning scenario, but all data would
need to be cached and a new batch learning process would
be run on the entire dataset to produce each model update.
This would violate our second criterion in that the time and
space requirements would increase unacceptably as the sys-
tem ages.

Here we propose a more flexible setup, where we impose
a bound on the available memory but still allow the model
order to increase with more data. We compress the data
and the internal representation of the model without losing
much in terms of model accuracy. The effect is that time
and space requirements scale much more gradually over the
lifetime of the system. The memory bound does impose a
limit on the total capacity of the model, but this trade-off
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is flexible and can be adjusted online, i.e. as the model is
learned. Experiments with a memory bounded variational
approximation to HDP show that this technique can handle
datasets many times larger than the standard implementa-
tions and results in substantially shorter run-times.

2. A Memory Bounded Variational Topic
Model

At a high level the idea is to use a variational approxi-
mation related to LDA (Blei et al., 2003) and HDP (Teh
et al., 2006). Memory savings are achieved by “clump-
ing” together data-cases. That is, we constrain groups of
datapoints to have equal topic assignment variational dis-
tributions: q(zij) = q(zi′j′) = q(zc) when points xij

and xi′j′ are members of the clump c. This allows us to
achieve memory savings, because variational optimization
performed under this constraint requires only the sufficient
statistics of the data-cases in a clump, and the system can
forget the exact identities of the summarized data points.
Similarly, we will also clump entire documents (or im-
ages) by tying their variational distributions over topics:
q(πj) = q(πj′) = q(πs) if document j and j′ belong to
the same document group s. This tying of variational distri-
butions guarantees that learning optimizes a lower bound to
the exact free energy objective function, where the bound
is increasingly loose with more tying. This idea was also
leveraged in (Verbeek et al., 2003) and (Kurihara et al.,
2006) to accelerate learning of Mixtures of Gaussians and
DP Mixtures of Gaussians by using KD-trees.

In the following we will talk about documents, but we note
that this refers to other structured objects such as images as
well.

2.1. The Variational Topic Model

The following Bayesian topic model is our starting point,

p(x, z,η,π,α) =
∏
ij

p(xij |zij ;η) πj,zij (1)

[∏
k

p(ηk|β)

] ∏
j

D(πj ;α)

[∏
k

p(αk)

]

where xij is word i in document j and zij denotes the topic
that generated xij . πj denotes the mixture of topics that
generated the words in document j, with

∑
k πjk = 1. πj

are distributed according to a Dirichlet distribution with pa-
rameter α. Boldface symbols denote vector valued quanti-
ties. In this expression we will assume that p(x|z,η) is in

the exponential family1,

p(x|z = k,η) = exp

[∑
l

ηkl φl(x)−Ak(ηk)

]
(2)

and p(η|β) is conjugate to p(x|z,η),

p(ηk|β) = exp

[∑
l

βlηkl − β0Ak(ηk)−B(β)

]
(3)

The posterior distributions over π,η, z are approximated
variationally as

q(η) =
∏
k

q(ηk; ξk) (4)

q(π) =
∏
j

D(πj ; ζj) (5)

q(z) =
∏
ij

q(zij) (6)

where we have introduced variational parameters
{ξkl, ζkj , qijk}, the latter subject to

∑
k qijk = 1.

Furthermore, D denotes a Dirichlet distribution while
q(ηk; ξk) is also conjugate to p(x|z = k,η),

q(ηk; ξk) = exp

[∑
l

ξklηkl − ξk0Ak(ηk)−Bk(ξk)

]
(7)

By writing down the variational free energy and minimiz-
ing it over ξ, ζ we find the following intuitive updates,

ξkl = Fkl + βl; Fkl ,
∑
ij

qijk φl(xij) (8)

ξk0 = Nk + β0; Nk ,
∑
ij

qijk (9)

ζkj = Nkj + αk; Nkj ,
∑

i

qijk (10)

and

qijk ←
1
Zij

exp [
∑

l E[ηkl|ξkl] φkl(xij)]
exp [E[Ak(ηk)|ξk0]]

exp [ψ(ζkj)]

(11)

where Zij enforces the constraint
∑

k qijk = 1 and the
expectations are over q(η).

To learn the parameters {αk}we first introduce gamma pri-
ors,

p(α) =
∏
k

G(αk; a, b) (12)

1Strictly speaking, the exponential family includes additional
multiplicative terms h(x) in the expression for p(x|η) and g(η)
in the expression for p(η|β). We have left these terms out to sim-
plify the derivation and because for most well known distributions
they are simply 1. However, it is straightforward to include them.
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Using the bounds in (Minka, 2000) we can derive the fol-
lowing updates if we first insert the updates for ξ and ζ into
the free energy,

αk ←
(a− 1) + αk

∑
j [ψ(ζkj)− ψ(αk)]

b+
∑

j [ψ(ζj)− ψ(α)]
(13)

with ζj =
∑

k ζkj and Nj =
∑

k Nkj .

2.2. Optimizing the Number of Topics K

Our strategy to search for a good value of K is to truncate
the topic distributions as q(zij > K) = 0 (see also (Teh
et al., 2008)). This will have the effect that most terms in
the free energy with k > K will cancel, the exception being
the prior terms p(αk), k > K. For these terms we know
that the value for αk minimizing the free energy is given
by the MAP value of the gamma-prior αk = a−1

b , k >
K. Inserting this back into the free energy we accumulate
Kmax −K terms

Λ = a log b− log Γ(a)+(a−1) log
a− 1
b
− (a−1) (14)

where Kmax is the maximum number of topics.

It is guaranteed that there exists a solution with lower free
energy if we increase K. The reason is that we relax a self-
imposed constraint on variational parameters (that q(zij >
K) = 0). As K increases the relative improvement in free
energy quickly attenuates. The final value forK is obtained
by thresholding this relative improvement.

The nesting property (models with larger K are better) is
the same for variational approximations to the DP in (Kuri-
hara et al., 2006) and HDP (Teh et al., 2008). This raises
the question if we can take the infinite limit for our model
as well. The problem is that (Kmax − K)Λ → ∞ as
Kmax → ∞. This can be traced back to the fact that we
should have added a proper prior p(K) which would have
diminished the contribution at large K. Instead we choose
an improper, constant prior to avoid the need to estimate
likely values for K a priori. However, it is still possible to
work with infinite free energies because we are only inter-
ested in the relative change in free energy after increasing
K, which is a finite quantity.

In our experiments we chose a = 1 and b = 0.5, so that the
MAP prior value of αk is 0.

2.3. Clumping Data-Items and Documents

We will now tie some of the variational distributions {qijk}
across different data-items within and across documents
(images) to a “clump distribution” qck. Similarly, we
will tie some document specific distributions over topics
{q(πj)} into a document group q(πs). Note that since we

impose constraints on the variational distributions this has
the effect of loosening the variational bound.

Define Ds to be the number of documents in a document
group, Nc the number of data-items in a word clump, Ncs

the number of words in document group s and word clump
c and finally Φc

kl ,
∑

ij∈c φkl(xij). In terms of these we
further define,

Nks ,
∑

c

qckNcs (15)

Nk ,
∑

c

qckNc (16)

Fkl ,
∑

c

qck Φc
kl (17)

With these definitions we derive the following “clumped”
update rules for the variational parameters ξkl and ζks,

ξkl = Fkl + βl (18)
ξk0 = Nk + β0 (19)
ζks = Nks

Ds
+ αk (20)

and

qck ←
1
Zc

exp
[∑

l E[ηkl|ξkl]
Φc

kl

Nc

]
exp [E[Ak(ηk)|ξk0]]

exp

[∑
s

Nsc

Nc
ψ(ζks)

]
(21)

The update for α becomes

αk ←
(a− 1) + αk

∑
sDs [ψ(ζks)− ψ(αk)]

b+
∑

sDs [ψ(ζs)− ψ(α)]
(22)

An expression for the free energy, after inserting expres-
sions 18, 19 and 20, is given by eq. 29 in the appendix.

3. Incremental Learning with a Memory
Constraint

Our algorithm processes data in small groups composed of
E documents, which we refer to as epochs. After the ar-
rival of each epoch the algorithm proceeds in two stages: a
model building phase during which a new model estimate
is produced, and a compression phase in which decisions
are made as to which words and documents to clump. The
sufficient statistics of each clump are computed and data
summarized by clumps are purged from memory. The as-
signment distributions q(z) of purged data and topic distri-
butions of merged documents q(π) are discarded as well.
The clump sufficient statistics are retained along with the
current model estimate, which serves as a starting point for
the next round of learning.
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Model Building Phase (Algorithm 3.1)
Input: Previous model {ξkl, ζks, αk,Φc

kl, Ncs, Ds}, and
current epoch of E documents.
Initialize ζjk = αk for j = |S|+ 1, · · · , |S|+ E
Iterate eqs. 21, 18, 19, 20, and 22 until convergence
repeat

Rank splits and merges according to criteria in (Ueda
et al., 1999)
for i = 1 to 10 do

Split i-th ranked candidate topic along principal
component
Restricted iteration of eqs. 21, 18, 19, and 20 until
convergence
Evaluate change in eq. 29 resulting from split

end for
for i = 1 to 10 do

Merge i-th ranked pair of topics
Evaluate change in eq. 29 resulting from merge

end for
Select split or merge that yielded largest change in
eq. 29
Iterate eqs. 21, 18, 19, and 20 until convergence

until Change in eq. 29 is less than threshold

3.1. Model Building Phase

The model building phase optimizes the free energy un-
der the parameter tying constraints induced by the choice
of clumps in previous compression phases. We perform a
split-merge procedure similar to (Ueda et al., 1999) to de-
termine the number of topics, using the heuristics in that
work to rank topic suitability for split or merge. In our ex-
periments we use Gaussian topic distributions, so splits are
proposed along the principal component of the topic. The
split proposals are refined by restricted variational updates.
That is: equations 21, 18, 19, 20, and 22 are iterated
but only for data-points whose highest responsibility is to
the split topic, and the points may be assigned only to the
two descendent topics. Merges are carried out by instanti-
ating a new topic with the data-points with highest respon-
sibility to the merged topics. A total of 10 splits and 10
merges are proposed, and evaluated by the resultant change
in free energy (eq. 29). The top ranked change is then used
to initialize full variational updates (which involve all data
points). The model building phase halts once the change in
free energy divided by its previous value is below a thresh-
old, which was chosen to be 1E − 5 in our experiments.
The procedure is summarized in algorithm 3.1.

3.2. Compression Phase

The goal of the compression phase is to determine groups
of data-points that are to be summarized by clumps, and

to identify documents that are to be merged into document
groups.

Clumps are identified using a greedy top down splitting
procedure. Because datapoints summarized by clumps
are ultimately discarded, the compression process is irre-
versible. Therefore it is of fundamental importance to pre-
dict the locations of future data when deciding which points
to clump. In order to estimate this, we rank cluster splits ac-
cording to a modified free energy (eq. 30) in which the data
sample size is artificially increased by a factor TptsP

c Nc
and

the number of documents is scaled by TdocsP
s Ds

, where Tpts

and Tdocs are the target number of data-points and docu-
ments expected during the lifetime of the system. This is
equivalent to using the data empirical distribution as a pre-
dictive model of future data. If we determine clumps using
the standard free energy, then the algorithm fails to split
large groups of points that are likely to split once more data
has arrived. Instead, it wastes memory by placing “stray”
points in their own clumps.

We initialize the process by hard assigning each clump or
data-point to the cluster with highest responsibility dur-
ing the previous model building phase. We then proceed
through each cluster and split it along the principal compo-
nent, and refine this split by iterating restricted variational
updates equations for the points in the cluster. The updates
are modified by the data magnification factors:

ξkl =
(

Tpts∑
cNc

)
Fkl + βl (23)

ξk0 =
(

Tpts∑
cNc

)
Nk + β0 (24)

αk ←
(a− 1) +

(
TdocsP

s Ds

)
αk

∑
j [ψ(ζks)− ψ(αk)]

b+
(

TdocsP
s Ds

) ∑
s [ψ(ζs)− ψ(α)]

(25)

Updates for qck and ζks are unchanged. After the clusters
are refined, the data-points are then hard assigned to the
sub-cluster with greatest responsibility, and the proposed
split is ranked according to the resultant change in eq. 30.
We then greedily split the cluster with highest rank. The
process repeats itself, with new clusters ranked in the same
way described above. We cache the results of each split
evaluation to avoid redundant computation. After we have
reached a given memory bound we extract the partitions
resulting from this recursive splitting procedure as our new
clumps.

Each clump must store sufficient statistics for full covari-
ance Gaussian components which require d2+3d

2 values,
where d is the dimension of the feature space. In addi-
tion, |S| (the number of document groups) values must be
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Clump Compression (Algorithm 3.2)
Input: Output from model building phase:
{qck,Φc

kl, Ncs, Ds}, current epoch of E documents and
memory bound M .
Hard partition clumps: rc = arg maxk qck

while MC < M (eq. 26) do
for i = 1 to K do

Split i-th cluster along principal component
Iterate data magnified restricted updates until con-
vergence
Hard partition clumps into child clusters
Evaluate change in eq. 30 resulting from split

end for
Select split that yielded largest change in eq. 30
K = K + 1

end while

stored to represent the counts Ncs for each clump. Note
that from this perspective, it only makes sense to create
clumps within a cluster if it contains more than d+3

2 + 1
d

data-points. If not, then it is more efficient to store the indi-
vidual data-points and we refer to them as “singlets”. The
total memory cost of summarizing the data is then

MC =
(
d2 + 3d

2

)
|Nc > 1|+ |S||Nc > 1|+ d|Nc = 1|,

(26)

where |Nc > 1| is the number of clumps with more than
1 data-item in them, and |Nc = 1| is the number of sin-
glets. The clump compression procedure is summarized in
algorithm 3.2.

Document merging provides another way of controlling the
memory cost, by reducing the number of image groups |S|.
We use the following simple heuristic to rank the suitability
of merging document groups s and s′:

DMs,s′ =
∑

k E[πsk]E[πs′k]
||E[πs]||||E[πs′ ]||

(27)

Clumping and document merging enable a number of po-
tential schemes for controlling space and time costs, de-
pending on the application. We note that the time com-
plexity per variational iteration scales as O(K(|Nc > 1|+
|Nc = 1|) + |S|K) and the space required to store q(zc)
distributions is O(K(|Nc > 1|+ |Nc = 1|)).

4. Experiments
We test our approach with two machine vision experiments.
The first is an image segmentation task, and the second is
an object recognition and retrieval task.
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Figure 1. Image Segmentation experiment. Left: Free energy ra-
tio as a function of the number of clumps permitted by the mem-
ory bound. Right: Free energy ratio versus the number of image
groups relative to the total number of images processed.

4.1. Joint Image Segmentation

Our first experient is a joint image segmentation problem.
The dataset is the Faces-Easy category of the Caltech 101
image dataset (Fei-Fei et al., 2004) consisting of 435 im-
ages. Each image contains a face centered in the image,
but the lighting conditions and background vary. In terms
of the vocabulary of the preceding sections, each image is
a document and each pixel in the image is a word. Pixels
are represented as five dimensional vectors of the following
features: X and Y position relative to the center of the im-
age, and three color coordinates in the CIELAB colorspace.
The goal of our experiment is to find similar image regions
across the multiple images, in an unsupervised way. We
emphasize that our main objective is to study the efficiency
of our algorithm, not to produce a state of the art image
segmentation algorithm.

The images were scaled to be 200 by 160 pixels in size.
Thus, the total size of the dataset is 32,000 pixels per im-
age, times 435 images, times 5 features per pixel equals
69,600,000 real numbers. Each pixel requires an assign-
ment distribution. Our baseline implementation (i.e. a
batch algorithm that processes all images in memory at
once and does not use pixel clumping or image merging)
was only able to jointly segment 30 images simultaneously,
before running out of memory. The majority of memory
is used to store the assignment distributions of pixels, and
this is problematic as the number of topics increases during
learning, since the space requirements scale as O(NK),
where N is the total number of pixels and K is the number
of topics.

We first compare the memory bounded approach to the
baseline implementation on a joint segmentation task of 30
images in order to judge the impact of the pixel clumping
approximation. We vary the upper limit on the number of
clumps used to summarize the data during the compression
phase, and compare the free energy bounds produced by
the memory bounded algorithm to those produced by the
baseline implementation. We define the free energy ratio
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Figure 2. Top row: From left to right: an example segmenta-
tion produced by the baseline method, memory bounded algo-
rithm with 30% of total images and 125 clumps, and the memory
bounded algorithm with no images merged and 125 clumps. Row
2: Example clump distributions. Pixels of the same color are sum-
marized in a single clump. Row 3: segmentations corresponding
to clumps in row 2.

as 1 − FEbatch−FEmb

|FEbatch| . This process was repeated for dif-
ferent subsets of 30 images from the dataset. In the mem-
ory bounded approach, images were processed in epochs
of five images at a time. Figure 1 summarizes the results.
We find that performance tends to saturate beyond a certain
number of clumps.

We also note a significant run time advantage of the mem-
ory bounded algorithm over the batch method. The average
run time of the batch method was 3.09 hours versus 0.68
hours for the memory bounded approach.

Next we study the impact of image (document) merges on
the relative performance of the memory bounded algorithm
versus the baseline batch algorithm, while varying the max-
imum number of image (document) groups permitted. The
results are shown in figure 1.

We find little qualitative difference between segmentations
produced by the baseline and memory bounded algorithms.
The possible exception is in the case when the memory
bounded algorithm is run with a large number of image
merges, in which case the algorithm seemed to discover
fewer topics than the batch and memory bounded algorithm
with only word clumping. Example image segmentations
and clump distributions are shown in figure 2.

Finally, we demonstrate the memory bounded algorithm on
the full dataset of 435 images, which is more than an order
of magnitude larger than can be handled with the baseline
algorithm. We process images in epochs of 10 images at
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Figure 3. Joint segentation of 435 faces. The left plot shows the
number of topics recovered as the system processes images. The
right plot shows the run time for each learning round. This fluctu-
ates with the number of new topics discovered during each round
and tends to increase gradually with the total number of topics.

a time, for a total of 44 learning rounds. The upper limit
on the number of clumps was set to 1000, which was likely
many more than required since there were only 85 inferred
topics. Because the number of documents was relatively
small, we chose not to use document merges. The total
run time of the algorithm was 15 hours. Figure 3 shows
the number of topics as a function of the number of im-
ages processed, and the run time required during each im-
age round. The run time is longer during learning rounds in
which more new topics are discovered, because more split-
merge operations are necessary. The memory required for
the memory bounded algorithm was 22 MB to store the cur-
rent image epoch and clumps, less than 1MB for the current
model estimate, and 235 MB for assignment distributions,
for a total of 257 MB. In contrast, the baseline batch imple-
mentation would have required 531 MB to store all 435 im-
ages, 8.8155 GB to store assignment distributions for each
pixel assuming 85 topics, and less than 1 MB for the model,
for a total of 9.3 GB. (All memory amounts assume double
precision floating point.) The memory bounded implemen-
tation therefore achieved a memory savings factor of about
38 with very little loss in accuracy.

Figure 4 shows example joint segmentations produced by
the memory bounded algorithm. These images were re-
trieved by first computing responsibilities for every image
in the dataset, with respect to the final model estimate pro-
duced by the MB algorithm. Then, the images were sorted
according to those that have the most pixels assigned to
the largest topic. The largest topic indeed corresponds to a
face, and is represented by the olive green segment in the
figure. Other topics shared across images include hair and
certain backgrounds.

4.2. Object Recognition and Retrieval

Our object recognition and retrieval experiment involves all
101 object categories in the Caltech 101 dataset. We ran-
domly select 3000 training images and 1000 test images.
We extract 128-dimensional SIFT (Lowe, 2004) local ap-
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Figure 4. Examples of joint segmentation produced after process-
ing all Caltech Face images. Pixels that are the same color have
highest responsibility to the same topic. These images were re-
trieved by sorting images according to those that have the most
pixels assigned to the largest topic, which is the olive green col-
ored face segment in each image.

pearance descriptors from 500 randomly chosen locations
in each image. The scale of each feature is also chosen ran-
domly. In the language of topic models, each feature de-
scriptor is a word, and the collection of feature descriptors
in an image forms a document. This image representation
is known as ’bag-of-features’, because images are modeled
as unordered collections of feature descriptors whose geo-
metric positions are ignored. This dataset proved too large
to compare directly to the batch algorithm

We train a single topic model on all training images, us-
ing epochs of 60 images at a time. Because hundreds of
topics are discovered we use diagonal covariance Gaus-
sians and adjust equation 26 accordingly. Given a test im-
age x̃, retrieval is performed by ranking each training im-
age’s similarity to the test image. To develop the similarity
measure we begin with log

∏
i p(x̃ij |x), which is the log-

probability that the detections in the test image were gen-
erated by training image j given the training set. Then we
variationally lower bound this quantity to obtain a test free
energy and drop all constant terms not involving the test
image and index j. Finally we lower bound this quantity
by assuming that detections in the test image are hard as-
signed to the topic with highest responsibility (this leads to
an expression that is much faster to evaluate with neglible
impact on retrieval performance.) The retrieval score is:

score(j) =
∑

i

max
k

{ ∑
l

E[ηkl|ξkl] φkl(x̃ij) (28)

− E[Ak(ηk)|ξk0] + ψ(ζkj)

− ψ(
∑

k

ζkj)
}

where the expectations are with respect to q(η) learned dur-
ing training and ξkl and ζkj are from training as well. ζkj
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Figure 5. Object Recognition and Retrieval. Left: Training set
free energy as a function of the memory bound. Right: 1-NN
classification accuracy as a function of memory bound (measured
as the equivalent number of data-points that could be stored in the
same space).
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Figure 6. Object Recogniton and Retrieval. Left: Training set free
energy versus the ratio of document groups to the total number of
images processed. Right: 1-NN classification accuracy versus the
ratio of document groups to total number of images processed.

are re-estimated for images that were merged into a docu-
ment group during training. We compute nearest neighbor
(1-NN) classification accuracy by classifying the test im-
age to the class label of the highest scoring image in the
training set.

Figure 5 shows the training set free energy and 1-NN class-
fication accuracy as a function of the memory bound M
(measured as the equivalent number of data points that
could be stored in the same space.) Because we used diag-
onal covariance matrices, there were enough clumps even
at low levels of memory to maintain comparable classifi-
cation performance. We note that the training free energy
increases with memory as expected, and that the 1-NN ac-
curacy tends to saturate as memory increases.

Figure 6 shows the 1-NN accuracy and training free en-
ergy when the percentage of document groups relative to
the number of total images processed is varied (the mem-
ory bound M is held fixed at 10000). We note that the
classification performance suffers substantially when only
small numbers of document groups are permitted. We use
a heuristic for determining documents to merge (eq. 27). It
is possible that a well motivated criterion (perhaps derived
from the free energy) would give better performance.
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5. Conclusion
Machine learning has largely focussed on algorithms that
run for a relatively short period of time, fitting models of
finite capacity on a data-set of fixed size. We believe that
this scenario is unrealistic if we aim at building truly intel-
ligent systems. We have identified nonparametric Bayesian
models as promising candidates that expand their model
complexity in response to new incoming data. The flip-side
is that nonparametric Bayesian algorithms are “example-
based” and as such require one to cache and process repeat-
edly every data-case ever seen. The objectives of infinite,
adaptive model capacity on the one hand and efficiency,
both in time and space on the other therefore seem to be
fundamentally at odds with each other.

In this paper we have made a first step towards resolving
this issue by introducing a class of models that can adapt
their model complexity adaptively but are able to do so at a
fraction of the memory requirements and processing times
necessary for their batch counterparts. There is no magic of
course: with a fixed memory budget there is a limit to how
complex the model can be, but we have shown that one can
learn much larger models reliably with much less memory
than a naive implementation would allow. Moreover, our
learning algorithms allow a flexible tradeoff between mem-
ory requirements and model complexity requirements that
can be adapted online.

Intuitively, our method may be thought of as a two level
clustering process. At the bottom level, data is clustered
into clumps in order to limit time and space costs. At the
top level, clumps are clustered to form topics in order to
ensure good generalization performance.

Potential application areas of the techniques introduced
here are manyfold. For instance, we can imagine learning
topic models from very large text corpora or the world wide
web to understand its structure and facilitate fast searching
algorithms. Another exciting direction is to build a taxon-
omy of visual object categories from a continuous stream
of video data captured by surveillance cameras.
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5.2. Appendix

The following expressions for the free energy are used in
the main text. Note that they are only valid after the updates
for ξ and ζ have been performed.
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