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Abstract

Hidden Markov models assume that obser-
vations in time series data stem from some
hidden process that can be compactly repre-
sented as a Markov chain. We generalize this
model by assuming that the observed data
stems from multiple hidden processes, whose
outputs interleave to form the sequence of ob-
servations. Exact inference in this model is
NP-hard. However, a tractable and effective
inference algorithm is obtained by extend-
ing structured approximate inference meth-
ods used in factorial hidden Markov mod-
els. The proposed model is evaluated in an
activity recognition domain, where multiple
activities interleave and together generate a
stream of sensor observations. It is shown
to be more accurate than a standard hidden
Markov model in this domain.

1. Introduction

Hidden Markov models (HMMs) are among the most
popular approaches for modeling time series data, and
have seen widespread application in areas such as
speech recognition, bioinformatics, or robotics. They
assume that observed data stems from a hidden pro-
cess which is stationary and Markov. However, in some
application domains this single-process model is not
appropriate. Consider for instance a log of web server
requests, and assume we have no definite knowledge
about which request has been issued by which user
(e.g. because of proxy use). Clearly, there is no single
hidden Markov process that accounts for the sequence
of observed requests. Instead, there are multiple pro-
cesses, one per user, which interleave to generate the
sequence of observations. Another example, and the
main motivation for the work presented in this paper,
is activity recognition: the task of inferring a user’s
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current activity from a stream of dense sensor data. In
many situations, users switch back and forth between
multiple activities, which causes sensor observations
associated with the individual activities to interleave
in time. The specific scenario considered in this pa-
per is that objects used in activities of daily living are
equipped with small RFID tags, which are picked up
by a wearable RFID reader whenever a user interacts
with the object. The task is to infer the sequence of
activities carried out given the observed object inter-
actions. In the light of recent advances in RFID tech-
nology, which allow tags to be cheaply mass-produced
and readers to be made wearable, such application sce-
narios are attracting increasing research interest from
both academia and industry (Wang et al., 2007).

HMMs have been widely used in activity recognition:
activities are modeled as hidden states that emit the
object tags observed by the RFID reader (Patterson
et al., 2005). This is an appropriate model if activi-
ties are atomic and carried out sequentially. In many
domains, however, activities are hierarchically struc-
tured, as sets of basic activities can be grouped into
high-level activities. High-level activities typically in-
terleave in time as a user is switching between them,
as illustrated in Figure 1. In this example, a user is
having breakfast, which consists of high-level activities
makeToast, makeJuice, and getNews with correspond-
ing basic activities. The domain could be modeled
with a standard HMM by “flattening” the three activ-
ities into one process with 7 states, but in this case part
of the problem structure would be lost. Alternatively,
we can model the activities as three different processes
which interleave in time. This has the advantage of de-
coupling transition dynamics within one high-level ac-
tivity from the interleaving behavior, yielding a more
concise representation with fewer parameters.

In this paper, we present a probabilistic model in
which observations are generated by multiple, inter-
leaved hidden processes. The hidden processes are sta-
tionary Markov chains, and the switching mechanism
by which they interleave is again Markov. Although
there exists a large body of related work, to the best
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Figure 1. Interleaving in an activity recognition domain. Three high-level activities (makeToast, makeJuice, getNews)
with corresponding basic activities are interleaved in time as a user switches between them. Different activities can produce
identical sensor observations, and therefore neither the interleaving nor the actual activities are directly observable from
the sensor data.

of our knowledge this interleaved setting has not been
addressed before. A simplified version has been dis-
cussed in (Batu et al., 2004); however, tractable infer-
ence algorithms are not explored in this work. Simpli-
cial mixtures of Markov chains, which employ a gener-
ative semantics similar to latent Dirichlet allocation,
also address a similar problem (Girolami & Kabán,
2003). However, they restrict the constituent pro-
cesses to be Markov rather than hidden Markov. A fur-
ther class of models assumes several hidden processes
that run in parallel, and that observations stem from
their joint state. Examples include factorial hidden
Markov models (Ghahramani & Jordan, 1997), hidden
Markov decision trees (Jordan et al., 1996), coupled
hidden Markov models (Brand, 1997) and mixed hid-
den Markov models (Altman, 2007). In contrast to
our approach, these models focus on factorizing com-
plex state spaces into cross-products of simpler com-
ponents, rather than modeling interleaved processes.
Another related technique are switching state-space
models (SSSMs) (Ghahramani & Hinton, 1998), in
which several processes run in parallel and an addi-
tional switch variable selects one active process from
which the current observation is generated. SSSMs are
different in that processes run concurrently, while an
interleaving of processes is characterized by the fact
that an inactive process is stopped and only resumes
when it becomes active again. This creates additional
dependencies between processes which cannot be mod-
eled in a SSSM. Finally, hierarchical hidden Markov
models model hierarchical structure within the hidden
process that generates the observations (Fine et al.,
1998). However, the component processes cannot in-
terleave, and thus the model is not appropriate in our
domain.

The next section introduces the proposed model more
formally. Afterwards, we discuss the key problem of
hidden state inference: given a sequence of observa-

tions, find the most likely configuration of hidden pro-
cesses to have generated the data. Unfortunately, ex-
act inference can be shown to be NP-hard; however,
efficient structured approximate inference techniques
can be applied (Section 3). Finally, the proposed tech-
nique is evaluated in an activity recognition domain,
and shown to outperform standard HMM-based ap-
proaches (Section 4).

2. The Model

Let Y1, ..., YT denote a sequence of observations, where
the Yt take on one of D discrete values. A hid-
den Markov model µ (Rabiner, 1989) defines a se-
quence X1, ..., XT of hidden state variables, with Xt ∈
{1, ...,K} and K the number of different states the
hidden process can take on. To simplify notation,
assume that there is a special start state 0 the pro-
cess is in at time t = 0, that is, X0 = 0. The first
transition is from X0 to X1 ∈ {1, ...,K}, and af-
terwards the first output Y1 is emitted. The HMM
is characterized by initial state probabilities a0i =
P (X1 = i | X0 = 0), state transition probabilities
aij = P (Xt = j | Xt−1 = i) for t ≥ 2 and emission
probabilities bil = P (Yt = l | Xt = i) for t ≥ 1. The
joint distribution of observations Y = Y1, ...YT and
hidden states X = X1, ..., XT is given by

P (X,Y) =
T∏

t=1

P (Xt | Xt−1)P (Yt | Xt).

We will also refer to X as the hidden process that
generated the observations Y.

We propose a model for multiple, interleaved hidden
processes. Intuitively, an additional switching process
controls a token that is handed from process to pro-
cess, and determines which of the processes is active at
a particular point t in time. The active process tran-
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Figure 2. Interleaved mixture of hidden Markov models (left) and factorial hidden Markov model (right) in dynamic
Bayesian network notation (for M = 3).

sitions to a new state and outputs the observation Yt,
while all other processes remain “frozen” in time.

More formally, let µ1, ..., µM be hidden Markov models
with initial state probabilities a

(m)
0i , transition proba-

bilities a
(m)
ij and emission probabilities b

(m)
il . For ease

of notation, we assume the number of states K is iden-
tical for all µm, but the model trivially generalizes to
processes with state spaces of different size. Let fur-
thermore µ̄ be a Markov process with states {1, ...,M},
initial state probabilities d0i and transition probabil-
ities dij . Let Zt denote a random variable represent-
ing the state of µ̄ at time t, and S

(m)
t denote ran-

dom variables representing the state of process µm at
time t for 1 ≤ m ≤ M . Zt ∈ {1, ...,M} determines
the active process at time t, and we will refer to µ̄
as the switching process. At every step t in time, a
new active process is sampled from µ̄ with probability
P (Zt = j | Zt−1 = i) = dij . Afterwards, the states of
µ1, ..., µM are updated according to

P (S(m)
t = j | S(m)

t−1 = i, Zt = k) =
{

a
(m)
ij k = m;

δij k 6= m,
(1)

where δii = 1 and δij = 0 for i 6= j. In other words, a
process µm transitions to a new state with probability
given by its transition matrix if it is active at time t,
and stays in its old state otherwise.

Finally, the probability of emitting symbol Yt is

P (Yt = l | S(1)
t = i1, ..., S

(M)
t = iM , Zt = k) = b

(k)
ikl

(2)

That is, it is given by the emission probability of the
process that is active at time t. Let St = S

(1)
t , ..., S

(M)
t ,

Z = Z1, ..., ZT and S = S1, ...,ST . Then

P (Z,S,Y) =
T∏

t=1

P (Zt | Zt−1)P (Yt | St, Zt)
M∏

m=1

P (S(m)
t | S(m)

t−1 , Zt)

(3)

We will refer to this model as an interleaved mixture
of hidden Markov models. It is represented by the dy-
namic Bayesian network structure given in Figure 2
(left). The model is structurally related to a factorial
hidden Markov model (Ghahramani & Jordan, 1997),
shown in Figure 2 (right). However, the structure is
extended by the additional chain of Zt nodes that de-
termine the currently active process. Although the
structure is densely connected, the set of parameters
is simply the union of the parameter sets of the con-
stituent HMMs µ1, ..., µM and the switching process µ̄.

The following alternative interpretation of the model
can be given. Let z denote an interleaving1 and let
tm1 , ..., tmT m denote the sequence positions for which
zt = m. That is, Y↓µm

= Ytm
1

, ..., Ytm
T m

is the projec-
tion of Y to elements generated by µm, and S↓µm =
S

(m)
tm
1

, ..., S
(m)
tm
T m

the corresponding hidden state vari-
ables. It is easily verified that

P (Z,S,Y) = P (Z)
M∏

m=1

Pµm(Y↓µm ,S↓µm),

where Pµm(Y↓µm ,S↓µm) is the joint distribution of
hidden states S↓µm and observations Y↓µm in the orig-
inal HMM µm. This reformulation gives rise to an in-
tuitive approach for sampling from Y: first sample an
interleaving pattern z from µ̄, and afterwards Y↓µm

from µm for 1 ≤ m ≤ M .
1In general, we denote random variables with upper-

case letters, and their instantiations with lower-case letters.
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3. Inference and Parameter Estimation

A key task in the activity recognition domains we have
in mind is hidden state inference: find

(z∗, s∗) = argmax
z,s

P (z, s | y) (4)

for a given sequence y of observations. This involves
simultaneously finding a segmentation of y into sub-
sequences y↓µm generated by µm (the z∗), and most
likely hidden states for y↓µm in µm (the s∗).

3.1. Exact Inference

Two special cases of the problem are trivial. For
M = 1, the model coincides with a hidden Markov
model, and the Viterbi algorithm returns the most
likely hidden states in time O(K2T ). Moreover, if the
output symbol sets of µ1, ..., µM are disjoint, the inter-
leaving z is directly observable, and s can be obtained
by running M instances of Viterbi in time O(MK2T ).

The more interesting case of M ≥ 2 and non-disjoint
output symbol sets is inherently more difficult due to
its combinatorial nature—the M constituent chains
are coupled via the switching process and observa-
tions, and thus cannot be handled independently. Ac-
cordingly, exact graphical model inference (e.g. with
the junction tree algorithm) applied to the model in
Figure 2 (left) has costs exponential in M , because
the cliques at Yt are of size O(M). In fact, for gen-
eral graphical model structures of this form there is
no tractable inference algorithm available. However,
the conditional distributions P (Yt | St, Zt) have a par-
ticularly simple form, which could make the problem
easier. Unfortunately, this is not the case:

Theorem. Exact inference for interleaved mixtures of
hidden Markov models is NP-hard.

The theorem is proved by reduction from the strongly
NP-hard 3-partition problem (Garey & Johnson,
1975):

Problem (3-partition problem). Let S be a multiset
of M = 3N positive integers. Is there a partition of S
into subsets S1, ..., SN of size 3 each such that the sum
over the integers in each subset is the same?

A detailed proof is omitted for lack of space. In-
tuitively, the relationship is that an interleaving of
µ1, ..., µM “partitions” a given sequence into the parts
generated by the different processes (cf. Figure 1).
Note that a key issue is the strong NP-hardness of 3-
partition: the problem is NP-hard even if numbers in
the input are given in unary notation (or, equivalently,
if integers in S are polynomially bounded in M).

3.2. Approximate Inference

Approximate inference in graphical models has re-
ceived much attention, and a variety of techniques
are available. The most simple class of methods
are Markov chain Monte Carlo (MCMC) approaches.
In Gibbs sampling, for instance, iterative conditional
resampling of random variables defines a Markov
process whose stationary distribution—under certain
conditions—will be the conditional distribution in
Equation (4). However, MCMC is not an effective in-
ference method in our case, because the Markov pro-
cess defined by the Gibbs sampler is not ergodic. There
can be two state configurations with positive proba-
bility that cannot be transformed into each other by
single-variable changes without passing through an in-
valid (probability zero) configuration, such as any con-
figuration with S

(m)
t−1 6= S

(m)
t but Zt 6= m. This effec-

tively traps the Gibbs sampler in a subspace of all
configurations and prevents MCMC convergence.

The problem is that Gibbs sampling, by updating only
one variable at a time, ignores the specific model struc-
ture. Instead, we have to resort to approximate in-
ference methods that better exploit model structure.
Examples include structured variational approxima-
tions (Ghahramani & Jordan, 1997) and an iterative
approximate inference method known as the chainwise
Viterbi algorithm (Saul & Jordan, 1999). These algo-
rithms are used in factorial HMMs for computing EM
statistics and hidden state inference. In the rest of the
Section, we present an extension of chainwise Viterbi
for solving the problem given by Equation (4).

The idea behind chainwise Viterbi is to repeatedly
solve tractable sub-problems of the (intractable) global
optimization problem. For factorial hidden Markov
models, the natural sub-problem to solve is to opti-
mize hidden states in one chain S(m) = S

(m)
1 , ..., S

(m)
T

conditioned on the current states of the other chains:

s(m)
new =argmax

s(m)
P (s(m) | {s(l) : l 6= m},y)

= argmax
s(m)

P (s(1), ..., s(M),y).

In the dynamic Bayesian network representing an in-
terleaved mixture of HMMs (Figure 2, left), there
are two different types of hidden chains: the chains
S(1), ...,S(M) representing the constituent processes
µ1, ..., µM and the chain Z representing the switch-
ing process µ̄. Assume first that Z is kept fix, and the
goal is to conditionally optimize a chain S(m). This is
straightforward: for a given interleaving pattern, the
chains S(1), ...,S(M) become independent given Z and
Y due to the special form of the conditional distribu-
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Algorithm 1 Chainwise Viterbi for interleaved mix-
tures of hidden Markov models

Input: model M, observations Y
(S,Z) := consistent-configuration(M)
while not converged do

choose m,n ∈ {1, ...,M},m 6= n
let (S(m),S(n),Z) := argmax

S(m),S(n),Z

P (S,Z,Y)

end while
return S,Z

tions P (Yt | St, Zt), cf. Equation (2). They can thus
be optimized independently with standard Viterbi.

We therefore focus on the task of optimizing Z given
S(1), ...,S(M). A straightforward update

znew = argmax
z

P (z, s(1), ..., s(M),y)

is not very effective: as a process µm can only change
state at time t if it is active, we know from S

(m)
t 6= S

(m)
t−1

that Zt = m. Thus, the joint state of S(1), ...,S(M)

essentially determines Z. To change the state of Zt

from m to n, it is necessary to also update S
(m)
t and

S
(n)
t to reflect that µn is now active at time t. The

solution is to jointly optimize two constituent chains
S(m), S(n) and the switching chain Z by

(s(m)
new, s(n)

new, znew) = argmax
s(m),s(n),z

P (s,y, z). (5)

Intuitively speaking, this update allows to re-assign
observations that have so far been attributed to
process µm to process µn, by changing some Zt

from m to n and updating S(m) and S(n) accord-
ingly. If it is repeatedly applied with different
process indices m,n, the interleaving can be arbi-
trarily revised. Algorithm 1 describes this chain-
wise update scheme in pseudocode. The method
consistent-configuration(M) initializes the states of
the hidden variables to some positive-probability con-
figuration2. When choosing m,n ∈ {1, ...,M} differ-
ent strategies are possible; we assume the algorithm
repeatedly cycles through all pairs n 6= m. If the up-
date step (5) is implemented exactly, P (s, z,y) will
increase unless the hidden state configuration is left
unchanged. Thus, the algorithm will always converge
(though not necessarily to the true global optimum).

An efficient implementation of the update step (5) is
crucial for fast inference. This can be achieved by
dynamic programming in the spirit of the Viterbi al-
gorithm (Rabiner, 1989). Moreover, the particularly

2This is trivial if observation probabilities are always
non-zero, as e.g. in Laplace-smoothed models.

restrictive form of the model (basically, that only the
active chain changes state at any point in time) can
be exploited. This allows much faster inference than
for general graphical models with the DAG structure
given in Figure 2 (left), as will be briefly outlined now.

To simplify notation, assume that n = 1 and m = 2.
In analogy to the Viterbi algorithm, define

δijk[t] =

max
D

P (D, S
(1)
t = i, S

(2)
t = j, Zt = k,Y,S(3), ...,S(M))

with

D = {S(1)
1 , ..., S

(1)
t−1, S

(2)
1 , ..., S

(2)
t−1, Z1, ..., Zt−1}.

Initialization of δijk[1] is straightforward. For the re-
cursive definition of δijk[t], let

C[k] =
M∏

m=3

P (S(m)
t = s

(m)
t | S(m)

t−1 = s
(m)
t−1, Zt = k),

where s
(m)
t−1, s

(m)
t for m ≥ 3 denote the current values of

the fixed chains µ3, ..., µM . Now two cases have to be
considered. If k ≥ 3, chains 1, 2 cannot have changed
state, and

δijk[t] = max
k′=1,...,M

δijk′ [t− 1]dk′kb(k)
sy C[k]

with s = S
(k)
t and y = Yt. This quantity can be com-

puted in time O(M). If k ∈ {1, 2}, we have to take
into account state changes on the chains being opti-
mized. Assume without loss of generality that k = 1.
Now

δij1[t] = max
k′=1,...,M

max
i′=1,...,K

δi′jk′ [t− 1]dk′1a
(1)
i′i b

(1)
iy C[1],

with y = Yt. This quantity can be computed in time
O(KM). There are O(K2MT ) values of the form
δijk[t] to compute. However, time for computing all
values is bounded by O(K2M(M + K)T ), as the case
k ∈ {1, 2} only appears O(K2T ) times.

The maximum probability of a hidden state configu-
ration is

max
s(1),s(2),z

P (s, z,y) = max
ijk

δijk[T ],

and a maximizing configuration is found by keeping
track of where maxima occur in backtrace variables.

It is instructive to compare the complexity of the out-
lined chainwise Viterbi algorithm to inference in an
HMM where hidden states are ”flattened” into a sin-
gle process. This HMM has a state space of size KM ,
and standard Viterbi has thus complexity O(K2M2T ),
similar to the O(K2M(M + K)T ) for a single update
step in chainwise Viterbi. However, several such up-
date steps will be needed before convergence.
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3.3. Parameter Estimation

There are different possible settings for learning the
proposed model from data. In the activity recognition
setting discussed in Section 4, both sensor observa-
tions and activities are given for the training set. In
this fully observable case maximum-likelihood model
parameters can essentially be determined by count-
ing. More generally, if the interleaving is known for
the training data (that is, we know which part of each
sequence has been generated by which process), the
problem reduces to independently estimating the pa-
rameters of µ1, ..., µM with the standard Baum-Welch
algorithm (Rabiner, 1989). In an unsupervised learn-
ing setting, expectation-maximization including the
unknown interleaving Z is a natural choice. However,
for the same reasons as discussed in Section 3, exact
computation of the expectation step will be infeasi-
ble. In factorial hidden Markov models, this prob-
lem is solved elegantly by a structured variational ap-
proximation, and exploring variational inference meth-
ods for the interleaved mixture model presented in
this paper is an interesting direction for future work.
A simple alternative is to employ hard EM : instead
of computing exact expectations, hidden states are
set to their max-likelihood values given the observa-
tions, and expectations determined by counting. To-
gether with the chainwise Viterbi algorithm discussed
in Section 3.2 this yields a tractable method which is
straightforward to implement.

4. Experimental Evaluation

The proposed model has been evaluated in an activity
of daily living (ADL) recognition domain, where the
goal is to infer a user’s activity from a stream of dense
RFID sensor data. The dataset has been collected
in a real RFID environment at Intel Research Seat-
tle (Landwehr et al., 2007). Objects are equipped with
small RFID tags, and the user is wearing a lightweight
RFID reader in a bracelet around the wrist. Whenever
the reader comes close (10–15 centimeters) to a tagged
object, the object tag is recorded. The sequence of ob-
served tags thus indicates the objects a user has been
interacting with while performing the activity.

We recorded activities involved in making breakfast at
home, as this domain showcases the kind of interleav-
ing behavior we are interested in (cf. Figure 1). The
dataset consists of 20 sequences of RFID tag observa-
tions collected from 5 different persons having break-
fast. Sequences are hand-labeled with the true current
activity based on a human observer. There are 18 ba-
sic activities organized into 6 high-level activities, 24
different classes of tagged objects (including nil if no

object was observed), and a total of 4597 timepoints
to be classified. Timepoints at which no activity is
taking place and activities with a coverage of less than
1% were removed, leaving 14 activities and 3545 time-
points in the dataset. The average number of segments
into which a high-level activity is broken up because
of interleaving is 3.95. There is significant overlap be-
tween observations associated with different activities,
either because the same object is used in different ac-
tivities or noise in the sensor data. More specifically,
the average overlap in the set of observations associ-
ated with two different activities is 40.6%.

A standard approach in ADL recognition is based on
HMMs: each basic activity corresponds to a hidden
state, and sensor data to observations. In the de-
scribed domain this means that all activities are “flat-
tened” into one hidden process, and their hierarchical
structure is lost. This approach will serve as a baseline,
denoted by HMM. Alternatively, high-level activities
can be modeled as separate hidden processes using the
model described in Section 2. Here we consider a slight
extension of this model: state transition probabilities
in the active hidden process µZt

depend not only on
the previous state but also on whether or not the pro-
cess has just become active; that is, Zt 6= Zt−1. The
motivation for this extension is that high-level activi-
ties are typically interrupted at a point where the basic
activity changes as well. It is straightforward to gener-
alize the model and algorithms discussed in Section 2
and Section 3 to include this dependency.

Each high-level activity A is represented as a process
µA, and the state space of µA are the basic activi-
ties associated with A. Note that the method, when
applied to a given observation sequence, will auto-
matically chose the (approximately) most likely subset
of high-level activities that explains the observations.
This model, together with the approximate inference
technique discussed in Section 3.2 will be denoted as
HMMmix. In the chainwise Viterbi algorithm, hid-
den states are initialized to the most likely activity
given the current sensor observation (as observed in
the training data). Furthermore, a version with exact
inference (denoted HMMmix*) is run for comparison.

The experimental study seeks to answer the following
two questions:

(Q1) Does reconstruction accuracy increase if high-
level activities are modeled as separate processes?

(Q2) Does the approximate inference algorithm for
HMMmix yield results similar to exact inference?

The rationale behind (Q1) is that modeling high-level
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Table 1. Average cross-validated accuracy for Majority,
Majority/Observation, HMM, HMMmix and HMM-
mix* on the ADL dataset. • indicates that result for HM-
Mmix is significantly better than result for other method
(paired two-sided t-test, p = 0.05).

Method Accuracy
Majority 21.2± 25.4•
Majority/Observation 71.4± 10.3•
HMM 84.0± 9.8•
HMMmix 86.0± 8.6
HMMmix* 86.0± 8.6

activities as separate processes will capture transition
dynamics more concisely, as it decouples dynamics
within a high-level activity from the switching dy-
namics. This is reflected in the number of model pa-
rameters: The “flattened” HMM representation re-
quires O((MK)2) = O(M2K2) parameters to spec-
ify transition dynamics, while HMMmix only requires
O(M2 + MK2) parameters.

To evaluate the different approaches, we performed
a leave-one-sequence-out cross-validation. On the
respective training set, models are estimated from
fully observable training data, i.e., information on
both sensor observations and activities is available.
Given a test sequence, the most likely joint state of
hidden variables in the model is determined, yield-
ing a prediction of the current basic activity at ev-
ery point in time. This is compared against the
known true activity, and average prediction accu-
racy is computed. Table 1 shows reconstruction ac-
curacy for HMM, HMMmix and HMMmix*. Ad-
ditionally, accuracy for always predicting the most
frequent activity (Majority), and the most fre-
quent activity given a particular sensor observation
(Majority/Observation) are shown. HMMmix
significantly outperforms HMM (paired two-sided t-
test, p = 0.05), and predictions made by HMMmix
and HMMmix* are identical in this experiment. This
affirmatively answers questions Q1 and Q2. Figure 3
shows the convergence behavior of chainwise Viterbi.
The normalized log-likelihood of the current configura-
tion of hidden states and the reconstruction accuracy
given by this configuration are plotted as a function of
the algorithm iteration. As expected, both likelihood
and accuracy increase as the algorithm repeatedly re-
vises the current interleaving. Furthermore, conver-
gence occurs after a small number of iterations.

There are two sources of information for predicting
the activity at a point t in time: the current sen-
sor observation, and transition dynamics for activities
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Figure 3. Normalized log-likelihood and reconstruction ac-
curacy of the current hidden state configuration as a func-
tion of the number of iterations in chainwise Viterbi. Re-
sults are averaged over all test sequences.
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(which capture the influence of past and future ob-
servations on the current prediction). The Major-
ity/Observation approach already performs well;
this indicates that much information is obtained sim-
ply from the current sensor observation. To further
investigate the influence of transition dynamics on re-
construction accuracy, the following experiment was
carried out. When estimating a model from data,
only a randomly selected fraction γ of the training
sequences is used to estimate transition probabilities,
while all available data is used to estimate emission
probabilities. Figure 4 shows reconstruction accuracy
as a function of γ. The experiment confirms that
HMMmix outperforms HMM, and that approximate
inference gives solutions very close to those of exact
inference (solutions differ slightly, but the curves for
HMMmix and HMMmix* in Figure 4 are indistin-
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guishable). Moreover, the difference between HMM
and HMMmix is most pronounced if only 20% to 40%
of training sequences are used to estimate transition
parameters. This supports the hypothesis that the
more concise representation of transition dynamics in
HMMmix (with fewer model parameters) explains its
superior performance, as a concise representation mat-
ters most if training data is sparse.

5. Conclusions and Related Work

We have introduced a model for interleaved mixtures
of hidden processes, which was shown to be superior
to a single-process model in an activity recognition
domain. The model should be generally applicable in
situations where only the interleaved output of several
independent processes can be observed. Related work
includes several extensions of hidden Markov models
(as discussed in Section 1), and activity recognition
approaches based on HMMs such as (Patterson et al.,
2005) and (Zhang et al., 2007) or dynamic Bayesian
networks (Wang et al., 2007). The proposed method
not only labels sequence positions but returns a struc-
tured parse of the sequence in terms of a set of hid-
den processes. Thus, it is also related to segmentation
models, grammar-based approaches, and more gener-
ally models for predicting structured data (see (Bakir
et al., 2007) for an overview). Directions for future
work include semi- and unsupervised learning settings,
and testing the model in different domains and on
larger activity recognition datasets.
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