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Abstract

Tsochantaridis et al. (2005) proposed two
formulations for maximum margin training of
structured spaces: margin scaling and slack
scaling. While margin scaling has been ex-
tensively used since it requires the same kind
of MAP inference as normal structured pre-
diction, slack scaling is believed to be more
accurate and better-behaved. We present
an efficient variational approximation to the
slack scaling method that solves its inference
bottleneck while retaining its accuracy ad-
vantage over margin scaling.

We further argue that existing scaling ap-
proaches do not separate the true labeling
comprehensively while generating violating
constraints. We propose a new max-margin
trainer PosLearn that generates violators to
ensure separation at each position of a de-
composable loss function. Empirical results
on real datasets illustrate that PosLearn can
reduce test error by up to 25% over margin
scaling and 10% over slack scaling. Further,
PosLearn violators can be generated more ef-
ficiently than slack violators; for many struc-
tured tasks the time required is just twice
that of MAP inference.

1. Introduction

The max-margin framework for training structured
prediction models generalizes the benefits of support
vector machines (SVMs) to predicting complex ob-
jects. A popular member of this framework is the
margin scaling method (Tsochantaridis et al., 2005;
Taskar, 2004; LeCun et al., 2006; Crammer & Singer,
2003) that tries to ensure that the score of the cor-
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rect prediction is separated from the score of an in-
correct prediction by a margin equal to the error of
the prediction. This method has been used exten-
sively in many applications, including sequence label-
ing (Taskar, 2004; Tsochantaridis et al., 2005), im-
age segmentation (Taskar, 2004; Ratliff et al., 2007),
grammar parsing (Taskar et al., 2004), dependency
parsing (McDonald et al., 2005b), bipartite match-
ing (Taskar, 2004) and text segmentation (McDonald
et al., 2005a). A reason for its wide-spread use is that
it can exploit the decomposability of the error function
to find the most violating constraint using the maxi-
mum a-posteriori (MAP) inference algorithm used for
prediction.

An alternative formulation (Tsochantaridis et al.,
2005) is to ensure that all labelings are separated by a
fixed margin of one but penalize violations in propor-
tion to their errors. This method, called slack scaling,
generally provides higher accuracy than margin scal-
ing which gives too much importance to labelings with
large errors even after they are well-separated, some-
times at the expense of instances that are not even
separated. Another shortcoming of margin scaling is
that it requires an error function that is linearly com-
parable with the feature values, whereas slack scaling
is invariant to scaling of the error function. In spite of
the advantages, slack scaling is not popular because it
requires inferring the labeling which maximizes a non-
decomposable metric – difference of score and error
inverse.

In this paper we make two contributions in max-
margin training of structured models.

First, we address the computational challenge of infer-
ing the labelings required when training via slack scal-
ing. We propose a variational approximation of the
slack loss so that the most violating labeling is found
using the same loss augmented MAP inference as in
margin scaling. We demonstrate that accuracy-wise
our slack approximation is much better than margin
scaling and close to the more expensive slack scaling.
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Second, we propose a new max-margin framework for
training models with decomposable error functions
that, like the slack scaling method, is scale invari-
ant and discounts labelings well-separated from the
margin. The inference step it requires is much sim-
pler than required by slack scaling. In particular, for
Markov models we show that the inference of the most
violating labelings is only a factor of two more expen-
sive than in margin scaling. The basic idea of the
new learner, that we call PosLearn, is to associate a
different slack variable for each error position of a de-
composable error function. We show that this leads
to a better characterization of the loss than both the
slack and margin scaling methods that define loss in
terms of a single most violating labeling. Empirically,
PosLearn reduces error by up to 25% over margin scal-
ing and 10% over slack scaling in various tasks.

2. Existing Methods for Max-Margin

Training

We consider structured prediction problems that as-
sociate a score s(x,y) for each output y ∈ Y of an
input x, and predict the output y∗ with maximum
score. The scoring function s(x,y) is a dot product
of a feature vector f(x,y) defined jointly over the in-
put x and output y, and the corresponding param-
eter vector w. The space of possible outputs Y can
be exponentially large. Thus, efficient solutions for
y∗ = argmax

y∈YwT f(x,y) crucially depend on the de-
composability of the feature vector f over components
of y. During training the goal is to find a w using a
set of labeled input-output pairs (xi,yi) : i = 1 . . . N

so as to minimize prediction error. The error of pre-
dicting y for an instance xi whose correct label is yi is
user-provided. We denote it by Li(y). In max-margin
methods, the training goal is translated to finding a w

that minimizes the sum of the loss on the labeled data
while imposing a regularization penalty for overfitting.
The loss is a computationally convenient combination
of the user-provided error function and feature-derived
scores so as to both minimize training error and max-
imize the margin between correct and incorrect out-
puts. There are two popular loss functions for struc-
tured learning tasks: margin scaler and slack scaler.
We review them briefly.

2.1. Margin Scaling

In margin scaling, the goal is to find w such that
the difference in score wT δfi(y) = wT f(xi,yi) −
wT f(xi,y) of the correct output yi from an incorrect

labeling y is at least Li(y). This is formulated as:

min
w,ξ

1

2
||w||2 + C

N
∑

i=1

ξi

s.t. wT δfi(y) ≥ Li(y)− ξi ∀y 6= yi, i : 1 . . . N

ξi ≥ 0 i : 1 . . . N

Two category of methods have been proposed to opti-
mize the above QP. The first category is based on the
cutting plane algorithm to avoid generating the expo-
nentially many constraints. This involves incremen-
tally finding the output yM = argmax

y
(wT f(xi,y) +

Li(y)) which most violates the constraint. yM can
be found using the same inference algorithm as MAP
y∗ = argmax

y
wT f(xi,y) when Li(y) decomposes over

variable subsets no larger than the subsets in the de-
composition of f(xi,y). This category includes exact
gradient ascent methods (Tsochantaridis et al., 2005),
stochastic gradient methods (Bordes et al., 2007) and
online sub-gradient methods (Ratliff et al., 2007). The
online structured learning methods of (Crammer &
Singer, 2003) follow a perceptron based framework but
their constraints are identical to the margin scaling
method described here. The second category of meth-
ods (Taskar, 2004; Taskar et al., 2006) exploit the de-
composability of the error function to create a com-
bined program for the inference and parameter learn-
ing task.

2.2. Slack Scaling

Slack scaling demands a margin of one but scales the
slacks of violating outputs in proportion to their errors.
The corresponding optimization problem is:

min
w,ξ

1

2
||w||2 + C

N
∑

i=1

ξi

s.t. wT δfi(y) ≥ 1− ξi

Li(y)
∀y 6= yi, i : 1 . . . N

ξi ≥ 0 i : 1 . . . N

The optimization of the above QP via the cutting
plane algorithm requires the inference of the labeling
yS = argmax

y
(1−wT δfi(y)− ξi

Li(y) ). Unlike for mar-

gin scaling, even with decomposable loss and scoring
functions, it is not easy to find yS efficiently. For this
reason, the slack scaling approach is not popular.

However, the slack loss is in many ways better behaved
than margin loss (Tsochantaridis et al., 2005). Margin
scaling gives too much importance to instances which
are already well-separated from the margin. This hurts
because the loss ξi is determined by a single most vio-
lating labeling. If a labeling imposes a difficult margin



Accurate max-margin training for structured output spaces

requirement because of its large error, the optimizer
will appropriately increase ξi. After that, there is no
incentive to improving separability of any other label-
ing of that instance. In contrast, the slack scaling loss
will ignore instances that are separated by a margin
of 1, and ξi is determined by labelings that matter be-
cause of their being close to the margin. Empirically,
we found slack scaling to give better accuracy than
margin scaling (Section 5). Slack scaling also makes
it convenient for an end-user to define an error func-
tion and a feature vector and tune C because the error
function can be arbitrarily scaled vis-a-vis the feature
vector.

3. Approximate Slack Scaling

We present a variational approximation to the slack in-
ference problem that is applicable for any structured
model for which we can only solve for the MAP effi-
ciently. The slack inference problem is to find

yS = argmax
y∈Y

(

1−wT δfi(y)− ξi

Li(y)

)

= argmax
y∈Y

(

si(y)− ξi

Li(y)

)

(1)

where si(y) = wT f(xi,y), Y = {y : y 6= yi, si(y) −
ξi

Li(y) > si(yi)−1} is the set of all violating labelings.

We approximate yS with another labeling yA. Our ap-
proximation is based on the observation that si(y) −

ξi

Li(y) is concave in Li(y) and its variational ap-

proximation can be written as a linear function of
Li(y) (Jordan et al., 1999). Here on, we drop the
subscript i wherever possible.

Claim 3.1. s(y)− ξ
L(y) = minλ≥0 s(y)+λL(y)−2

√
ξλ

Proof. Any concave function f(z) can be expressed as
minλ≥0(zλ− f∗(λ)) where f∗(λ) = minz(zλ− f(z)) is
the conjugate function of f(z). The result follows from
the fact that the conjugate function of −ξ

z
is 2
√

ξλ.

Let F ′(y; λ) , s(y) + λL(y) − 2
√

ξλ and F (λ) ,

maxy 6=yi
F ′(y;λ)

We now approximate the exact slack MAP objective
with an upper bound as follows:

max
y∈Y

(

s(y)− ξ

L(y)

)

= max
y∈Y

min
λ≥0

F ′(y;λ) (2)

≤ min
λ≥0

max
y∈Y

F ′(y;λ) (3)

≤ min
λ≥0

F (λ) (4)

For a fixed λ, we can compute F (λ) using the loss aug-
mented MAP algorithm employed in margin scaling to
first find yλ = argmax

y 6=yi
s(y) + λL(y) and then set-

ting F (λ) = F ′(yλ;λ). The constraint y 6= yi can
be met by asking the loss augmented MAP algorithm
to return top two MAPs. The algorithmic extension
to return top two MAPs is straight forward in many
structured tasks.

We search for the λ for which the upper bound F (λ) is
minimized by exploiting the fact that F (λ) is convex
in λ.

Claim 3.2. F (λ) is convex in λ.

Proof. It can be seen that F ′(y;λ) is convex in λ.
Since F (λ) is a max of finitely many convex functions,
and max is also convex, F (λ) is convex.

We can compute minλ≥0 F (λ) using efficient line
search algorithms such as Golden Search. During the
search phase, for each λ that we encounter, we evaluate
F (λ) and thus get one labeling. Of all these labelings,
we return the one with the highest s(y)− ξ

L(y) as yA.

We show in the next section the range [λl, λu] within
which it is sufficient to perform the line search.

3.1. Upper and Lower Bounds for λ

Since λ ≥ 0, we can use λl = 0 as the lower limit.
However, with λ = 0, F ′(y;λ) is not able to distin-
guish between high and loss labelings with same scores
commonly seen in early training iterations. It can be
shown that with λl = ε

Lmax
where Lmax is the maxi-

mum possible loss, F (λ) for any λ < λl will not return
any violating labeling with slack score more than ε of
the score of a labeling returned with λ ≥ λl. By set-
ting ε to the tolerance of the cutting-plane algorithm,
we get a provably correct lower bound.

For the upper bound, it is sufficient to pick a λu such
that for any λ ≥ λu, either F (λ) gets the same vio-
lator as F (λu) or a non-violator that we are not in-
terested in. It is sufficient to pick a λu such that
argmax

y∈YF ′(y;λu) (= y′ say) has the maximum loss

among all violators in Y. Hence we need:

s(y′) + λuL(y′) ≥ max
y∈Y, L(y)<L(y′)

s(y) + λuL(y)

Let y1 , argmax
y
s(y) and Lε be the minimum dif-

ference between two distinct loss values (e.g. Lε = 1
for Hamming loss). Then the right side can be atmost

s(y1)+λu(L(y′)−Lε). So we require λu ≥ s(y1)−s(y′)
Lε

.

Now, y′ ∈ Y ⇒ s(y′) ≥ s(yi) − 1 + ξ
L(y′) ≥
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s(yi) − 1 + ξ
Lmax

, so we can conservatively set λu =

1
Lε

(

s(y1)− s(yi) + 1− ξ
Lmax

)

.

3.2. Limitation of Approximate Slack

In the worst case, it is possible that the exact slack
MAP yS violates the inequality but yA does not, as
we show next.

Claim 3.3. s(yA)− ξ
L(yA)

< s(yi)− 1 + ε 6⇒ s(yS)−
ξ

L(yS)
< s(yi)− 1 + ε

Proof. We prove the claim with a counter example.
Let yj , j = 1, 2, 3 be three labelings with scores sj =
− 1

2 ,− 13
18 ,− 5

6 and losses Lj = 1, 2, 3. Note that s1 >

s2 > s3 and L1 < L2 < L3. Let the score of the true
labeling be s = 0, the slack be ξ = 19

36 , and let ε ≈ 0.

By computing sgn(sj − ξ
Lj
− s + 1 − ε), we can see

that labelings y1 and y3 are not violators but y2 is.
In order to return y2 as the worst violator, there must
exist λ such that s2 + λL2 ≥ sj + λLj , j = 1, 3. This
translates to the constraints λ > 2

9 and λ < 1
9 , which

are infeasible.

The above counter example showed that it is impossi-
ble to approximate the slack scaled constraint by any
method that depends on finding MAP with varying
weights on error. This limitation though seemingly
restrictive, only slightly hampers the performance in
practice, as evident in our experimental results.

4. Position Learner

We next propose a new formulation for max-margin
training that directly exposes the decomposability of
the error function so as to require solving a consid-
erably simpler inference problem. We show that this
new formulation not only addresses the computational
problem of slack scaling inference, but also provides a
more accurate characterization of the loss of scoring
functions.

The basic premise of the new learner, which we call
PosLearn, is that when error is additive over a set of
positions, the loss should also additively reflect margin
violations at each possible error position. This is in
contrast to both the margin and slack scaling where
loss is in terms of a single most violating labeling.

Let Li(y) =
∑

c∈C Li,c(yc) denote a decomposition of
the error function. Our goal during training is to en-
sure that at each possible error position c, the correct
labeling has a margin over all labelings where c is in-
correctly labeled. If not, we add a hinge loss on the
difference in score between the correct labeling yi and

the best labeling argmax
y:yc 6=yi,c

wT f(xi,y) incorrect
at c. This yields the following constrained optimiza-
tion

min
w,ξ

1

2
||w||2 + C

N
∑

i=1

∑

c

ξi,c

s.t wT δfi(y) ≥ 1− ξi,c

Li,c(yc)
∀y : yc 6= yi,c

ξi,c ≥ 0 i : 1 . . . N,∀c
In the above program, the number of slack variables
is equal to the total number of error positions over all
instances. Otherwise, the form of the QP is the same
as in Section 2.2 and therefore can be solved via similar
cutting plane algorithms. For a given position c of an
instance i, the most violating constraint is the labeling

yP :c , argmax
y:yc 6=yi,c

(

si(y)− ξi,c

Li,c(yc)

)

(5)

This inference problem can be solved efficiently by any
structured learning task in which MAP can be found
efficiently since

max
y:yc 6=yi,c

si(y)− ξi,c

Li,c(yc)
= max

yc 6=yi,c

(

max
y∼yc

si(y)− ξi,c

Li,c(yc)

)

where the outer max is over a small number of values
as the size of c is typically small and the inner max is
MAP inference with label of c constrained to yc. The
MAPs yP :c will typically be evaluated simultaneously
for each c. In many structured learning tasks, all these
MAPs can be found in just twice the amount of time
it takes to compute a single unrestricted MAP, as we
show in Section 4.3.1.

In addition to these computational advantages,
PosLearn also provides better loss characterization
than slack scaling.

4.1. Comparison with Slack Scaling

First, we claim that the PosLearn loss is an upper
bound of the slack loss.

Claim 4.1. The slack loss
∑

i maxy Li(y)[1 −
wT δfi(y)]+ is upper bounded by the PosLearn loss
∑

i

∑

c maxy:yc 6=yi,c
Li,c(yc)[1−wT δfi(y)]+

Proof. Let yS = argmax
y 6=yi

Li(y)[1−wT δfi(y)]+.

Li(y
S)[1−wT δfi(y

S)]+

=
∑

c

Li,c(y
S
c )[1−wT δfi(y

S)]+

≤
∑

c

max
y:yc 6=yi,c

Li,c(yc)[1−wT δfi(y)]+
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Next, we show that slack scaling by defining the total
loss in terms of a single most violating labeling, can-
not discriminate amongst scoring functions as well as
the PosLearn loss that involves different labelings at
different error positions.

Consider one example where w is such that three la-
belings y0 = [0 0 0 0],y1 = [1 1 0 0],y2 = [0 0 1 0],
all have the same score of 1. Let y0 be the correct
labeling, then L(y1) = 2, L(y2) = 1, assuming Ham-
ming error. Let the score of all remaining labelings be
0. The total slack loss in this case is 2 whereas the
PosLearn loss is 3. Now consider the case where y2

has score 0. The slack loss remains unchanged whereas
PosLearn loss reduces to 2.

An important consequence of the reduced error cover-
age is that, when the cutting plane algorithm termi-
nates in slack scaling, PosLearn could continue to find
violating constraints. The reverse is not true.

4.2. Comparison with M3N Training

The PosLearn program appears similar to the M3N

program of (Taskar, 2004) because both decompose
the slack variable over multiple positions. However,
the similarity is only superficial. The training objec-
tive of M3N is Margin scaling and the position spe-
cific slack variables are for integrating training with
inference for loss augmented MAP. In PosLearn the
position specific slacks lead to a very different training
objective.

4.3. Common Decomposable Error Functions

We show examples of decomposable error functions in
several structured learning tasks and show how to effi-
ciently find the most violating constraints over all error
positions simultaneously.

4.3.1. Markov Models

Many structured prediction tasks can be modeled as
Markov models. Popular examples are sequence label-
ing for information extraction (Lafferty et al., 2001),
and grid models for image segmentation (Taskar, 2004;
Boykov et al., 2001). A natural error function here is
Hamming loss that decomposes over the nodes of the
Markov network. Typical MAP inference algorithms
based on belief propagation also give max-marginals at
each node. The max-marginals gives us at each (node
c, label y) pair, the best labeling yc:y with node c la-
beled y. We can now find the most violating labeling
at each position c via

max
y 6=yi,c

(1−wT δfi(y
c:y))Li,c(y)

where Li,c(y) = 1 when y 6= yi,c for Hamming loss.
In general Li,c(y) can be any arbitrary real-value, for
example a mis-classification matrix M(y′, y) could give
the cost of misclassifying a y′ node as y.

4.3.2. Segmentation

The output space Y consists of all possible labeled seg-
mentations of an input sequence x. A segmentation y

consists of a sequence of segments s1 . . . sp where each
sj = (tj , uj , yj) with tj = segment start position, uj

= segment end position, and yj= segment label. Seg-
mentation models have been proposed as alternative
models for information extraction that allows for more
effective use of entity-level features (McDonald et al.,
2005a; Sarawagi & Cohen, 2004).

The feature vector decomposes over segments and is
a function of the segment and the label of the pre-
vious segment. Thus f(x,y) =

∑p

j=1 f(x, sj , yj−1).
The error function also decomposes over segments as
Li(y) =

∑

s∈y
Li(s) where for a segment s = (t, u, y),

Li((t, u, y)) is defined as

Li((t, u, y)) =

{

py +
∑

(l′,u′,y′)∈yi

t≤u′≤u

ry′ (t, u) 6∈ yi

M(y′, y) (t, u, y′) ∈ yi

where py is the precision penalty of labeling a segment
as y and ry′ is the recall penalty of missing a true
segment of label y′ and M(y′, y) is the misclassification
cost matrix applicable when the same span appears in
both segmentations.

The number of slack variables is the number of possible
segment spans (t, u), which is O(nm) for a sequence of
length n and maximum segment size m.

The MAP segmentation can be found using an ex-
tension of the Viterbi algorithm (Sarawagi & Cohen,
2004). Viterbi also gives the highest scoring segmenta-
tion of the sequence from 1 to i with the last segment
ending at i with label y for all possible i and y. Call
this γ(i, y). Similarly, we can use a backward Viterbi
pass to get β(i, y) the highest scoring segmentation
from i + 1 to n with label y on the segment ending
at i. These can be combined to find the most vio-
lating constraint for a slack variable corresponding to
segment (t, u) as:

max
y′,y:(t,u,y) 6∈yi

Li((t, u, y))[1− s(yi) + γ(t− 1, y′)

+ wT f(x, (t, u, y), y′) + β(u, y)]+

4.3.3. Unlabeled Dependency Parsing

In unlabeled dependency parsing, the goal is to assign
each token to its ’head’ token (or to a dummy token),
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such that the head links form a directed spanning tree.
The feature vector for a tree y over a sentence x is de-
composable over the edges (McDonald et al., 2005b):
f(x,y) =

∑

t f(yt,x, t) where t is a token and yt is
its head. A natural error function for a dependency
parse tree is then the number of words that are as-
signed an incorrect head word. In this case, the error
and features decompose in exactly the same way, over
individual words. The only coupling amongst the pre-
dictions of different words is that they need to form a
tree.

We use the combinatorial non-projective parsing al-
gorithm of (McDonald et al., 2005b), which cannot
be easily extended to simultaneously return MAP for
each position. For PosLearn we return the worst vio-
lator for each position by first finding the unrestricted
MAP y∗. Then, for each position where y∗ is cor-
rect, we re-invoke MAP with the correct assignment
disabled. In the worse case, this will lead to n MAP
invocations.

5. Experiments

We present experimental results on three tasks — se-
quence labeling, text segmentation and dependency
parsing, performed on the following datasets and set-
tings:

CoNLL’03: We use the English benchmark from the
CoNLL’03 shared task on named entity recognition.
The corpus consists of train, development and test sets
of ≈ 14000, 3200 and 3400 sentences respectively. We
used exactly the same features as in the trained model
from Stanford’s Named Entity Recognizer 1.

Cora: This is a database of ≈ 500 citations (McCal-
lum et al., 2000), containing entities such as Author,
Journal, Title, Year and Volume. We used standard
extraction features defined over the neighborhoods of
each token and the label of the previous token (Peng &
McCallum, 2004). For the segmentation task on this
dataset, we also used the segment length feature.

Address: This is a collection of ≈ 400 non-US postal
addresses. Unlike US addresses, these addresses are
highly irregular and relatively difficult to segment.
The features for sequence labeling and segmentation
tasks are as defined in (Sarawagi & Cohen, 2004).

CoNLL-X: We use the freely available treebanks for
Swedish, Dutch and Danish from the CoNLL X Shared
Task for unlabeled dependency parsing. The training
sets contain ≈ 11000, 13350, and 5200 sentences re-

1 http://nlp.stanford.edu/software/
stanford-ner-2008-05-07.tar.gz

Table 1. Token mis-classifications (in %) of all approaches
on all tasks. For sequence labeling and segmentation we
also report span F1 (after ’/’).

Margin Slack Approx PosLearn

Sequence Labeling

Cora 12.3/74.9 10.0/82.9 9.9/83.0 9.5/83.4
Address 17.1/71.0 15.7/76.7 15.1/78.1 14.2/78.4
CoNLL 2.89/84.7 2.95/84.7 2.96/84.6 2.82/85.1

Segmentation

Cora 17.7/81.8 17.4/81.9 17.3/81.9 16.2/83.1
Address 15.4/77.6 15.4/77.5 15.4/77.6 13.8/79.0

Dependency Parsing

Danish 12.4 - - 12.5
Dutch 16.3 - - 16.9
Swedish 12.9 - - 12.8

spectively. We use the first-order features, the on-
line MIRA trainer (Crammer & Singer, 2003), and
the non-projective parsing algorithm provided in the
MSTParser package2.

5.1. Results

Table 1 shows test errors (as defined in Section 4.3) and
Span F1 (where ever applicable) of all four training
approaches on all the tasks. For Cora and Address
results are averaged over ten splits of 25% train —
75% test, the rest are with the standard training and
test files as available in the benchmark. For sequence
and segmentation tasks, we are able to solve the Slack
inference problem exactly using a quadratic algorithm
that finds the MAP for each possible error value. For
dependency parsing, it was not easy to find MAP with
a pre-specified error. Hence, numbers for Slack scaling
methods are missing for this task.

Sequence labeling

We note that the errors go down in the order Margin
> Slack > ApproxSlack > PosLearn, and PosLearn
achieves ≈ 20% error reduction over Margin and 5-
10% over Slack. The difference between PosLearn and
Margin is statistically significant (p-value from paired
t-test is < 0.001), while that between ApproxSlack and
Slack is not. This confirms that the approximations
done in ApproxSlack are empirically good.

We also reports the entity span F1 values in Table
1 (numbers after the “/”). PosLearn provides signifi-

2http://sourceforge.net/mstparser
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Figure 1. Sequence labeling error (in %) of all approaches
on Cora as training size is increased.
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Figure 2. Comparison of training times on Cora over vari-
ous training percentages. The error bars denote one stan-
dard deviation over ten random splits.

cant improvements over Margin for Cora and Address,
going from 75 to 83 and 71 to 78 respectively. This
shows that optimizing for the error directly translates
to significantly better span F1 scores. For CoNLL’03
the gains are modest both for error and Span F1 for
reasons we will highlight in Section 5.2. Figure 1 in-
vestigates the effect of increasing training size on the
sequence labeling errors of all the approaches on Cora.
PosLearn remains the best approach for all training
sizes, with a 25% error reduction over Margin even for
75% training data. ApproxSlack and Slack are almost
identical for all training sizes.

Figure 2 compares the training time of the four ap-
proaches on Cora over various training sizes. PosLearn
and ApproxSlack turn out to be the cheapest of all
the approaches. Two key observations here are (a)
PosLearn is up to five times faster than Margin in
spite of generating many more constraints, and (b)
The training time of Margin reduces with an increase
in data. These can be attributed to two reasons. First,
PosLearn quickly generates a lot of relevant constraints
and terminates in much fewer iterations, whereas Mar-
gin spends too much time in separating high loss la-
belings which are already far enough. Second, when
data is scarce, Margin is not able to find good support
vectors early on and takes many more iterations. This

provides another empirical support for the recent ob-
servations in (Bottou & Bousquet, 2008) on the inverse
dependence of training time on data sizes.

Segmentation

The results for segmentation are similar to sequence
labeling. Again, PosLearn provides 7-10% decrease in
error over Margin and Slack. ApproxSlack again turns
out to be a close approximation to Slack.

Unlabeled dependency parsing

The difference between PosLearn and Margin turns
out to be very insignificant in this case. We cannot
evaluate Slack as its MAP inference algorithm is not
feasible in this setting. Our discussion in the next
section shows that we do not expect ApproxSlack to
score over Margin either.

Note our baseline numbers are competitive with the
state of the art for these tasks. For Swedish and Dan-
ish, the errors for Margin scaling are significantly lower
than the average errors of the CoNLL X Shared Task
participants — 15.8% and 15.5% respectively . For
Dutch, Margin scaling model is better than the best
model in the Shared Task (error 16.4%).

5.2. Discussion

We observed that Margin scaling was significantly
worse than other loss functions for tasks like sequence
labeling on the Address and Cora datasets, while being
the highest performing on tasks like dependency pars-
ing. We explain the reasons behind the varying gains
of Margin relative to other loss functions, in particu-
lar PosLearn, based on the decomposition of the error
function compared to the feature function.

We argue that margin scaling is a bad loss func-
tion only when the model comprises of features that
strongly couple larger subset of variables than the er-
ror function. Consider the case when the feature func-
tion decomposes over each position of y, exactly as in
the error function. This is true for dependency pars-
ing, and for sequence labeling models with no edge
features. In such cases, a structured formulation adds
little value, and a multi-class SVM with independent
constraints over the local features and loss at each posi-
tion, is just as adequate. The constraints of structured
margin scaling turn out to be a summation of the con-
straints of multi-class SVM and the two solve equiv-
alent objectives as shown in (Joachims, 2006). Inter-
estingly, (McDonald et al., 2005b) indeed finds that
such a model (which they call the factored model) is
very close to the structured model using margin scal-
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ing. We verify that for sequence labeling, if we disable
all edge features, then for the Address dataset, span
F1 drops from 71 to 62 and for Cora from 75 to 44
with Margin scaling. This indicates the strong impor-
tance of structured features for these datasets. In con-
trast, for CoNLL’03 where Margin is competitive with
PosLearn, removal of edge features causes only a small
drop in Span F1, from 84.7 to 81. Without edge fea-
tures, PosLearn shows little or negative improvement
over Margin scaling for all three datasets.

This indicates that in domains where the feature func-
tion does not induce strong coupling amongst vari-
ables, there is no reward in going beyond simple mar-
gin scaling, and possibly even multiclass SVMs. In
truly structured problems where features strongly cou-
ple multiple variables, margin scaling gets adversely af-
fected by the unnecessary margin requirements of high
error labelings due to shared slack variables. PosLearn
ignores labelings separated from the margin, and by
defining per-position slacks instead of a single shared
slack, handles such structured cases better.

6. Conclusion

We presented an efficient variational approximation
to the slack scaling approach, which only requires a
slightly modified loss augmented MAP algorithm, in-
stead of the inefficient slack scaling inference algo-
rithm. We demonstrated that in practice it performs
much better than margin scaling and closely approxi-
mates slack scaling.

Next, we argued that all existing approaches that de-
fine loss in terms of a single most violating label-
ing achieve inadequate separation from the correct la-
beling. We proposed a new trainer, PosLearn that
involves multiple labelings in trying to ensure max-
margin separation at each possible error position in
the structured output. The PosLearn constraints can
be generated using only the MAP algorithm, and for
many structured models the time required is no more
than twice the time taken to find MAP. Empirically,
this leads to significant error reduction over Margin
scaling on structured models that induce strong cou-
pling amongst output variables.

A compelling future direction is theoretically analyz-
ing the generalizability of PosLearn vis-a-vis other loss
scaling methods.
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