Graph Kernels between Point Clouds

FrancisR. Bach FRANCIS.BACH@MINES.ORG
INRIA - WILLOW Project-Team, Laboratoire d’Informatique d&cole Normale Suprieure, Paris, France

Abstract

Point clouds are sets of points in two or three di-
mensions. Most kernel methods for learning on
sets of points have not yet dealt with the specific
geometrical invariances and practical constraints
associated with point clouds in computer vision
and graphics. In this paper, we present exten-
sions of graph kernels for point clouds, which al-
low one to use kernel methods for such objects as
shapes, line drawings, or any three-dimensional
point clouds. In order to design rich and numer-
ically efficient kernels with as few free parame-
ters as possible, we use kernels between covari-
ance matrices and their factorizations on prob-
abilistic graphical models. We derive polyno-
mial time dynamic programming recursions and
present applications to recognition of handwrit-
ten digits and Chinese characters from few train-
ing examples.

point clouds, with applications to classification of line
drawings—such as handwritten digits (LeCun et al., 1998)
or Chinese characters (Srihari et al., 2007)—or shapes (Be-
longie et al., 2002). The natural geometrical structure of
point clouds is hard to represent in a few real-valued fea-
tures (see, e.g., Forsyth and Ponce (2003)), in particular
because of (a) the required local or global invariances by
rotation, scaling, and/or translation, (b) the lack of pre-
established registrations of the point clouds (i.e., @int
from one cloud are not given matched to points from an-
other cloud), and (c) the noise and occlusion that impose
that only portions of two point clouds ought to be com-
pared.

One of the leading principles for designing kernels between
structured objects is to decompose each object into parts
and to compare all parts of one object to all parts of another
object (Shawe-Taylor & Cristianini, 2004). Even if there

is an exponential number of such decompositions, which
is a common case, this is numerically possible under two

conditions: (@) the object must lead itself to an efficient
enumeration of subparts, and (b) the similarity function be
tween subparts (i.e., thecal kerne), beyond being a posi-

tive definite kernel, must be simple enough so that the sum

In recent years, kernels for structured data have been dgyer a potentially exponential number of terms can be re-
signed in many domains, such as bioinformatics (Vert etal.¢yrsively performed in polynomial time through factoriza-
2004), text processing (Lodhi et al., 2002) and computer Vitjgn.

sion (Harchaoui & Bach, 2007; Parsana et al., 2008). They L o _ L
provide an elegant way of including knovenpriori infor- One of the m.ost striking instantiations of this design princ
mation, by using directly the natural topological struetur Pl€ are thestring kernelgsee, e.g., Shawe-Taylor and Cris-
of objects. Usinga priori knowledge through kernels on tianini (2004)), which consider all substrings of a given
structured data have proved beneficial because it allow§tring but still allow efficient computation in polynomial
(a) to reduce the number of training examples, (b) to relime. The same principle can also be applied to graphs:
use existing data representations that are already well dédtuitively, the graph kernels(Ramon & Gartner, 2003;
veloped by experts of those domains and (c) to bring td(ash_lma et al., 2004; Borgwardt et al., 2005) conS|_der all
bear the rapidly developing kernel machinery, and in Ioar_pos:yble subgraphs and compare and count matching sub-
ticular semi-supervised learning—see, e.g., Chapelle et agraphs. However, the set of subgraphs (or even the set of
(2006)—and hyperparameter learning for supervised kerpaths) has exponential size and cannot be efficiently de-
nel methods—see, e.g., Bach et al. (2004). scribed recursively. By choosing appropriate substrigstur

. N o such asvalksor tree-walks and fully factorized local ker-
In this paper, we propose a positive definite kernel betweeRe|s matrix inversion formulations (Kashima et al., 2004)
and efficient dynamic programming recursions (Harchaoui
& Bach, 2007) allow one to sum over an exponential num-
ber of substructures in polynomial time (for more details
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on graph kernels, see Section 2.1).

In this paper, we consider the application of graph kernels

then, our graph kernels consider all partial matches be-

tween two neighborhood graphs and sum over those. How-

ever, the straightforward application of graph kernelsgsos

a major problem: in the context of computer vision, sub-

structures correspond to matched sets of points, and degkigure 1.(top left) path, (top right)l-walk which is not 2-walk,
ing with local invariances by rotation and/or translatiori  (bottom left)2-walk which is not 88-walk, (bottom right) 4-walk.
poses to use a local kernel that cannot be readily expressed

as a product of separate terms for each pair of points, and

the usual dynamic programming and matrix inversion ap-gjmijarity measures based on existing techniques from the
proaches cannot then be directly applied. One of the maig oo matching literature, that can be made positive def-
contributions of this paper is to design a local kernel that i inite by ad hocmatrix transformations; this includes the

not fully factorized but can be instead factorized accaydin o jit_gistance kernel (Neuhaus & Bunke, 2006) and the op-
to the graph underlying the substructure. This is naturally;,q assignment kernel (Bhlich et al., 2005; Vert, 2008).
done through probabilistic graphical models and the design

of positive definite kernels for covariance matrices that fa Another class of graph kernels relies on a set of substruc-

torize on graphical models (see Section 3). With this novefures of the graphs. The most natural ones are paths, sub-
local kernel, we derive new polynomial time dynamic pro- trees and more generally subgraphs; however, they do not
gramming recursions in Section 4. In Section 5, we preseniead to positive definite kernels with polynomial time com-

to point clouds. Indeed, we assume that each point cloud %
has a graph structure (most often a neighborhood graph);

simulations on handwritten character recognition. putation algorithms—see, in particular, NP-hardness re-
sults by Ramon and &tner (2003)—and recent work has
2. Graph Kernels focused on larger sets of substructures. In particuéar;

dom walkkernels consider all possible walks and sum a
In this section, we consider two labelled undirected graphsocal kernel over all possible walks of the graphs (with
G = (V,E,a,z) andH = (W, F,b,y), whereV,W are  all possible lengths). With a proper length-dependent fac-
vertex setsF, I’ are edge sets and b, z,y are vertex la-  tor, the computation can be achieved by solving a large
belling functions (Diestel, 2005). Two types of labels aresparse linear system (Kashima et al., 2004; Borgwardt
considered:attributes which are denoted(v) € A for et al., 2005), whose running time complexity has been re-
vertexv € V andb(w) € A for vertexw € W andpo-  cently reduced (Vishwanathan et al., 2007). When consid-
sitions which are denoted(v) € X andy(w) € X. We  ering fixed-length walks, efficient dynamic programming
assume that the graphs have no self-loops. Our motivatingecursions can de derived (Harchaoui & Bach, 2007) that
examples are line drawings, whete= A = R? (i.e., the  drive down the computation time, at the cost of consider-
position is itself also an attribute). In this case, the frap ing a smaller feature space. These however have the ad-
is naturally obtained from the drawings by considering 4-vantage of allowing extensions to other types of substruc-
connectivity or 8-connectivity (Forsyth & Ponce, 2003). In tures, namely “tree-walks” (Ramon &#Btner, 2003), that
other cases, graphs can be easily obtained from nearesie now present.
neighbor graphs.

2.2. Paths, Walks, Subtrees and Tree-walks

2.1. Related work Given an undirected grapfi with vertex setl’, apathis
Graph data occur in many application domains, and kernela sequence of distinct connected vertices, whileaik is

for attributed graphs have received increased interesiein t a sequence of possibly non distinct connected vertices. In
applied machine learning literature, in particular in bioi  order to prevent the walks from going back and forth too
formatics (Kashima et al., 2004; Borgwardt et al., 2005)quickly (a phenomenon referred to tsttering by Maheé
and computer vision (Harchaoui & Bach, 2007). Note thatand Vert (2006)), we further restrain the set of walks; that
in this paper, we only consider kernels between graphss, for any positive integeB, we define3-walks as walks
(each data point is a graph), as opposed to kernels for a siguch that any -+ 1 successive vertices are distinttalks

gle dataset with associated graph information between datare regular walks); see examples in Figure 1. Note that
points (see, e.g., Shawe-Taylor and Cristianini (2004)).  when the grapiy is a tree (no cycles), then the set®f
walks is equal to the set of paths. More generally, for any
raph,3-walks of lengthg + 1 are exactly paths of length
+1. Note that the intege? corresponds to the “memory”

Current graph kernels can roughly be divided in two
classes: the first class is composed of non positive definit%
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Figure 2.(left) binary 2-tree-walk, which in fact a subtree, (right) cee ® 0O

binary 1-tree-walk which is not 2-tree-walk. ;. & & ;.
O @ @ O

of the walk, i.e., the_ number of past vertices it needs toFigure 3.Graph kernels between two graphs (each color repre-
remember before going on. sents a different label). We display all binary 1-tree walks with

A subtree ofG is a subgraph of: with no cycles. A sub- a specific tree structure, extracted from two simple graphs; the

tree of G can thus be seen as a connected subset of distin@faph kernels is computing and summing the local kernels be-

nodes ofG with an underlying tree structure. The notion tween all those extracted tree-walks. In the case of the Dirac ker-

of walk is extending the notion of path b aliowin nodes nel (hard matching), only one pair of tree-walks is matched (for
=ncing P ya 9 both labels and structures).

to be equal; similarly, we can extend the notion of subtrees

to tree-walks which can have nodes that are equal. More ) )

precisely, we define an-ary tree-walk of depth of Gasa  sociated with the nodes in the tree-walks (remember that

rooted labellech-ary tree of depthy with nodes labelled by ~€ach node of and H has two labels, a position and

vertices in(?, and such that the labels of neighbors in the@n attribute). Given a tree structuieand consistent la-

tree-walk must be neighbors i@ (we refer to all allowed bellingsI € J3(T',G) andJ € Js(T, H), we let denote

such set of labels asonsistentiabels). We assume that ¢r.1,7(G, H) the value of the local kernel between two

the tree-walks are not necessarily complete trees, i.eh ea tree-walks defined by the same structiirand labellings/

node may have less than children. Tree-walks can be andJ.

plotted on top of the original graph, as shown in Figure Z'Following Ramon and &rtner (2003), we can define the
and may be represented by a tree struciliiever the ver- e kemelas the sum over all matching tree-walks @f
tex set{1,...,|T|} and a tuple of consistent but possibly 5nq 7 of the local kernel. i.e.:

non distinct labeld € V17! (i.e., the labels of neighboring
vertices inT” must be neighboring vertices ). Finally, in kapA (G H) = Z Paw(T)x

this paper, we consider only rooted subtrees, i.e., subtree T€Tay

where a specific node is identified as the root; moreover, all > > arss (G H). (1)
the trees that we consider are unordered trees (i.e., no orde 1€J3(T,G) JeJs(T,H)

is considered among siblings). When considering 1-walks (i.eo; = 8 = 1), and letting

We can also defing-tree-walks, as tree-walks such that the maximal walk lengthy tend to+oco, we get back the

for each node irfl, its label (which is an element of the random walk kernel (Ramon & &@tner, 2003; Kashima
original vertex set’) and the ones of all its descendants up€t al., 2004). If the kernejr ; ;(G, H) has nonnegative

to the 3-th generation are all distinct. With that definition, values and is equal to 1 if the two tree-walks are equal, it
1-tree-walks are regular tree-walks (see Figure 2), and ifan be seen as a soft matching indicator, and then the kernel
o = 1, we get back3-walks. From now on, we refer to the in Eq. (1) simply counts the softly matched tree-walks in

descendants up to thieth generation as thé-descendants. the two graphs (see Figure 3 for an illustration with hard
matching).
We let denoteZ,, ., the set of rooted tree structures of depth

less thany and with at most: children per node; for exam- We add a nonnegative penalizatify, (') depending only
ple, 7;  is exactly the set of chain graphs of length lessOn the tree-structure. Besides the usual penalizationeof th
than~y. ForT € 7,., we denote7s(T,G) the set of number of node$T|, we also add a penalization of the
consistent labellings of” by vertices inV leading tog- ~ nhumber of leaf node$(T’) (i.e., nodes with no children).
tree-walks. With these definitions, &tree-walk ofG is ~ More precisely, we use the penalizatign, = A1)

characterized by (a) a tree structifee 7, -, and (b) a  This penalization, suggested by Maknd Vert (2006), is
labellingI € J5(T, G). essential in our situation to avoid that trees with nodes of

higher degrees dominate the sum.

2.3. Graph Kernels If ¢r1.7(G, H) is obtained from a positive definite kernel
We assume that we are given a positive definite kernel bebetween (labelled) tree-walks, théff ; (G, H) also de-
tween tree-walks that share the same tree structure, whidnes a positive definite kernel. The kerﬂ@ﬁﬁﬂ(G, H)

we refer to as théocal kernel This kernel depends on the sums thdocal kernelgr 1, ;(G, H) over all tree-walks of
tree structurel’ and the set of attributes and positions as-G' and H that share the same tree structure; the number
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of such matching tree-walks is exponential in the depth local kernelq}. ; (G, H) = kp(Kr, Ly)ga(a(l),b(J])).

thus, in order to deal with potentially deep trees, aregersi However, this local kemeﬂ,I,J(G’H) does not yet de-
definition is needed. As we now detall, it requires a specifiqpend on the tree structufg and the recursion may be ef-
type of local kernels, which can be decomposed accordingcient only if ¢%. , ;(G, H) can be computed recursively.

to tree structures. The factorized termy4(a(I),b(.J)) does not cause any
problems; however, for the teris (K, L), we need an
2.4.Local Kernels approximation based dfi. As we show in Section 3, this

The local kernel is used between tree-walks which can hav&2n be obtained by a factorization according to the appro-
large depths (note that everything we propose will turn outPriate graphical model, |.e.,.we.W|II replace each kernel ma
to have linear time complexity in the dept). We use trix qf the form K;bya projection onto a subset of kernel
the product of a kernel for attributes and a kernel for posi-matrices which allow efficient recursions.

tions. For attributes, we use the following usual factatize o ) )

form qa(a(1),6(.1)) = [T, ka(a(Z,).b(J,)), wherek,, 3. Positive Matrices and Graphical Models

is & positive definite kemel oml x .A. This allows the  1he main idea underlying the factorization of the kernel is
separate comparison of each matched pair of points ang, ¢onsider symmetric positive definite matrices as covari-
efficient dynamic programming recursions (Harchaoui & 4nce matrices and to look at probabilistic graphical models
Bach, 2007). However, for our local kemel on positions, yefined for Gaussian random vectors with those covariance
we need a kernel thgointly depends on the whole vectors arrices. The goal of this section is to show that by ap-
x(I) € X'l andy(J) € X1, and not only on the pairs propriate graphical model techniques, we can design prop-

(x(Lp), y(Jp)) € X x X. Indeed, we do not assume that gy factorized approximations of Eq. (2), namely through
the pairs areegisteredi.e., we do not know the matching Eq. (6) and Eq. (7).

between points indexed kyin the first graph and the ones
indexed by.J in the second graph. More precisely, we assume that we haveandom vari-

ables 71, ..., Z, with probability distributionp(z) =
p(z1,...,2,). Given a kernel matrix< (in our case de-
fined asK;; = e vllz—=1” for positionszy, ..., z,),

In this paper, we focus oA’ = R? andtranslation invari-

ant local kernels, which implies that the local kernel for
positions may only depend on differences) — x(i') and ) . L ;
y(j) — y(j') for (i.i") € I x Tand(j, i) € J x J. We we consider jointly Gaussian distributed random variables

further reduce these to kernel matrices corresponding to 4, .’ Z.” suph th.atcov(Z,», Zj). = Kij. I_n this section,

translation invariant positive definite kerred (z1 — z2) with this |de_nt|f|cat|on,_we consider covariance matrices a
. > L~ "2)-  kernel matrices, and vice-versa.

Depending on the applicatioh, may or may not be rota-

tion |nv_ar|ant. In simulations, we use thejotatlgn n;vatla 3.1. Graphical Modelsand Junction Trees

Gaussian kernel of the fordy (z1, z5) = e~ vllz1—221",

Graphical models provide a flexible and intuitive way of

defining factorized probability distributions. Given any

undirected grapld) with vertices in{1, ..., n}, the distri-

butionp(z) is said to factorize irQ if it can be written as

a product of potentials over all cligues (completely con-

Thus, we reduce the set of all positionsif”'| and X"V

to full kernel matricesk’ € RIVI*IVI andL € RIWIxIWI
for each graph, defined ds(v,v") = kx(z(v) — z(v'))
(and similarly for ). These matrices are by construction
symmetric positive semi-definite and, for simplicity, we as oo suhgraphs) of the gragh When the distribution is
sume thgt these matrices are p03|t|v§ definite _(|.e., IAVerts o ssian with covariance matri € R " the distribu-
!ble),_whlch can be enforced by a_ddlng a multiple of thetion factorizes if and only i{ KX ~1);; = 0 for each(i, j)
identity matr_|x. The local kernel will thus only dgpend on | hich is not an edge i) (Lauritzen, 1996).

the submatriced{; = K;randL; = L ;, which are

positive definite matrices. Note that we use kernel matrice$n this paper, we only considetecomposablgraphical

K andL to represent the geometry of each graph, and thamodels, for which the grapty is triangulated(i.e., there
we use a positive definite kernel on such kernel matrices. exists no chordless cycle of length strictly larger than 3).
In this case, the joint distribution is uniquely defined from
its marginalspc(z¢) on the cliquesC of the graph@.
Namely, ifC(Q) is the set of maximal cliques @, we can
build a tree of cliques, gunction tree such thatp(z) =

We consider the following positive definite kernel on
positive matricesk’ and L, the (squared) Bhattacharyya
kernelkg, defined as (Kondor & Jebara, 2003):

k(K L) = |K[V2|L|V2 | KL |~ @ lleecqre(zo)/ e crec@),cner Pencr (zoner) (see
_ Figure 4 for an example of a graphical model and a junction
where| K| denotes the determinant &f. tree). The set§' N C’ are usually referred to aeparators

By taking the product of the attribute-based local kernel2nd We letdenots(Q) the set of such separators. Note that
and the position-based local kernel, we get the foIIowingfor a zero mean normally distributed vector, the marginals
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() Q‘Q 3.3. Graphical Models and Kernels

D—G)r—~5) We now propose several ways of defining a kernel adapted
‘ to graphical models. All of them are based on replacing

@ ® determinantsM | by |IIg (M), and their different decom-

positions in Eg. (3) and Eq. (4). Simply using Eq. (3), we

Figure 4.(left) original graph, (middle) a single ex- obtain the similarity measure:

tracted tre-walk, (right) decomposable graphical model

Q1(T) with added edges in red, defined in Section 3.4. kgo(K,L):HkB(KC,LC) HkB(Ks,Ls)*l- (5)

The junction tree is a chain composed of the cliques ’ CEC(Q) SES(Q)

{1,2},{2,3,6},{5,6,9},{4,5,8},{4,7}. which turns out not to be a positive definite kernel for gen-
eral covariance matrices:

pc(zc) are characterized by the marginal covariance maproposition 1 For any decomposable mod@| the kernel
trix K¢ = Kc,c. Projecting onto a graphical model will 1 ' defined in Eq. (5) is a positive definite kernel on the
preserve the marginal over all maximal cliques, and thusset of covariance matrice&” such that for all separators
preserve the local kernel matrices, while imposing zeros ing ¢ S(Q), Ks.s = I. In particular, when all separators
the inverse ofx'. have cardinal one, this is a kernel on correlation matrices.

3.2. Graphical Modelsand Projections In order to remove the condition on separators (i.e.,
we want more sharing between cliques than through a
single variable), we consider the rooted junction tree
representation in Eq. (4). A straightforward kernel is
%o compute the product of the Bhattacharyya kernels
variance matrices onto a graphical model, which is a clas B Clig(C): Leipg () for each conditional covariance
matrix. However, this does not lead to a true distance on

sical tool in probabilistic modelling (Lauritzen, 1996).eW . . .
g ' covariance matrices that factorize ghbecause the set of
leave the study of the approximation properties of such g " . . . )
L . conditional covariance matrices do not characterize egtir
projection (i.e., for a giverk(, how dense the graph should

be to approximate the full local kernel correctly?) to figtur th(ilse distributions. Rather, we consider the following ker

work—see, e.g., Caetano et al. (2006) for related results.

We let denotell, (K) the covariance matrix that factor-
izes in@ which is closest tas for the Kullback-Leibler
divergence between normal distributions. In this paper, w
essentially replac&” by IT (K); i.e., we project all our co-

kg(K L) = HCeC(Q) kg‘pQ(C)(K» L); (6)
Practically, since our kernel on kernel matrices involves . . Rlo

determinants, we simply need to complife, (K)| effi-  for the root clique, we defing, ™ (K, L) = ks(Kr, Lr)
ciently. For decomposable graphical modéls;(K) can  and the kerneldcg‘pQ(C)(K, L) are defined as kernels
be obtained in closed form (Lauritzen, 1996) and its deterbetween conditional Gaussian distributions 2 given
minant has the following simple expression: Zpo(c)- We use

/2y, 1/2
Clpa(C) [Kcipg @) Leipg )]

k K.L)= . (7

log |l (K)| = E log |Kc| — E log |Ks|. (3) B ( ) |%KC|pQ(c)+%LC|pQ(C)+MMT| "
cec@ ses(@) where the additional term M is equal to

The determinanily (k)| is thus a ratio of terms (determi- %(KC’J’Q(C)Kle(C) *LCm(C)LpC;(C))- This exactly cor-
nants over cliques and separators), which will restrict the'€sponds to putting a prior with identity covariance matrix
applicability of the projected kernels (see Proposition 1) On variablesZ,, ) and considering the kernel between
In order to keep only products, we consider the fo||0Wingthe resulting joint covariance matrices on variables irdiex
equivalent form: if the junction tree is rooted (by choosing by (C;pq(C)). We now have a positive definite kernel on
any clique as the root), then for each clique but the root, &Il covariance matrices:

unique parent clique is defined, and we have:

Proposition 2 For any decomposable modgl the kernel
g [Tl (K)| = 3 log e kg(K, L) defined in Eq. (6) and Eq. (7) i_s a positive defi-
Q CeC(Q) 75 [Kpg (o) nite kernel on the set of covariance matrices.

>ceco) 08| Kepoo)l,  (4)

Note that the kernel is not invariant by the choice of the
particular root of the junction tree. However, in our settin
this is not an issue because we have a natural way of rooting
the junction trees (i.e, following the rooted tree-walke se

where pg(C) is the parent cligue ofQ (and @ for
the root clique) and the conditional covariance ma-

trix is def'?fd’ as usual, a¥cpec) = Koo = gegion 3.4). Note that these kernels could be useful in
K po @)K (0) po ) Kpa(c).c (Lauritzen, 1996). other domains than point clouds and computer vision.
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In Section 4, we will use the notatioifig”2"]1“]2 (K,L)
for |[I;| = |I2] and|Ji| = |J2| to denote the kernel
between covariance matricés;, j;, and Ly, ;, adapted
to the conditional distributiond; |1, and J;|J>, defined
through Eq. (7).

3.4. Choice of Graphical Models Figure 5.(left) undirected grapldz, (right) graphG 2.

Given the rooted tree structufeof a g-tree-walk, we now o . ) ]

need to define the graphical modg)(7) that we use to f of R, are distinct from the nodes iR,. This defines a
project our kernel matrices. A natural candidatefist- ~ 9raPhGa,s = (Va,s, Ea 5) and aneighborhoalc, , ()
self, however, as shown in Section 4, in order to computd0r 12 € Va5 (see Figure 5 for an example). Similarly we
efficiently the kernel we simply need that the local ker- define agrapttl, s = (Wa, s, Fo,s) for the graphti. Note
nel is a product of terms that only involve a node and itsthat whema =1, Vi s is the set of paths of length less than
3-descendants. The densest graph (remember that dengdrequal tog.

graphs lead to better approximations when projecting ontqor g 3-tree-walk, the root with its3-descendants must
the graphical model) we may use is exactly the following: have distinct vertices and thus corresponds exactly to-an el
we defineQ3(7") such that for all nodes iff", the node to-  ement ofv/, 5. We denotekZ , (G, H, Ry, So) the same
gether with all its3-descendants form a clique, i.e., a nodeernel as defined in Eq. (8), but restricted to tree-walks tha
is connected to itg3-descendants apd afl-descendants  gtart respectively withz, and S,. Note that if R, and S,

are also mutually connected (see Figure 4 for example fogre not equivalent, thehfﬁ (G, H, Ry, So) = 0.

B = 1): the set of cliques are thus the setfafmilies of . e

depthg + 1 (i.e., with 3 + 1 generations). Thus, our final We obtain the following recursion between depthsnd

kernel is: depthy—1, for all Ry €V, g and andS, € W, s such that
Ry~ S():
k25, (GLH) = Y fau(T)x i i,
TeTa,~ ka7ﬁ,»~/(G7 H7 ROa SO) = ka7ﬁ,'y—1(Ga Ha R07 SO)
T «@
oY kK OEL Ly)gala(D), (). 8)  +3 > 3

1€J3(T,G) J€Ts(T,H) P=L Ry,...,Ry € Na, 5(Ro) Si,...,8, € Nu, ,(S0)

The main intuition behind this definition is to sum local Ry,..., R, disjoint S, ..., Sp disjoint

similarities over all matching subgraphs. In order to oftai
a tractable formulation, we simply needed (a) to extend the
set of subgraphs (to tree-walks of depthand (b) to fac-

A H ka(a(root(R;)), b(root(Si)))x

torize the local similarities along the graphs. We now show =i il fo-iza Silo e py (o2
how these elements can be combined to derive efficient re- 17, k55K, L) Hlk&vﬂﬂ—l(a H,Ri, S:) | |-
cursions. - 7 .

Note that if any of the treesR; is not equivalent

4, Dynamic Programming Recursions to S;, it does not contribute to the sum. The
In order to derive dynamic programming recursions Werecursion 's inttialized with k;{’B’W(G’H’ Bo,S0) =

' | Foly£(Fo) Kg,, Ls,) while the final
follow Mahé and Vert (2006) anq rely on thg fact that ﬁernel is o%?éﬁgjO)és(gagﬁggIi;)\;erszi)ﬂo an?jtsf, P :
ary g-tree-walks ofG can essentially be defined through ; 7 (G, H) =Y KT . (G, H, Ro, So)
1-tree-walks on the augmented graph of all rooted subtrees®%7* Ro~iSo a8y N0 200 0,20/
of G of depth at most3 and arity less tham. We thus
consider the seY, s of non complete rooted (unordered)
subtrees ol = (V, E), of depths less thag and arity
less tham. Given two different rooted unordered labelled
trees, they are saieluivalent(or isomorphic) if they share
the same tree structure, and this is denoted

Computational Complexity The complexity of comput-
ing one kernel between two graphs is linearifthe depth

of the tree-walks), and quadratic in the sizelof 3 and
Wa.3. However, those sets may have exponential sizé in
and«a in general (in particular if graphs are densely con-
nected). And thus, we are limited to small values (typically
On this setl, g, we define alirectedgraph with edge set «a < 3 andg < 6) which are sufficient for good classifica-
E, s as follows: Ry € V, g is connected ta?, € V,, gif  tion performance (in particular, highgror o do not nec-
“the tree R, extends the treé?, one generation further”, essarily mean better performance, see Section 5). Overall,
i.e., if and only if (a) the firsi3 — 1 generations o, are  one can deal with any graph size, as long as the “sufficient
exactly equal to one of the complete subtred?gfrooted  statistics” (i.e., the unique local neighorhoodsiin ;) are

at a child of the root ofRy, and (b) the nodes of depth not too numerous.
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In this paper, we have defined a family of kernels, corre-
» ’\ sponding to different values of the following free parame-
ters (shown with their possible values): arity of tree-vgalk
! l\/ (o = 1,2), order of tree-walks{ = 1,2,4,6), depth of
tree-walks ¢ = 1,2, 4,8, 16, 24), penalization on number
Figure 6.For digits and Chinese characters: (left) original charac-of nodes § = 1), penalization on number of leaf nodes
ters, (right) thinned and subsampled characters. .1,.01), bandwidth for kernel on positions & .05, .01, .1),

ridge parameters = .001), bandwidth for kernel on at-
) o ~_ tributes ¢ =.05,.01,.1).
For example, for the handwritten digits we use in sim- )
ulations, the average number of nodes in the graphs ighe first two sets of parameters, (3, v, A, v) are param-
18 + 4, while the average cardinal df, 5 and running ~ eters of the graph kernel, independent of the application,

timed for one kernel evaluation are, for walk kernels of While the last setx », v) are parameters of the kernels for
depth 24: [V, 5] = 36, T = 2ms (o = 1, 8 = 2), attributes and positions. Note that with only a few impor-

Vol =37, T = 3ms (o« = 1, 8 = 4); and for tree- tant scale parameters gndv), we are able to characterize
kerhels: Vasl = 56, T = 25ms (@ = 2, 8 = 2), complex interactions between the vertices and edges of the
V5| = 70, T — 39 ms (a=28=4). graphs. In practice, this is important to avoid considering

) ) ~many more distinct parameters for all sizes and topologies
Finally, we may reduce the computational load by considerys g ptrees.

ing a set of trees of smaller arity in the previous recursjons

of arity o > 1. validation: in the outer loop, we consider 5 different train

ing folds with their corresponding testing folds. On each
training fold, we consider all possible values @fand .
For all of those values, we select all other parameters (in-
We have tested our new kernels on the task of isolatedluding the regularization parameters of the SVM) by 5-
handwritten character recognition, handwritten arabie nufold cross-validation (the inner folds). Once the best pa-
merals (MNIST dataset) and Chinese characters (ETL9Bameters are found only by looking only at the training
dataset). We selected the first 100 examples for thdold, we train on the whole training fold, and test on the
ten classes in the MNIST dataset, while for the ETL9Btesting fold. We output the means and standard deviations
dataset, we selected the five hardest classes to discrimif the testing errors for each testing fold. We show in Fig-
nate among 3,000 classes (by computing distances betweene 7 the performance for various valuescoind 5. We
class means) and then selected the first 50 examples peompare those favorably to three baseline kernels with hy-
class. Our learning task it to classify those characters; we@erparameters learned by cross-validation in the same way:
use a one-vs-rest multiclass scheme with 1-norm suppoffa) theGaussian-RBF kernaln the vectorized original im-
vector machines (see, e.g., Shawe-Taylor and Cristianirkges, which leads to testing errorslaf6 +5.4% (MNIST)
(2004)). and50.4 + 6.2% (ETL9B); (b) the regularandom walk
kernelwhich sums over all walk lengths, which leads to
testing errors oR.6 + 1.3% (MNIST) and 34.8 + 8.4%
TL9B); and (c) thepyramid match kernelGrauman &
ﬁarrell, 2007), which is commonly used for image clas-
Sification and leads here to testing errors16f8 + 3.6%
(MNIST) and45.2 + 3.4% (ETL9B).

5. Application to Character Recognition

We consider characters as drawinggRif, which are sets
of possibly intersecting contours. Those are naturally rep
resented as undirected planar graphs. We have thinned a
subsampled uniformly each character to reduce the sizes
the graphs (see two examples in Figure 6).

it ; _ _ 12
The kernel on positions E’X(I’y) N eXp.( 7l y” )+ These results show that our new family of kernels that
k0(x,y), but could take into account different weights on . X
use the natural structure of line drawings are outperform-

horizontal and vertical directions. We add the positionsin other kernels on structured data (regular random walk
from the center of the bounding box as features, to tak 9 9

. " : %ernel and pyramid match kernel) as well as the “blind”
into account the global positions, i.e., we usg(z,y) = , K | which d ke

(—vllz — y||?). This is necessary because the problemGgl_Jssmn—RBF ernel which does not take into account ex-
P . : >y k- plicitly the structure of images but still leads to very good
of _han_dwrlt_ten character recognition is not globally trans performance with more training data (LeCun et al., 1998).
lation invariant. Note that for arabic numerals, higher arity does not help,

Those do not take into account preprocessing and were evalwhich is not surprising since most digits have a linear struc
uated on an Intel Xeon 2.33 GHz processor from MATLAB/C tyre (i.e, graphs are chains). On the contrary, for Chinese
code, and are to be compared to the simplest recursions WhICEhaI’aCterS, which exhibit higher connectivity, best perfo

correspond to the usual random walk kernel £ 1, 8 = 1), . . .
whereT — 1 ms. mance is achieved for binary tree-walks.
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X”\ilslT g/IILIISQT 511-918 51}928 Frohlich, H., Wegner, J. K., Sieker, F., & Zell, A. (2005).
T 61461 99139 3568146 50 L84 Optimal assignment kernels for attributed molecular
56431 | 56+30 | 292488 | 25.2+2.7 graphs.Proc. ICML

54+36 | 54+£31| 324+£39 | 29.6£4.3
56+33 | 6E£3.5 29.6 4.6 | 28.4+4.3

e Ry
[

[

Grauman, K., & Darrell, T. (2007). The pyramid match

X — : kernel: Efficient learning with sets of featurek.Mach.
Figure 7.Error rates (multiplied by 100) on handwritten character Learn. Res.8, 725-760

classification tasks.

) Harchaoui, Z., & Bach, F. (2007). Image classification with
6. Conclusion segmentation graph kerneBroc. CVPR

We have presented a new kernel for point clouds which iscashima, H., Tsuda, K., & Inokuchi, A. (2004). Kernels for

based on comparisons of local subsets of the point clouds. graphs.Kernel Methods in Comp. BiologIT Press.
Those comparisons are made tractable by (a) considerin

specific factorized form for the local kernels between tree- Of vectors.Proc. ICML

walks, namely a factorization on a properly defined probay ayritzen, S. (1996)Graphical models Oxford U. Press.
bilistic graphical model.

o . LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Moreover, we have reported applications to handwritten s 5dient-based learning applied to document recogni-
character recognition where we showed that the kernels 5 proc. IEEE 86, 2278-2324.

were able to capture the relevant information to allow

good predictions from few training examples. We are cur-Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N.
rently investigating other domains of applications of gein & Watkins, C. (2002). Text classification using string
clouds, such as shape mining in computer vision (Belongie kernels.J. Mach. Learn. Res2, 419-444.

et al., 2002), and prediction of protein functions from thei Mahe, P., & Vert, J.-P. (2006)Graph kernels based on tree
three-dimensional structures (Qiu et al., 2007). patterns for molecule@Tech. report HAL-00095488).

Neuhaus, M., & Bunke, H. (2006). Edit distance based ker-

nel functions for structural pattern classificatid?attern
We would like to thank Z&l Harchaoui and Jean-Philippe  Recognition39, 1852-1863.

Vert for fruitful discussions related to this work.
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