Rank Minimization via Online Learning

Raghu Meka

Prateek Jain
Constantine Caramanis
Inderjit S. Dhillon

University of Texas at Austin, Austin, TX 78712

Abstract

Minimum rank problems arise frequently in ma-
chine learning applications and are notoriously
difficult to solve due to the non-convex nature
of the rank objective. In this paper, we present
the first online learning approach for the prob-
lem of rank minimization of matrices over poly-
hedral sets. In particular, we present two online
learning algorithms for rank minimization - our
first algorithm is a multiplicative update method
based on a generalized experts framework, while
our second algorithm is a novel application of the
online convex programming framework (Zinke-
vich, 2003). In the latter, we flip the role of the
decision maker by making the decision maker
search over the constraint space instead of fea-
sible points, as is usually the case in online con-
vex programming. A salient feature of our on-
line learning approach is that it allows us to give
provable approximation guarantees for the rank
minimization problem over polyhedral sets. We
demonstrate the effectiveness of our methods on
synthetic examples, and on the real-life applica-
tion of low-rank kernel learning.

1. Introduction

Minimizing the rank of matrices restricted to a convex set
is an important problem in the field of optimization with
numerous applications in machine learning. For instanc
many important problems like low-rank kernel learning,
feature efficient linear classification, semi-definite edibe

ding (SDE), non-negative matrix approximation (NNMA),
etc., can be viewed as rank minimization problems ove
a polyhedron with additional convex constraints such as
Frobenius norm constraint and/or a semi-definiteness co

Appearing inProceedings of the 25" International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008

by the author(s)/owner(s).

RAGHU@CS.UTEXAS.EDU
PJAIN@CS.UTEXAS.EDU
CMCARAM @ECE.UTEXAS.EDU
INDERJIT@CS.UTEXAS.EDU

straint. Even though there has been extensive work on the
specific problems mentioned above, the general problem
of rank minimization over polyhedral sets is not well un-
derstood. In this paper we address the problem of rank
minimization when there are a large number of trace con-
straints along with a few convex constraints that are rela-
tively “easy” in a precise sense defined below.

We now formulate the rank minimization problem we
study. LetA,..., A, € R™ ", by,..., b, € R and let

C C R™*™ be a convex set of matrices. Then, consider the
following optimization problem which we refer to &WvIP

(for Rank Minimization over Polyhedron):

min rank(X)
st T4, X)>b;, 1<i<m (RMP)
X ecC.

The setC will represent the “easy” constraints in the sense
that for such a sef, we assume tha®RMP with a single
trace constraint can be solved efficiently. This holds for
many typical convex sets, e.g., the unit ball under anly,

or Frobenius norm, the semi-definite cone, and the inter-
section of the unit ball with the p.s.d. cone. Furthermore,
low-rank kernel learning, SDE and NNMA can all be seen
as instantiations of the above general formulation.

The generaRMP problem as stated above is non-convex,
NP-hard and, as we prove, cannot be approximated well
unlessP = N P. Due to the computational hardness of the
problem, much of the previous work has concentrated on

eoroviding heuristics, with no guarantees on the quality of

the solution. We remark that the recent trace-norm based
approach of (Recht et al., 2007) does guarantee an optimal
solution for a simplified instance of RMP where only well-
'conditioned linear equality constraints are allowed. How-

gver, it is not clear how to extend their guarantees to the
Jnore generaRMP problem.

We now list the main contributions of this paper:

e We show that for th&MP problem, the minimum fea-
sible rank cannot be approximated well unld3s=
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NP (see Theorem 3.1). To get over this hurdle wehow to extend it to gener&MP. We also remark that mini-
introduce a relaxed notion of approximation, where mizing the trace-norm is computationally expensive, which
along with approximating the optimal rank we also al- further limits its applicability.

low small violations in the constraints. In practice, . . L
this relaxed notion is as meaningful as the standard no(_Barvmok, 2002) (Chapter V) describes an approximation

. L : : algorithm forRMP based on random projections and a gen-
tion of approximation since almost all real-life prob- L : .

. eralization of the Johnson-Lindenstrauss Lemma, with an
lems have noisy measurements.

approximation guarantee similar to the one provided by

e We provide an algorithm faRMP based on the Multi-  oyr MW algorithm (Section 4.1). However, this approach
plicative Weights Update framework of (Plotkin et al., works only for a special case &MP where only linear
1991; Arora et al., 2005b) and under the relaxed noequalities described by p.s.d. matrices are allowed. Fur-
tion of approximation, we prove approximation guar- thermore, this approach needs to solve the reldXei®
antees for the algorithm. problem without the rank constraint which involves solving

¢ We provide an algorithm foRMP based on the frame- a large semi-definite programming problem. This maybe
work of online convex programming (OCP) intro- undesirable for various real-world applications such as th
duced by (Zinkevich, 2003). We use the OCP frame-low-rank kernel learning problem. In contrast, our ap-
work in a novel way by changing the role of the deci- proaches can be used for a larger class of convex(sets
sion maker to search over the constraints instead of thend are considerably more scalable.

feasible points, as is gsually the case. We prove thaéeveral specific instances of the geneR&P problem
L!nder the _relaxed notl_on O_f approximation, the algo'have been widely researched in the machine learning com-
rithm prowd_es appr_OX|mat|on guarantees. The guar'munity. Examples include low-rank kernel learning, SDE,
antees obtalned_ using Fhe OCcP fra_m_ewqu are _betteéparse PCA and NNMA. Most methods for these problems
than those obtained using thg Ml_JltIlecatlve Weights can be broadly grouped into the following two categories:
Update framework by a logarithmic factor. a) methods which drop the rank constraint and use the top
e For a practical application, we apply our methods toj; eigenvectors of the solution to the relaxed optimization
the problem of low-rank kernel learning which can be problem e.g., (Weinberger et al., 2004); b) methods which
seen as a specific instance of gen&dlP. factor the matrixX in RMP into AB” and optimize the re-

We empirically evaluate our methods on synthetic instance§t/tant non-convex probleme.g., (Lee & Seung, 2000; Kim
of RMP, where the constraints are chosen randomly. wet al., 2007). However, typically these methods do not have
compare them with the trace-norm heuristic of (Fazel et al.2"Y Provable guarantees.

2001; Recht et al., 2007) and the log-det heuristic of (Fazelve apply our algorithms for the generBMP problem

et al., 2003), and our experimental results indicate that outo the low-rank kernel learning problem(Bach & Jordan,
methods are significantly faster and give comparable ranR005; Kulis et al., 2006). Existing methods for this prob-
solutions to existing methods. We also evaluate the pertem do not provide any provable guarantees on the solution
formance of our methods for low-rank kernel learning onand/or assume that the initial kernel has a small rank to
UCI datasets. On all the datasets, our algorithms improv@egin with. In contrast, a straight forward application of
the accuracy of the baseline kernel while also significantlyour generaRMP framework gives algorithms with prov-

decreasing the rank. able guarantees on the rank of the learned kernel. Further-
more, we demonstrate that our algorithms can be used to
2. Related Work and Background initialize existing methods to obtain better solutions.

Most existing methods for rank minimization over convex OUr @pproaches tBMP are based on two online learning

sets are based on relaxing the non-convex rank function tg'ethods - the generalized experts framework as abstracted
a convex function, e.g., the trace-norm (Fazel et al., 20011 (Arora etal., 2005b) and the online convex programming

Recht et al.,, 2007) or the logarithm of the determinant(ZinkeViCh' 2003), which we now review briefly.

(Fazel et al., 2003). Unfortunately, these heuris.tics_do no, 1 Multiplicative Weights Update Algorithm
have any guarantees on the quality of the solution in gen-
eral. A notable exception is the work of (Recht et al., 2007),The Multiplicative Weights Update algorithm (MW algo-
which extends the techniques of (Candés & Tao, 2005) forithm) is an adaptation of the Winnow algorithm (Little-
compressed sensing to rank minimization. (Recht et al.stone & Warmuth, 1989) for a generalized experts frame-
2007) show that minimizing the trace-norm guarantees amwork as described in (Freund & Schapire, 1997). This
optimal rank solution to a special classRi¥IP where only ~ framework was implicitly used by (Plotkin et al., 1991) for
well-conditioned linear equalities are allowed. Thus thei solving several fractional packing and covering problems
approach is limited in its applicability and it is not clear and was formalized and extended to semi-definite programs
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in (Arora et al., 2005a). Throughout this work we will fol- is to minimize theregretas defined below:
low the presentation of the generalized experts framework

T T
as abstracted in (Arora et al., 2005b). R(T) = Z il .
= t(zt) _manft(Z)- (1)
t=1 K3

In the generalized experts (GE) framework there is a set of

n experts, a set of even& and a penalty matri®/ such ) ) )
that thei-th expert incurs a penalty A (i, j) for an event (Zinkevich, 2003) has shown that in the case when the func-

j € &. The penalties are assumed to be bounded and Ii#ONS f+ are convex and differentiable with bounded gra-
in the interval—p, o] for a fixedp > 0. At each time step dient, one can achieve a regret@fv'T). Let | K| =
t=1,2,...,an adversary chooses an evg¢nt £ so that mtaxmaneK 21 — 22| and G = maXzeK tef{l,..} | v
thei-th expertincurs a penalty o (i, j*). The goalinthe /" (2)[l, where] - || denotes the Euclidean norm (or Frobe-
GE framework is to formulate prediction algorithnthat ~ Nius norm if tfge sef( is defined over matrices). Also, as-
chooses a distributio®* = (pt, ..., pt) on the experts SUMe thatsy f* can be evaluated efﬁmently at any given
at time stepy, so that the total expected loss incurred byPointz. Under the above assumptions (Zinkevich, 2003)
the prediction algorithm is not much worse than the totalProposed a Generalized Infinitesimal Gradient Ascent algo-

loss incurred by the best expert. Formally, the goal of theithm which achieves a regret of((G* + ||KH2)_\/T)- The
prediction algorithm is to minimize function GIGA in Algorithm 2 describes a slightly modi-

fied version of (Zinkevich, 2003)’s algorithm that achieves
T n T the following improved regret bound.
Z Zp}fM(l,jt) - minZM(z’,jt). Theorem 2.2 (Adaptation of Theorem 1 of (Zinkevich,
t=1 I=1 fm 2003)) The following bound holds for the regret of the
GIGA sub-routine of Algorithm 2 after 7" rounds,
Note that the distribution in round D*, must be chosen
without knowledge of the everjt chosen at time step At R(T) < G- |K|VT 2
every steg, the MW algorithm has a weight! assigned to
experti, and sets the distributiaB® = (pt, ..., p ), where Proof sketch: Using the modified.step—si.zg in Algorithm 2,
pt =w!/ >, wt. The MW algorithm then proceeds analo- the theorem follows from Zinkevich’s original proof. [
gously to the Winnow algorithm and updates the weights at
time stept + 1 tow{ ™ = w!(1—8)M@)/7if M(i,j') > 3. Computational Complexity
0 andw!*t = wi(1 + 6)M@i0/Pif M(i, j*) < 0, whered

is a parameter provided to the algorithm. For our analysié\S Was mentioned in the introductioRMP is NP-hard in
we will use the following theorem. general. Further, by a reduction to the problem of support

minimization over convex sets, and using hardness of ap-
Theorem 2.1(Corollary 4 of (Arora et al., 2005b))Sup-  proximation results from (Amaldi & Kann, 1998) we prove
pose that for all 7 and j € &, M(i,j) € [-p,p]. L&t the following hardness result for RMP. A full proof of the
¢ > 0 be an error parameter and let & = min{5, 3},  following theorem appears in (Meka et al., 2008).

and T = @- Then, the following bound holdsfor the  Theorem 3.1. There exists no polynomial time algorithm

average expected |oss of the MW algorithm for approximating RMP within a logarithmic factor unless
P = NP. Further, assuming NP ¢ DTIME(nrolvloen),
Y Yy pEM (L, ) et > Mk, 5°) Vi RMP is not approximable within a factor of 218"’ for
T - T o every § > 0; and RMP is not approximable within a factor
of 21°2"* A for every & > 0, where A = max{||A;||r +
2.2. Online Convex Programming lbg| : 1 <i<m}t

The online convex programming (OCP) framework (Zinke- In view of the above hardness result we introduce a weaker
vich, 2003; Kalai & Vempala, 2005; Hazan et al., 2006) notion of approximation. We believe the relaxed notion of
models various useful online learning problems like indus-approximation to be of equal use, if not more, as the stan-
trial production and network routing. The OCP framework dard notion of approximation in practice. For an instance of
involves a fixed convex sét” and a sequence of unknown RMP, letF(A4;,..., A, b,C) denote the feasible region,
cost functionsfy, f2,... : K — R. At each time step,a  whereb = (by,...,b):

decision maker must choose a poipte K and incurs a )

cost f;(z;). However, the choice of; must be made with F(A1, .o A, b,C) = {X 0 X € CTr(AiX) = bi, Vi)
the knowledge of4, ..., 2,1 and f1,..., f;—1 alone i.e., 3)
without knowing f;. The total cost incurred by the algo-  Thjs hardness result holds even witis fixed to be the unit
rithm after? steps equaly_, f:(z:). The objective in OCP  ball under an’, or Frobenius norm or many other common sets.
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Definition 3.1. Givenafunctionc: R — R, we say that
a matrix X is a (c(e), €)-approximate solution to RMP if
the following hold:

X €F(A,..., Ap,b—€1,0)
rank(X) < c(e) min{rank(X) : X € F(Ay, .., A, b,C)}.

Further, we say that RMP is (c(e), €)-approximable, if
there exists a polynomial time algorithm that given inputs
A1, ..., A, b, e, outputs a (c(¢), €)-approximate solution
to RMP.

Thus, along with approximating the minimum feasible rank
we also allow a small violation, quantified byof the con-
straints. Note that for = 0, we recover the normal notion
of approximation with an approximation factor f).

4. Methodology

Our approaches tBMP rely on the fact that even though
RMP is hard in general, it is efficiently solvable for certain
convex set€ when there is a single trace constraint. For
instance, whel® = {X : || X||r < 1}, aRMP problem
with a single trace constraint can be solved efficiently gisin
a singular value decomposition of the constraint matrix.

In our approach, we assume the existence of an o@cle
that solves the followingRMP problem with a single trace
constraint, and returns an optim&l or declares the prob-
lem infeasible:

O: min rankX) st. THAX) >0, X e€C. (4)

As discussed above, for certain convex setoracle O
solves a non-convex problem. In both our approaches, w

exploit this fact by making several queries to the oracle

where the trace constraint(MX) > b is obtained by a
weighted combination of the original trace constraintse Th

Algorithm 1 RMP-MW (Multiplicative Updates)
Require: ConstraintgA4;,b;),1 <i<m,e
Require: OracleO(A, b) which solves

min rankX) s.t. Tr(AX)>b, X €C

1: Initialize: w} =1, Viandt = 1

2: repeat

3 Set(At,bt) = Zz wf(Az,bl)

4: if OracleO(A!,b") declares infeasibilitghen
5 return Problem is infeasible

6: else

7 Obtain Xt using OracleD(A?, b?)

8 SetM(i, X*t) = Tr(A; X*) — b;

9 Setp = max; M (i, X?)
10: Setw!*!'=MultUpdatetw?’, M, p, €)
11:  endif
12: Sett=t+1
13: until t > T

14: return X =Y, X!/T

function w!T'=MultUpdatetw®, M, p, €)
1: Setd = min{ 4, z
2: forall 1 <i<mdo

3 if M(i,X") > 0then

4: warl — U)f(l _ 6)1\4(1'.,Xt)/p
5 else

6: wit = w1+ 6)_M(i’xt)/p
7 end if

8: end for

4.1. Rank Minimization via Multiplicative Weights
Update

In this section we present an approactR@dP based on
the generalized experts (GE) framework described in Sec-

trick then is to choose the combinations in such away thafion 2 1. To adapt the GE framework for tRP prob-

after a small number of iterations, we can find a low-rahk
that satisfies all the constraints with at moskarnolation.

lem, we first need to select a set of experts, a set of events
and the associated penalties. We associate Riihcon-

Based on the above intuition, we give two approaches t&traint T(4;X') > b; with an expert and let the events cor-

solve theRMP problem - one based on the Multiplicative

respond to elements @f. The penalty for expert corre-

Weights Update algorithm and the other based on onlinéponding to the-th constraint and event is then given

convex programming.

Before we describe our algorithms, we need to intro-
duce additional notation. For an instanceRM P speci-
fied by matricesd,, ..., A,,, scalarsy, ..., b, and con-

vex setC, let D = max{||X||r : X € C}. We as-
sume, without loss of generality, thd@ > 1. Recall
thatF((A1,...,Am),b,C)andF((4y,...,An),b—€l,C)

denote the feasibility sets as defined in (3) afd =
max{||4i[|r + |b;] : 1 < i < m}. Further, letk* be
the rank of the optimal solution ®MP. That is,

k* = min{rank X) : X € F((A41,...,4,),b,C)}.

by Tr(A; X) — b;. Note that rather than rewarding a satis-
fied constraint, we penalize it. This strategy is motivated
by the work of (Plotkin et al., 1991; Arora et al., 2005a)
and is similar to boosting, where a distribution is skewed
towards an example for which the current hypothesis made
an incorrect prediction.

We assign weight! to thei-th expert in the-th iteration,
and initialize the weights} = 1, for all 7. In thet-th iter-
ation we query the oracl@ with (A", b") = >, wl(A;, b;)

to obtain a solutionX’*! € C. We then use the Multi-
plicative Weights Update algorithm as described in func-
tion MultUpdate of Algorithm 1 to compute the weights
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w! ™! for the (¢ + 1)-st iteration. Algorithm 1 describes our Algorithm 2 RMP-OCP (Online Convex Programming)
multiplicative update based algorithm f@BMP. Inthe fol-  Require: ConstraintgA;,b;),1 <i < m, e

lowing theorem we prove approximation guarantees for theRequire: Oracle O(A,b) which solves
solution output by Algorithm 1. min rank X) s.t. Tr(AX)>b, X €C

Theorem 4.1. Given the existence of an oracle O to solve 1: Initialize: A' = ZTA andb! = ZTZ’ t=1

the problem (4), Algorithm 1 outputsan (O( 222 losn ) o). 2: SetK = {3 ; \i(Ai,bi) 1 3, A = 1L\ > 0Vi}

approximate solution to RMP. 3: repeat
4:  if OracleO(A!, b") declares infeasibilityhen
Proof. Observe that, if the oracle declares infeasibility at °: return Problem is infeasible
any time stept, the original problem is also infeasible. & else . _
Hence, we assume that the oracle returns a feasible point: Obtain X using OracleD (A", b*)
Xt attime-steg, forall1 < ¢ < T. 8 Define functionf*(A,b) = Tr(AX") — b

9 Set(A™ b TH=GIGA((AY, bY), f1(A,b), K, t)
Now, [Tr(A; X) —bi| < | Al p[[ X[ + b < AD.Thus,  10:  end if
the penalties Trd; X) — b; lie inthe interval-AD,AD].  17: Sett=t+1
Since Algorithm 1 uses multiplicative updates to update theyo. yntil ¢ > 7
weight# as in Theorem 2.1, fof' = 16(AD)?logn/€%,  13: return X — S, XYT
we have

2020 pl A X b AKX b function 2*+1=GIGA(=", f(2), K1)
T = T ’ ’ 1: Setm = 3DVE

2: Setz™*! = Ik (2% — n Vfi(2?)), wherellk repre-
sents the orthogonal projection ord

wherep’ = w’/ 37, wi. Since T(A'X") > b'), Vt, the
LHS > 0. Thus, forX =", X*/T we have

Tr(AiX) 2 bi —¢, Vi ®) flip this view and choosé to be the space of convex com-

binations of the constraints and associate cost functions
with feasible points oRMP. In particular, we sefX C
R™*™ x R to be the convex hull ofA1,b1), . .., (Am, bm),

We now bound the rank oKX compared to the optimal
value. Lett be such thatX; has the highest rank, say
amongXy,...,Xr. Then,k* > k, as for a particular

convex combination ofA;, b;) the minimum rank possible €.,

wask. Thus, rankX) < kT = O(M). Using

(5) we have thaiX € F((Ay,...,A,),b—€l,C). Thus, K = {Z Ai( A, b;) - Z/\i =1\ > OW} .

by Definition 3.1X is an (O(%), €)-approximate ‘ ‘

solution toRMP. O Given a matrixX, we define a cost functiofiy : K — R

by fx(A,b) = Tr(AX) —b.

We initialize A* = >, A;/m andb* = 3", b;/m. Given
(At)b') € K for the t-th iteration, we query the oracle
O with (A,b) = (A%, b") to obtain a solutionX* € C.

We then set the cost functioff(A4,b) = fx:(A4,b) =

In this section, we present a novel application of onlineTr(AX*) —b and use the OCP algorithm (Zinkevich, 2003)
convex programming described in Section 2.2 to obtain aras described in function GIGA of Algorithm 2 to com-
approximate solution tMP. The intuition behind this pute (A***, bi*1) for the (¢ + 1)-st iteration. Algorithm
approach is similar to that of Section 4.1; in fact this ap-2 describes our OCP based algorithmRddiP. In the fol-
proach can be viewed as a generalization of the approadawing theorem we prove approximation guarantees for the
of Section 4.1. output of Algorithm 2.

In the OCP framework one generally associates the convekheorem 4.2. Given the existence of an oracleg to solve
set K with a feasible region and the cost functions with the problem (4), Algorithm 2 outputs an (O(£2-), ¢)-

penalty functions. In our application of OCP RMP we  approximate solution to RMP.

The running time of Algorithm 1 i@(%(ﬂg +
mn?)), whereTp denotes the oracle’s running time.

4.2. Rank Minimization via OCP

20ur updates are slightly different from those of (Arora et al .
2005b) in that we adaptively choose the width parametétow- Proof. As |n. Theor.em 4.1 vye assume that the oraf:le re-
ever, the ana|ysis of (Arora et a|., 2005b) is app|icab|eﬂf@se turns a feaSIble pOInt at a.” time StepS. Note that USII’Ig the
updates as well. terminology of Theorem 2.2 = max.cr seq1,.} || ¥
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fi(z)|| € Dand||K|| < A. Thus, using Theorem 2.2 we 5. Low-rank Kernel Learning

have . . L
In this section we apply both our rank minimization algo-

T T rithms to the problem of low-rank kernel learning, which
> (Tr(A'X")—=b') < min (Tr(AX*)—b)+ADVT. involves finding a low-rank positive semi-definite (p.s.d.)
t=1 (Aberi= matrix that satisfies linear constraints typically derived
from labeled data. Due to the rank constraint, this problem
is non-convex and is in general hard to solve. As described
below, both our online learning approaches can be applied
naturally to this problem. We provide provable guarantees
on the rank of the obtained kernel.

Note that the above LHS 0 since oracle returns a feasible
X!, vt. Thus, forT = A2D?/e? andX =), X!/T,

Tr(AX) > b—e, (6)

for all (A,b) € K. In particular, we have for every;,  Formally, the low-rank kernel learning problem can be cast
Tr(A; X) > b; —e. We now bound the rank of compared  as the following optimization problem:

to the optimal value. Let be such thafX; has the highest min  ||K — Kol

rank, say k, amongy, . .., Xp. Then, we must have* >

k, and so we have rafK) < kT < O((AD)%*k*/é). st. T(S;K)<¢, V1<i<|S], 7
Also, from (6) we have thak € F((A1,...,An),b — TH(D,;K) >u, Y1<j<|D|

€1,C). Thus by Definition 3.1X is a(O((A2D?)/€?), ¢)- N P

ranKK) <r, K >0,

whereS is a set of pairs of points from the same class that
L . o AZD? are constrained to have distance less tha@imilarly, D is
The running time of Algorithm 2i®) (=~ (To +Tocp+ a set of pairs of points from different classes that are con-

> €
mn*)), whereTo denote_s the running time of the oracle, g ained to have distance greater thamwith ¢ < u. For
and Tocp denotes the time taken in each round by the, similarity constraint matriss;, S; (i1, i1) = Si(ia, i2) =
GIGA algorithm of Theorem 2.2.

approximate solution t& MP. O

1, S;(i1,i2) = S;(ie,i1) = —1 and all other entrie§.
) ) The dissimilarity constraint matricés; can be constructed
4.3. Discussion similarly. Assuming||Ko||r = 1, (7) can be reformulated

Oracle: The oracle for solving problem (4) plays a crucial 25
role in both our approaches. As discussed previously, for m}%n rank K)
typical cases of, like the unit ball under at.,, or Frobe-

) ; ) ; 8
nius norm etc., (4) can be solved by the singular value de- St T(SiK) < £ Vi, TH(D;K) 2 u Vj, ®

composition ofA. Further, in the case when the gkin- Tr(KKo) > B3, [Kllp<1, K=0,
volves a quadratic or ellipsoid constraint we can use th§yhereg3 is a function ofr and can be computed using bi-
S-procedure (Rockafellar, 1970) to solve (4). nary search. Note that (8) is a special casRMP with the

Comparison of the approaches Our approach tRMP ~ CONvVex seC bei_ng the intersection of the p.s.d. cone and
based on Multiplicative Weights Update has a slightlythe unit Frobenius ball. Hence, we can &dP-MW and
weaker guarantee than the approach based on OCP. ThisfMP-OCP to solve (8). Given(A, b) the oracle for both
also confirmed by our experiments where OCP gives bettdf'€ methods solves:

results than the MW approach. However, the MW approach min rank k) : Tr(AK) > b, | K||r <1, K = 0. (9)

is computationally less intensive as the approach based on ¥

OCP involves a projection onto the convex $ét Thus, Let A = UXUT be the eigenvalue decomposition 4f
MW can be used for large scale problems. and letA be a diagonal matrix with just the positive entries

Limitations: A drawback of our methods is the depen- of £. Then the minimunk s.t. VI AGLD)? > bis
dence om\, ¢ in the bounds of Theorems 4.1 and 4.2. Thisthe solution to (9). This follows from elementary linear
limits the applicability of our methods to problems, such asalgebra. Note that for the oracle solving (8) = O(n?).
NNMA, with a large number of non-negativity constraints o p — 1 and A — O + I + u?) as||Si|r =
vyhere the rano% is typlcally_la.rge. However, our algo- JDj”F — 2. Using Theorem 4.1, th&MP-MW algo-
rithms can be used as a heuristic for such problems and c H ' . : . Lbu? 412 .

be used to initialize other methods which require a goodI hm OEt‘?"”SaSO'“.“O” with rarvifg_O( - logn)r
low-rank solution for initialization. Also, the lower boda wherer™ is the Spt;ma' rank. SimilarlyRMP-OCP ob-
for the experts framework and boosting suggest that the dd&ins an (O(Hueizﬂ)’ e)—approximate solution. In Sec-
pendence o\, ¢ in our bounds may be optimal for the tion 6.2, we present empirical results fRMP-MW and
generaRMP problem (Arora et al., 2005b). RMP-OCP algorithms on some standard UCI datasets.
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6. Experimental Results Method\n | 50 75 [100][ 200 300

. . RMP-MW | 23.25| 11.25| 7.3 | 2 2
We empirically evaluate and compare our algorithms to ex- RMP-OCP | 12.8 -5 [ 53] 2 5

isting mqthods for gener&MP as well as Iovy—rank ker- Trace-norml 6.8 67 165
nel learning. For gener&MP, we use synthetic examples a

. " ogDet 5 42 | 40| - -
to compare our methods against the trace-norm heuristic
(Recht et al., 2007) and the log-det heuristic (Fazel et al.rapje 1.Rank of the matrices obtained by differeRMP meth-
2001). The trace-norm heuristic relaxes the rank objectiveds for varying size of the constraint matrice3.(The number of
to the trace-norm of the matrix, which is given by the sumconstraints generated is fixed to be200. A “-” represents that
of its singular values. Note that the trace-norm of a matrixthe method could not find a solution within 3 hours on a 2.6GHz
is a convex function. The log-det heuristic relaxes the rankentium 4 machine. Note that for large problem sizes, bath th
objective to the log of the determinant of the matrix. Fortrace-norm and the log-det heuristics are not computationa
the application oRMP to low-rank kernel learning, we use aPle- Bglth our approaches outperform the trace-norm Heeuais
standard UCI datasets. All the presented results represefff Problem size increases.

the average over 20 runs. DatasefMethod| GK | MW | OCP | BK
Musk 80.80| 93.11| 98.15| 81.51
6.1. Synthetic Datasets (476) | (44.1)| (61.2)| (61.2)
Heart 77.44| 91.05| 91.13| 83.91
First we use synthetic datasets by generating random ma- (267) | (46.8)| (39.5)| (39.5)
trices A; € S,,, whereS,, is the set ofn x n symmetric lonosphere | 90.34| 91.26 | 91.17 | 90.67
matrices. We also generate a random positive semi-definite (350) | (40) | (27.9)| (27.9)
matrix Xy € S,, with || Xo||r < 1, and use the obtained Cancer 90.12] 93.14 | 91.46 | 93.38
Xy to generate constraints (i; X) > b; = Tr(4;Xo). (569) | (82) | (94) | (94)
The convex sef is fixed to be the intersection of the p.s.d Scale 66341 73.78| 72.46 | 72.11
cone and the unit ball under the Frobenius norm. We fix (607) | (146) | (91) | (91)

the number of constraints to B80 and the tolerancefor
RMP-MW andRMP-OCP to be5%. We use SeDuMito Table 2.Accuracies for5-Nearest Neighbor classification using
implement the trace-norm and log-det heuristics. kernels obtained by different methods. Numbers in pareethe

. . represent the rank of the obtained solution. GK represeatsG
In Table 1, we compare the ranks of the solutions obtained;,, kernel & — 0.1), MW representRMP-MW, OCP rep-

by our algorithms against the ones obtained by the tracepsentsRMP-OCP and BK represents BurgKernel(Kulis et al.,
norm and log-det heuristics. For smallboth trace-norm  2006). Overall RMP-OCP obtains the best accuracy.

and log-det heuristic perform better th&MP-MW and

RMP-OCP. Note that since the constraint matricds  of the observed distribution of distances between pairs of
are random, they satisfy (with high probability) the re- points. We randomly select a set4tfc? pairs of points for
stricted isometry property used in the analysis of (Rechtonstraints, whereis the number of classes in the dataset.
etal., 2007). HoweveRMP-OCP outperforms trace-norm \We run bothRMP-MW andRMP-OCP for T = 50 itera-
heuristic for largen (Table 1,n = 100) andRMP-MW tions. Empirically our algorithms significantly outperfior
performs comparably. We attribute this phenomenon to thehe theoretical rank guarantees of Theorems (4.1) and (4.2)

Frobenius norm constraint for which the theoretical guar-T ble 2 sh th . hieved by the baseli
antees of (Recht et al., 2007) are not applicable. Also abie 2 shows the accuracies achieved by the baseline

L ; Gaussian kernel (witr = 0.1), RMP-MW, RMP-OCP
both trace-norm and log-det heuristic scale poorly with the ’ ’
g unst poorly wi nd the Burg divergence (also called as LogDet diver-

problem size and fail to obtain a result in reasonable timé® . .
even for moderately large. In contrast, both our algo- gence) based low-rank kernel learning algorithm (BurgK-

rithms scale well withm, with RMP-MW in particular able ernel) of (Kulis et al., 2006). It can be seen f“’m th? ta-
to solve problems of sizes up to— 5000. ble that bothRMP-MW and RMP-OCP obtain a signifi-

cantly lower rank kernel than the baseline Gaussian kernel.
Further,RMP-MW andRMP-OCP achieve a substantially
higher accuracy than the Gaussian kernel. Our algorithms
We evaluate the performance of our methods applied to thglso achieve a substantial improvementin accuracy over the
problem of low-rank kernel learning, as described in SecBurgKernel method. Note that we iterate our algorithms
tion 5, for k-NN classification on standard UCI datasets. for fewer iterations compared to the ones suggested by the
We use two-fold cross validation with = 5. The lower theoretical bounds, hence few of the constraints maybe un-
and upper bounds for the similarity and dissimilarity con-satisfied. This suggests that these unsatisfied constraints
straints {,«) are set using th80-th and70-th percentiles maybe noisy constraints and have small effect on the gen-
eralization error. We leave further investigation into gen

6.2. Low-rank Kernel Learning
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alization error of our methods as a topic for future researchnew applications of the online learning approach to solving

Note that the BurgKernel method needs to be initializedomlm'ZaItlon problems.

with a low-rank kernel. Typically, a few top eigenvectors of

the baseline kernel are used for this initialization. Hoerev References
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