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Abstract

In real-world machine learning problems, it is
very common that part of the input feature vec-
tor is incomplete: either not available, missing,
or corrupted. In this paper, we present a boost-
ing approach that integrates features with incom-
plete information and those with complete infor-
mation to form a strong classifier. By introduc-

world problems such as text filtering and routing, ranking,
learning in natural language processing, image retrieval,
medical diagnosis, and customer monitoring and segmen-
tation (Schapire, 2004).

Itis very common in real-world machine learning problems
that part of the input feature vector is incomplete: either
not available, missing, or corrupted. In a web-page rank-
ing problem, for example, using click-though data as part

ing hidden variables to model missing informa-
tion, we form loss functions that combine fully
labeled data with partially labeled data to effec-
tively learn normalized and unnormalized mod-
els. The primal problems of the proposed opti-
mization problems with these loss functions are
provided to show their close relationship and the
motivations behind themiVe use auxiliary func-
tions to bound the change of the loss functions
and derive explicit parameter update rules for the
learning algorithms. We demonstrate encourag-
ing results on two real-world problems — visual
object recognition in computer vision and named
entity recognition in natural language process-
ing — to show the effectiveness of the proposed
boosting approach.

of the features, we find that a small number of valid pages
have click features and most do not. In the case of object
recognition in computer vision, many approaches assume
a part-based model. However, certain parts of the object
are hard to detect reliably due to small support in the im-
age, occlusion or clutter, which also lead to missing infor-
mation. Handling these kinds of classification problems
containing incomplete information is a very important and
realistic task. Excluding popular EM algorithms for gener-
ative modelssome methods have been recently proposed
for discriminative models (Chechik et al., 2007; Koo &
Collins, 2005; Quattoni et al., 2005; Shivaswamy et al.,
2006; Bi & Zhang, 2004)

In this paper, we show how to handle incomplete data under
the boosting approach. We first describe the precise prob-
lem we are trying to solve, then we formulate optimization

problems where the loss functions consist of two parts, one

using partially labeled data and the other using fully ladel
data. The primal problems of the proposed optimization
Boosting is a general supervised learning technique for inproblems with these loss functions are provided to show
crementally building linear combinations of “weak” mod- their close relationship and shed light on the rationale be-
els to generate a “strong” predicative model. It is onehind them. We derive explicit parameter update rules of
of the most successful and practical methods in machinée learning algorithms by introducing auxiliary functson
learning. Over the last decade, it has attracted much attefte bound the change of loss functions. Finally, we demon-
tion in the machine learning community and related areastrate encouraging results on two real-world problems to
such as statistics. It has been widely applied in many realshow the effectiveness of the proposed boosting approach:
visual object recognition in computer vision and named en-
tity recognition in natural language processing.

1. Introduction
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2. Preliminaries 3. Boosting with Hidden Variables

Let X € X be a random variable over data instances toThe challenge in this paper is, besides using the feature set
be labeled, and” be a random variable over corresponding F; and training se;, how to use the additional feature
labels ranging over a finite label alphalj¢t The classi- setF; and training seDs to obtain a better approximation
fication task is to learn a mapping from data instanges for the mapping from instances to labels.

to labels). Assume we have a set of feature functionstq this end, the main object of focus is a mapping from
Fi = {fr(z,y)} where each feature maps x Y to R. ¥ x  to ), which is modeled by a conditional probabil-
Same as in (Collins et al., 2002; Lebanon & Lafferty, 2002)ity distribution py(y|z, ). This distribution is called the

and without loss of generality, we assume that the range dformalized model and is defined parametrically as
all feature functions in this paper (8, 1]. These feature

functions correspond to weak learners in boosting and sufex (vl h) o €
ficient statistics in an exponential family model.

Suppose the target predictoan be derived from a scor- WhereA; and, are the model's parameter vectors corre-

ing function written as a linear combination of feature Sponding to features iff; and 75, respectively. To esti-

functionst(z,y) = 3. Mefr(x,y). Given a training Mate the parameters of the distribution, we can maximize
b the conditional likelihood of the training data:

T 161 (z,y) — 1 (2,52)] AT [f2(2,h,y) —£2 (2, h, )]

dataset{(mi, yi)}, it has been shown (Lebanon & Lafferty,
2002) that Adaboost (Freund & Schapire, 1997) combines

features to minimize the following exponential loss £ = Zk’gm(yi‘mi) + WZIngA(yﬂxj, h)
i J
ZZQA(?AZ") ) where~ is used to balance the influence of the two data
-5 ' sources on the objective function. Lef(h|z) be a fixed

distribution representing the prior belief in values of the
hidden variable given an instanae thenp,(y, h|z) =
whereqy (ylz) = exp X, cm Mk [fi(@,y) — fr(@,92)]  qo(hla)pa(y|z, h) and the first term inC(\) can be com-
is called the unnormalized model, apddenotes the label puted based op, (ylz) =32, paly, hlz).
of instancex over the empirical data. Equivalently, it has
been shown (Lebanon & Lafferty, 2002) that LogitboostWe now turn our attention to model the mapping from

(Friedman et al., 2000) minimizes the following log loss ~ x x H to ) by a linearscoring functionthat is the ba-
sis of our Adaboost type algorithms. Wheris observed,
= logpa(fia; |2:) (2)  the mapping is defined based on

t)\(x,h,y) = A’{ : fl(x7y) + Ag ° f2($, h7y)
wherep, (y|z) := qx(y|x)/Zx(x) is called the normalized 4 \hen’ is hidden, it is defined asy(z,y) :—

model. Optim_izing the two objective fu_nctions above can - qo(h|2)ta(z, h,y). As before,qo(h|z) is used to in-
be done by either parallel or sequential updates (Collingect prior domain knowledge. To learn the parameters, we
et al., 2002; Lebanon & Lafferty, 2002). pose the minimization of the loss functiéii)) defined as

Now assume that there is a random variable H which
is hiddenin some part of the training daf2y := {(z;,;) } ) ;;q‘)( |x)§qk(y‘x )+7;;%(y|z] i)

but has been observed in the rest of the training fata=
{(zj,h;,y;)}. Consider a second set of feature functionswhereg, (y|z;, h) is called the unnormalized model
Fo = { fu(z, h,y)} where each feature mags x H x Y

to R. In many real-world applications, the number of fully  ax(ylz,h) :==e

observed instances is much smaller than that of partiallyl_he second term ig()) can be thought of as the loss in-

observed instances, that if2| < [Dy], since obtain- ¢ req for thejth instance over all possible labels, and the
ing fully observed instances is either expensive or time-irst term as theexpectedoss for theith instance. Note
consuming. To take full advantage of all available trainingthat if ¢, (h|z;) puts a point mass on the observed; for

data, we need to develop new methods, because the infaiRstances irDs, then&(\) can be rewritten compactly as
mation cannot be fully exploited by the original boosting
algorithm. EN = > > aqolhlz)ar(ylz, )

x€D1UD3 h,y

AT £y (2,) — f1 (2, 52) ]+ AT - [f2 (2, h,y) — f2 (2,7, G

Hereafter we use subscript@ndj to range over training

data inD; andD; respectively. For a daturfy, h, y), we 'It is equivalent to the more familiar formx (z, h,y) o
denote all of itsF; features by the vectd (=, y) and all M @A B (@hy) by simply removing the constants
of its 7, features by the vectds (x, h, ). M 1(@.52)+A3 f2(=.h.02) from the numerator and denominator.
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In the next section, we will show that there is a close re_Theorem 1. The following optimization program:

lationship between minimizing(\) and maximizing the _
lowerbound ¢(\) on £()\), which is derived based on e DX:D Zqo(h‘x)%(yzlx’h) ®)
Jensen’s inequality and defined as pebiuba by

is the dual ofminges(p,q,7) K L(p||r) where the ex-
€N =" qo(hla:) log pa(yilzi, h) +v Y log pa(y;lz;, hy) tendedK L (p||r) is defined as
ih J h
S B@ao(hl) S plulh, ) 1o ALY 4] i,y
x,h Yy

By extendingy to instances irD, as before, we can write r(x, h,y)

()= > > qo(hlz)logpa(i.|z, h) and the setS(p, qo, F) is defined as

e M|S BB E 0.Vf € F
. . . S 3 x x —1Lp x =V, S
Furthermore, we will show a close relationship between{p ‘;p(l) a0 (h|=)p(yle,h) [f B(y] )[f]} / }

maximizing £(\) and minimizing the following lower-

bound ong(\) derived by Jensen’s inequality Proof sketch.The key idea in this theorem is the definition
o of the extended KL divergence asdp, qq, F). Construct
e(A) = ZZ@“ T ) the Lagrangian of the dual, which is a constrained opti-
Y mization problem, take its derivative, and set it to zero.
7DD A E I mia @ Ry ) It will give the form of the optimal solution; plug this
v form back into the Lagrangian, and make the data con-

In the test time, depending on whettieis hidden or not, ~ Sistency assumptiorp(is the empirical probability distri-
eitherpx (y|z) or px(y|z, h) can be used to determine the bution) >- p(yl«)f(z,y) = f(z,y,) for f € F, and
class label of a given instance if we use the probabilistic>_, P(y[z)f(z, h.y) = f(z, h,y) for f € F>, we will

model. Accordingly, for the linear map, eithey(xz,y) or ~ obtain the optimization problem in (3) . O

tx(z, h,y) can be used. Theorem 2. The following optimization program:

Our definitions of both normalized and unnormalized mod- max hla) 1 i lah 4
o . qo(h|z) log px(Y= |,

els are similar to those in (Lebanon & Lafferty, 2002). If we A weozl;m Zh: olAlz) 2Gele h) @

ignore fully labeled data irC(\), we get the hidden con-
ditional random field proposed in (Koo & Collins, 2005;
Quattoni et al., 2005) by assumigg(h|x) to be constant;
however, the second term X \) should exist to take ad- S, (p, qo, F) := {p € S(f),qof))vah : Zp(y|x7h) = 1}
vantage ofD,. If we ignore the first term i€ (), we get y

the standard boosting algorithm’s loss function; however,The proof of this theorem is similar to that of Theorem 1
the first term is needed to take advantage of the partiallyand is omitted because of space constraints. As can be seen
observed dat®;. In the next section, we will provide the from the theorems above, the primal optimization problems
primal problems for the proposed loss functions to moti-corresponding to the objective functiofié\) and/(\) are

vate the rationale of optimizing them and show their rela-the same except for the additional constraints for the later
tionships. We then give sequential and parallel algorithm®ne to ensuré_, p(y|z,h) = 1. The extended KL di-

to optimize&(\) andL£(\) in section 5. vergence gives the expected discrepancy betwégm, 1)

and the reference measurér, h,y) where the expecta-
tion is taken with respect to the distributigiiz)qo (h|z).
Hence minimizing the extended KL subject to the con-
It is well known (Lebanon & Lafferty, 2002) that for stan- straints force®(y|z, k) to become similar ta, or in par-
dard boosting with no hidden information, the primal op- ticular when the reference measuré isr constant, to have
timization problems for Adaboost and Logitboost are themore entropy.

same except for the additional constraints for the latter to

ensure a probabilistic model. For our boosting with incom-5_ L earning Algorithms

plete information, this relationship does not exist for the

original optimization problems themselves, but rather be-Convergence of boosting algorithms has been studied in
tween& () and/(\) which is the lowerbound o ()). various ways. Much work has been done to prove the con-
vergence in terms of an optimization method, which can
be categorized into two approaches: greedy function opti-
mization and greedy feature induction.

is the dual ofminges, (5,q.,7) K L(p|Ir) where the ex-
tendedK L(p||r) is defined as in Theorem 1, and

4. Primal and Dual Programs

Let the set of non-negative measuvets:= {m : X’ x H x

Y — Ry}, andF := F; U Fa. Letr be the reference
measurel; however, it can be any arbitrary measure that
generalizes the objective functions introduced in theiprev In the first approach, the boosting algorithm is viewed as
ous section. a sequential gradient descent algorithm (Breiman, 1999;
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Algorithm 1 Parallel Updates for the Normalized Model

lution is proved.

;f re'?gftfk c 7, do In this paper we take the second approach to learn the dis-
3: At — ZE+ (g0 (6, )]+ criminative model. We construct an auxiliary function to
' L bound the change of exponential I0§6A+A)) —&()) or
v E] (vl 95 (25,9)] log-losSL(A) — L(A+AN). Slmllar to (Collins etal., 2002;
7 Lebanon & Lafferty, 2002), either parallel or sequential up
4: Ap = ZE;(W%)[—%(%ZJ)H dates can be used. By the same argument as in (Collins
i et al., 2002; Lebanon & Lafferty, 2002), we can show the
fyZngm’hﬂ[fgk(xj,y)] convergence of these updates tdoeal minimumof the
i . loss function. For simplicity in presenting the results, we
5: Ay = 288k o8y introduce some notation far € D; U Dy:
6: end for
7 for]:’_{G:FQdO+ kaefhgk(‘iay):fk(i‘7y)_fk(£agi) (5)
AL o oy Ufi € F2,90(@, hy) = fu(@,hoy) = fu(@ R 5z) - (6)
LD I (AN C:= gla;i( Doolg@ )+ D loe(@ hy)l)  (7)
J N v fr€F1 fr€F2
9: A = E e [—gr(zi, h,y)]+
* Z paltis) EY @] = > ) (8
’YZ E;A(yuj,h_,»)[_gk(xjv hj, y)] (>0
g A= —log AT . . . .
10: AN = % For the normalized model, the learning algorithm with par-
11:  endfor

allel updates is summarized in Algorithm 1 and with the
sequential updates in Algorithm 2. For the unnormalized
model, the update rules (parallel or sequential) are exactl
the same; the only difference is that we will usgy|z, h)
rather tharp, (y|z, k) in all the algorithms’ equations. For
details of the derivation of updating rules in the learning
algorithms, see Appendix A.

12:  for fr, € F1 UF>do
13: Ak — AN + Ak
14: endfor

15: until convergence

Friedman et al., 2000; Mason et al., 2000) in function .
o . L - For ease of presentation, we have assumed that the poten-
space, inspired by numerical optimization and statiséesal . o : .
tially missing attributes are always the same. This is an

timation. It is a forward stage-wise additive modeling that. : T .
. . ! . .interesting and nontrivial situation that occurs in margi+e
approximates the solution by sequentially adding new basis - e oo :
. . - . .~ Wworld applications, where the missing attribuités the in-
functions without adjusting the parameters and coeffisient

of those that have already been added. At each iteratiorqorrnatlon that requires expensive human labeling (see the

. : . . @xperiments for example applications). However, our ap-
one solves for the optimal basis function and correspondin ;
%roach can be easily extended to the cases where the data

coefficients to add to the current expansion. This produce : S : :

new expansion, and the process is repeated. cou!d have gllfferer_lt missing attributes. In this more gaher
setting, thei-th training datum has the forrfx;, y;) with

In the second approach (Collins et al., 2002; Lebanon &missing informatiom; € H;, whereH, can vary for dif-

Lafferty, 2002), the boosting algorithm is described as aferenti’s depending on which information is missing. The

greedy feature induction algorithm to incrementally build contribution of this datum to the log loss in the normalized

random fields. The greediness of the algorithm arises immodel is simply— log p» (y;|x;). All the arguments in this

steps that select the most informative feature. In theges ste paper will go through with some minor changes.

each feature in a pool of candidate features is evaluated by

estimating the reduction in_the Kullback-Lieber di_vergen(? 6. Experiments

that would result from adding the feature to the field. This

reduction is approximated as a function of a single paramWe evaluate our approach in two real-world problems: vi-

eter and is equal to the exponential loss reduction or logual object recognition in computer vision and named en-

loss increment. This approximation is one of the key eledity recognition in natural language processing. In both

ments that make it practical to evaluate a large number ofases, we use simple and independent features, so when we

candidate features at each stage of the induction algarithncalculate the values Oﬁj_ and A}, feature expectations

Various parameter update rules can be derived By usingan be done efficiently. For simplicity, we sgto be 1. In

an auxiliary function to bound the change of loss functionpractice, this parameter can be set by cross-validation. We

from above, and thus convergence to the global optimal soset our prior belief in values of the hidden variable given an
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Algorithm 2 Sequential Updates for the Norm. Model

1: repeat
2. for fi, € 71 do
3 AL =370 pa(le) (1 + g, v)+
i YFY;
YD palylwy, hy) (1 + gr(s,y))
J YAy,
4 Ay =D pale) (1 = gelas )+
V225 2ty PAWITG h) (1 = gk (25, 9))
- A+
5 Ap o os Ay “losdy Ly
6: end for
7. for fi € F>do
8: AE =373 " pa( hlas) (1 + gr (s, by y)+
i oyFy; h
V225 2oy, AT hy) (1 + gk (25, Ry, y))
9: Alz = Z Z ZpA(lﬁh‘xz)(l - gk(x“h,y))—&-
i yFAy; h
V225 2y, AT h) (1= gk (25, hy, y))
Ry
10: o oedplosdy 4y,
11: endfor

12: until convergence

menting the objects (Winn & Shotton, 2006), to specifying
a bounding box of the objects (Viola & Jones, 2001), to
only indicating the existence of the objects (Fergus et al.,
2003). Naturally, there is a trade-off among different Isve

of supervisions. Manually segmenting the object of inter-
est in an image obviously provides very accurate informa-
tion for any learning algorithm, but it is very expensive and
time-consuming to annotate a large number of images. On
the other hand, it is relatively easy to label an image based
only on the existence of an object. In our experiment, we
assume we have two sets of training images. The first set
of images has only class labels associated with them; we
represent them as:, y), wherex refers to the image and

y refers to its class label. The second set of images has
both class label and the contour of the object being man-
ually labeled; we represent them @s h,y), whereh is

the information about the contour of the object. Our learn-
ing problem is then in precisely the scenario in which our
proposed method is expected to be effective.

We first run an interest-point detector (Kadir & Brady,

2001) to identity regions of interest on each image. Each
interest point is represented by a SIFT descriptor (Lowe,
2004) as a 128-dimensional vector. The SIFT descriptors

instanceq (h|x) to be constant. In all the experiments, we from all the training images are then vector quantized into
use parallel updates. We have tried sequential updates ad Visual words (we choos&™ = 200 in our experiment)
find that they are much slower. Although they can achieve®y k-means clustering. All the images are then represented
higher likelihood on the training data, the results on tisé te Py & bag-of-words representation by counting the occur-
data remain the same.

rence of each visual word in an image. We denote an im-
e ast = (z1,29,...,x¢), Wheret is the number of in-

. . ag
We compare our proposed boosting approach with thregsrest points in:, and eachr; is an entry to a visual word.
different baseline algorithms, in both normalized and un-the informationi about the object contour is represented

normalized cases. The first baseline algorithm (BL1) useggj, — (hi, ho
both sets of feature®; and.F, but is trained only on the o

.., ht), whereh; is a binary value indicat-
ing whetherz; is on the object or not. Since we assume

fully observed training dat®,. The second baseline algo- he “bag-of-words” model, the summation overequired

rithm (BL2) is trained on all the training dafd; U D, but
uses only featureg, that is, it ignores feature%, that

for calculatingAj+ and A} can be solved efficiently by
factoring out the contribution of each interest point. Al-

|nvoIv_e the h@den .mform:.;moh. Notice that the second though bag-of-words representation ignores a lot of posi-
baseline algorithm is identical to the algorithm in (Lebano 4 information between features, previous work (Sivic
& Lafferty, 2002). The third baseline algorithm (BL3) uses ¢ 41| 2005; Fergus et al., 2005) has demonstrated that it to
all the training dateD; U D, and both types of features pe quite effective in object recognition tasks.

F1UF, butignorebserved: on fully observed data; that
is, it assumes all the data are in the form{ of;, y;)}. No-
tice that the third baseline algorithm is similar to the t@dd

conditional random field (Quattoni et al., 2005).

6.1. Visual Object Recognition

We define the following three sets of features for our boost-
ing algorithm, based on the bag-of-words representation of
images. (1) featurg;, (z, y) is calculated as the count of
visual wordsj in an imager if y = ¢/, and zero otherwise;
(2) featureoj,(x, h,y) is the count of visual wordg on

the foreground of image if y = ¢/, and zero otherwise;

We first consider a visual object recognition task where(3) featureb;, (z, h,y) is the count of visual wordg on
some of the data have missing features. In this task, wehe background of image if y = 1/, and zero otherwise.
attempt to classify an image based on the existence of aNotice that featureg;,, are always observed for a train-

object of interest in the image. We test our approach qn thﬁqg image. Features;,, andb;, are observed only when
Caltech 4 dataset: airplanes, cars, faces, and motorbikes.a training image does not have missing information (i.e.,

Common approaches to object recognition involve som
form of supervision, which may range from manually seg-

éhe manually labeled object contour). We normalize all the

features by the total number of interest points in an image
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accuracy| log-likelihood dictions represent its local context, which then used by the
Our method| 97.22% -0.0916 classifier. The part-of-speech tag is a valuable source of in
BL1 89.26% -1.1417 formation and is not available in some annotations of the
BL2 88.01% -0.5698 data sets for this task, so we treat it as the hidden variable
BL3 90.43% -0.4375 that is not observed for some portion of the training data.
normalized model We could use theequencef POS tags of the words in the
accuracy| log of loss current window as the hidden variable. In that case, we
Our method| 94.83% | -0.7412 may use a finite state automata to characterize the eligible
BL1 8257% | -1.1231 sequence of POS tags when we want to sum over their val-
BL2 89.86% | -0.7977 ues to speed up the training algorithms. The features that
BL3 87.64% | -0.8068 we used are summarized in Table 6.2; they are described in
unnormalized model more details in (Carreras et al., 2003).
Table 1.Results of our approach on visual object recognition,[ Feature [ Explanation ]
compared with three baseline algorithms Lexical word forms and their positions in the window]
Syntactic part-of-speech tags (when available)
Orthographic| capitalized, include digits, ...
to make sure their values are between 0 and 1. During test-Affixes the suffixes and prefixes (up to four characters)
ing, we observed the image and we try to infer its label Left predict | predicted labels for the two previous words

y based on the learned model. Although we can also in-

fer y assuming both: and h are observed during testing, Table 2.Details of the features used for the NER task. Syntactic
it is actually an unrealistic setting in our applicationrdt  features belong té and the rest of features belong#a.

quires a perfect figure/ground segmentation of the image

However, since figure/ground segmentation is itself a veryve use the data set of the CONLL 2003 shared task. To re-
challenging problem in computer vision, it is not reason-duce the training time, we collapse the original 45 différen
able to assume we could have this information during thepQOS tags into five tags as done in (McCallum et al., 2003).
testing. So we do not investigate this case. After training the model, we do the classification for each

Our dataset contains more than 2000 images. We randomlﬂonwdual position by normalizing the prediction score of
split them equally into training and testing sets. We choosd® model using the class mass normalization (CMN) pro-
30% of the training images to be fully observed and the res€dure as introduced in (Zhu et al., 2003).

to be partially observed. We compare both normalized angve compare our approach to the three baseline systems de-
unnormalized models with the three baseline algorithmsined before. There are 5K sentencein 6K sentences
defined above, in terms of classification accuracy and thén pD,, and 1K sentences in the test set. The first set of
log-likelihood of the test data. The results are shown in Ta-experiments show the performance of our model compared
ble 1. We also visualize the most discriminative patches ino the baselines when, at the test time, anlis available
some sample images in Figure 1. We find that our approaclsee Table 3). In the second set of experimefitsh) is
is significantly superior to the three baseline algorithims, given at the test time (see Table 4); for this setting, BL2
term of both accuracy and log-likelihood on the testimagesand BL3 cannot be used. Our method outperforms baseline
systems in both sets of experiments in terms of f-measure
6.2. Named Entity Recognition and log-likelihood or loss function.

Named entity extraction (NEE) is a subtask of information

extraction in which we try to identify names of persons, lo- 7. Comparison to the Related Work
cations, and organizations in a given set of documents. On&riginally boosting is considered as a way to boost weak
approach to this problem is to do first named entity 'COGicamers to strong learners by: learning weak hypotheses
nition (NER) and then named entity classification (NEC). j

In this section we apply our method to the NER problemto. (_:Iassﬁy hard examples in each round, a_nd finally com-
. ) .bining these weak hypotheses. Another view to boosting

and demonstrate its effectiveness compared to the baseline L . o )

is'through the statistical perspective which interpretsit
systems. . o ) .

optimizing some objective function via parallel or sequen-
We consider NER as a sequence labeling problem, that igial updates to determine the weights of all possible weak
specifying a sequence of zero and one for a sentence toypotheses (aka features). There is a debate between the
classify a word as part of a named entity or not. For eaclstatistic and algorithmic perspective; see (Mease & Wyner,
word w, its surrounding words in a window of length 5, 2008) for more information. Our work takes the statistical

its part-of-speech tag (when available), and previous preperspective and do not engage in that debate.
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Figure 1.Visualization of the most discriminative patches in each image.

f-measure| log-likelihood 8. Conclusions and Further Work
Our method| 49.45% -0.5784 i .
BL1 26.63% 205932 In this work we have presented a novel boosting approach
BL2 28.10% 20.5803 that extends the traditional boosting framework by incor-
BL3 47 80% 205880 porating hidden variables such that fully labeled data can

normalized model

be integrated with partially labeled data to form a power-
ful strong classifier. Thus, compared with both the original

f-measure| log of loss ) . :

Our methodl 49.04% 56337 boostlr)g algorithms and hidden CRF, our mod(_el_ performs
BL1 26.54% 5 6458 better in tV\IIO rgalf—world_ prot:ck(ejms by fully exploiting rele-
T 17 58% 56378 vant complete information of data resources.

BL3 46.39% -2.6434 We consider only simple independent features in our

unnormalized model

f-measure| log-likelihood

Our method

59.60%

-0.5759

BL1

56.51%

-0.5916

normalized model

model. In fact, the hidden variables may have complex
dependencies that respect certain cyclic graph structure;

Table 3.Results of our approach on the NER task, compared withthen it may be necessary to use variational methods, such
three baseline algorithms when onlys given in the test data.

as loopy belief propagation, to compute feature expecta-
tion for the values ofdA™ and A=. As future work, we
would like to incorporate more complex dependent features
in these two applications.
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