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Abstract
In real-world machine learning problems, it is

very common that part of the input feature vec-
tor is incomplete: either not available, missing,
or corrupted. In this paper, we present a boost-
ing approach that integrates features with incom-
plete information and those with complete infor-
mation to form a strong classifier. By introduc-
ing hidden variables to model missing informa-
tion, we form loss functions that combine fully
labeled data with partially labeled data to effec-
tively learn normalized and unnormalized mod-
els. The primal problems of the proposed opti-
mization problems with these loss functions are
provided to show their close relationship and the
motivations behind them.We use auxiliary func-
tions to bound the change of the loss functions
and derive explicit parameter update rules for the
learning algorithms. We demonstrate encourag-
ing results on two real-world problems — visual
object recognition in computer vision and named
entity recognition in natural language process-
ing — to show the effectiveness of the proposed
boosting approach.

1. Introduction

Boosting is a general supervised learning technique for in-
crementally building linear combinations of “weak” mod-
els to generate a “strong” predicative model. It is one
of the most successful and practical methods in machine
learning. Over the last decade, it has attracted much atten-
tion in the machine learning community and related areas
such as statistics. It has been widely applied in many real-
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world problems such as text filtering and routing, ranking,
learning in natural language processing, image retrieval,
medical diagnosis, and customer monitoring and segmen-
tation (Schapire, 2004).

It is very common in real-world machine learning problems
that part of the input feature vector is incomplete: either
not available, missing, or corrupted. In a web-page rank-
ing problem, for example, using click-though data as part
of the features, we find that a small number of valid pages
have click features and most do not. In the case of object
recognition in computer vision, many approaches assume
a part-based model. However, certain parts of the object
are hard to detect reliably due to small support in the im-
age, occlusion or clutter, which also lead to missing infor-
mation. Handling these kinds of classification problems
containing incomplete information is a very important and
realistic task. Excluding popular EM algorithms for gener-
ative models,some methods have been recently proposed
for discriminative models (Chechik et al., 2007; Koo &
Collins, 2005; Quattoni et al., 2005; Shivaswamy et al.,
2006; Bi & Zhang, 2004).

In this paper, we show how to handle incomplete data under
the boosting approach. We first describe the precise prob-
lem we are trying to solve, then we formulate optimization
problems where the loss functions consist of two parts, one
using partially labeled data and the other using fully labeled
data. The primal problems of the proposed optimization
problems with these loss functions are provided to show
their close relationship and shed light on the rationale be-
hind them. We derive explicit parameter update rules of
the learning algorithms by introducing auxiliary functions
to bound the change of loss functions. Finally, we demon-
strate encouraging results on two real-world problems to
show the effectiveness of the proposed boosting approach:
visual object recognition in computer vision and named en-
tity recognition in natural language processing.
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2. Preliminaries

Let X ∈ X be a random variable over data instances to
be labeled, andY be a random variable over corresponding
labels ranging over a finite label alphabetY. The classi-
fication task is to learn a mapping from data instancesX
to labelsY. Assume we have a set of feature functions
F1 :=

{

fk(x, y)
}

where each feature mapsX × Y to R.
Same as in (Collins et al., 2002; Lebanon & Lafferty, 2002)
and without loss of generality, we assume that the range of
all feature functions in this paper is[0, 1]. These feature
functions correspond to weak learners in boosting and suf-
ficient statistics in an exponential family model.

Suppose the target predictorcan be derived from a scor-
ing function written as a linear combination of feature
functionst(x, y) =

∑

fk∈F1
λkfk(x, y). Given a training

dataset
{

(xi, yi)
}

, it has been shown (Lebanon & Lafferty,
2002) that Adaboost (Freund & Schapire, 1997) combines
features to minimize the following exponential loss

X

xi

X

y

qλ(y|xi) (1)

whereqλ(y|x) := exp
∑

fk∈F1
λk

[

fk(x, y) − fk(x, ỹx)
]

is called the unnormalized model, andỹx denotes the label
of instancex over the empirical data. Equivalently, it has
been shown (Lebanon & Lafferty, 2002) that Logitboost
(Friedman et al., 2000) minimizes the following log loss

−
X

xi

log pλ(ỹxi
|xi) (2)

wherepλ(y|x) := qλ(y|x)/Zλ(x) is called the normalized
model. Optimizing the two objective functions above can
be done by either parallel or sequential updates (Collins
et al., 2002; Lebanon & Lafferty, 2002).

Now assume that there is a random variableh ∈ H which
is hiddenin some part of the training dataD1 :=

{

(xi, yi)
}

but has been observed in the rest of the training dataD2 :=
{

(xj , hj , yj)
}

. Consider a second set of feature functions
F2 :=

{

fk(x, h, y)
}

where each feature mapsX ×H×Y
to R. In many real-world applications, the number of fully
observed instances is much smaller than that of partially
observed instances, that is,|D2| ≪ |D1|, since obtain-
ing fully observed instances is either expensive or time-
consuming. To take full advantage of all available training
data, we need to develop new methods, because the infor-
mation cannot be fully exploited by the original boosting
algorithm.

Hereafter we use subscriptsi andj to range over training
data inD1 andD2 respectively. For a datum(x, h, y), we
denote all of itsF1 features by the vectorf1(x, y) and all
of itsF2 features by the vectorf2(x, h, y).

3. Boosting with Hidden Variables

The challenge in this paper is, besides using the feature set
F1 and training setD1, how to use the additional feature
setF2 and training setD2 to obtain a better approximation
for the mapping from instances to labels.

To this end, the main object of focus is a mapping from
X × H to Y, which is modeled by a conditional probabil-
ity distribution pλ(y|x, h). This distribution is called the
normalized model and is defined parametrically as

pλ(y|x, h) ∝ e
λ

T
1 ·[f1(x,y)−f1(x,ỹx)]+λ

T
2 ·[f2(x,h,y)−f2(x,h,ỹx)]

whereλ1 andλ2 are the model’s parameter vectors corre-
sponding to features inF1 andF2, respectively1. To esti-
mate the parameters of the distribution, we can maximize
the conditional likelihood of the training data:

L(λ) :=
X

i

log pλ(yi|xi) + γ
X

j

log pλ(yj |xj , hj)

whereγ is used to balance the influence of the two data
sources on the objective function. Letq0(h|x) be a fixed
distribution representing the prior belief in values of the
hidden variable given an instancex, then pλ(y, h|x) =
q0(h|x)pλ(y|x, h) and the first term inL(λ) can be com-
puted based onpλ(y|x) =

∑

h pλ(y, h|x).

We now turn our attention to model the mapping from
X × H to Y by a linearscoring functionthat is the ba-
sis of our Adaboost type algorithms. Whenh is observed,
the mapping is defined based on

tλ(x, h, y) := λ
T
1 · f 1(x, y) + λ

T
2 · f 2(x, h, y)

and whenh is hidden, it is defined astλ(x, y) :=
∑

h q0(h|x)tλ(x, h, y). As before,q0(h|x) is used to in-
ject prior domain knowledge. To learn the parameters, we
pose the minimization of the loss functionE(λ) defined as

E(λ) :=
X

i

X

h

q0(h|x)
X

y

qλ(y|xi, h) + γ
X

j

X

y

qλ(y|xj , hj)

whereqλ(y|xi, h) is called the unnormalized model

qλ(y|x, h) := e
λ

T
1 ·[f1(x,y)−f1(x,ỹx)]+λ

T
2 ·[f2(x,h,y)−f2(x,h,ỹx)]

The second term inE(λ) can be thought of as the loss in-
curred for thejth instance over all possible labels, and the
first term as theexpectedloss for theith instance. Note
that if q0(h|xj) puts a point massγ on the observedhj for
instances inD2, thenE(λ) can be rewritten compactly as

E(λ) =
X

x∈D1∪D2

X

h,y

q0(h|x)qλ(y|x, h)

1It is equivalent to the more familiar formpλ(x, h, y) ∝

eλ
T
1 ·f1(x,y)+λ

T
2 ·f2(x,h,y) by simply removing the constants

eλ
T
1 ·f1(x,ỹx)+λ

T
2 ·f2(x,h,ỹx) from the numerator and denominator.
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In the next section, we will show that there is a close re-
lationship between minimizingE(λ) and maximizing the
lowerbound ℓ(λ) on L(λ), which is derived based on
Jensen’s inequality and defined as

ℓ(λ) :=
X

i,h

q0(h|xi) log pλ(yi|xi, h) + γ
X

j

log pλ(yj |xj , hj)

By extendingq0 to instances inD2 as before, we can write

ℓ(λ) =
X

x∈D1∪D2

X

h

q0(h|x) log pλ(ỹx|x, h)

Furthermore, we will show a close relationship between
maximizing L(λ) and minimizing the following lower-
bound onE(λ) derived by Jensen’s inequality

ε(λ) :=
X

i

X

y

e
tλ(xi,y)−tλ(xi,yi)

+γ
X

j

X

y

e
tλ(xj ,hj ,y)−tλ(xj ,hj ,yj)

In the test time, depending on whetherh is hidden or not,
eitherpλ(y|x) or pλ(y|x, h) can be used to determine the
class label of a given instance if we use the probabilistic
model. Accordingly, for the linear map, eithertλ(x, y) or
tλ(x, h, y) can be used.

Our definitions of both normalized and unnormalized mod-
els are similar to those in (Lebanon & Lafferty, 2002). If we
ignore fully labeled data inL(λ), we get the hidden con-
ditional random field proposed in (Koo & Collins, 2005;
Quattoni et al., 2005) by assumingq0(h|x) to be constant;
however, the second term inL(λ) should exist to take ad-
vantage ofD2. If we ignore the first term inE(λ), we get
the standard boosting algorithm’s loss function; however,
the first term is needed to take advantage of the partially
observed dataD1. In the next section, we will provide the
primal problems for the proposed loss functions to moti-
vate the rationale of optimizing them and show their rela-
tionships. We then give sequential and parallel algorithms
to optimizeE(λ) andL(λ) in section 5.

4. Primal and Dual Programs

It is well known (Lebanon & Lafferty, 2002) that for stan-
dard boosting with no hidden information, the primal op-
timization problems for Adaboost and Logitboost are the
same except for the additional constraints for the latter to
ensure a probabilistic model. For our boosting with incom-
plete information, this relationship does not exist for the
original optimization problems themselves, but rather be-
tweenE(λ) andℓ(λ) which is the lowerbound onL(λ).

Let the set of non-negative measuresM := {m : X ×H×
Y → R+}, andF := F1 ∪ F2. Let r be the reference
measure1; however, it can be any arbitrary measure that
generalizes the objective functions introduced in the previ-
ous section.

Theorem 1. The following optimization program:

max
λ

X

x∈D1∪D2

X

h,y

q0(h|x)qλ(ỹx|x, h) (3)

is the dual ofminp∈S(p̃,q0,F)KL(p||r) where the ex-
tendedKL(p||r) is defined as
X

x,h

p̃(x)q0(h|x)
X

y

p(y|h, x)
h

log
p(y|x, h)

r(x, h, y)
− 1

i

+ r(x, h, y)

and the setS(p̃,q0,F) is defined as
n

p ∈M
˛

˛

˛

X

x

p̃(x)Eq0(h|x)p(y|x,h)

h

f−Ep̃(y|x)[f ]
i

= 0, ∀f ∈ F
o

Proof sketch.The key idea in this theorem is the definition
of the extended KL divergence andS(p̃,q0,F). Construct
the Lagrangian of the dual, which is a constrained opti-
mization problem, take its derivative, and set it to zero.
It will give the form of the optimal solution; plug this
form back into the Lagrangian, and make the data con-
sistency assumption (p̃ is theempirical probability distri-
bution)

∑

y p̃(y|x)f(x, y) = f(x, yx) for f ∈ F1 and
∑

y p̃(y|x)f(x, h, y) = f(x, h, yx) for f ∈ F2, we will
obtain the optimization problem in (3) .

Theorem 2. The following optimization program:

max
λ

X

x∈D1∪D2

X

h

q0(h|x) log pλ(ỹx|x, h) (4)

is the dual ofminp∈S△(p̃,q0,F)KL(p||r) where the ex-
tendedKL(p||r) is defined as in Theorem 1, and

S△(p̃,q0,F) :=
n

p ∈ S(p̃,q0,F)
˛

˛

˛
∀x, h :

X

y

p(y|x, h) = 1
o

The proof of this theorem is similar to that of Theorem 1
and is omitted because of space constraints. As can be seen
from the theorems above, the primal optimization problems
corresponding to the objective functionsE(λ) andℓ(λ) are
the same except for the additional constraints for the later
one to ensure

∑

y p(y|x, h) = 1. The extended KL di-
vergence gives the expected discrepancy betweenp(y|x, h)
and the reference measurer(x, h, y) where the expecta-
tion is taken with respect to the distributioñp(x)q0(h|x).
Hence minimizing the extended KL subject to the con-
straints forcesp(y|x, h) to become similar tor, or in par-
ticular when the reference measure is1 or constant, to have
more entropy.

5. Learning Algorithms

Convergence of boosting algorithms has been studied in
various ways. Much work has been done to prove the con-
vergence in terms of an optimization method, which can
be categorized into two approaches: greedy function opti-
mization and greedy feature induction.

In the first approach, the boosting algorithm is viewed as
a sequential gradient descent algorithm (Breiman, 1999;
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Algorithm 1 Parallel Updates for the Normalized Model
1: repeat
2: for fk ∈ F1 do
3: A

+
k =

X

i

E
+
pλ(y|xi)

[gk(xi, y)]+

γ
X

j

E
+
pλ(y|xj ,hj)[gk(xj , y)]

4: A
−
k =

X

i

E
+
pλ(y|xi)

[−gk(xi, y)]+

γ
X

j

E
+
pλ(y|xj ,hj)[−gk(xj , y)]

5: ∆λk =
log A

−

k
−log A

+

k

2C

6: end for
7: for fk ∈ F2 do
8: A

+
k =

X

i

E
+
pλ(y,h|xi)

[gk(xi, h, y)]+

γ
X

j

E
+
pλ(y|xj ,hj)[gk(xj , hj , y)]

9: A
−
k =

X

i

E
+
pλ(y,h|xi)

[−gk(xi, h, y)]+

γ
X

i

E
+
pλ(y|xj ,hj)[−gk(xj , hj , y)]

10: ∆λk =
log A

−

k
−log A

+

k

2C

11: end for
12: for fk ∈ F1 ∪ F2 do
13: λk ← ∆λk + λk

14: end for
15: until convergence

Friedman et al., 2000; Mason et al., 2000) in function
space, inspired by numerical optimization and statisticales-
timation. It is a forward stage-wise additive modeling that
approximates the solution by sequentially adding new basis
functions without adjusting the parameters and coefficients
of those that have already been added. At each iteration,
one solves for the optimal basis function and corresponding
coefficients to add to the current expansion. This produces
new expansion, and the process is repeated.

In the second approach (Collins et al., 2002; Lebanon &
Lafferty, 2002), the boosting algorithm is described as a
greedy feature induction algorithm to incrementally build
random fields. The greediness of the algorithm arises in
steps that select the most informative feature. In these steps
each feature in a pool of candidate features is evaluated by
estimating the reduction in the Kullback-Lieber divergence
that would result from adding the feature to the field. This
reduction is approximated as a function of a single param-
eter and is equal to the exponential loss reduction or log
loss increment. This approximation is one of the key ele-
ments that make it practical to evaluate a large number of
candidate features at each stage of the induction algorithm.
Various parameter update rules can be derived By using
an auxiliary function to bound the change of loss function
from above, and thus convergence to the global optimal so-

lution is proved.

In this paper we take the second approach to learn the dis-
criminative model. We construct an auxiliary function to
bound the change of exponential loss,E(λ+∆λ)−E(λ) or
log-lossL(λ)−L(λ+∆λ). Similar to (Collins et al., 2002;
Lebanon & Lafferty, 2002), either parallel or sequential up-
dates can be used. By the same argument as in (Collins
et al., 2002; Lebanon & Lafferty, 2002), we can show the
convergence of these updates to alocal minimumof the
loss function. For simplicity in presenting the results, we
introduce some notation for̃x ∈ D1 ∪ D2:

∀fk ∈ F1, gk(x̃, y) = fk(x̃, y) − fk(x̃, ỹx̃) (5)

∀fk ∈ F2, gk(x̃, h, y) = fk(x̃, h, y) − fk(x̃, h, ỹx̃) (6)

C := max
x̃,y,h

(

∑

fk∈F1

|gk(x̃, y)| +
∑

fk∈F2

|gk(x̃, h, y)|
)

(7)

E
+
p(t)[ψ(t)] :=

∑

t:ψ(t)>0

p(t)ψ(t) (8)

For the normalized model, the learning algorithm with par-
allel updates is summarized in Algorithm 1 and with the
sequential updates in Algorithm 2. For the unnormalized
model, the update rules (parallel or sequential) are exactly
the same; the only difference is that we will useqλ(y|x, h)
rather thanpλ(y|x, h) in all the algorithms’ equations. For
details of the derivation of updating rules in the learning
algorithms, see Appendix A.

For ease of presentation, we have assumed that the poten-
tially missing attributes are always the same. This is an
interesting and nontrivial situation that occurs in many real-
world applications, where the missing attributeh is the in-
formation that requires expensive human labeling (see the
experiments for example applications). However, our ap-
proach can be easily extended to the cases where the data
could have different missing attributes. In this more general
setting, thei-th training datum has the form(xi, yi) with
missing informationhi ∈ Hi, whereHi can vary for dif-
ferenti’s depending on which information is missing. The
contribution of this datum to the log loss in the normalized
model is simply− log pλ(yi|xi). All the arguments in this
paper will go through with some minor changes.

6. Experiments

We evaluate our approach in two real-world problems: vi-
sual object recognition in computer vision and named en-
tity recognition in natural language processing. In both
cases, we use simple and independent features, so when we
calculate the values ofA+

j andA−
j , feature expectations

can be done efficiently. For simplicity, we setγ to be 1. In
practice, this parameter can be set by cross-validation. We
set our prior belief in values of the hidden variable given an
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Algorithm 2 Sequential Updates for the Norm. Model
1: repeat
2: for fk ∈ F1 do
3: A

+
k =

X

i

X

y 6=yi

pλ(y|xi)(1 + gk(xi, y))+

γ
X

j

X

y 6=yj

pλ(y|xj , hj)(1 + gk(xj , y))

4: A
−
k =

X

i

X

y 6=yi

pλ(y|xi)(1− gk(xi, y))+

γ
P

j

P

y 6=yj
pλ(y|xj , hj)(1− gk(xj , y))

5: λk ←
log A

−

k
−log A

+

k

2
+ λk

6: end for
7: for fk ∈ F2 do
8: A

+
k =

X

i

X

y 6=yi

X

h

pλ(y, h|xi)(1 + gk(xi, h, y))+

γ
P

j

P

y 6=yj
pλ(y|xj , hj)(1 + gk(xj , hj , y))

9: A
−
k =

X

i

X

y 6=yi

X

h

pλ(y, h|xi)(1− gk(xi, h, y))+

γ
P

j

P

y 6=yj
pλ(y|xj , hj)(1− gk(xj , hj , y))

10: λk ←
log A

−

k
−log A

+

k

2
+ λk

11: end for
12: until convergence

instance,q0(h|x) to be constant. In all the experiments, we
use parallel updates. We have tried sequential updates and
find that they are much slower. Although they can achieve
higher likelihood on the training data, the results on the test
data remain the same.

We compare our proposed boosting approach with three
different baseline algorithms, in both normalized and un-
normalized cases. The first baseline algorithm (BL1) uses
both sets of featuresF1 andF2, but is trained only on the
fully observed training dataD2. The second baseline algo-
rithm (BL2) is trained on all the training dataD1 ∪ D2 but
uses only featuresF1, that is, it ignores featuresF2 that
involve the hidden informationh. Notice that the second
baseline algorithm is identical to the algorithm in (Lebanon
& Lafferty, 2002). The third baseline algorithm (BL3) uses
all the training dataD1 ∪ D2 and both types of features
F1∪F2 but ignoresobservedh on fully observed data; that
is, it assumes all the data are in the form of{(xi, yi)}. No-
tice that the third baseline algorithm is similar to the hidden
conditional random field (Quattoni et al., 2005).

6.1. Visual Object Recognition

We first consider a visual object recognition task where
some of the data have missing features. In this task, we
attempt to classify an image based on the existence of an
object of interest in the image. We test our approach on the
Caltech 4 dataset: airplanes, cars, faces, and motorbikes.

Common approaches to object recognition involve some
form of supervision, which may range from manually seg-

menting the objects (Winn & Shotton, 2006), to specifying
a bounding box of the objects (Viola & Jones, 2001), to
only indicating the existence of the objects (Fergus et al.,
2003). Naturally, there is a trade-off among different levels
of supervisions. Manually segmenting the object of inter-
est in an image obviously provides very accurate informa-
tion for any learning algorithm, but it is very expensive and
time-consuming to annotate a large number of images. On
the other hand, it is relatively easy to label an image based
only on the existence of an object. In our experiment, we
assume we have two sets of training images. The first set
of images has only class labels associated with them; we
represent them as(x, y), wherex refers to the image and
y refers to its class label. The second set of images has
both class label and the contour of the object being man-
ually labeled; we represent them as(x, h, y), whereh is
the information about the contour of the object. Our learn-
ing problem is then in precisely the scenario in which our
proposed method is expected to be effective.

We first run an interest-point detector (Kadir & Brady,
2001) to identity regions of interest on each image. Each
interest point is represented by a SIFT descriptor (Lowe,
2004) as a 128-dimensional vector. The SIFT descriptors
from all the training images are then vector quantized into
K visual words (we chooseK = 200 in our experiment)
by k-means clustering. All the images are then represented
by a bag-of-words representation by counting the occur-
rence of each visual word in an image. We denote an im-
age asx = (x1, x2, ..., xt), wheret is the number of in-
terest points inx, and eachxi is an entry to a visual word.
The informationh about the object contour is represented
ash = (h1, h2, ..., ht), wherehi is a binary value indicat-
ing whetherxi is on the object or not. Since we assume
the “bag-of-words” model, the summation overh required
for calculatingA+

j andA−
j can be solved efficiently by

factoring out the contribution of each interest point. Al-
though bag-of-words representation ignores a lot of posi-
tional information between features, previous work (Sivic
et al., 2005; Fergus et al., 2005) has demonstrated that it to
be quite effective in object recognition tasks.

We define the following three sets of features for our boost-
ing algorithm, based on the bag-of-words representation of
images. (1) featurefjy′(x, y) is calculated as the count of
visual wordsj in an imagex if y = y′, and zero otherwise;
(2) featureojy′(x, h, y) is the count of visual wordsj on
the foreground of imagex if y = y′, and zero otherwise;
(3) featurebjy′(x, h, y) is the count of visual wordsj on
the background of imagex if y = y′, and zero otherwise.
Notice that featuresfjy′ are always observed for a train-
ing image. Featuresojy′ andbjy′ are observed only when
a training image does not have missing information (i.e.,
the manually labeled object contour). We normalize all the
features by the total number of interest points in an image
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accuracy log-likelihood
Our method 97.22% -0.0916

BL1 89.26% -1.1417
BL2 88.01% -0.5698
BL3 90.43% -0.4375

normalized model
accuracy log of loss

Our method 94.83% -0.7412
BL1 82.57% -1.1231
BL2 89.86% -0.7977
BL3 87.64% -0.8068

unnormalized model

Table 1.Results of our approach on visual object recognition,
compared with three baseline algorithms

to make sure their values are between 0 and 1. During test-
ing, we observed the imagex, and we try to infer its label
y based on the learned model. Although we can also in-
fer y assuming bothx andh are observed during testing,
it is actually an unrealistic setting in our application. Itre-
quires a perfect figure/ground segmentation of the imagex.
However, since figure/ground segmentation is itself a very
challenging problem in computer vision, it is not reason-
able to assume we could have this information during the
testing. So we do not investigate this case.

Our dataset contains more than 2000 images. We randomly
split them equally into training and testing sets. We choose
30% of the training images to be fully observed and the rest
to be partially observed. We compare both normalized and
unnormalized models with the three baseline algorithms
defined above, in terms of classification accuracy and the
log-likelihood of the test data. The results are shown in Ta-
ble 1. We also visualize the most discriminative patches in
some sample images in Figure 1. We find that our approach
is significantly superior to the three baseline algorithms,in
term of both accuracy and log-likelihood on the test images.

6.2. Named Entity Recognition

Named entity extraction (NEE) is a subtask of information
extraction in which we try to identify names of persons, lo-
cations, and organizations in a given set of documents. One
approach to this problem is to do first named entity recog-
nition (NER) and then named entity classification (NEC).
In this section we apply our method to the NER problem
and demonstrate its effectiveness compared to the baseline
systems.

We consider NER as a sequence labeling problem, that is,
specifying a sequence of zero and one for a sentence to
classify a word as part of a named entity or not. For each
word w, its surrounding words in a window of length 5,
its part-of-speech tag (when available), and previous pre-

dictions represent its local context, which then used by the
classifier. The part-of-speech tag is a valuable source of in-
formation and is not available in some annotations of the
data sets for this task, so we treat it as the hidden variable
that is not observed for some portion of the training data.
We could use thesequenceof POS tags of the words in the
current window as the hidden variable. In that case, we
may use a finite state automata to characterize the eligible
sequence of POS tags when we want to sum over their val-
ues to speed up the training algorithms. The features that
we used are summarized in Table 6.2; they are described in
more details in (Carreras et al., 2003).

Feature Explanation
Lexical word forms and their positions in the window
Syntactic part-of-speech tags (when available)
Orthographic capitalized, include digits, ...
Affixes the suffixes and prefixes (up to four characters)
Left predict predicted labels for the two previous words

Table 2.Details of the features used for the NER task. Syntactic
features belong toF2 and the rest of features belong toF1.

We use the data set of the CONLL 2003 shared task. To re-
duce the training time, we collapse the original 45 different
POS tags into five tags as done in (McCallum et al., 2003).
After training the model, we do the classification for each
individual position by normalizing the prediction score of
the model using the class mass normalization (CMN) pro-
cedure as introduced in (Zhu et al., 2003).

We compare our approach to the three baseline systems de-
fined before. There are 5K sentences inD1, 6K sentences
in D2, and 1K sentences in the test set. The first set of
experiments show the performance of our model compared
to the baselines when, at the test time, onlyx is available
(see Table 3). In the second set of experiments,(x, h) is
given at the test time (see Table 4); for this setting, BL2
and BL3 cannot be used. Our method outperforms baseline
systems in both sets of experiments in terms of f-measure
and log-likelihood or loss function.

7. Comparison to the Related Work

Originally boosting is considered as a way to boost weak
learners to strong learners by: learning weak hypotheses
to classify hard examples in each round, and finally com-
bining these weak hypotheses. Another view to boosting
is through the statistical perspective which interprets itas:
optimizing some objective function via parallel or sequen-
tial updates to determine the weights of all possible weak
hypotheses (aka features). There is a debate between the
statistic and algorithmic perspective; see (Mease & Wyner,
2008) for more information. Our work takes the statistical
perspective and do not engage in that debate.
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Figure 1.Visualization of the most discriminative patches in each image.

f-measure log-likelihood
Our method 49.45% -0.5784

BL1 46.63% -0.5932
BL2 48.10% -0.5803
BL3 47.80% -0.5880

normalized model
f-measure log of loss

Our method 49.04% -2.6337
BL1 46.24% -2.6458
BL2 47.58% -2.6378
BL3 46.39% -2.6434

unnormalized model

Table 3.Results of our approach on the NER task, compared with
three baseline algorithms when onlyx is given in the test data.

f-measure log-likelihood
Our method 59.60% -0.5759

BL1 56.51% -0.5916
normalized model

f-measure log of loss
Our method 60.17% -0.2586

BL1 55.46% -0.2655
unnormalized model

Table 4.Results of our approach on the NER task, compared with
the baseline algorithm BL1 when(x, h) is given in the test data.
Even by havingh, namely POS tags, the NER task is not easy.

A related algorithm that takes the first perspective to boost-
ing is AdaBoost with confidence-rated predictions in which
a weak learner outputs a real value representing the con-
fidence level (Schapire & Singer, 1999). When provided
with incomplete input, the weak learner’s contribution is
its uncertainty about its vote, which is represented by the
produced real number. The details of the connection be-
tween our approach and confidence-rated AdaBoost will be
an interesting topic to explore for future research.

8. Conclusions and Further Work

In this work we have presented a novel boosting approach
that extends the traditional boosting framework by incor-
porating hidden variables such that fully labeled data can
be integrated with partially labeled data to form a power-
ful strong classifier. Thus, compared with both the original
boosting algorithms and hidden CRF, our model performs
better in two real-world problems by fully exploiting rele-
vant complete information of data resources.

We consider only simple independent features in our
model. In fact, the hidden variables may have complex
dependencies that respect certain cyclic graph structure;
then it may be necessary to use variational methods, such
as loopy belief propagation, to compute feature expecta-
tion for the values ofA+ andA−. As future work, we
would like to incorporate more complex dependent features
in these two applications.
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Appendix A. Deriving Learning Algorithms

Exponential loss

We derive parallel updates for exponential loss. Letλ+∆λ
be the new parameters value. We find an upper-bound to
the change of objective functionE(λ+ ∆λ) − E(λ) by an
auxiliary function, and then minimize the bound.

E(λ + ∆λ)− E(λ) =
X

i,h,y

q0(h|xi)e
λ.G(xi,h,y)

“

e
∆λ.G(xi,h,y) − 1

”

+

γ
X

j,y

e
λ.G(xj ,hj ,y)

“

e
∆λ.G(xj ,hj ,y) − 1

”

≤
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qλ(h, y|xi)
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”

+
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qλ(y|xj , hj)
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+ wxj ,hj ,y − 1

”

:= A(λ, ∆λ)

wherewx,y,h = 1 −
∑

k
|gk(x,h,y)|

C
, G(x, h, y) is a vec-

tor built from gk(x, h, y), and sk(x, h, y) is the sign of
gk(x, h, y). We find the stationary point of the auxil-
iary functionA(λ,∆λ) with respect to∆λk by taking the
derivative and setting it to zero, which gives us the updating
rules. The sequential updates can also be derived similarly.

Log loss

The objective is to minimize the objective function−L(λ+
∆λ)+L(λ). First we find an upper-bound on the objective
function:

L(λ)− L(λ + ∆λ) =
X

i

log
X

y,h

e
λ+∆λ·G(xi,h,y) − log

X

y,h

e
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The inequality holds becauselog x ≤ x. The last expres-
sion can be upper-bounded again (using a similar technique
used for exponential loss), and the resultant upper-bound
will be the auxiliary function. It can be shown that the up-
date rules are the same to unnormalized model, but the dif-
ference is to usepλ(·) rather thanqλ(·). The update rules
for sequential updates can be derived similarly.


