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Abstract

Positive definite kernels on probability mea-
sures have been recently applied in struc-
tured data classification problems. Some
of these kernels are related to classic infor-
mation theoretic quantities, such as mutual
information and the Jensen-Shannon diver-
gence. Meanwhile, driven by recent advances
in Tsallis statistics, nonextensive generaliza-
tions of Shannon’s information theory have
been proposed. This paper bridges these
two trends. We introduce the Jensen-Tsallis
q-difference, a generalization of the Jensen-
Shannon divergence. We then define a new
family of nonextensive mutual information
kernels, which allow weights to be assigned
to their arguments, and which includes the
Boolean, Jensen-Shannon, and linear kernels
as particular cases. We illustrate the perfor-
mance of these kernels on text categorization
tasks.

1. Introduction

There has been recent interest in kernels on probabil-
ity distributions, to tackle several classification prob-
lems (Moreno et al., 2003; Jebara et al., 2004; Hein
& Bousquet, 2005; Lafferty & Lebanon, 2005; Cuturi
et al., 2005). By mapping data points to fitted dis-
tributions in a parametric family where a kernel is de-
fined, a kernel is automatically induced on the original
input space. In text categorization, this appears as
an alternative to the Euclidean geometry inherent to
the usual bag-of-words vector representations. In fact,
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approaches that map data to a statistical manifold,
where well-motivated non-Euclidean metrics may be
defined (Lafferty & Lebanon, 2005), outperform SVM
classifiers with linear kernels (Joachims, 1997). Some
of these kernels have a natural information theoretic
interpretation, creating a bridge between kernel meth-
ods and information theory (Cuturi et al., 2005; Hein
& Bousquet, 2005).

We reinforce that bridge by introducing a new class of
kernels rooted in nonextensive (NE) information the-
ory. The Shannon and Rényi entropies (Rényi, 1961)
share the extensivity property: the joint entropy of a
pair of independent random variables equals the sum
of the individual entropies. Abandoning this property
yields the so-called NE entropies (Havrda & Charvát,
1967; Tsallis, 1988), which have raised great interest
among physicists in modeling certain phenomena (e.g.,
long-range interactions and multifractals) and as gen-
eralizations of Boltzmann-Gibbs statistical mechanics
(Abe, 2006). NE entropies have also been recently
used in signal/image processing (Li et al., 2006) and
other areas (Gell-Mann & Tsallis, 2004).

The main contributions of this paper are:

• Based on the new concept of q-convexity and
a related q-Jensen inequality, we introduce the
Jensen-Tsallis q-difference, a NE generalization
of the Jensen-Shannon (JS) divergence.

• We propose a broad family of positive definite
(pd) kernels, which are interpretable as NE mu-
tual information (MI) kernels. This family ranges
from the Boolean to the linear kernels, and also
includes the JS kernel (Hein & Bousquet, 2005).

• We extend results of Hein and Bousquet (2005) by
proving positive definiteness of kernels based on
the unbalanced JS divergence. As a side note, we
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show that the parametrix approximation of the
multinomial diffusion kernel introduced by Laf-
ferty and Lebanon (2005) is not pd in general.

Our main purpose is to present new theoretical insights
about kernels on measures by unifying some well-
known instances into a common parametrized family.
This family allows reinterpreting these kernels in light
of NE information theory, a connection that to our
knowledge had not been presented before. The fact
that some members of this family are novel pd kernels
leads us to include a set of text categorization experi-
ments that illustrates their effectiveness.

The paper is organized as follows. Sec. 2 reviews NE
entropies, while Jensen differences and divergences are
discussed in Sec. 3. In Sec. 4, the concepts of q-
differences and q-convexity are introduced and used to
define the Jensen-Tsallis q-difference. Sec. 5 presents
the new family of entropic kernels. Sec. 6 reports ex-
periments on text categorization and Sec. 7 presents
concluding remarks and future research directions.

Although, for simplicity, we focus on discrete distribu-
tions on finite sets, most results are valid in arbitrary
measured spaces, as shown by Martins et al. (2008).

2. Nonextensive Information Theory

Let X denote a random variable (rv) taking values in a
finite set X = {x1, . . . , xn} according to a probability
distribution PX . An entropy function is said to be
extensive if it is additive over independent variables.
For example, the Shannon entropy (Cover & Thomas,
1991), H(X) , −E[lnPX ], is extensive: ifX and Y are
independent, then H(X,Y ) = H(X)+H(Y ). Another
example is the family of Rényi entropies (Rényi, 1961),
parameterized by q ≥ 0,

Rq(X) ,
1

1− q
ln

n∑
i=1

PX(xi)q, (1)

which includes Shannon’s entropy as a special case
when q → 1.

In classic information theory, extensivity is considered
desirable, and is enforced axiomatically (Khinchin,
1957), to express the idea borrowed from thermo-
dynamics that “independent systems add their en-
tropies.” In contrast, the Tsallis entropies abandon
the extensivity requirement (Tsallis, 1988). These NE
entropies, denoted Sq(X), are defined as follows:

Sq(X) , −Eq(lnq PX) =
1

q − 1

(
1−

n∑
i=1

PX(xi)q

)
,

(2)

where Eq(f) ,
∑n

i=1 P (xi)qf(xi) is the unnormalized
q-expectation, and lnq(y) , (y1−q−1)/(1−q) is the so-
called q-logarithm. It is noteworthy that when q → 1,
we get Eq→ E, lnq→ ln, and Sq→ H; i.e., the family
of Tsallis entropies also includes Shannon’s entropy.
For the Tsallis family, when X and Y are independent,
extensivity no longer holds; instead, we have

Sq(X,Y ) = Sq(X)+Sq(Y )− (q−1)Sq(X)Sq(Y ), (3)

where the parameter q ≥ 0 is called entropic index.

While statistical physics has been the main applica-
tion of Tsallis entropies, some attempts have been
made to produce NE generalizations of classic infor-
mation theory results (Furuichi, 2006). As for the
Shannon entropy, the Tsallis joint and conditional en-
tropies are defined as Sq(X,Y ) , −Eq[lnq PXY ] and
Sq(X|Y ) , −Eq[lnq PX|Y ], respectively, and follow a
chain rule Sq(X,Y ) = Sq(X) + Sq(Y |X). Similarly,
Furuichi (2006) defines the Tsallis MI as

Iq(X;Y ) , Sq(X)− Sq(X|Y ) = Iq(Y ;X), (4)

generalizing (for q > 1) Shannon’s MI. This NE version
of the MI underlies one of the central contributions of
this paper: the Jensen-Tsallis q-difference (Sec. 4).

For reasons that will become clear in Sec. 5, it is conve-
nient to extend the domain of Tsallis entropies to un-
normalized measures, i.e., in Rn

+ , {µ ∈ Rn | ∀i µi ≥
0}, but not necessarily in the probability simplex
Pn−1 , {p ∈ Rn |

∑n
i=1 pi = 1, ∀i pi ≥ 0}. The

Tsallis entropy of a measure µ in Rn
+ is1

Sq(µ) , −
n∑

i=1

µq
i lnq µi =

n∑
i=1

ϕq(µi), (5)

where ϕq : R+ → R is given by

ϕq(y) = −yq lnq y =
{
−y ln y, if q = 1,
(y − yq)/(q − 1), if q 6= 1.

(6)
This extension does not add expressive power, since
function (5) is completely determined by its values on
Pn−1, as shown by the following proposition (the proof
is straightforward).

Proposition 1 The following denormalization for-
mula holds for any c ≥ 0 and µ ∈ Rn

+:

Sq(cµ) = cqSq(µ) + ϕq(c)‖µ‖1, (7)

where ‖µ‖1 ,
∑n

i=1 µi is the `1-norm of µ.

1In the following, we represent normalized and unnor-
malized measures as vectors in Rn, and we use those as
arguments of entropy functions, e.g., we write H(π) to de-
note H(X) where X ∼ P (X), with πi = P (xi).
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This fact will be used in a constructive way in Sec. 5
to devise a family of pd NE entropic kernels.

3. Jensen Differences and Divergences

Jensen’s inequality is at the heart of many important
results in information theory. Let the rv Z take val-
ues on a finite set Z. Jensen’s inequality states that
if f is a convex function defined on the convex hull of
Z, then f(E[Z]) ≤ E[f(Z)]. The nonnegative quan-
tity E[f(Z)] − f(E[Z]) is known as Jensen difference
and has been studied by Burbea and Rao (1982) when
−f is some form of generalized entropy. Here, we are
interested in the case where Z ∈ {µ1, . . . ,µm} is a
random measure, where each µj ∈ Rn

+, with probabil-
ities π = (π1, . . . , πm) ∈ Pm−1. The Jensen difference
induced by a (concave) generalized entropy Ψ is

Jπ
Ψ(µ1, . . . ,µm) , Ψ

 m∑
j=1

πj µj

−
m∑

j=1

πjΨ(µj)

= Ψ (E[Z])− E[Ψ(Z)], (8)

Below, we show examples of Jensen differences that
have been applied in machine learning. In Sec. 4, we
provide a NE generalization of the Jensen difference.

Jensen-Shannon (JS) Divergence Consider a
classification problem with m classes, Y ∈ Y =
{1, . . . ,m}, with a priori probabilities π =
(π1, . . . , πm) ∈ Pm−1. Let pj = (pj1, . . . , pjn) ∈ Pn

for j = 1, . . . ,m, where pji , P (X = xi|Y = j), be
the corresponding class-conditional distributions.

Letting Ψ in (8) beH, the Shannon entropy, the result-
ing Jensen difference Jπ

H(p1, . . . ,pm) is known as the
JS divergence of p1, . . . ,pm, with weights π1, . . . , πm

(Burbea & Rao, 1982; Lin, 1991). In this instance of
the Jensen difference,

Jπ
H(p1, . . . ,pm) = I(X;Y ), (9)

where I(X;Y ) = H(X)−H(X|Y ) is the MI between
X and Y (Banerjee et al., 2005).

For m = 2 and π = ( 1
2 ,

1
2 ), we denote the ensuing

J
( 1
2 , 1

2 )

H (p1,p2) as JS(p1,p2):

JS(p1,p2) = H((p1 + p2)/2)− (H(p1) +H(p2))/2.

It can be shown that that
√
JS satisfies the triangle in-

equality and is a Hilbertian metric2 (Endres & Schin-
delin, 2003; Topsøe, 2000), which has motivated its use
in kernel-based machine learning.

2A metric d : X × X → R is Hilbertian if there is some
Hilbert space H and an isometry f : X → H such that
d2(x, y) = 〈f(x)−f(y), f(x)−f(y)〉H holds for any x, y ∈ X
(Hein & Bousquet, 2005).

Jensen-Rényi (JR) Divergence Let Ψ = Rq,
which is concave for q ∈ [0, 1); then, (8) becomes

Jπ
Rq

(p1, . . . ,pm) = Rq (E[p])− E[Rq(p)]. (10)

We call Jπ
Rq

the JR divergence. When m = 2 and
π = (1/2, 1/2), we write Jπ

Rq
(p) = JRq(p1,p2), where

JRq(p1,p2) = Rq

(
p1 + p2

2

)
− Rq(p1) +Rq(p2)

2
.

The JR divergence has been used in signal processing
applications (Karakos et al., 2007). We show in Sect.
5.3 that

√
JRq is also an Hilbertian metric.

Jensen-Tsallis (JT) Divergence Divergences of
the form (8), with Ψ = Sq, are known as JT diver-
gences (Burbea & Rao, 1982) and were recently used
in image processing (Hamza, 2006). Unlike the JS di-
vergence, the JT divergence lacks a MI interpretation;
in Sec. 4, we introduce an alternative to the JT diver-
gence, which is interpretable as a NE MI in the sense
of Furuichi (2006).

4. Jensen q-Differences

We now introduce Jensen q-differences, a generaliza-
tion of Jensen differences. As described shortly, a spe-
cial case of the Jensen q-difference is the Jensen-Tsallis
q-difference, which is an NE generalization of the JS
divergence, and provides the building block for the NE
entropic kernels to be introduced in Sec. 5. We be-
gin by introducing the concept of “q-convexity”, which
satisfies a Jensen-type inequality.

Definition 1 Let q ∈ R and X a convex set. A func-
tion f : X → R is q-convex if, for any x, y ∈ X and
λ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λqf(x) + (1− λ)qf(y). (11)

f is q-concave if −f is q-convex.

Naturally, 1-convexity is the usual convexity. The next
proposition states the q-Jensen inequality and is easily
proved by induction, like the standard Jensen inequal-
ity (Cover & Thomas, 1991). It also states that the
property of q-convexity gets stronger as q increases.

Proposition 2 If f : X → R is q-convex and f ≥ 0,
then, for any n ∈ N, x1, . . . , xn ∈ X and π ∈ Pn−1:

f

(
n∑

i=1

πixi

)
≤

n∑
i=1

πq
i f(xi). (12)

Moreover, if q ≥ r ≥ 0, we have:

f is q-convex ⇒ f is r-convex (13)
f is r-concave ⇒ f is q-concave. (14)
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Based on the q-Jensen inequality, we can now consider
Jensen q-differences of the form Eq[f(Z)] − f (E[Z]),
which are nonnegative if f is q-convex. As in Sec. 3,
we focus on the scenario where Z is a random measure
and −f = Ψ is an entropy function, yielding

Tπ
q,Ψ(µ1, . . . ,µm) , Ψ

(
m∑

t=1

πt µt

)
−

m∑
t=1

πq
t Ψ(µt)

= Ψ (E[Z])− Eq[Ψ(Z)]. (15)

The Jensen q-difference is a deformation of the Jensen
1-difference (8), in which the second expectation is re-
placed by a q-expectation. We are now ready to intro-
duce the class of Jensen-Tsallis q-differences.

Jensen-Tsallis q-Differences Consider again the
classification problem used in the description of the
JS divergence, but replacing the Jensen difference with
the Jensen q-difference and the Shannon entropy with
the Tsallis q-entropy, i.e., letting Ψ = Sq in (15). We
obtain (writing Tπ

q,Sq
simply as Tπ

q ):

Tπ
q (p1, . . . ,pm) = Sq(X)− Sq(X|Y ) = Iq(X;Y ), (16)

where Sq(X|Y ) is the Tsallis conditional q-entropy,
and Iq(X;Y ) is the Tsallis MI (cf. (4)). Note that
(16) is an NE analogue of (9), i.e. the Jensen-Tsallis
q-differences are NE mutual informations.

We call Tπ
q (p1, . . . ,pm) the Jensen-Tsallis q-difference

of p1, . . . ,pm with weights π1, . . . , πm.

When m = 2 and π=(1/2, 1/2), define Tq ,T (1/2,1/2)
q ,

Tq(p1,p2) = Sq

(
p1 + p2

2

)
− Sq(p1) + Sq(p2)

2q
. (17)

Three special cases are obtained for q ∈ {0, 1, 2}:

S0(p) = −1 + ‖p‖0; T0(p1,p2) = 1− ‖p1 � p2‖0

S1(p) = H(p); T1(p1,p2) = JS(p1,p2)

S2(p) = 1− 〈p,p〉; T2(p1,p2) =
1
2
− 1

2
〈p1,p2〉

where ‖x‖0 is the number of nonzeros in x, � denotes
the Hadamard-Schur (elementwise) product, and 〈·, ·〉
is the inner product.

The JT q-difference is an NE generalization of the
JS divergence, and some of the latter’s properties are
lost in general. Since Tsallis entropies are 1-concave,
Prop. 2 guarantees q-concaveness only for q ≥ 1.
Therefore, nonnegativity is only guaranteed for JT q-
differences when q ≥ 1; for this reason some authors
only consider this range of values (Furuichi, 2006).
Moreover, unless q = 1 (the JS divergence), it is not

generally true that Tπ
q (p, . . . ,p) = 0 or even that

Tπ
q (p, . . . ,p,p′) ≥ Tπ

q (p, . . . ,p,p). For example,

argminp1∈Pn−1 Tq(p1,p2) (18)

can be different from p2, unless q = 1. In general, the
minimizer is closer to either the uniform distribution
(if q ∈ [0, 1)) or a degenerate distribution3 (for q ∈
(1, 2]). For these reasons, the term “divergence” is
misleading and we use the term “difference.” Other
properties of JT q-differences (convexity, lower/upper
bounds) are studied by Martins et al. (2008).

5. Nonextensive Entropic Kernels

Using the denormalization formula (7), we now intro-
duce kernels based on the JS divergence and the JT q-
difference, which allow weighting their arguments. In
this section, m = 2 (kernels involve pairs of measures).

5.1. Background on Kernels

We begin with some basic results on kernels (Schölkopf
& Smola, 2002). Below, X denotes a nonempty set; R+

denote the nonnegative reals, and R++ , R+ \ {0}.

Definition 2 Let ϕ : X × X → R be a symmetric
function, i.e., ϕ(y, x) = ϕ(x, y), for all x, y ∈ X . ϕ is
called a pd kernel if and only if

n∑
i=1

n∑
j=1

ci cj ϕ(xi, xj) ≥ 0, (19)

for any integer n, xi, . . . , xn ∈ X and ci, . . . , cn ∈ R.
A symmetric function ψ : X × X → R is called a
negative definite (nd) kernel if and only if

n∑
i=1

n∑
j=1

ci cj ψ(xi, xj) ≤ 0, (20)

for any integer n, xi, . . . , xn ∈ X and ci, . . . , cn ∈ R,
satisfying the additional constraint

∑
i ci = 0. In this

case, −ψ is called conditionally pd; obviously, positive
definiteness implies conditional positive definiteness.

Both the sets of pd and nd kernels are closed un-
der pointwise sums/integrations, the former being also
closed under pointwise products; moreover, both sets
are closed under pointwise convergence. While pd ker-
nels correspond to inner products via embedding in a
Hilbert space, nd kernels that vanish on the diagonal
and are positive anywhere else, correspond to squared
Hilbertian distances. These facts, and the following
ones, are shown by Berg et al. (1984).

3Notice that T2(p1,p2) = 1
2
− 1

2
〈p1,p2〉; in this case,

(18) becomes a linear program, and the solution is p∗1 = ej ,
where j = argmaxi p2i.
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Proposition 3 Let ψ : X × X → R be a symmetric
function, and x0 ∈ X . Let ϕ : X × X → R be

ϕ(x, y) = ψ(x, x0) + ψ(y, x0)− ψ(x, y)− ψ(x0, x0).

Then, ϕ is pd if and only if ψ is nd.

Proposition 4 The function ψ : X × X → R is a nd
kernel if and only if exp(−tψ) is pd for all t > 0.

Proposition 5 The function ψ : X × X → R+ is a
nd kernel if and only if (t+ ψ)−1 is pd for all t > 0.

Proposition 6 If ψ is nd and ψ(x, x) ≥ 0, for all
x ∈ X , then so are ψα, for α ∈ [0, 1], and ln(1 + ψ).

Proposition 7 If f :X →R satisfies f ≥ 0, then, for
α ∈ [1, 2], the function −(f(x)+f(y))α is a nd kernel.

5.2. Jensen-Shannon and Tsallis Kernels

The basic result that allows deriving pd kernels based
on the JS divergence and, more generally, on the JT
q-difference, is the fact that the denormalized Tsal-
lis q-entropies are nd functions4 on Rn

+, for q ∈ [0, 2].
Of course, this includes the denormalized Shannon en-
tropy as a particular case, corresponding to q = 1.
Partial proofs are given by Berg et al. (1984), Topsøe
(2000), and Cuturi et al. (2005); we present here a
complete proof.

Proposition 8 For q ∈ [0, 2], the denormalized Tsal-
lis q-entropy Sq is an nd function on Rn

+.
Proof: Since nd kernels are closed under pointwise
summation, it suffices to prove that ϕq (see (6)) is nd
on R+. For q 6= 1, ϕq(y) = (q − 1)−1(y − yq). If
q ∈ [0, 1), ϕq equals −ι+ ιq times a positive constant,
where ι is the identity (ι(y) = y) on R+. Since the
set of nd functions is closed under sums, we only need
to show that both −ι and ιq are nd, which is easily
seen from the definition; besides, since ι is nd and
nonnegative, Prop. 6 implies that ιq is also nd. For
q ∈ (1, 2], ϕq equals ι − ιq times a positive constant.
It remains to show that −ιq is nd for q ∈ (1, 2]; since
k(x, y) = −(x+y)q is nd (Prop. 7), so is ιq. For q = 1,
since the set of nd functions is closed under limits,

ϕ1(x) = ϕH(x) = −x lnx = lim
q→1

−xq lnq x = lim
q→1

ϕq(x),

it follows that ϕ1 is nd.

The following proposition, proved by Berg et al.
(1984), will also be used below.

4A function f : X → R is called pd (resp. nd) if k :
X × X → R, defined as k(x, y) = f(x + y), is a pd (resp.
nd) kernel (Berg et al., 1984).

Proposition 9 The function ζq : R++ → R, defined
as ζq(y) = y−q is pd, for q ∈ [0, 1].

We now present the main contribution of this section,
the family of weighted JT kernels, generalizing the JS
divergence kernels in two ways: (i) they apply to un-
normalized measures (equivalently, they allow weight-
ing the arguments differently); (ii) they extend the MI
nature of the JS divergence kernel to the NE case.

Definition 3 (weighted Jensen-Tsallis kernels)
The kernel k̃q : (Rn

+)2 → R is defined as

k̃q(µ1,µ2) = k̃q(ω1p1, ω2p2)

,
[
Sq(π)− Tπ

q (p1,p2)
]
(ω1 + ω2)q,

where p1 = µ1/ω1 and p2 = µ2/ω2 are the normalized
counterparts of µ1 and µ2, with corresponding weights
ω1, ω2 ∈ R+, and π = (ω1/(ω1 + ω2), ω2/(ω1 + ω2)).

The kernel kq : (Rn
++)2 → R is defined as

kq(µ1,µ2) = kq(ω1p1, ω2p2) , Sq(π)− Tπ
q (p1,p2).

Recalling (16), notice Sq(Y ) − Iq(X;Y ) = Sq(Y |X)
can be interpreted as the Tsallis posterior conditional
entropy. Hence, kq can be seen (in Bayesian classi-
fication terms) as a NE expected measure of uncer-
tainty in correctly identifying the class given the prior
π = (π1, π2) and a random sample from the mixture
distribution π1p1 + π2p2. The more similar the two
distributions are, the greater this uncertainty.

Proposition 10 The kernel k̃q is pd, for q ∈ [0, 2].
The kernel kq is pd, for q ∈ [0, 1].
Proof: With µ1 = ω1p1 and µ2 = ω2p2 and using the
denormalization formula (7), we obtain k̃q(µ1,µ2) =
−Sq(µ1 + µ2) +Sq(µ1) +Sq(µ2). Now invoke Prop. 3
with ψ = Sq (which is nd by Prop. 8), x = µ1, y = µ2,
and x0 = 0 (the null measure). Observe now that
kq(µ1,µ2) = k̃q(µ1,µ2)(ω1+ω2)−q. Since the product
of two pd kernels is a pd kernel and (Prop. 9) (ω1 +
ω2)−q is a pd kernel, for q ∈ [0, 1], kq is pd.

As we can see, the weighted JT kernels have two in-
herent properties: they are parameterized by the en-
tropic index q and they allow their arguments to be
unbalanced, i.e., to have different weights ωi. We now
mention some instances of kernels where each of these
degrees of freedom is suppressed.

Weighted JS Kernel Setting q = 1, we obtain an
extensive subfamily that contains unbalanced versions
of the JS kernel (Hein & Bousquet, 2005). Namely, we
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get the pd kernels:

k̃1(µ1,µ2) = [H(π)−Jπ(p1,p2)] (ω1 + ω2),
k1(µ1,µ2) = H(π)− Jπ(p1,p2). (21)

Exponentiated Weighted JS Kernel Using
Prop. 4, we have that exponentiated weighted JS ker-
nel kEWJS :Rn

+→ R,

kEWJS (µ1,µ2) , exp[t k1(µ1,µ2)]
= exp(tH(π)) exp [−tJπ(p1,p2)](22)

is also pd for any t > 0. This generalizes the exponen-
tiated JS kernel kEJS (p1,p2) , exp [−t JS (p1,p2)]
(Cuturi et al., 2005).

We now keep q ∈ [0, 2] but consider the weighted
JT kernel family restricted to normalized measures,
kq|(Pn−1)2 . This corresponds to setting uniform
weights (ω1 = ω2 = 1/2); note that in this case k̃q

and kq collapse into the same kernel,

k̃q(p1,p2) = kq(p1,p2) = lnq(2)− Tq(p1,p2). (23)

Prop. 10 tells us that these kernels are pd for q ∈ [0, 2].
Remarkably, we recover three well-known particular
cases for q ∈ {0, 1, 2}.

Jensen-Shannon kernel (JSK) For q = 1, we ob-
tain the JS kernel, kJS : (Pn−1)2 → R,

kJS (p1,p2) = ln(2)− JS(p1,p2), (24)

introduced and shown pd by Hein and Bousquet
(2005).

Boolean kernel For q = 0, we obtain the kernel
k0 = kBool : (Pn−1)2 → R,

kBool(p1,p2) = ‖p1 � p2‖0. (25)

Linear kernel For q = 2, we obtain the kernel k2 =
klin : (Pn−1)2 → R,

klin(p1,p2) =
1
2
〈p1,p2〉. (26)

Summarizing, Boolean, JS, and linear kernels, are
members of the much wider family of Tsallis kernels,
continuously parameterized by q ∈ [0, 2]. Further-
more, Tsallis kernels are a particular subfamily of the
even wider set of weighted Tsallis kernels.

A key feature of our generalization is that the kernels
are defined on unnormalized measures. This is rele-
vant for empirical measures (e.g., term counts, image

histograms); instead of the usual normalization (Hein
& Bousquet, 2005), these empirical measures may be
left unnormalized, allowing objects of different sizes to
have different weights. Another possibility is the ex-
plicit inclusion of weights (ωi): given an input set of
normalized measures, each can be multiplied by an ar-
bitrary (positive) weight before computing the kernel.

5.3. Other Kernels Based on Jensen
Differences

Other pd kernels may be devised inspired by Jensen-
Rényi and Jensen-Tsallis divergences (Section 3). For
example, it is a direct consequence of Prop. 6 that, for
q ∈ [0, 1], (p1,p2) 7→ Rq

(
p1+p2

2

)
, and therefore JRq,

are nd kernels on (Pn−1)2. We can then make use of
Prop. 4 to derive pd kernels via exponentiation; for
example, the exponentiated Jensen-Rényi kernel (pd
for q ∈ [0, 1] and t ≥ 0):

kEJR(p1,p2) , exp(−t JRq
(p1,p2))

=

( ∑
i

(
p1i+p2i

2

)q√∑
i p

q
1i

∑
i p

q
2i

)− t
1−q

. (27)

However, these kernels are no longer interpretable as
MIs, and arbitrary weights are not allowed. Martins
et al. (2008) also show that a related family of pd ker-
nels for probability measures introduced by Hein and
Bousquet (2005) can be written as differences between
JT-type divergences.

5.4. The Heat Kernel Approximation

The diffusion kernel for statistical manifolds, recently
proposed by Lafferty and Lebanon (2005), is grounded
in information geometry. It models the diffusion of “in-
formation” over the manifold through the heat equa-
tion. Since in the case of the multinomial manifold
the diffusion kernel has no closed form, the authors
adopt the so-called “first-order parametrix expansion,”
which resembles the Gaussian kernel replacing the
Euclidean distance by the geodesic distance induced
by the Fisher information metric. The resulting heat
kernel approximation is

k heat(p1,p2) = (4πτ)−
n
2 exp

(
− 1

4t
d2

g(p1,p2)
)
,

(28)
where τ > 0 and dg(p1,p2) = 2 arccos

(∑
i

√
p1ip2i

)
.

Whether k heat is pd has been an open problem (Hein
et al., 2004; Zhang et al., 2005).

Proposition 11 Let n ≥ 2. For sufficiently large τ ,
the kernel kheat is not pd.
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Proof: From Prop. 4, kheat is pd, for all τ > 0, if
and only if d2

g is nd. We provide a counterexample,
using the following four points in P2: p1 = (1, 0, 0),
p2 = (0, 1, 0), p3 = (0, 0, 1) and p4 = (1/2, 1/2, 0).
The squared distance matrix [Dij ] = [d2

g(pi,pj)] is

D =
π2

4
·


0 4 4 1
4 0 4 1
4 4 0 4
1 1 4 0

 . (29)

Taking c = (−4,−4, 1, 7) we have cTDc = 2π2 > 0,
showing that D is not nd. Although p1,p2,p3,p4 lie
on the boundary of P2, continuity of d2

g implies that it
is not nd. The case n > 2 follows easily, by appending
zeros to the four vectors above.

6. Experiments

We illustrate the performance of the proposed NE ker-
nels, in comparison with common kernels, for SVM
text classification. We performed experiments in two
standard datasets: Reuters-21578 and WebKB.5 Since
our objective was to evaluate the kernels, we consid-
ered a simple binary classification task that tries to
discriminate among the two largest categories of each
dataset; this led us to the earn-vs-acq classification
task for the first dataset, and stud-vs-fac (student vs.
faculty webpages) in the second dataset.

After the usual preprocessing steps of stemming and
stop-word removal, we mapped text documents into
probability distributions over words using the bag-
of-words model and maximum likelihood estimation
(which corresponds to normalizing term frequency us-
ing the `1-norm), which we denote by tf. We also
used the tf-idf measure, which penalizes terms that
occur in many documents. To weight the documents
for the Tsallis kernels, we tried four strategies: uni-
form weighting, word counts, square root of the word
counts, and one plus the logarithm of the word counts;
however, for both tasks, uniform weighting revealed
the best strategy, which may be due to the fact that
documents in both collections are usually short and do
not differ much in size.

As baselines, we used the linear kernel with `2 nor-
malization, commonly used for this task, and the
heat kernel approximation (28) (Lafferty & Lebanon,
2005), which is known to outperform the former, al-
beit not being guaranteed to be pd for an arbitrary
choice of τ (see 28), as shown above. This parame-

5Available at http://www.daviddlewis.com/
resources/testcollections and http://www.cs.
cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data,
respectively.

ter and the SVM C parameter were tuned with cross-
validation over the training set. The SVM-Light pack-
age (http://svmlight.joachims.org/) was used to
solve the SVM quadratic optimization problem.

Figs. 1–2 summarize the results. We report the per-
formance of the Tsallis kernels as a function of the
entropic index. For comparison, we also plot the per-
formance of an instance of a Tsallis kernel with q tuned
through cross-validation. For the first task, this kernel
and the two baselines exhibit similar performance for
both the tf and the tf-idf representations; differences
are not statiscally significant. In the second task, the
Tsallis kernel outperformed the `2-normalized linear
kernel for both representations, and the heat kernel
for tf-idf ; the differences are statistically significant
(using the unpaired t test at the 0.05 level). Regard-
ing the influence of the entropic index, we observe that
in both tasks, the optimum value of q is usually higher
for tf-idf than for tf.

The results on these two problems are representative
of the typical relative performance of the kernels con-
sidered: in almost all tested cases, both the heat ker-
nel and the Tsallis kernels (for a suitable value of q)
outperform the `2-normalized linear kernel; the Tsallis
kernels are competitive with the heat kernel.
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Figure 1. Results for earn-vs-acq using tf and tf-idf repre-
sentations. The error bars represent ±1 standard deviation
on 30 runs. Training (resp. testing) with 200 (resp. 250)
samples per class.

7. Conclusion

We have introduced a new family of positive defi-
nite kernels between measures, which contains some
well-known kernels as particular cases. These kernels
are defined on unnormalized measures, which makes
them suitable for use on empirical measures (e.g., word
counts or pixel intensity histograms), allowing objects
of different sizes to be weighted differently. The family
is parameterized by the entropic index, a key concept
in Tsallis statistics, and includes as extreme cases the
Boolean and the linear kernels. The new kernels, and
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Figure 2. Results for stud-vs-fac.

the proofs of positive definiteness, are supported by
the other contributions of this paper: the new concept
of q-convexity, the underlying Jensen q-inequality, and
the concept of Jensen-Tsallis q-difference, a nonexten-
sive generalization of the Jensen-Shannon divergence.
Experimentally, kernels in this family outperformed
the linear kernel in the task of text classification and
achieved similar results to the first-order approxima-
tion of the multinomial diffusion kernel. They have the
advantage, however, of being pd, which fails to happen
with the latter kernel, as also shown in this paper.

Future research will concern applying Jensen-Tsallis q-
differences to other learning problems, like clustering,
possibly exploiting the fact that they accept more than
two arguments.
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