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Abstract

In this paper we introduce a novel approach
to manifold alignment, based on Procrustes
analysis. Our approach differs from “semi-
supervised alignment” in that it results in a
mapping that is defined everywhere — when
used with a suitable dimensionality reduction
method — rather than just on the training
data points. We describe and evaluate our
approach both theoretically and experimen-
tally, providing results showing useful knowl-
edge transfer from one domain to another.
Novel applications of our method including
cross-lingual information retrieval and trans-
fer learning in Markov decision processes are
presented.

1. Introduction

Manifold alignment is very useful in a variety of appli-
cations since it provides knowledge transfer between
two seemingly disparate data sets. Sample applica-
tions include automatic machine translation, represen-
tation and control transfer between different Markov
decision processes (MDPs), image comparison, and
bioinformatics. More precisely, suppose we have two
data sets S; = {x1, -+, 2} and So = {y1,- -+, yn} for
which we want to find a correspondence. Working with
the data in its original form can be very difficult as the
data might be in high dimensional spaces and the two
sets might be represented by different features. For ex-
ample, S1 could be a collection of English documents,
whereas Ss is a collection of Arabic documents. Thus,
it may be difficult to directly compare documents from
the two collections.

Even though the processing of high-dimensional data
sets is challenging, for many cases, the data source may
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only have a limited number of degrees of freedom, im-
plying the data set has a low intrinsic dimensionality.
Similar to current work in the field, we assume kernels
for computing the similarity between data points in
the original space are already given. In the first step,
we map the data sets to low dimensional spaces reflect-
ing their intrinsic geometries using a standard (nonlin-
ear or linear) dimensionality reduction approach. For
example, using a graph-based nonlinear dimensional-
ity reduction method provides a discretized approxi-
mation to the manifolds, so the new representations
characterize the relationships between points but not
the original features. By doing this, we can compare
the embeddings of the two sets instead of their original
representations. Generally speaking, if two data sets
S1 and 83 have similar intrinsic geometry structures,
they have similar embeddings. In our second step, we
apply Procrustes analysis to align the two low dimen-
sional embeddings of the data sets based on a number
of landmark points. Procrustes analysis, which has
been used for statistical shape analysis and image reg-
istration of 2D /3D data (Luo et al., 1999), removes the
translational, rotational and scaling components from
one set so that the optimal alignment between the two
sets can be achieved.

There is a growing body of work on manifold align-
ment. Ham et al. (Ham et al., 2005) align the mani-
folds leveraging a set of correspondences. In their ap-
proach, they map the points of the two data sets to the
same space by solving a constrained embedding prob-
lem, where the embeddings of the corresponding points
from different sets are constrained to be identical. The
work of Lafon et al. (Lafon et al., 2006) is based on a
similar framework as ours. They use Diffusion Maps
to embed the nodes of the graphs corresponding to the
aligned sets, and then apply affine matching to align
the resulting clouds of points.

Our approach differs from semi-supervised align-
ment (Ham et al., 2005) in that it results in a map-
ping that is defined everywhere rather than just on the
known data points (provided a suitable dimensionality
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reduction method like LPP (He et al., 2003) or PCA
is used). Recall that semi-supervised alignment is de-
fined only on the known data points and it is hard
to handle the new test points (Bengio et al., 2004).
Our method is also faster, since it requires computing
eigendecompositions of much smaller matrices. Com-
pared to affine matching, which changes the shape of
one given manifold to achieve alignment, our approach
keeps the manifold shape untouched. This property
preserves the relationship between any two data points
in each individual manifold in the process of alignment.
The computation times for affine matching and Pro-
crustes analysis are similar, both run in O(N3) (where
N is the number of instances).

Given the fact that dimensionality reduction ap-
proaches play a key role in our approach, we provide a
theoretical bound for the difference between subspaces
spanned by low dimensional embeddings of the two
data sets. This bound analytically characterizes when
the two data sets can be aligned well. In addition
to the theoretical analysis of our algorithm, we also
report on several novel applications of our alignment
approach.

The rest of this paper is as follows. In Section 2 we de-
scribe the main algorithm. In Section 3 we explain the
rationale underlying our approach, and prove a bound
on the difference between the subspaces spanned by
low dimensional embeddings of the two data sets be-
ing aligned. We describe some novel applications and
summarize our experimental results in Section 4. Sec-
tion 5 provides some concluding remarks.

2. Manifold Alignment
2.1. The Problem

Given two data sets along with additional pairwise
correspondences between a subset of the training in-
stances, we want to determine a correspondence be-
tween the remaining instances in the two data sets.
Formally speaking, we have two sets: S; = S!S} =
{xlv"'axm}v Sy = SéUS; = {yla"'ayn}a and the
subsets S! and S} are in pairwise alignment. We want
to find a mapping f, which is more precisely defined
in Section 3.1, to optimally match the points between
S}t and S%.

2.2. The Algorithm

Assume the kernel K; for computing the similarity be-
tween data points in each of the two data sets is al-
ready given. The algorithmic procedure is stated be-
low. For the sake of concreteness, in the procedure,
Laplacian eigenmap (Belkin et al., 2003) is used for

dimensionality reduction.

1. Comnstructing the relationship matrices:

e Construct the weight matrices Wi for S
and Wy for Ss using K;, where W1(i,j) =
Ki(z;,xj) and Wa(i, j) = Ko (yi, y5)-

e Compute Laplacian matrices £, = [ —
Dy%"Wy D% and Lo = 1 — Dy " "Wo D52,
where Dy is a diagonal matrix (Dy(i,i) =
> Wi(i,j)) and I is the identity matrix.

2. Learning low dimensional embeddings of
the data sets:

e Compute selected eigenvectors of £1 and Lo
as the low dimensional embeddings of the
data sets S; and S;. Let X, Xy be the d
dimensional embeddings of S} and S, Y, Yy
be the d dimensional embeddings of S} and
S¥, where 8!, S} are in pairwise alignment
and |St|=|SL).

3. Finding the optimal alignment of X and Y:

e Translate the configurations in X, Xy, YV
and Yy, so that X, Y have their centroids

St 84 ..
(2 X/IS1, 202 Yi/IS5)) at the origin.
e Compute the singular value decomposi-
tion (SVD) of YTX, that is ULVT =

SVD(YTX).

e Y* = kY@ is the optimal mapping re-
sult that minimizes | X — Y™*| g, where ||.||r
is Frobenius norm, Q = UV” and k =
trace(X) /trace(YTY).

4. Apply @ and k to find correspondences be-
tween S} and S3.
o Y5 =kYyQ.

e For each element z in Xy, its correspondence
3 * 3 *
in Y7 = argming-eyy [[y* — 2.

Depending on the approach that we want to use, there
are several variations of Step 1. For example, if we
are using PCA, then we use the covariance matrices
instead of Laplacian matrices; similarly, if we are using
LPP (He et al., 2003), then we construct the weight
matrices W/ for D}, W for D} using K; and then learn
the projections. Note that when PCA or LPP is used,
then the low dimensional embedding will be defined
everywhere rather than just on the training points.
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3. Justification

In this section, we prove two theorems. Theorem 1
shows why the algorithm is valid. Given the fact that
dimensionality reduction approaches play a key role in
our approach, Theorem 2 provides a theoretical bound
for the difference between subspaces spanned by low
dimensional embeddings of the two data sets. This
bound analytically characterizes when the two data
sets can be aligned well.

3.1. Optimal Manifold Alignment

Procrustes analysis seeks the isotropic dilation and the
rigid translation, reflection and rotation needed to best
match one data configuration to another (Cox et al.,
2001). Given low dimensional embeddings X and Y
(defined in Section 2), the most convenient way to
do translation is to translate the configurations in X
and Y so that their centroids are at the origin. Then
the problem is simplified as: finding @ and k so that
|IX — kY Q| F is minimized, where || - || is Frobenius
norm. The matrix @ is orthonormal, giving a rotation
and possibly a reflection, k is a re-scale factor to either
stretch or shrink Y. Below, we show that the optimal
solution is given by the SVD of Y7 X. A detailed re-
view of Procrustes analysis can be found in (Cox et al.,
2001).

Theorem 1: Let X and Y be low dimensional
embeddings of the points with known corre-
spondences in data set S;, So, and X; matches
Y, for each i. If Singular Value Decomposition
(SVD) of YTX is UXVT, then Q = UV? and
k = trace(X)/trace(YTY) minimize || X — kY Q| p.
Proof:

The problem is formalized as:

{kopt; Qopt} = argming ¢ || X — kY Q|lr. (1.1)

It is easy to verify that

X —kYQ|% = trace(XTX) + k* - trace(YTY) — 2k -
trace(QTYTX). (1.2)

Since trace(XTX) is a constant, the minimiza-
tion problem is equivalent to {kopt,Qopt} =
argming g (k? - trace(YTY) — 2k - trace(QTYTX)).
(1.3)

Differentiating with respect to k, we have
2k - trace(YTY) = 2 - trace(QTYTX),
ie. k=trace(QTYTX)/trace(YTY). (1.4)

(1.3) and (1.4) show that the minimization problem
reduces to Qopr = arg maxq (trace(QTYTX))%.  (1.5)

Case 1:
If trace(QTYTX) > 0, then the problem becomes
Qopt = argmaxg trace(QTYTX). (1.6)

Using Singular Value Decomposition, we have
YTX = UXVT, where U and V are orthonormal,
and Y is a diagonal matrix having as its main
diagonal all the positive singular values of YTX.
So maxg trace(QTYTX) = maxg trace(QTUXVT).
(1.7)

It is well known that for two matrices A and B,
trace(AB) = trace(BA), so maxq trace(QTULVT) =
maxq trace(VIQTUY). (1.8)

For simplicity, we use Z to represent VI'QTU. We
know @, U and V are all orthonormal matrices, so Z
is also orthonormal. It is well known that any element
in an orthonormal matrix, say B, is in [-1,1] (other-
wise BT B is not an identity matrix). So we know
If?“CLC(f(ZZ) = Z1712171+' . '+Zc,czc,c S 21714-' . '—‘rZQC

(1.9) , which implies Z = I maximizes trace(ZY),
where I is an identity matrix. (1.10)

Obviously, the solution to Z = I is Q = UVT.
(1.11)

Case 2:
If trace(QTYTX) < 0, then the problem becomes
Qopt = argming trace(QTYTX). (1.12)

Following the similar procedure shown above, we
have trace(ZY) = Z11%11 + - + ZeeXee >
—¥11—-—Xcc (1.13), which implies that Z = —I
minimizes trace(Z%). (1.14)

Obviously, the solution to Z = —Iis Q = —UVT.
(1.15)

Considering (1.5), it is easy to verify that Q = UVT
and Q = —UVT return the same results, so
Q = UVT is always the optimal solution to (1.5),
no matter whether trace(QTYTX) is positive or
not.  Further, we can simplify (1.4), and have
k = trace(X)/trace(YTY). (1.16) U

3.2. Theoretical Analysis

Many dimensionality reduction approaches first com-
pute a relationship matrix, and then project the data
onto a subspace spanned by the “top” eigenvectors of
the matrix. The “top” eigenvectors mean some sub-
set of eigenvectors that are of interest. They might
be eigenvectors corresponding to largest, smallest, or
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Ais a N x N relationship matrix computed from S;.
Bis a N x N relationship matrix computed from Sa.
E=B- A

X denotes a subspace of the column space of A spanned
by top M eigenvectors of A.

Y denotes a subspace of the column space of B spanned
by top M eigenvectors of B.

X is a matrix whose columns are an orthonormal basis
of X.

Y is a matrix whose columns are an orthonormal basis

of Y.

54 is the set of top M eigenvalues of A, §% includes all
eigenvalues of A except those in §}.
0L is the set of top M eigenvalues of B, 6% includes all
eigenvalues of B except those in 0.

dy is the eigengap between 6% and 6%, ie. di =
min i — Ajl.
Aieshn;es? ‘/\z )‘J|

d=264 =42,

P denotes the orthogonal projection onto subspace X.
Q@ denotes the orthogonal projection onto subspace ).

| - || denotes Operator Norm, i.e. IIL]|
max,(z)=1 #(Lx), where p, v are simply || - ||2.

BV

Figure 1. Notation used in Theorem 2.

even arbitrary eigenvalues. One example is Laplacian
eigenmap, where we project the data onto the subspace
spanned by the “smoothest” eigenvectors of the graph
Laplacian. Another example is PCA, where we project
the data onto the subspace spanned by the “largest”
eigenvectors of the covariance matrix. In this section,
we study the general approach, which provides a gen-
eral framework for each individual algorithm such as
Laplacian eigenmap. We assume the two given data
sets &1 and Sy do not differ significantly, so the related
relationship matrices A and B are “very similar”. We
study the difference between the embedding subspaces
corresponding to the two relationship matrices. Nota-
tion used in the proof is in Figure 1. The difference be-
tween orthogonal projections ||Q—P/|| characterizes the
distance between the two subspaces. The proof of the
theorem below is based on the perturbation theory of
spectral subspaces, where E = B— A can be thought as
the perturbation to A. The only assumption we need
to make is for any ¢ and j, |E; ;| = |B;; — Ai | < 7.

Theorem 2: If the absolute wvalue of
each element in F is bounded by 7, and
T < 2edy/(N(m + 2¢)), then the difference be-
tween the two embedding subspaces ||Q — P|| is
at most ¢.

Proof:
From the definition of operator norm, we know

1] = MAXgy ko, ki g/ Zz<2g kjEi,j)Q’ given

S k=1 (2.1)

We can verify the following inequality always
holds: Zi(zj kiE; )% < sz chz > Efj (2.2)

From (2.1) and (2.2), we have >, (3, k;jEi;)* <
N?7237 k3 = N?72. (2.3)

Combining (2.1) and (2.3), we have: |E|| < N7. (2.4)

It can be shown that if A and F are bounded
self-adjoint operators on a separable Hilbert space,
then the spectrum of A+FE is in the closed |E|-
neighborhood of the spectrum of A (Kostrykin et al.,
2003). From (Kostrykin et al., 2003), we also have
the following inequality: ||Q*P|| < «|E|/2d. (2.5)

We know A has an isolated part &% of the spec-
trum separated from its remainder 6% by gap di. To
guarantee A + F also has separated components, we
need to assume [|E|| < dy/2. Thus (2.5) becomes
QP < w|lEll/2(d1 - [|E])- (2.6)

Interchanging the roles of dY and ¢%, we have the
analogous inequality: [|QP*| < «||E|/2(d1 — || E|).
(2.7)

Since [|Q — P|| = max{|Q*P|.[QP|} (2.8),
we have [|Q — PI| < =[|E[|/2(dy — [|E]]). (2.9)

We define R = @ — P, and from (2.9), we get
BRIl < 7l E]l/2(dy — |E]). (210)

(2.10) implies that if |E|| < 2die/(2e + ), then
IRl <e. (2.11)

So we have the following conclusion: if the ab-
solute value of each element in F is bounded by 7,
and 7 < 2edy /(N(w + 2¢)), then the difference of the
subspaces spanned by top M eigenvectors of A and B
is at most €. O

Theorem 2 tells us that if the eigengap (between &%
and ¢%) is large, then the subspace corresponding to
the top M eigenvectors of A is insensitive to perturba-
tions. In other words, the algorithm can tolerate larger
differences between A and B. So when we are selecting
eigenvectors to form a subspace, the eigengap is an im-
portant factor to be considered. The reasoning behind
this is that if the magnitudes of the relevant eigenval-
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ues do not change too much, the top M eigenvectors
will not be overtaken by other eigenvectors, thus the
related space is more stable. Our result in essence con-
nects the difference between the two relationship ma-
trices to the difference between the subspaces spanned
by their low dimensional embeddings.

4. Applications and Results

In this section, we first use a toy example to illus-
trate how our algorithm works, then we apply our
approach to transfer knowledge from one domain to
another. We present results applying our approach
to two real world problems: cross-lingual information
retrieval and transfer learning in Markov decision pro-
cesses (MDPs).

4.1. A Toy Example

In this example, we directly align two manifolds and
use some pictures to illustrate how our algorithm
works. The two manifolds come from real protein ter-
tiary structure data.

Protein 3D structure reconstruction is an important
step in Nuclear Magnetic Resonance (NMR) protein
structure determination. Basically, it finds a map
from distances to coordinates. A protein 3D struc-
ture is a chain of amino acids. Let n be the num-
ber of amino acids in a given protein and Cy,---,C,
be the coordinate vectors for the amino acids, where
C; = (Ci,h 01‘72, Cl',g)T and Ci,ly Oi72, and C@g are the
x, y, z coordinates of amino acid 4 (in biology, one usu-
ally uses atom but not amino acid as the basic element
in determining protein structure. Since the number of
atoms is huge, for simplicity, we use amino acid as the
basic element). Then the distance d; ; between amino
acids ¢ and j can be defined as d; ; = ||C; —C}||. Define
A={d;;,i,j=1,---,n},and C = {C;,i =1,---,n}.
It is easy to see that if C is given, then we can im-
mediately compute A. However, if A is given, it is
non-trivial to compute C. The latter problem is called
Protein 3D structure reconstruction. In fact, the prob-
lem is even more tricky, since only the distances be-
tween neighbors are reliable, and this makes A an
incomplete distance matrix. The problem has been
proved to be NP-complete for general sparse distance
matrices (Hogben, 2006). In real life, people use other
techniques, such as angle constraints and human ex-
perience, together with the partial distance matrix to
determine protein structures.

With the information available to us, NMR techniques
might find multiple estimations (models), since more
than one configuration can be consistent with the dis-

tance matrix and the constraints. Thus, the result is
an ensemble of models, rather than a single structure.
Most usually, the ensemble of structures, with perhaps
10 - 50 members, all of which fit the NMR data and
retain good stereochemistry is deposited with the Pro-
tein Data Bank (PDB) (Berman et al., 2000). Models
related to the same protein should be similar and com-
parisons between the models in this ensemble provides
some information on how well the protein conforma-
tion was determined by NMR.

In this test, we study a Glutaredoxin protein PDB-
1G70 (this protein has 215 amino acids in total),
whose 3D structure has 21 models. Since such models
are already low dimensional (3D) embeddings of the
distance matrices, we skip Step 1 and 2 in our algo-
rithm. We pick up Model 1 and Model 21 for test.
These two models are related to the same protein, so
it makes sense to treat them as manifolds to test our
techniques. We denote Model 1 by Manifold A, which
is represented by matrix S;. We denote Model 21 by
Manifold B, which is represented by matrix Ss. Obvi-
ously, both S; and S are 215 x 3 matrices. To eval-
uate our re-scale factor, we manually stretch manifold
A by letting S1=4-S;. Manifold A and B (row vec-
tors of S7 and Sy represent points in the 3D space)
are shown in Figure 2(A) and Figure 2(B). In biology,
such chains are called protein backbones. For the pur-
pose of comparison, we also plot both manifolds on the
same graph (Figure 2(C)). It is clear that manifold A
is much larger than B, and the orientations of A and
B are quite different.

To align the two manifolds, we uniformly selected 1/4
amino acids as correspondence resulting in matrix X
and Y, where row ¢ of X (from S7) matches row i of Y’
(from S3) and both X and Y are 54 x 3 matrices. We
run our algorithm from Step 3. Our algorithm iden-
tifies the re-scale factor k as 4.2971, and the rotation
matrix @Q as

0.56151  —0.53218 0.63363
Q= 0.65793 0.75154  0.048172 | .
—0.50183  0.38983 0.77214

S5, the new representation of Sy, is computed as
S5 = kS2Q). We plot S5 and S; in the same graph
(Figure 2(D)). The result shows that Manifold B is
rotated and enlarged to the similar size as A, and now
the two manifolds are aligned very well.

4.2. Cross-lingual Information Retrieval

In information retrieval, manifold alignment can be
used to find correspondences between documents. One
example is finding the exact correspondences between
documents in different languages. Such systems are
quite useful, since they allow users to query a docu-
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Manifold A Manifold B

-50
y  -100 -100 X v 20 -40

Comparison of Manifold A and B (Before Alignment)

Figure 2. (A): Manifold A; (B): Manifold B; (C): Compari-
son of Manifold A(red) and B(blue) before alignment; (D):
Comparison of Manifold A(red) and B(blue) after align-
ment.

ment in their native language and retrieve documents
in a foreign language. Assume that we are given two
document collections. For example, one in English and
one in Arabic. We are also given some training corre-
spondences between documents that are exact trans-
lations of each other. The task is: for each English or
Arabian document in the untranslated set, to find the
most similar document in the other corpus.

We apply our manifold alignment approach to this
problem. The topical structure of each collection can
be thought as a manifold over documents. Each docu-
ment is a sample from the manifold. We are interested
in the case where the underlying topical manifolds of
two languages are similar. Our procedure for aligning
collections consists of two steps: learning low dimen-
sional embeddings of the two manifolds and aligning
the low dimensional embeddings. To compute similar-
ity of two documents in the same collection, we assume
that document vectors are language models (multino-
mial term distributions) estimated using the document
text. By treating documents as probability distribu-
tions, we can use distributional affinity to detect topi-
cal relatedness between documents. More precisely, a
multinomial diffusion kernel is used for this particular
application. The kernel used here is the same as the
one used in (Diaz et al., 2007), where more detailed
description is provided. Dimensionality reduction ap-
proaches are then used to learn the low dimensional
embeddings. After shifting the centroids of the docu-
ments in each collection to the origin point, we apply

our approach to learn the re-scale factor k and rotation
Q from the training correspondences and then apply
them to the untranslated set.

In our experiments, we used two document collections
(one in English, one in Arabic, manually translated),
each of which has 2119 documents. Correspondences
between 25% of them were given and used to learn
the mapping between them. The remaining 75% were
used for testing. We used Laplacian eigenmap and
LPP (the projection was learned from the data points
in the correspondence) to learn the low dimensional
embeddings, where top 100 eigenvectors were used to
construct the embeddings. Our testing scheme is as
follows: for each given Arabic document, we retrieve
its top j most similar English documents. The prob-
ability that the true match is among this top j docu-
ments is used to show the goodness of the method. We
also used the same data set to test the semi-supervised
manifold alignment method proposed in (Ham et al.,
2005), where top 100 eigenvectors were used for low di-
mensional embeddings. A fourth method (called base-
line method) was also tested. The baseline method is
as follows: assume that we have m correspondences in
the training set, then document x is represented by a
vector V' with length m, where V(i) is the similarity
of x and the i*" document in the training correspon-
dences. The baseline method maps the documents
from different collections to the same embedding space
- R™. Experiment results are shown in Figure 3.

0.8
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Figure 3. Cross-lingual information retrieval test.

Compared to semi-supervised manifold alignment
method, the performance of Prucrustes (with Lapla-
cian eigenmap) is significantly better. For each given
Arabic document, if we retrieve 3 most relevant En-
glish documents, then the true match has a 60% prob-
ability of being among the 3. If we retrieve 10 most
relevant English documents, then we have about 80%
probability of getting the true match. Further, our
method is much faster. Semi-supervised manifold
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alignment method requires solving an eigenvalue prob-
lem over a (n; + ny —m) X (n1 + ny — m) matrix,
where n; is the total number of the documents in col-
lection 4, and m is the number of training correspon-
dences. Using our approach, the most time consuming
step is finding the low dimensional embeddings with
Laplacian eigenmap, which requires solving eigenvalue
problems over a ny X ny; matrix and a ny X ny ma-
trix. We also compute the SVD over a d X d matrix,
where d is the dimension of the low dimensional em-
beddings and is usually much smaller than n. In the
experiments, Procrustes (with Laplacian eigenmap) is
roughly 2 times faster than semi-supervised manifold
alignment. Procrustes (with LPP) also returns rea-
sonably good results: if we retrieve 10 most relevant
English documents, then we have a 60% probability
of getting the true match. Procrustes (with LPP) re-
sults in a mapping that is defined everywhere rather
than just on the training data points and it also re-
quires less time. Another interesting result is that the
baseline algorithm also performs quite well, and bet-
ter than semi-supervised alignment method. One rea-
son that semi-supervised manifold alignment method
is not working well is that mappings of the correspond-
ing points are constrained to be identical. This might
lead to “over fitting” problems for some applications.

4.3. Transfer Learning in Markov Decision
Process

Transfer learning studies how to re-use knowledge
learned from one domain or task to a related domain or
task. In this section, we investigate transfer learning
in Markov decision processes (MDPs) following the ap-
proach of “proto-value functions” (PVFs), where the
Laplacian eigenmap method is used to construct basis
functions (Mahadevan, 2005). In a MDP, a value func-
tion is a mapping from states to real numbers, where
the value of a state represents the long-term reward
achieved starting from that state, and executing a par-
ticular policy. PVFs are an orthonormal basis span-
ning all value functions of an MDP on a state space
manifold. They are computed as follows: First, create
a weight matrix that reflects the topology of the state
space using a series of random walks; Second, compute
the graph Laplacian of the weight matrix; Third, select
the smoothest k eigenvectors of this graph Laplacian
as PVFs. If the state space is the same and only the
reward function is changed, then the PVF's can be di-
rectly transferred to the new domain. One interesting
question related to PVFs is how to transfer the old
PVF's to a new domain when the new state space is
only slightly different from the old one. In this section,
we answer this question with our techniques.

Let columns of Y denote PVFs of the current MDP.
Given the procedure on how to generate PVFs, we
know the rows of Y are also the low dimensional rep-
resentations of the data points on the current state
space manifold. Let rows of X represent the low di-
mensional embedding of the new manifold. Assume
centroids of both X and Y are at the origin. By using
isotropic dilation, reflection and rotation to align the
two state space manifolds, we may find the optimal &
and @ such that the two manifolds are aligned well.
Our argument is that the new PVFs are Y Q. The rea-
son is as follows: suppose we have already found the
optimal k and @ that minimize || X — kY Q||r, then Y
will be changed to kY @ in the process of alignment. k
can be skipped, since it is well known that kY Q) and
Y @ span the same space. The only thing that we need
to show is the columns of Y Q are orthonormal to each
other (a requirement of PVFs). The proof is quite sim-
ple: (YQ)TYQ = QTYTYQ = QTIQ = I, where I
is an identity matrix. This means different columns
of Y@ are orthogonal to each other and norm of each
column is 1, so Y@ is orthonormal.

The conclusion shown above works when two state
space manifolds are similar. Here, we still need to
answer one more question: “under what conditions
are the two manifolds similar?”. Theorem 2 provides
an answer to this question. Theorem 2 numerically
bounds the difference between two spaces given the
difference between the relevant relationship matrices.
For this case, the relationship matrices are the Lapla-
cian matrices used to model the state spaces. In this
test, we run experiments to verify the bound. We in-
vestigate two reinforcement learning tasks. The in-
verted pendulum task requires balancing a pendulum
of unknown mass and length by applying force to a
cart attached to the pendulum. The state space is
defined by two variables: the vertical angle of the pen-
dulum, and the angular velocity of the pendulum. The
mountain car task is to get a simulated car to the top
of a hill as quickly as possible. The car does not have
enough power to get there immediately, and so must
oscillate on the hill to build up the necessary momen-
tum. The state space is the position and velocity of
the car.

We first generate two different sets of sampled states
for the pendulum task and compute their related nor-
malized graph Laplacian matrices A and B. We com-
pute the top i non-trivial eigenvectors of A and B,
and directly compute the difference between the spaces
spanned by them. Theorem 2 says if the absolute
value of each element in A — B is bounded by 7, and
T < 2edy /(N (m+2¢)), then the difference of the spaces
spanned by top i eigenvectors of A and B is at most
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Figure 4. (A): Bound for Pendulum task. (B): Bound for
Mountain car task. For both tasks, € is 0.5, true values
(Maz and Min in 5 tests) of the difference between two
spaces are in dotted lines.

€. We set € be 0.5, and let 7 be ed; /(N (7w + 2¢)). Here
dy is the eigengap between top i eigenvectors and the
other eigenvetors, N is 500. Based on our theorem, the
difference between spaces should not be larger than e.
In our experiments, we tried 20 different values for
i=1, 6, 11, ---, 96. For each ¢, we ran 5 tests. We
carried out the same experiment on the Mountain Car
task. Figure 4(A) and 4(B) respectively show the re-
sults from Pendulum task and Mountain car task. For
each figure, we plot € and the maximum and minimum
difference values of the 5 tests for various values of i.
For this application, the bound is loose, but the bound
given in Theorem 2 is a general theoretical bound and
for other applications, it might be tight. We also em-
pirically evaluate the PVF's transfer performance. The
results (not included) show that we can learn a good
policy by using PVFs from a similar domain.

5. Conclusions

In this paper we introduce a novel approach to man-
ifold alignment based on Procrustes Analysis. When
used with a suitable dimensionality reduction method,
our approach results in a mapping defined everywhere
rather than just on the training data points. We also
study the conditions under which low dimensional em-
beddings of two data sets can be aligned well. We pre-
sented novel applications of our approach, including
cross-lingual information retrieval and transfer learn-
ing in Markov decision processes.
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