
Learning to Classify with Missing and Corrupted Features

Ofer Dekel OFERD@MICROSOFT.COM

Microsoft Research, 1 Microsoft Way, Redmond, WA 98052 USA

Ohad Shamir OHADSH@CS.HUJI.AC.IL

The Hebrew University, Jerusalem 91904, Israel

Abstract

After a classifier is trained using a machine learn-
ing algorithm and put to use in a real world sys-
tem, it often faces noise which did not appear
in the training data. Particularly, some subset
of features may be missing or may become cor-
rupted. We present two novel machine learn-
ing techniques that are robust to this type of
classification-time noise. First, we solve an ap-
proximation to the learning problem using linear
programming. We analyze the tightness of our
approximation and prove statistical risk bounds
for this approach. Second, we define the online-
learning variant of our problem, address this vari-
ant using a modified Perceptron, and obtain a
statistical learning algorithm using an online-to-
batch technique. We conclude with a set of ex-
periments that demonstrate the effectiveness of
our algorithms.

1. Introduction

Supervised machine learning techniques often play a cen-
tral role in solving complex real-world classification prob-
lems. First, we collect a training set of labeled examples
and present this set to a machine learning algorithm. Then,
the learning algorithm constructs a classifier, which can be
put to use as a component in a working system. The pro-
cess of collecting the training set and constructing the clas-
sifier is called thetraining phase, whereas everything that
occurs after the hypothesis has been determined is called
theclassification phase. In many cases, the training phase
can be performed under sterile and controlled conditions,
and care can be taken to collect a high quality training set.
In contrast, the classification phase often takes place in the
noisy and uncertain conditions of the real world, and some

Appearing inProceedings of the25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

of the features that were available during the training phase
may be missing or corrupted. In this paper, we explore
the possibility of anticipating and preparing for this typeof
classification-time noise.

The problem of corrupted and missing features occurs in
a variety of different classification settings. For example,
say that our goal is to learn an automatic medical diagno-
sis system. Each instance represents a patient, each feature
contains the result of a medical test performed on that pa-
tient, and the purpose of the system is to detect a certain
disease. When constructing the training set, we go to the
trouble of carefully performing every possible test on each
patient. However, when the learned classifier is eventu-
ally deployed as part of a diagnosis system, and applied
to new patients, it is highly unlikely that all of the test re-
sults will be available. Technical difficulties may prevent
certain tests from being performed. Different patients may
have different insurance policies, each covering a different
set of tests. A patient’s blood sample may become con-
taminated, replacing the features that correspond to blood
tests with random noise, while having no effect on other
features. We would still like our diagnosis system to make
accurate predictions. Alternatively, our goal may be to train
a fingerprint recognition system that controls the lock on a
door. After a few days of flawless operation, a user with
greasy fingers comes along and leaves an oily smudge on
the fingerprint scanner panel. From then on, all of the fea-
tures measured from the area under the smudge are either
distorted or cannot be extracted altogether. Ideally, the fin-
gerprint recognition system should continue operating.

We take a worst-case approach to our problem, and assume
that the set of affected features is chosen by an adversary
individually per instance. More specifically, we assume
that each feature is assigned an a-priori importance value
and the adversary may remove or corrupt any feature sub-
set whose total value is upper-bounded by a predefined pa-
rameter. In many natural settings, missing and damaged
features are not actually chosen adversarially, but we find it
beneficial to have our algorithm as robust as possible.

Learning to Classify with Missing and Corrupted Features

We present two different learning algorithms for our prob-
lem, each with pros and cons. The first approach formu-
lates the learning problem as a linear program (LP), in a
way that closely resembles the quadratic programming for-
mulation of the Support Vector Machine (Vapnik, 1998).
However, the number of constraints in this LP grows ex-
ponentially with the number of features. Using tricks from
convex analysis, we derive a related polynomial-size LP,
and give conditions under which it is an exact reformulation
of the original exponential-size LP. When these conditions
do not hold, the polynomial-size LP still approximates the
exponential-size LP, and we prove an upper bound on the
approximation difference. Despite the fact that the distribu-
tion of training examples is different from the distribution
of examples observed during the classification phase, we
prove a statistical generalization bound for this approach.

Letting m denote the size of our training set andn the
number of features, our polynomial LP formulation uses
O(mn) variables andO(mn) sparse constraints. Depend-
ing on the dataset, this can still be rather large for off-the-
shelf LP solvers. We see this as a shortcoming of our first
approach, which brings us to our second algorithmic ap-
proach. We define an online learning problem, which is
closely related to the original statistical learning problem.
We devise a modified version of the Perceptron algorithm
(Rosenblatt, 1958) for this online problem, and convert this
Perceptron into a statistical learning algorithm using an
online-to-batch conversion technique (Cesa-Bianchi et al.,
2004). This approach benefits from the computational ef-
ficiency of the online Perceptron, and from the generaliza-
tion properties and theoretical guarantees provided by the
online-to-batch technique. Experimentally, we observe that
the efficiency of our second approach seems to come at the
price of accuracy.

Choosing an adequate regularization scheme is one of the
keys to solving this problem successfully. Many existing
machine learning algorithms, such as the Support Vector
Machine, useL2 regularization to promote statistical gen-
eralization. WhenL2 regularization is used, the learning
algorithm may put a large weight on one feature and com-
pensate by putting a small weight on another feature. This
promotes classifiers that focus their weight on the features
that contribute the most. For example, in the degenerate
case where one of the features actually equals the label, an
L2 regularized learning algorithm is likely to put most of its
weight on that one feature. Some algorithms useL1 regu-
larization to further promote sparse solutions. In the con-
text of our work, sparsity actually makes a classifier more
susceptible to adversarial feature-corrupting noise. Here
we prefer dense classifiers, which hedge their bets as much
as possible. Both of the algorithms presented in this paper
achieve this density by using aL∞ regularization scheme.
It is interesting to note that the choice of theL∞ norm

emerges as a natural one in the theoretical analysis of our
first, LP-based learning approach.

1.1. Related Work

Previous papers on “noise-robust learning” mainly deal
with the problem of learning with a noisy training set,
a research topic which is entirely orthogonal to ours.
The learning algorithms presented in (Dietterich & Bakiri,
1995) and (Gamble et al., 2007) try to be robust to general
additive noise that appears at classification time, but not
necessarily to feature deletion or corruption. (?) presents
adversarial learning as a one-shot two-player game be-
tween the classifier and an adversary, and designs a ro-
bust learning algorithm from a Bayesian-learning perspec-
tive. Our approach shares the motivation of (?) but is oth-
erwise significantly different. In the related field of on-
line learning, where the training and classification phases
are interlaced and cannot be distinguished, (Littlestone,
1991) proves that the Winnow algorithm can tolerate vari-
ous types of noise, both adversarial and random.

Our work is most closely related to the work in (Globerson
& Roweis, 2006), and its more recent enhancement in (Teo
et al., 2008). Our motivation is the same as theirs, and the
approaches share some similarities. Our experiments, pre-
sented in Sec. 4, suggest that our algorithms achieve con-
siderably better performance, but we would also like to em-
phasize more fundamental differences between the two ap-
proaches: We allow features to have different a-priori im-
portance levels, and we take this information into account
in our algorithm and analysis. Our approach usesL∞ reg-
ularization to promote a dense solution, where (Globerson
& Roweis, 2006) usesL2 regularization. Our second ap-
proach, which uses online-to-batch conversion techniques,
is entirely novel. Finally, we prove statistical generalization
bounds for our algorithms despite the change in distribution
at classification time.

2. A Linear Programming Formulation

In this section, and throughout the paper, we use lower-
case bold-face letters to denote vectors, and their plain-face
counterparts to denote each vector’s components. We also
use the notation[n] as shorthand for{1, . . . , n}.

2.1. Feature Deleting Noise

We first examine the case where features are missing at
classification time. LetX ⊆ R

n be an instance space
and letD be a probability distribution on the product space
X × {±1}. We receive a training setS = {(xi, yi)}m

i=1

sampled i.i.d. fromD, which we use to learn our classifier.
We assign each featurej ∈ [n] a valuevj ≥ 0. Infor-
mally, we think ofvj as the a-prioriinformativenessof fea-

Learning to Classify with Missing and Corrupted Features

turej, or as the importance of featurej to the classification
task. It can also represent the cost of obtaining the feature
(such as the price of a medical test). Next, we define the
value of a subsetJ of features as the sum of values of the
features in that subset, and we denoteV (J) =

∑

j∈J vj .
For instance, we frequently useV ([n]) when referring to
∑n

j=1 vj andV ([n] \ J) when referring to
∑

j 6∈J vj . Next,
we fix a noise-tolerance parameterN in [0, V ([n])] and de-
fine P = V ([n]) − N . During the classification phase,
instances are generated in the following way: First, a pair
(x, y) is sampled fromD. Then, an adversary selects a
subset of featuresJ ⊂ [n] such thatV ([n] \ J) ≤ N , and
replacesxj with 0 for all j 6∈ J . The adversary selectsJ
for each instance individually, and with full knowledge of
the inner workings of our classifier. The noise-tolerance pa-
rameterN essentially acts as an upper bound on the amount
of damage the adversary is allowed to inflict. We would
like to use the training setS (which does not have miss-
ing features) to learn a binary classifier that is robust to this
specific type of classification-time noise.

We focus on learning linear margin-based classifiers. A lin-
ear classifier is defined by a weight vectorw ∈ R

n and a
bias termb ∈ R. Given an instancex, which is sampled
from D, and a set of coordinatesJ left intact by the adver-
sary, the linear classifier outputsb +

∑

j∈J wjxj . The sign
of b +

∑

j∈J wjxj constitutes the actual binary prediction,
while |b +

∑

j∈J wjxj | is understood as the degree of con-
fidence in that prediction. A classification mistake occurs
if and only if y(b+

∑

j∈J wjxj) ≤ 0, so we define therisk
of the linear classifier(w, b) as

R(w, b) = Pr
(x,y)∼D

(

∃J with V ([n] \ J) < N (1)

s.t. y
(

b +
∑

j∈J wjxj

)

≤ 0
)

.

Since D is unknown, we cannot explicitly minimize
Eq. (1). Thus, we turn to the empirical estimate of Eq. (1),
theempirical risk, defined as

1

m

m
∑

i=1

[[

min
J : V ([n]\J)≤N

yi

(

b +
∑

j∈J wjxi,j

)

≤ 0
]]

, (2)

where[[π]] denotes the indicator function of the predicateπ.
Minimizing the empirical risk directly constitutes a difficult
combinatorial optimization problem. Instead, we formulate
a linear program that closely resembles the formulation of
the Support Vector Machine (Vapnik, 1998). We choose
a margin parameterγ > 0 and a regularization parameter
C > 0, and solve the problem

min
w,b,ξ

1
mγ

∑m
i=1 ξi (3)

s.t. ∀ i ∈ [m] ∀J : V ([n] \ J) ≤ N

yi

(

b +
∑

j∈J wjxi,j

)

≥ γV (J)
P − ξi ,

∀ i ∈ [m] ξi ≥ 0 , ‖w‖∞ ≤ C .

The objective function of Eq. (3) is called theempirical
hinge-lossobtained on the sampleS. Since ξi is con-
strained to be non-negative, each training example con-
tributes a non-negative amount to the total loss. Moreover,
the objective function of Eq. (3) upper bounds the empiri-
cal risk of(w, b). More specifically, for any feasible point
(w, b, ξ) of Eq. (3),ξi upper boundsγ times the indicator
function of the event

min
J : V ([n]\J)≤N

yi

(

b +
∑

j∈J wjxi,j

)

≤ 0 .

To see this, note that for a given example(xi, yi), if there
exists a feature subsetJ such thatV ([n] \ J) ≤ N and
yi(b +

∑

j∈J wjxj) ≤ 0 then the first constraint in Eq. (3)
enforcesξi ≥ γV (J)/P . The assumptionV ([n] \ J) ≤ N
now implies thatV (J) ≥ P , and thereforeξi ≥ γ. If such
a setJ does not exist, then the second constraint in Eq. (3)
enforcesξi ≥ 0.

The optimization problem above actually does more than
minimize an upper bound on the empirical risk. It also re-
quires the margin attained by the feature subsetJ to grow
with proportion toV (J). While a true adversary would
always inflict the maximal possible damage, our optimiza-
tion problem also prepares for the case where less damage
is inflicted, requiring the confidence of our classifier to in-
crease as less noise is introduced. We also restrictw to a
hyper-box of radiusC, which controls the complexity of
the learned classifier and promotes dense solutions. More-
over, this constraint is easy to compute and makes our algo-
rithms more efficient. Although Eq. (3) is a linear program,
it is immediately noticeable that the size of its constraintset
may grow exponentially with the number of featuresn. For
example, ifvj = 1 for all j ∈ [n] and ifN is a positive in-
teger, then the linear program contains over

(

n
N

)

constrains
per example. We deal with this problem below.

2.2. A Polynomial Approximation

Taking inspiration from (Carr & Lancia, 2000), we find
an efficient approximate formulation of Eq. (3), which
turns out to be an exact reformulation of Eq. (3) when
vj ∈ {0, 1} for all j ∈ [n]. Specifically, we replace Eq. (3)
with

min 1
mγ

∑m
i=1 ξi (4)

s.t. ∀ i ∈ [m] Pλi − ∑n
j=1 αi,j + yib ≥ −ξi

∀ i ∈ [m] ∀ j ∈ [n] yiwjxi,j − γvj

P ≥ λivj − αi,j ,

∀ i ∈ [m] ∀ j ∈ [n] αi,j ≥ 0 ,

∀ i ∈ [m] λi ≥ 0 and ξi ≥ 0 ,

‖w‖∞ ≤ C ,

where the minimization is overw ∈ R
n, b ∈ R, ξ ∈ R

m,
λ ∈ R

m, andα1, . . . ,αm, each inR
n. The number of

Learning to Classify with Missing and Corrupted Features

variables and the number of constraints in this problem are
bothO(mn). The following theorem explicitly relates the
optimization problem in Eq. (4) with the one in Eq. (3).

Theorem 1. If (w⋆, b⋆, ξ⋆,λ⋆,α⋆
1, . . . ,α

⋆
m) is an optimal

solution to Eq. (4), then(w⋆, b⋆, ξ⋆) is a feasible point of
Eq. (3), and therefore the value of Eq. (4) upper-bounds the
value of Eq. (3). Moreover, ifvj ∈ {0, 1} for all j ∈ [n],
then(w⋆, b⋆, ξ⋆) is an optimal solution to Eq. (3). Finally,
if it does not hold thatvj ∈ {0, 1} for all j ∈ [n], and
assuming‖xi‖ ≤ 1 for all i, then the difference between
the value of Eq. (4) and the value of Eq. (3) is at mostC/γ.

As a first step towards proving Thm. 1, we momentarily
forget about the optimization problem at hand and focus on
another question: given a specific triplet(w, b, ξ), is it a
feasible point of Eq. (3) or not? More concretely, for each
training example(xi, yi), we would like to determine if for
all J with V ([n] \ J) ≤ N it holds that

yi

(

b +
∑

j∈J wjxi,j

)

≥ γV (J)
P − ξi . (5)

We can answer this question by comparing−ξi with the
value of the following integer program:

min
τ∈{0,1}n

yib +
∑n

j=1 τj

(

yiwjxi,j − γvj

P

)

(6)

s.t. P ≤ ∑n
j=1 τjvj .

For example, if the value of this integer program is less than
−ξi, then letτ ′ be an optimal solution and we have that
yi(b+

∑n
j=1 τ ′

jwjxi,j) < (γ
∑n

j=1 τ ′
jvj)/P −ξi. Namely,

the setJ = {j ∈ [n] : τ ′
j = 1} violates Eq. (5). On the

other hand, if there exists someJ with V ([n]\J) ≤ N that
violates Eq. (5) then its indicator vector is a feasible point
of Eq. (6) whose objective value is less than−ξi.

Directly solving the integer program in Eq. (6) may be dif-
ficult, so instead we examine the properties of the following
linear relaxation:

min
τ

yib +
∑n

j=1 τj

(

yiwjxi,j − γvj

P

)

(7)

s.t. ∀j ∈ [n] 0 ≤ τj ≤ 1 and P ≤ ∑n
j=1 τjvj .

To analyze this relaxation we require the following lemma.

Lemma 1. Fix an example(xi, yi), a linear classifier
(w, b), and a scalarξi > 0, and letθ be the value of Eq. (7)
with respect to these choices. (a) Ifθ ≥ −ξi then Eq. (5)
holds. (b) In the special case wherevj ∈ {0, 1} for all
j ∈ [n] and whereN is an integer,θ ≥ −ξi if and only if
Eq. (5) holds. (c) There exists a minimizer of Eq. (7) with
at most one coordinate in(0, 1).

The proof of the lemma is straightforward but technical,
and is omitted due to lack of space. Lemma 1 tells us that
comparing the value of the linear program in Eq. (7) with

−ξi provides a sufficient condition for Eq. (5) to hold for
the example(xi, yi). Moreover, this condition becomes
both sufficient and necessary in the special case where
vj ∈ {0, 1} for all j ∈ [n]. We now proceed with prov-
ing the first part of Thm. 1 using claim (a) in Lemma 1.
The remaining parts of the theorem follow similarly from
claims (b) and (c) in the lemma.

Proof of Theorem 1.Let (w⋆, b⋆, ξ⋆,λ⋆,α⋆
1, . . . ,α

⋆
m) be

an optimal solution to the linear program in Eq. (4). Specif-
ically, it holds for all i ∈ [m] that α⋆

i and λ⋆
i are non-

negative, thatPλ⋆
i −

∑n
j=1 α⋆

i,j + yib
⋆ ≥ −ξ⋆

i , and that

∀ j ∈ [n] yiw
⋆
j xi,j −

γvj

P
≥ λ⋆

i vj − α⋆
i,j .

Therefore, it also holds that the value of the following op-
timization problem

max
αi,λi

Pλi − ∑n
j=1 αi,j + yib

⋆ (8)

s.t. ∀ j ∈ [n] yiw
⋆
j xi,j − γvj

P ≥ λivj − αi,j ,

∀ j ∈ [n] αi,j ≥ 0 and λi ≥ 0 ,

is at least−ξ⋆
i . The strong duality principle of linear pro-

gramming (Boyd & Vandenberghe, 2004) states that the
value of Eq. (8) equals the value of its dual optimization
problem, which is:

min
τ

yib
⋆ +

∑n
j=1 τj

(

yiw
⋆
j xi,j − γvj

P

)

(9)

s.t. ∀ j ∈ [n] 0 ≤ τj ≤ 1 and P ≤
∑n

j=1 τjvj .

In other words, the value of Eq. (9) is also at least−ξ⋆
i .

Using claim (a) of Lemma 1, we have that

yi

(

b⋆ +
∑

j∈J w⋆
j xi,j

)

≥ γV (J)
P − ξ⋆

i ,

holds for allJ with V ([n] \ J) ≤ N . The optimization
problem in Eq. (4) also constrains‖w‖∞ ≤ C andξi ≥ 0
for all i ∈ [m], thus,(w⋆, b⋆, ξ⋆) satisfies the constraints in
Eq. (3). Since Eq. (3) and Eq. (4) have the same objective
function, the value of Eq. (3) is upper bounded by the value
of Eq. (4).

2.3. Generalization Bounds

We now prove a generalization bound on the risk of the
classifier learned in our framework, using PAC-Bayesian
techniques (McAllester, 2003). Throughout, we assume
that ‖x‖∞ ≤ 1 with probability 1 overD. For simplic-
ity, we assume that the bias termb is 0, and thatvj > 0
for all j. These assumptions can be relaxed at the cost of
a somewhat more complicated analysis. Given a classifier
w, let ℓγ(w,x, y) denote theγ-loss attained on the exam-
ple (x, y), defined as

[[

min
J : V ([n]\J)≤N

y
∑

j∈J

wjxj <
γV (J)

P

]]

, (10)

Learning to Classify with Missing and Corrupted Features

where[[·]] again denotes the indicator function. Note that
E[ℓ0(w,x, y)] = R(w, 0), whereR is defined in Eq. (1).

Theorem 2. Let S be a sample of sizem drawn i.i.d from
D. For anyδ > 0, with probability at least1 − δ, it holds
for all w ∈ R

n with ‖w‖∞ ≤ C that the risk associated
with w is at most

sup
{

ǫ : KL
(

1
m

∑m
i=1 ℓγ(w,xi, yi)

∥

∥

∥
ǫ
)

≤ β(m,δ,γ)
m−1

}

,

where β(m, δ, γ) = ln(m/δ) +
∑n

j=1 ln(4PC/(γvj))
and KL is the Kullback-Leibler divergence. The above
is upper-bounded by the empiricalγ-loss (which equals
1
m

∑m
i=1 ℓγ(w,xi, yi)), plus the additional term

√

2

m

∑m
i=1 ℓγ(w,xi, yi)

β(m,δ,γ)
m−1 +

2β(m, δ, γ)

m − 1
.

Proof sketch.The proof follows along similar lines to the
PAC-Bayesian bound for linear classifiers in (McAllester,
2003). First, define the axis-aligned boxB =

∏n
j=1[wj −

γvj

2P , wj +
γvj

2P] ∩ [−C,C]. We use the margin concept to
upper boundE(x,y)∼D[ℓ0(w,x, y)] by the expectedℓγ/2

loss overD of a classifier sampled uniformly fromB ∩
[−C,C]n. We can upper bound this expected loss us-
ing the PAC-Bayesian theorem (McAllester, 2003), where
the uniform distribution overB ∩ [−C,C]n is the poste-
rior classifier distribution, and the uniform distributionover
[−C,C]n is the prior. The bound we get is defined in terms
of the average empiricalℓγ/2 loss of a random classifier
from B, plus a complexity term dependent on the volume
ratio betweenB and [−C,C]n. Finally, this average loss
can be upper bounded by the empiricalℓγ loss ofw by re-
peating the technique of the first stage. The weaker bound
stated in the theorem follows from a lower bound on the
KL divergence, presented in (McAllester, 2003).

It is interesting to note thatL∞ regularization emerges as
the most natural one in this setting, since it induces the most
convenient type of margin for relating theℓ0, ℓγ/2, ℓγ loss
functions as described above. This lends theoretical sup-
port to our choice of theL∞ norm in our algorithms.

2.4. Feature Corrupting Noise

We now shift our attention to the case where a subset of the
features is corrupted with random noise, and show that the
the same LP approach used to handle missing features can
also deal with corrupted features if the margin parameter
γ in Eq. (4) is sufficiently large. For simplicity, we shall
assume that all features are supported on[−1, 1] with zero
mean. Unlike the feature deleting noise, we now assume
that the each feature selected by the adversary is replaced
with noise sampled from some distribution, also supported
on [−1, 1] and having zero mean. The following theorem

relates the risk of a classifier in the above setting, to its
expectedγ-loss in the feature deletion setting, where the
latter can be bounded with Thm. 2.

Theorem 3. Let ǫ, C, andN be arbitrary positives, and
let γ be at leastC

√

N ln(1/ǫ)/2. Assume that we solve
Eq. (4) with parametersγ, C, N and withvj = 1 for all
j ∈ [n]. Letw be the resulting linear classifier, and assume
for simplicity that the bias termb is zero. Letf be a random
vector-valued function onX , such that for everyx ∈ X ,
f(x) is the instancex after the feature corruption scheme
described above. Then, usingℓγ as defined in Eq. (10), for
(x, y) drawn randomly fromD, we have:

Pr
(

y〈w, f(x)〉 ≤ 0
)

≤ E [ℓγ(w,x, y)] + ǫ .

Proof. Let (x, y) be an example and letJ denote the fea-
ture subset which remains uncorrupted by the adversary.
Using Hoeffding’s bound and our assumption onγ, we

have thatPr
(

y
∑

j /∈J wjfj(x) ≤ −γ
)

is upper bounded

by ǫ. Therefore, with probability at least1 − ǫ over the
randomness off , y〈w, f(x)〉 is equal to:

y
∑

j∈J

wjxj + y
∑

j /∈J

wjfj(x) > y
∑

j∈J

wjxj − γ . (11)

Thus, with probability at least1 − ǫ, Pr(y〈w, f(x)〉 < 0)
is upper bounded byE[ℓγ(w,x, y)]. Otherwise, with prob-
ability at mostǫ, Pr(y〈w, f(x)〉 < 0) ≤ 1.

We conclude with an interesting observation. In the fea-
ture corruption setting, making a correct prediction boils
down to achieving a sufficiently large margin on the uncor-
rupted features. Letr ∈ (0, 1) be a fixed ratio between
N andn, and letn grow to infinity. Assuming a reason-
able degree of feature redundancy, the termy

∑

j∈J wjxj

grows asΘ(n). On the other hand, Hoeffding’s bound tells
us thaty

∑

j 6∈J wjxj grows only asO(
√

N). Therefore,
for r arbitrarily close to1 and a large enoughn, the first
sum in Eq. (11) dominates the second. Namely, by setting
γ = Ω(

√
N) in Eq. (4), our ability to withstand feature cor-

ruption matches our ability to withstand feature deletion.

3. Solving the Problem with the Perceptron

We now turn to our second learning algorithm, taking a
different angle on the problem. We momentarily forget
about the original statistical learning problem and instead
define a related online prediction problem. In online learn-
ing there is no distinction between the training phase and
the classification phase, so we cannot perfectly replicate
the classification-time noise scenario discussed above. In-
stead, we assume that an adversary removes features from
every instance that is presented to the algorithm. We ad-
dress this online problem with a modified version of the

Learning to Classify with Missing and Corrupted Features

Perceptron algorithm (Rosenblatt, 1958) and use an online-
to-batch conversion technique to convert the online algo-
rithm back into a statistical learning algorithm. The de-
tour through online learning gives us efficiency while the
online-to-batch technique provides us with the statistical
generalization properties we are interested in.

3.1. Perceptron with Projections onto the Cube

We start with a modified version of the well-known Per-
ceptron algorithm (Rosenblatt, 1958), which observes a se-
quence of examples

(

(xi, yi)
)m

i=1
, one example at a time,

and incrementally builds a sequence
(

(wi, bi)
)m

i=1
of lin-

ear margin-based classifiers, while constraining them to a
hyper-cube. Before processing examplei, the algorithm
has the vectorwi and the bias termbi stored in its mem-
ory. An adversary takes the instancexi and reveals only
a subsetJi of its features to the algorithm, attempting to
cause the online algorithm to make a prediction mistake.
In choosingJi, the adversary is restricted by the constraint
V ([n] \ J) ≤ N . Next, the algorithm predicts the label
associated withxi to be

sign
(

bi +
∑

j∈Ji
wi,jxi,j

)

.

After the prediction is made, the correct labelyi is revealed
and the algorithms suffers a hinge-lossξ(w, b,x, y), de-
fined as
[

max
J : V ([n]\J)≤N

γV (J)

P
− y

(

b +
∑

j∈J wjxj

)

]

+

, (12)

whereP = V ([n]) − N and[α]+ denotes the hinge func-
tion, max{α, 0}. Note thatξ(wi, bi,xi, yi) upper-bounds
γ times the indicator of a prediction mistake on the current
example, for any choice ofJi made by the adversary. We
choose to denote the loss byξ to emphasize the close rela-
tion betweenξ(wi, bi,xi, yi) andξi in Eq. (3). Due to our
choice of loss function, we can assume that the adversary
chooses the subsetJi that inflicts the greatest loss.

The algorithm now uses the correct labelyi to construct the
pair (wi+1, bi+1), which is used to make the next predic-
tion. If ξ(w, b,x, y) = 0, the algorithm defineswi+1 = wi

andbi+1 = bi. Otherwise, the algorithm defineswi+1 us-
ing the following coordinate-wise update

j ∈ [n] wi+1,j =

{

[wi,j + yiτxi,j]±C if j ∈ Ji

wi,j otherwise
,

andbi+1 = [bi + yiτ]±C , whereτ =
√

n+1C√
2m

and [α]±C

abbreviates the functionmax
{

min{α,C},−C
}

. This up-
date is nothing more than the standard Perceptron update
with constant learning rateτ , with an added projection step
onto the hyper-cube of radiusC. The specific value ofτ

used above is the value that optimizes the cumulative loss
bound below. As in the previous section, restricting the
online classifier to the hyper-cube helps us control its com-
plexity, while promoting dense classifiers. It also comes in
handy in the next stage, when we convert the online algo-
rithm into a statistical learning algorithm.

Using a rather straightforward adaptation of standard Per-
ceptron loss bounds, to the case where the hypothesis is
confined to the hyper-cube, leads us to the following the-
orem, which compares the cumulative loss suffered by the
algorithm with the cumulative loss suffered by any fixed
hypothesis in the hyper-cube of radiusC.

Theorem 4. Choose anyC > 0 and let w
⋆ ∈ R

n

and b⋆ ∈ R be such that‖w⋆‖∞ ≤ C and |b⋆| ≤
C. Let

(

(xi, yi)
)m

i=1
be an arbitrary sequence of exam-

ples, with ‖xi‖1 ≤ 1 for all i. Assume that this se-
quence is presented to our modified Perceptron, and let
ξ(wi, bi,xi, yi) be as defined in Eq. (12). Then it holds
that 1

γm

∑m
i=1 ξ(wi, bi,xi, yi) is upper-bounded by

1

γm

m
∑

i=1

ξ(w⋆, b⋆,xi, yi) +
C

γ

√

2(n + 1)

m
.

The next step is to convert our online algorithm into a sta-
tistical learning algorithm.

3.2. Converting Online to Batch

To obtain a statistical learning algorithm, with risk guar-
antees, we assume that the sequence of examples pre-
sented to the modified Perceptron algorithm is a training
set sampled i.i.d. from the underlying distributionD. We
turn to the simple averaging technique presented in (Cesa-
Bianchi et al., 2004) and definēw = 1

m

∑m
i=1 wi−1 and

b̄ = 1
m

∑m
i=1 bi−1. (w̄, b̄) is called theaverage hypothesis,

and defines our robust classifier. We use the derivation in
(Cesa-Bianchi et al., 2004) to prove that the average classi-
fier provides an adequate solution to our original problem.

Note that the loss function we use, defined in Eq. (12), is
bounded and convex in its first two arguments. This al-
lows us to apply (Cesa-Bianchi et al., 2004, Corollary 2) to
relate the risk of(w̄, b̄) with the cumulative online loss suf-
fered by the Perceptron. It also allows us to apply Hoeffd-
ing’s bound to relate the expected loss of any fixed classifier
(w⋆, b⋆) with its empirical loss on the training set. Com-
bining both bounds results in the following corollary.

Corollary 1. For anyδ > 0, with probability at least1− δ
over the random sampling ofS, our algorithm constructs
(w̄, b̄) such thatE(x,y)∼D

[

ξ(w̄, b̄,x, y)
]

is at most

min
(w,b)∈H

E [ξ(w, b,x, y)] + (3C+φ)

√

2(n + 1 + ln(2
δ))

m
,

Learning to Classify with Missing and Corrupted Features

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Num deleted

T
es

t E
rr

or

0 25 50 75 100 125 150
Num deleted

LP−Based
GR
SVM

Figure 1.A comparison of our LP-based approach with the algo-
rithm of (Globerson & Roweis, 2006) (GR) and with SVM on
SPAM (left) and MNIST (right), with random noise.

whereφ = γ maxJ:V ([n]\J)≤N

(

V (J)/P
)

, andH is the
set of all pairs(w, b) such that‖w‖∞ ≤ C and|b| ≤ C.

Using the fact that the hinge loss upper-boundsγ times the
indicator function of a prediction mistake, regardless of the
adversary’s choice of the feature set, we have that the ex-
pected hinge loss upper-boundsγR(w̄, b̄).

4. Experiments and Conclusions

We compare the performance of our two algorithms (LP-
based and online-to-batch) with that of a linearL2 SVM
(Joachims, 1998) and with the results reported in (Glober-
son & Roweis, 2006). We used the GLPK package
(http://www.gnu.org/software/glpk) to solve
the LP formulation of our LP-based algorithm.

We begin with a highly illustrative sanity check. We gener-
ated a synthetic dataset of1000 linearly separable instances
in R

20 and added label noise by flipping each label with
probability 0.2. Then, we added two copies of the actual
label as additional features to each instance, for a total
of 22 features. We randomly split the data into equally
sized training and test sets, and trained an SVM classi-
fier on the training set. We setvj = 1 for j ∈ [20] and
v21 = v22 = 10, expressing our prior knowledge that the
last two features are more valuable. Using these feature
values, we applied our technique with different values of
the parameterN . We removed one or both of the high-
value features from the test set and evaluated the classi-
fiers. With only one feature removed both SVM and our
approach attained a test error of zero. With two features
removed, the test error of the SVM classifier jumped to
0.477 ± 0.004 (over100 random repetitions of the exper-
iment), indicating that it essentially put all of its weight
on the two perfect features. With the noise parameter set
to N = 20, our approach attained a test error of only
0.22± 0.002. This is only marginally above the best possi-
ble error rate for this setting.

Following the lead of (Globerson & Roweis, 2006),
we conducted experiments using the SPAM and MNIST
datasets. The SPAM dataset, taken from the UCI reposi-
tory, is a collection of spam and non-spam e-mails. Spam
can be detected by different word combinations, so we ex-
pect considerable feature redundancy in this dataset. The
MNIST dataset is a collection of pixel-maps of handwritten
digits. Again, following (Globerson & Roweis, 2006), we
focused on the binary problem of distinguishing the digit4
from the digit7. Adjacent pixels often contain redundant
information, making MNIST well-suited for our needs.

On each dataset, we performed2 types of experiments. The
first type follows exactly the protocol used in (Globerson
& Roweis, 2006). Namely, the algorithm is trained with a
small training set of50 instances, and its performance is
tested in the face ofrandomfeature-deleting noise, which
uniformly deletesN non-zero features from each test in-
stance, for various choices ofN . Notice that this setting
deviates from the adversarial setting considered so far, and
the reason for conducting this experiment is to compare our
results to those reported in (Globerson & Roweis, 2006).
A validation set is used for parameter tuning. We did not
test our online-to-batch algorithm within this setting, since
it has little advantage with such a small training set. The
results are presented in Fig. 1, and show test error as a
function of the number of deleted features. Compared to
its competitors, our algorithm has a clear and substantial
advantage.

The second type of experiment simulates more closely the
adversarial setting discussed throughout the paper. Using
10-fold cross-validation, we corrupted each test instance
using a greedy adversary, which deletes the most valuable
features of each instance until either the limitN is reached
or all useful features are deleted.1/9 of the training set
was used for parameter tuning. Due to computational con-
siderations when running our LP-based algorithm, we per-
formed a variant of bagging by randomly splitting the train-
ing set into chunks, training on each chunk individually,
and finally averaging the resulting weight vectors. In con-
trast, our online-to-batch algorithm trained on the entire
training set at once, and so did the SVM algorithm. We
repeated this process for different values ofN . For the
SPAM dataset, we repeated this entire experiment twice,
once with features valuesvj set uniformly to1, and once
with vj set using a mutual information heuristic. Formally,
we set

vj = 1
Z max

c∈R

I
(

[[xj > c]]; y
)

,

whereZ is such that
∑

vj = n, and whereI([[xj > c]]; y)
is the mutual information between the predicate[[xj > c]]
and the labely, over all examples in the training set. Intu-
itively, we are calculating the amount of information con-
tained in each individual feature on the label, provided that

Learning to Classify with Missing and Corrupted Features

0 2 4 6
0

0.2

0.4

0.6

0.8

N

T
es

t E
rr

or

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

N

T
es

t E
rr

or

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

N

T
es

t E
rr

or

LP−Based
Online−Batch
SVM

LP−Based
Online−Batch
SVM

LP−Based
Online−Batch
SVM

Figure 2.Experiments on SPAM with∀j ∈ J, vj = 1 (left) and withvj set with a mutual information heuristic (center). Experiments
on MNIST withvj set with a mutual information heuristic (right).

we are looking only at linear threshold functions. When ex-
perimenting with the MNIST dataset, we only used the val-
ues ofvj set by our heuristic. This is a natural choice since
the features of MNIST are of markedly different impor-
tance levels. For example, the corner pixels, which are al-
ways zero, are completely uninformative, while other pix-
els may be very informative. The results are presented in
Fig. 2, and show test error as a function ofN . Clearly, our
algorithms have the advantage. SVM repeatedly puts all of
its eggs in a small number of baskets, and is severely pun-
ished for this, while our technique anticipates the actions
of the adversary and hedges its bets accordingly.

Moreover, the results in Fig. 2 demonstrate the tradeoffs
between our LP-based and online-to-batch algorithms. Al-
though we have handicapped the LP-based algorithm by
chunking the training set, its performance is comparable
and sometimes superior to that of the online-to-batch algo-
rithm. With less or without chunking, we expect its perfor-
mance to be even better.

We conclude that our proposed algorithms successfully
withstand feature corruption at classification time, and con-
siderably improve upon the current state of the art. On a
more general note, this work has interesting connections to
a recent trend in machine learning research, which is to de-
velop sparse classifiers supported on a small subset of the
features. In our setting, we are interested in the exact op-
posite, and the efficacy of using theL∞ norm is clearly
demonstrated here. The trade-off between robustness and
sparsity provides fertile ground for future research.

References

Boyd, S., & Vandenberghe, L. (2004).Convex optimiza-
tion. Cambridge University Press.

Carr, R. D., & Lancia, G. (2000). Compact vs. exponential-
size LP relaxations SANDIA Report 2000-2170.

Cesa-Bianchi, N., Conconi, A., & Gentile, C. (2004). On
the generalization ability of on-line learning algorithms.
IEEE Transactions on Information Theory, 50, 2050–
2057.

Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass
learning problems via error-correcting output codes.
Journal of Artificial Intelligence Research, 2, 263–286.

Gamble, E., Macskassy, S., & Minton, S. (2007). Classifi-
cation with pedigree and its applicability to record link-
age.Workshop on Text-Mining & Link-Analysis.

Globerson, A., & Roweis, S. (2006). Nightmare at test
time: robust learning by feature deletion.Proceedings of
ICML 23 (pp. 353–360).

Joachims, T. (1998). Making large-scale support vector
machine learning practical. InAdvances in kernel meth-
ods - support vector learning. MIT Press.

Littlestone, N. (1991). Redundant noisy attributes, attribute
errors, and linear-threshold learning using winnow.Pro-
ceedings of the COLT 4(pp. 147–156).

McAllester, D. A. (2003). Simplified PAC-bayesian margin
bounds.Proceedings of COLT 16(pp. 203–215).

Rosenblatt, F. (1958). The perceptron: A probabilistic
model for information storage and organization in the
brain. Psychological Review, 65, 386–407.

Teo, C.-H., Globerson, A., Roweis, S., & Smola, A. (2008).
Convex learning with invariances.Advances in NIPS 21.

Vapnik, V. N. (1998).Statistical learning theory. Wiley.

