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Abstract

EM algorithm is a very popular iteration-
based method to estimate the parameters of
Gaussian Mixture Model from a large obser-
vation set. However, in most cases, EM al-
gorithm is not guaranteed to converge to the
global optimum. Instead, it stops at some lo-
cal optimums, which can be much worse than
the global optimum. Therefore, it is usually
required to run multiple procedures of EM
algorithm with different initial configurations
and return the best solution. To improve the
efficiency of this scheme, we propose a new
method which can estimate an upper bound
on the logarithm likelihood of the local opti-
mum, based on the current configuration af-
ter the latest EM iteration. This is accom-
plished by first deriving some region bound-
ing the possible locations of local optimum,
followed by some upper bound estimation on
the maximum likelihood. With this estima-
tion, we can terminate an EM algorithm pro-
cedure if the estimated local optimum is def-
initely worse than the best solution seen so
far. Extensive experiments show that our
method can effectively and efficiently accel-
erate conventional multiple restart EM algo-
rithm.

1. Introduction

Gaussian Mixture Model (GMM) (McLachlan & Peel,
2000) is a powerful tool in unsupervised learning to
model unlabelled data in a multi-dimensional space.
However, given an observation data set, estimating the
parameters of the underlying Gaussian Mixture Model
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of the data is not a trivial task, especially when the
dimensionality or the number of components is large.
Usually, this model estimation problem is transformed
to a new problem, which try to find parameters max-
imizing the likelihood probability on the observations
from the Gaussian distributions. In the past decades,
EM algorithm (Dempster et al., 1977) has become the
most widely method used in the problem of learning
Gaussian Mixture Model (Ma et al., 2001; Jordan &
Xu, 1995; McLachlan & Krishnan, 1996).

Although EM algorithm can converge in finite iter-
ations, there is no guarantee on the convergence to
global optimum. Instead, it usually stops at some lo-
cal optimum, which can be arbitrarily worse than the
global optimum. Although there have been extensive
studies on how to avoid bad local optimums, it is still
required to run EM algorithm with different random
initial configurations and the best local optimum is re-
turned as final result. This leads to a great waste of
computation resource since most of the calculations do
not have any contribution to the final result.

In this paper, we propose a fast stopping method to
overcome the problem of trapping into bad local opti-
mums. Given any current configuration after an EM
iteration, our method can estimate an upper bound
on the final likelihood of the local optimum current
configuration is leading to. Therefore, if the estimated
local optimum is definitely not better than the best
local optimum achieved in previous runs, current pro-
cedure can be terminated immediately.

To facilitate such local optimum estimation, we first
prove that a region in the parameter space can defi-
nitely cover the unknown local optimum. If a region
covers the current configuration and any configuration
on the boundary of the region gives lower likelihood
than the current one does, we can show that the local
optimum is “trapped” in the region; and we call such
region as a maximal region. In this paper, we adopt a
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special type of maximal region, which can be computed
efficiently. Since the best likelihood of any configura-
tion in a maximal region can be estimated in relatively
short time, it can be decided immediately on whether
current procedure still has potential to achieve a bet-
ter local optimum. In our experiments, such method
is shown to greatly improve the efficiency of original
EM algorithm for GMM, on both synthetic and real
data sets.

The rest of the paper is organized as follows. We first
introduce the definitions and related works on Gaus-
sian Mixture Model and EM algorithm in Section 2
. Section 3 proves the local trapping property of EM
algorithm on GMM; and Section 4 presents our study
on maximal region of local optimum. We propose our
algorithm on estimating the likelihood of a local opti-
mum in Section 5 . Section 6 shows some experimental
result. Finally, section 7 concludes this paper.

2. Model and Related Works

In this section, we review the basic models of Gaussian
Mixture Model, EM algorithm, and some acceleration
method proposed for a special type of Gaussian Mix-
ture Model (K-Means Algorithm).

2.1. Gaussian Mixture Model

In GMM model (McLachlan & Peel, 2000), there ex-
ist k underlying components {ω1, ω2, . . . , ωk} in a d-
dimensional data set. Each component follows some
Gaussian distribution in the space. The parameters
of the component ωj include Θj = {µj ,Σj , πj}, in
which µj = (µj [1], . . . ,µj [d]) is the center of the Gaus-
sian distribution, Σj is the covariance matrix of the
distribution and πj is the probability of the compo-
nent ωj . Based on the parameters, the probability
of a point coming from component ωj appearing at
x = (x[1], . . . , x[d]) can be represented by

Pr(x|Θj) =
|Σ−1

j |1/2

(2π)d/2
exp

{

−
1

2
(x − µj)

T
Σ

−1

j (x − µj)

}

Thus, given the component parameter set Θ =
{Θ1,Θ2, . . . ,Θk} but without any component infor-
mation on an observation point x, the probability of
observing x is estimated by

Pr(x|Θ) =

k
∑

j=1

Pr(x|Θj)πj

The problem of learning GMM is estimating the
parameter set Θ of the k component to maxi-

mize the likelihood of a set of observations D =
{x1,x2, . . . ,xn}, which is represented by

Pr(D|Θ) =
n

∏

i=1

Pr(xi|Θ) (1)

Based on the parameters of the GMM model, the pos-
terior probability of xi from component ωj (or the
weight of xi in component j), τij , can be calculated as
follows.

τij =
Pr(xi|Θj)πj

∑k
l=1

Pr(xi|Θl)πl

(2)

To simplify the notations, we use Φ to denote the set
of all τij for any pair of i, j, and use Ψ(Θ) to denote
the corresponding Φ based on current configuration Θ.
For ease of analysis, the original optimization problem
on equation (1), is usually transformed to an equal
maximization problem on the following variable, called
log likelihood.

L(Θ,Φ) =

n
∑

i=1

k
∑

j=1

τij(ln
πj

τij
+

ln |Σ−1

j |

2
−

(xi − µj)
T Σ−1

j (xi − µj)

2
) (3)

L is actually a function over Θ and Φ, the latter of
which is usually optimized according to Θ. Thus,
the problem of learning GMM is finding an optimal
parameter set Θ∗ which can maximize the function
L(Θ∗,Ψ(Θ∗)).

2.2. EM Algorithm

EM algorithm (Dempster et al., 1977) is a widely used
technique for probabilistic parameter estimation. To
estimate Θ = {Θ1, . . . ,Θk}, it starts with a randomly
chosen initial parameter configuration Θ0. Then, it
keeps invoking iterations to recompute Θt+1 based on
Θt. Every iteration consists of two steps, E-step and
M-step. In E-step, the algorithm computes the ex-
pected value of τij for each pair of i and j based on
Θt = {Θt

1, . . . ,Θ
t
k} and equation (2).

In M-step, the algorithm finds a new group of param-
eters Θt+1 to maximize L based on Φt = {τ t

ij} and
{x1,x2, . . . ,xn}. The details of the update process
for µj , Σj and πj are listed below.

µ
t+1

j [l] =

∑n
i=1

τ t
ijxi[l]

∑n
i=1

τ t
ij

(4)
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Σ
t+1

j =

∑n
i=1

τ t
ij(xi − µ

t+1

j )(xi − µ
t+1

j )T

∑n
i=1

τ t
ij

(5)

π
t+1

j =

∑n
i=1

τ t
ij

n
(6)

The iteration process stops only when ΘN = ΘN−1

after N iterations. We note that both E-step and
M-step always improve the objective function, i.e.
L(Θt,Φt) ≥ L(Θt,Φt−1) ≥ L(Θt−1,Φt−1). Based on
this property, EM-algorithm will definitely converge
to some local optimum. The convergence properties of
EM algorithm over GMM have been extensively stud-
ied in (Xu & Jordan, 1996; Ma et al., 2001).

2.3. K-Means Algorithm and Its Acceleration

K-Means algorithm can be considered as a special
problem of GMM learning with several constraints.
First, the covariance matrix for each component must
be identity matrix. Second, the posterior probability
τij can only be 0 or 1. Therefore, in E-step of the
algorithm, each point is assigned to the closest center
under Euclidean distance; whereas in M-step, the set
of geometric center of each cluster is used to replace
the old set.

With the problem simplification from GMM to K-
Means, there have been many methods proposed to
accelerate the multiple restart EM algorithm for K-
Means. In (Kanungo et al., 2002), for example, Ka-
nungo et al. applied indexing technique to achieve
a much more efficient implementation of E-step. In
(Elkan, 2003), Elkan accelerated both E-step and M-
step by employing triangle inequality of Euclidean dis-
tance to reduce the time for distance computations. In
(Zhang et al., 2006), Zhang et al. introduced a lower
bound estimation on the k-means local optimums to
efficiently cut the procedures not leading to good so-
lutions. However, all these methods proposed for k-
means algorithm cannot be directly extended to the
general GMM. As far as we know, our paper is the
first study on acceleration of the multiple restart EM
algorithm with robustness guarantee.

To improve the readability of the paper, we summarize
all notations in Table 1.

3. Local Trapping Property

In this section, we prove the local trapping property
of EM algorithm on GMM. To derive the analysis, we
first define a solution space S, containing (d2 + d +
1)k dimensions where d is the dimensionality of the
original data space. Any configuration Θ, either valid

Table 1: Table of Notations

Notation Description

n number of points in data
d dimensionality of data space
k number of components
ωj component j
Θj parameter set of ωj

µj center of ωj

Σj covariance matrix of ωj

πj probability of ωj

Θ configuration of all components
xi ith point in the data
τij posterior probability Pr(ωj |xi)
Φ the set of all τij

Ψ(Θ) the optimal Φ with Θ
S solutions space for configurations
L(Θ,Φ) objective log likelihood function
∆ a parameter for a maximal region

or invalid, can be represented by a point in S. Without
loss of generality, we use Θ to denote the configuration
as well as the corresponding point in solution space
S. The rest of the section will be spent to prove the
following theorem.

Theorem 1 Given a closed region R in the solution

space S covering current configuration Θt, EM algo-

rithm converges to a local optimum in R if every con-

figuration Θ on the boundary of R has L(Θ,Ψ(Θ)) <
L(Θt,Φt)

Given two configurations Θt and Θt+1 across one EM
iteration, we define a path between Θt and Θt+1 in S
as follows. This path consists of two parts, called P 1

and P 2 respectively. P 1 starts at Θt and ends at Θ#,
where Θ# = {Θ#

j }. Here Θ#
j = {µt

j ,Σ
#
j , πt

j}, and

Σ#
j =

∑

i τ t
ij(xi −µ

t
j)(xi −µ

t
j)

T /
∑

i τ t
ij . An interme-

diate configuration between Θt and Θ# is defined as
Θα, in which µ

t
j and πt

j remain the same, while Σα
j

in Θα is ((1 − α)(Σt)−1 + α(Σ#)−1)−1. When α in-
creases from 0 to 1, we can move from Θt to Θ# in the
solutions space S. The second part of the path starts
at Θ# and ends at Θt+1. Any intermediate configu-
ration Θβ = {Θβ

j }, where µ
β
j = (1 − β)µt

j + βµ
t+1
j ,

Σβ
j =

∑

i τ t
ij(xi − µ

β
j )(xi − µ

β
j )T /

∑

i τ t
ij , and πβ

j =

(πt
j)

1−β(πt+1
j )β . Similarly, a continuous movement

from Θ# to Θt+1 can be made by increasing β from 0
to 1. The following lemmas prove that any intermedi-
ate configuration on the path is a better solution than
Θt.
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Lemma 1 Given any intermediate configuration Θα

between Θt and Θ#, we have L(Θα,Ψ(Θα)) ≥
L(Θt,Φt).

Proof: By the optimality property of Ψ(Θα), we have
L(Θα,Ψ(Θα)) ≥ L(Θα,Φt).

Since Σ#
j =

∑

i τ t
ij(xi − µ

t
j)(xi − µ

t
j)

T /
∑

i τ t
ij is the

optimal choice for Σj if τ t
ij , µ

t
j and πt

j are fixed, we

also have L(Θ#,Φt) ≥ L(Θt,Φt).

By the definition of Θα and the property of Θ# above,
the following equations can be easily derived.

L(Θα,Φt)

= (1 − α)L(Θt,Φt) + αL(Θ#,Φt)

≥ L(Θt,Φt)

Therefore, it is straightforward to reach the conclusion
that L(Θα,Ψ(Θα)) ≥ L(Θt,Φt). 2

Lemma 2 Given any intermediate configuration Θβ

between Θ# and Θt+1, we have L(Θβ ,Ψ(Θα)) ≥
L(Θt,Φt).

Proof: Again, the basic inequality L(Θβ ,Ψ(Θβ)) ≥
L(Θβ ,Θt) holds. Based on this, we can prove the
lemma by showing L(Θβ ,Φt) ≥ L(Θ#,Φt), since
L(Θ#,Φt) ≥ L(Θt,Φt).

If Σβ
j =

∑

i τ t
ij(xi − µ

β
j )(xi − µ

β
j )T /

∑

i τ t
ij ,

a very interesting result is that
∑

j

∑

i τ t
ij(xi −

µ
β
j )T (Σβ

j )−1(xi − µ
β
j ) remains constant for any β, as

is shown below.

∑

j

∑

i

τ t
ij(xi − µ

β
j )T (Σβ

j )−1(xi − µ
β
j ) = nd

Therefore, for any Θβ , we only need to consider the

sum
∑

i

∑

j τ t
ij

(

ln(πβ
j /τ t

ij) − ln(|Σβ
j |)/2

)

.

By the definition of πβ
j , since πβ

j = (πt
j)

1−β(πt+1
j )β , we

have lnπβ
j = (1 − β) ln πt

j + β lnπt+1
j . Then,

n
∑

i=1

τ t
ij ln

πβ
j

τ t
ij

= (1 − β)

n
∑

i=1

τ t
ij ln

πt
j

τ t
ij

+ β

n
∑

i=1

τ t
ij ln

πt+1
j

τ t
ij

(7)

Therefore,
∑

i

∑

j τ t
ij ln

π
β
j

τt
ij

≥
∑

i

∑

j τ t
ij ln

πt
j

τt
ij

, since

∑n

i=1 τ t
ij ln

π
t+1

j

τt
ij

≥
∑n

i=1 τ t
ij ln

πt
j

τt
ij

.

On the other hand, based on the definition of Σβ
j , we

can prove that

Σβ
j =

n
∑

i=1

τ t
i,j(xi − µ

t
j)(xi − µ

t
j)

T +

(β2 − 2β)(

n
∑

i=1

τ t
i,j)(µ

t+1
j − µ

t
j)(µ

t+1
j − µ

t
j)

T

Since β2−2β ≤ 0 for any β between 0 and 1, ln |Σβ
j | ≤

ln |Σ#
j |. And thus, we have − ln |Σβ

j |/2 ≥ − ln |Σ#
j |/2.

Combing the results above, we reach the conclusion
that L(Θβ ,Φt) ≥ L(Θ#,Φt), leading to the correct-
ness of the lemma. 2

Proof for Theorem 1

Proof: We prove the theorem by contradiction. If
R satisfies the boundary condition but EM algorithm
converges to some configuration out of R in S, there is
at least one pair of configurations {Θs,Θs+1} that Θs

is in R but Θs+1 is not. By setting up the path {Θα}∩
{Θβ} between Θs and Θs+1 as defined above, we know
there is at least one Θα (Θβ) that Θα (Θβ) is exactly
on the boundary of R. By Lemma 1 (Lemma 2), we
know L(Θα,Ψ(Θα)) ≥ L(Θs,Φs) (L(Θβ ,Ψ(Θβ)) ≥
L(Θs,Φs)). On the other hand, any Θα or Θβ is
better than Θt by the definition of R. This leads to
the contradiction, since L(Θs,Φs) > L(Θt,Φt). 2

4. Maximal Region

Based on Theorem 1, we define the concept of Max-

imal Region in GMM as follows. Given the current
configuration Θt, a region R in S is the maximal re-
gion for Θt, if (1) R covers Θt, and (2) any boundary
configuration Θ of R has L(Θ,Ψ(Θ)) < L(Θt,Φt),
by Theorem 1, EM algorithm converges to some local
optimum in R.

Given the current configuration Θt, there are infi-
nite number of valid maximal regions in the solution
space, most of which are hard to verify and manip-
ulate. To facilitate efficient computation, we further
propose a special class of maximal regions. Given Θt

and a positive real value ∆ < 1, we define a closed
region R(Θt,∆) ⊆ S as the union of any configu-
ration Θ, each θj = {µj ,Σj , πj} of which satisfies
all of the conditions below: (1) (1 − ∆)πt

j ≤ πj ≤

(1 + ∆)πt
j ; (2) −∆ ≤ tr(Σ−1

j (Σt
j) − I) ≤ ∆; and (3)

(µj − µ
t
j)

T (Σt
j)

−1(µj − µ
t
j) ≤ ∆2; where tr(M) de-

notes the trace of the matrix M and I is the identity
matrix of dimension d.
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Theorem 2 Any configuration Θ on the bound-

ary of R(Θt,∆) has L(Θ,Φt−1) ≤ L(Θt,Φt−1) −
nminj πt

j∆
2/6.

Proof: Given any R(Θt,∆), any configuration on the
boundary must satisfy one of the following conditions
for at least one j (1 ≤ j ≤ k): (1) (1 −∆)πt

j = πj ; (2)

πt
j = (1 + ∆)πt

j ; (3) |tr(Σ−1
j (Σt

j) − I)| = ∆; and (4)

(µj − µ
t
j)

T (Σt
j)

−1(µj − µ
t
j) = ∆2.

If Θ satisfies condition (1) for some component l,
L(Θ,Φt−1) is maximized if µ

t
j and Σt

j remain un-

changed for all j, while πj =
1−(1−∆)πt

l

1−πt
l

πt
j for all j 6= l.

Therefore, we have the following upper bound.

L(Θ,Φ
t−1) − L(Θt

,Φ
t−1)

≤ nπ
t
l ln(1 − ∆) + n(1 − π

t
l ) ln

1 − (1 − ∆)πt
l

1 − πt
l

= nπ
t
l ln(1 − ∆) + n(1 − π

t
l ) ln

(

1 +
∆πt

l

1 − πt
l

)

≤ nπ
t
l

(

−∆ −
∆2

2

)

+ n(1 − π
t
l )

∆πt
l

1 − πt
l

= −
nπt

l ∆
2

2

The second inequality from the bottom is achieved by
applying Taylor expansion on ln(1 − ∆). By iterat-
ing l with all k components, we have L(Θ,Φt−1) ≤
L(Θt,Φt−1) − minj nπt

l∆
2/2.

If Θ satisfies condition (2) for some component l,
L(Θ,Φt−1) can be maximized similarly. We have

L(Θ,Φ
t−1) − L(Θt

,Φ
t−1)

≤ nπ
t
l ln(1 + ∆) + n(1 − π

t
l ) ln

1 − (1 + ∆)πt
l

1 − πt
l

= nπ
t
l ln(1 + ∆) + n(1 − π

t
l ) ln

(

1 −
∆πt

l

1 − πt
l

)

≤ nπ
t
l

(

∆ −
∆2

2
+

∆3

3

)

+ n(1 − π
t
l )

∆πt
l

1 − πt
l

≤ −
nπt

l ∆
2

6

Again, the third inequality from the bottom is due to
Taylor expansion of ln(1 + ∆). The last inequality is
because ∆3 ≤ ∆2 for any 0 ≤ ∆ ≤ 1.

If Θ satisfies condition (3) for some component l, L
is maximized if all other parameters remain the same.
Thus,

L(Θ,Φ
t−1) − L(Θt

,Φ
t−1)

≤
nπt

l

2

(

ln |Σ−1

l Σ
t
l | − tr

((

Σ
−1

l − (Σt
l)

−1
)

Σ
t
l

))

=
nπt

l

2

(

tr
(

log
(

Σ
−1

l Σ
t
l

))

− tr
(

Σ
−1

l Σ
t
l − I

))

≤
nπt

l

2

(

−
tr(Σ−1

l Σt
l − I)2

2

)

= −
nπt

l ∆
2

4

The fourth equality is derived by the definitions of Σt
l

and πt
l . And the second inequality from bottom is due

to the taylor expansion on the logarithm matrix.

Finally, if Θ satisfies condition (4) for some component

l, L is maximized if Σl =
∑

τil(xi−µl)(xi−µl)
T

∑

τil
. In this

case,
∑

i τ t−1
l (xi −µj)

T Σ−1
j (xi −µj) =

∑

i τ t−1
l (xi −

µ
t
j)

T (Σt
j)

−1(xi − µ
t
j) = nπjd. Thus, the only differ-

ence on the log likelihood function L stems from the
change on the determinant of the covariance matrix.

L(Θ,Φ
t−1) − L(Θt

,Φ
t−1)

≤
n

∑

i=1

τil

2

(

− ln |Σl| + ln |Σt
l |
)

=

n
∑

i=1

τil

2

(

− ln |Σt
l + (µl − µ

t
l)(µl − µ

t
l)

T )| + ln |Σt
l |
)

≤
n

∑

i=1

τil

2

(

− ln
(

|Σt
l | + |(µl − µ

t
l)(µl − µ

t
l)

T |
)

+ ln |Σt
l |
)

≤
n

∑

i=1

τil

2

(

− ln
(

|Σt
l | + ∆2|Σt

l |
)

+ ln |Σt
l |
)

= −
n

∑

i=1

τil ln(1 + ∆2)

2

≤ −
nπt

l ∆
2

2

The fourth inequality applies the property of positive
definite matrices that |A + B| > |A|+ |B| (Lutkepohl,
1996) .

In all of the four cases, the reduction on the likelihood

function L is at least −
n minj πt

j∆
2

6 . This completes the
proof of the theorem. 2

Last theorem implies that Θ will reduce the log likeli-
hood function by at least nmint

j πj∆
2/6 if Φ remains

Φt−1. The following question is how much we can
increase the likelihood if we use the optimal Ψ(Θ) in-
stead of Φt−1.
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Lemma 3 Given Θ ∈ R(Θt,∆), Pr(xi|θj)πj

is no larger than (1 + ∆)1.5 |(Σt

j)
−1|1/2

(2π)d/2 exp{−(1 −

∆)M(x,Θj)
2/2}πt

j, where M(x,Θj) is

max
{

√

((x − µ
t
j)

T (Σt
j)

−1(x − µ
t
j)) − ∆, 0

}

Lemma 4 Given Θ ∈ R(Θt,∆), Pr(xi|θj)πj is

no smaller than (1 − ∆)1.5 |(Σt

j)
−1|1/2

(2π)d/2 exp{−(1 +

∆)N(x,Θj)
2/2}πt

j, where N(x,Θj) is

√

((x − µ
t
j)

T (Σt
j)

−1(x − µ
t
j)) + ∆

.

The proofs of Lemma 3 and Lemma 4 are available in
(Zhang et al., 2008).

Lemma 5 Given a region R(Θt,∆) as defined above,

an upper bound, Uij, on τij ∈ Ψ(Θ) for any Θ ∈
R(Θt,∆) can be calculated in constant time.

Proof: For any configuration Θ on the boundary of
R(Θt,∆), the optimal value of τij can be calculated
by equation (2). By Lemma 3 and Lemma 4, we can
compute maxΘ Pr(xi|ωj)πj and minΘ Pr(xi|ωj)πj .
Therefore,

τij ≤ Uij =
maxΘ Pr(xi|ωj)πj

∑

l minΘ Pr(xi|ωl)πj

τij ≥ Lij =
minΘ Pr(xi|ωj)πj

∑

l maxΘ Pr(xi|ωl)πj

The calculations can be finished in constant time with
the two sums pre-computed. 2

By Lemma 5, the increase upper bound from
L(Θ,Φt−1) to L(Θ,Ψ(Θ)) can be calculated by the
following equation.

L(Θ, Ψ(Θ)) − L(Θ,Φ
t−1)

≤ ln
∑ ∑

Uij max
Θ

Pr(xi|ωj)πj −

ln
∑ ∑

τij max
Θ

Pr(xi|ωj)πj (8)

The following theorem gives a sufficient condition on
a maximal region R(Θt,∆) for some positive value ∆.

Theorem 3 R(Θt,∆) is a maximal region for Θt

if ln

∑

i

∑

j Uij maxΘ Pr(xi|ωj)πj
∑

i

∑

j τij maxΘ Pr(xi|ωj)πj
− nmin πt

j∆
2/6 <

L(Θt,Φt) − L(Θt,Φt−1)

Proof: By the definition of L, we have

L(Θ, Ψ(Θ)) − L(Θt
,Φ

t−1) ≤ ln

∑

i

∑

j Uij Pr(xi|ωj)πj
∑

i

∑

j τij Pr(xi|ωj)πj

It is not hard to verify that the derivative of
L(Θ,Ψ(Θ)) − L(Θt,Φt−1) to Pr(xi|ωj)πj is always
positive. Therefore, the equation above can be maxi-
mized if we employ the maximum value of Pr(xi|ωj)πj .
Based on the analysis above, we know that

L(Θ, Ψ(Θ)) − L(Θt
,Φ

t−1)

≤ ln

∑

i

∑

j Uij maxΘ Pr(xi|ωj)πj
∑

i

∑

j τij maxΘ Pr(xi|ωj)πj

By Theorem 2, L(Θ,Φt−1) − L(Θt,Φt−1) ≤
nminj πt

j∆
2/6. Therefore, by Theorem 1,

L(Θ,Ψ(Θ)) < L(Θt,Φt) if the condition of the
theorem is satisfied. 2

For any local optimum Θ∗ in the maximal region
R(Θt,∆), the following theorem upper bound the like-
lihood function L(Θ∗,Ψ(Θ∗)).

Theorem 4 Given a valid maximal region R(Θt,∆),
if EM algorithm converges to local optimum Θ∗,

L(Θ∗,Ψ(Θ∗)) ≤ L(Θt,Φt) + nmin πt
j∆

2/6.

Proof: Since
∑

i

∑

j(Uij − τ t
ij)maxΘ Pr(ωj |xi) <

nmin πt
j∆

2/6 by Theorem 3 and L(Θ,Ψ(Θ)) −

L(Θ,Φt) ≤
∑

i

∑

j(Uij − τ t
ij)maxΘ Pr(ωj |xi), we

have L(Θ,Ψ(Θ)) − L(Θt,Φt) ≤ L(Θ,Ψ(Θ)) −
L(Θ,Φt) ≤ nmin πt

j∆
2/6. 2

5. Algorithm

Theorem 3 provides an easy way to verify whether
R(Θt,∆) is a valid maximal region. On the other
hand, Theorem 4 implies that a smaller ∆ can lead
to tighter bound on the likelihood function L. How-
ever, it is not necessary to get the tightest bound on
local optimum in our algorithm, since the goal of our
algorithm is estimating whether the current configura-
tion can lead to better solution. Instead, we set ∆ as

min

{

1,

√

6(L∗−L(Θt
,Φt

))
n min πt

j

}

, where L∗ is the best re-

sult we have seen so far. This ∆ is the maximal one of
all ∆ values, which are able to prune the current EM
procedure by Theorem 4

The details of the algorithm are summarized in Algo
1. In this algorithm, conventional M-step and E-step
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Algorithm 1 New Iteration(Data Set D, Cur-
rent Θt−1, current Φt−1, component number k,
sample number m, current best result L∗)

1: Compute new Θt by M-Step.
2: Compute new Φt by E-Step.
3: if L(Θt,Φt) < L∗ then

4: Let ∆ = min

{

1,

√

6(L∗−L(Θt
,Φt

))
n min πt

j

}

5: S = X = 0
6: for each xi do
7: for each dimension j do
8: Get lij = maxΘ Pr(xi|θj)πj by Lemma 3.
9: Get sij = minΘ Pr(xi|θj)πj by Lemma 4.

10: Get Uij by Lemma 5.
11: S+ = Uij ∗ lij
12: X+ = τ t−1

ij ∗ lij
13: end for
14: end for
15: if lnS − lnX − nmin πj∆

2/6 < L(Θt,Φt) −
L(Θt,Φt−1) then

16: Stop the current procedure of EM algorithm.
17: end if
18: else
19: Return (Θt,Φt)
20: end if

are invoked first. If the current configuration is better
than the best solution we have seen before, there is no
need to test the upper bound of the local optimum.
Otherwise, the value of ∆ is set according to min πt

j ,

L∗ and L(ΘT ,Φt). For each point and each compo-
nent, lij , sij and Uij are collected according to Lemma
3, Lemma 4 and Lemma 5 respectively. With the in-
formation collected from each point, the condition of
Theorem 1 can be tested. If this condition is satisfied,
we can assert that current local optimum can never
be better than L∗, leading to the termination of the
current procedure.

6. Experiments

In this section, we report the experimental results
on the comparison of our accelerated EM algorithm
(AEM) and the conventional EM algorithm (OEM).
We note that in our implementation, either AEM or
OEM will be stopped if it does not converge after 100
iterations.

We employ both synthetic and real data sets in our em-
pirical studies. The synthetic data sets are generated
in a d-dimensional unit cube. There are k components
in the space. Each component follows some Gaussian
distribution. The center, size and covariance matrix
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Figure 1: Performance vs. varying dimensionality
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Figure 2: Performance vs. varying component number

of each component are randomly generated indepen-
dently. Two real data sets are also tested, including
Cloud and Spam, both of which are available on UCI
Machine Learning Repository. The Cloud data set
consists of 1024 points in 10-dimensional space, while
Spam data set has 4601 points in 58 dimensions. Both
of the real data set are normalized before being used
in our experiments.

Two performance measurements are recorded in our
experiments, including CPU time and number of it-
erations. An algorithm is supposed to be better if it
spends less CPU time and invokes less time of itera-
tions. All of the experiments are compiled and run on
a Fedora Core 6 linux machine with 3.0 GHz Proces-
sor, 1GB of memory and GCC 4.1.2.

In the experiments on the data sets, we test the perfor-
mances of the algorithms with varying dimensionality
D, number of components k, and the number of points
in the data S. The default setting of our experiments
is D = 20, k = 20, and S = 100K. The time of EM
restart is fixed at 100 in all tests. More experimen-
tal results are available in the technical report (Zhang
et al., 2008).

6.1. Results on Synthetic Data

In Figure 1(a) and Figure 1(b), we present the experi-
mental result by varying the dimensionality from 10 to
40. The results show that AEM is much more efficient
than OEM. On data set with low dimensionality, AEM
is almost two times faster than OEM, both on the CPU
time and the number of iterations. The advantage is
very obvious, even on high dimensional space.

The results of our experiments on varying component
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Figure 3: Performance vs. varying data size

 0

 10

 20

 30

 40

 50

 60

 1  10  100

A
ve

ra
ge

 T
im

e 
un

til
 C

on
ve

rg
en

ce

Number of Clusters

AEM
OEM

(a) CPU Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1  10  100

A
ve

ra
ge

 N
um

be
r 

of
 It

er
at

io
n

Number of Clusters

AEM
OEM

(b) Number of Iterations

Figure 4: Performance vs. varying component number
on Spam data

number are summarized in Figure 2(a) and Figure
2(b). From the figures, we can see the performance
advantage of AEM is stable, with the increase of com-
ponent number. The CPU time and number of itera-
tions on AEM is only about half of those of OEM.

As is shown in Figure 3(a), Figure 3(b) AEM has much
better performance than OEM when we increase the
data size from 50K to 200K. AEM can detect those
worse local optimums much earlier, if there are more
data available. The number of iterations invoked by
AEM is almost the same, even when the data has been
doubled. The ratio of CPU time is more stable when
the data size is larger.

6.2. Results on Real Data

On Spam data set, AEM also show great advantage
over OEM, on CPU time (Figure 4(a)) and on the
number of iterations (Figure 4(b)). AEM is more ef-
ficient than OEM by one magnitude, independent to
the number of components k.

However, the experiments on Cloud data set show
quite different results than the pervious results, where
AEM has very limited advantage. We believe the dif-
ference on the results stems from normalization prob-
lem.

7. Conclusion

In this paper, we propose a new acceleration method
for multiple restart EM algorithm over Gaussian Mix-
ture Model. We derive an upper bound on the lo-
cal optimum of the likelihood function in the solution
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Figure 5: Performance vs. varying component number
on Cloud data

space. This upper bound computation turns out to
be both efficient and effective in pruning un-promising
procedures of EM algorithm.
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