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Abstract

We consider the general problem of learn-
ing from both pairwise constraints and un-
labeled data. The pairwise constraints spec-
ify whether two objects belong to the same
class or not, known as the must-link con-
straints and the cannot-link constraints. We
propose to learn a mapping that is smooth
over the data graph and maps the data onto
a unit hypersphere, where two must-link ob-
jects are mapped to the same point while two
cannot-link objects are mapped to be orthog-
onal. We show that such a mapping can be
achieved by formulating a semidefinite pro-
gramming problem, which is convex and can
be solved globally. Our approach can effec-
tively propagate pairwise constraints to the
whole data set. It can be directly applied to
multi-class classification and can handle data
labels, pairwise constraints, or a mixture of
them in a unified framework. Promising ex-
perimental results are presented for classifica-
tion tasks on a variety of synthetic and real
data sets.

1. Introduction

Learning from both labeled and unlabeled data, known
as semi-supervised learning, has attracted considerable
interest in recent years (Chapelle et al., 2006), (Zhu,
2005). The key to the success of semi-supervised learn-
ing is the cluster assumption (Zhou et al., 2004), stat-
ing that nearby objects and objects on the same mani-
fold structure are likely to be in the same class. Differ-
ent algorithms actually implement the cluster assump-
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tion from different viewpoints (Zhu et al., ), (Zhou
et al., 2004), (Belkin et al., 2006), (Chapelle & Zien,
2005), (Zhang & Ando, 2006), (Szummer et al., 2002).
When the cluster assumption is appropriate, we can
properly classify the whole data set with only one la-
beled object for each class.

However, the distributions of real-world data are of-
ten more complex than expected, where there are cir-
cumstances that a class may consist of multiple sep-
arate groups or manifolds, and different classes may
be close to or even overlap with each other. For ex-
ample, a common experience is that face images of
the same person under different poses and illumina-
tions can be drastically different, while those with sim-
ilar appearances may originate from two different per-
sons. To handle the classification problems of such
practical data, additional assumptions should be made
and more supervisory information should be exploited
when available.

Class labels of data are the most widely used super-
visory information. In addition, pairwise constraints
are also often seen, which specify whether two objects
belong to the same class or not, known as the must-
link constraints and the cannot-link constraints. Such
pairwise constraints may arise from domain knowledge
automatically or with a little human effort (Wagstaff
& Cardie, 2000), (Klein et al., 2002), (Kulis et al.,
2005), (Chapelle et al., 2006). They can also be ob-
tained from data labels where objects with the same
label are must-link while objects with different labels
are cannot-link. Generally, we cannot infer data labels
from only pairwise constraints, especially for multi-
class data. In this sense, pairwise constraints are in-
herently weaker and thus more general than labels of
data. Pairwise constrains have been widely used in the
contexts of clustering with side information (Wagstaff
et al., 2001), (Klein et al., 2002), (Xing et al., 2003),
(Kulis et al., 2005), (Kamvar et al., 2003), (Glober-
son & Roweis, 2006), (Basu et al., 2004), (Bilenko
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et al., 2004), (Bar-Hillel et al., 2003), (Hoi et al., 2007),
where it has been shown that the presence of appro-
priate pairwise constraints can often improve the clus-
tering performance.

In this paper, we consider a more general problem
of semi-supervised classification from pairwise con-
straints and unlabeled data, which includes the tra-
ditional semi-supervised classification as a subprob-
lem that considers labeled and unlabeled data. Note
that the label propagation techniques, which are often
used in the traditional semi-supervised classification
(Zhou et al., 2004), (Zhu et al., ), (Belkin et al., 2006),
cannot be readily generalized to propagate pairwise
constraints. Recently, two methods (Goldberg et al.,
2007), (Tong & Jin, 2007) are proposed to incorporate
dissimilarity information in semi-supervised classifica-
tion, which is similar to the cannot-link constraints.
It is important to notice that the similarities between
objects are not identical to the must-link constraints
imposed on them. The former reflects their distances
in the input space while the latter is often obtained
using domain knowledge or specified by the user.

We propose an approach, called pairwise constraint

propagation (PCP), that can effectively propagate
pairwise constraints to the whole data set. PCP in-
tends to learn a mapping that is smooth over the data
graph and maps the data onto a unit hypersphere,
where two must-link objects are mapped to the same
point while two cannot-link objects are mapped to be
orthogonal. Such a mapping can be implicitly achieved
using the kernel trick via semidefinite programming,
which is convex and can be solved globally. Our ap-
proach can be directly applied to multi-class classifica-
tion and can handle data labels, pairwise constraints,
or a mixture of them in a unified framework.

2. Motivation

Given a data set of n objects X = {x1,x2, ...,xn}
and two sets of pairwise must-link and cannot-link
constraints, denoted respectively by M = {(xi,xj)}
where xi and xj should be in the same class and
C = {(xi,xj)} where xi and xj should be in differ-
ent classes, our goal is to classify X into k classes such
that not only the constraints are satisfied, but also
those unlabeled objects similar to two must-link ob-
jects respectively are classified into the same class and
those similar to two cannot-link objects respectively
are classified into different classes.

To better illustrate our purpose, let us consider the
classification task on a toy data set shown in Fig. 1(a).
Although this data set consists of three separate

Figure 1. Classification on Three-Circle. (a) A data set
with one must-link constraint and one cannot-link con-
straint, denoted by the solid and the dashed red lines, re-
spectively. (b) Ideal classification (two classes) we hope
to obtain where different classes are denoted by different
colors and symbols.

groups (denoted by different colors and symbols in
Fig. 1(a)), it has only two classes (Fig. 1(b)). We argue
that the must-link constraint asks merging the outer
circle and the inner circle into one class, instead of just
merging the two must-link objects; and the cannot-link
constraint asks for keeping the middle circle and the
outer circles into different classes, not just keeping the
two cannot-link objects into different classes. Con-
sequently, the desired classification result is the one
shown in Fig. 1(b). It is such a global implication that
we interpret the pairwise constraints.

From this simple example, we can see that the cluster
assumption is still valid, i.e., nearby objects tend to
be in the same class and objects on the same manifold
structure also tend to be in the same class. However,
this assumption does not concern those objects that
are not close to each other and do not share the same
manifold structure. We argue that the classification
for such objects should accord with the input pairwise
constraints. For example, any two objects on the outer
and inner circles in Fig. 1(a) should be in the same
class because they respectively share the same man-
ifold structures with the two must-link objects, and
any two objects on the outer and middle circles should
be in different classes because they respectively share
the same manifold structures with the two cannot-link
objects. We refer to this assumption as the pairwise

constraint assumption.

In this paper, we seek to implement both the cluster
assumption and the pairwise constraint assumption in
a unified framework. A dilemma is that one may spec-
ify nearby objects or objects sharing the same manifold
structure to be cannot-link. In this case, we choose to
respect the pairwise constraint assumption first and
then the cluster assumption, considering that the prior
pairwise constraints are from reliable knowledge. This
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is true in most practical applications.

3. Pairwise Constraint Propagation

3.1. A General Framework

As mentioned in the last section, our goal is to propa-
gate the given pairwise constraints to the whole data
set in a global implication for classification. Intu-
itively, it is hard to implement our idea in the in-
put space. Therefore, we seek a mapping (usually
non-linear) to map the objects to a new and possi-
bly higher-dimensional space such that the objects are
reshaped in this way: two must-link objects become
close while two cannot-link objects become far apart;
objects respectively similar to two must-link objects
also become close while objects respectively similar to
two cannot-link objects become far apart.

Let φ be a mapping from X to some space F ,

xi ∈ X 7→ φ(xi) ∈ F . (1)

The above analysis motivates us to consider the fol-
lowing optimization framework:

min
φ

: S(φ) (2)

s.t. : ‖φ(xi) − φ(xj)‖F < ε, ∀(xi,xj) ∈ M, (3)

‖φ(xi) − φ(xj)‖F > δ, ∀(xi,xj) ∈ C, (4)

where S(φ) is a smoothness measure for φ such that
the smaller is S(φ), the smoother is φ; ε is a small
positive number; δ is a large positive number; ‖ · ‖F
is a distance metric in F ; M is the set of the must-
link constraints; C is the set of cannot-link constraints.
The inequality constraints (3) and (4) require φ to map
two must-link objects to be close and two cannot-link
objects far apart. By enforcing the smoothness on φ

(minimizing the objective (2)), we actually require φ

to map any two objects respectively similar to two
must-link objects to be close and map any two ob-
jects respectively similar to two cannot-link objects
far apart. Hopefully, after the mapping, each class be-
comes relatively compact and different classes become
far apart. Once such a mapping is derived, the classi-
fication task can be done much easier.

This optimization framework is quite general and the
details have to be developed. We propose a unit hy-
persphere model to substantialize it in Section 3.2, and
then solve the resulting optimization problem in Sec-
tion 3.3.

3.2. The Unit Hypersphere Model

Recall that our goal is to find a smooth mapping that
maps two must-link objects close and two cannot-link

objects far apart. To this end, we consider it better
to put the images of all the objects under a uniform
scale. The unit hypersphere in F is a good choice be-
cause there is a natural way to impose the pairwise
constraints on it. Our key idea is to map all the ob-
jects onto the unit hypersphere in F , where two must-
link objects are mapped to the same point and two
cannot-link objects to be orthogonal. Mathematically,
we require φ to satisfy

< φ(xi),φ(xi) >F= 1, i = 1, 2, ..., n, (5)

< φ(xi),φ(xj) >F= 1, ∀(xi,xj) ∈ M, (6)

< φ(xi),φ(xj) >F= 0, ∀(xi,xj) ∈ C, (7)

where < ·, · >F denotes the dot product in F .

Next we impose smoothness on φ using the spectral
graph theory where the graph Laplacian plays an es-
sential role (Chung, 1997). Let G = (V,W ) be an
undirected, weighted graph with the node set V = X
and the weight matrix W = [wij ]n×n, where wij is the
weight on the edge connecting nodes xi and xj , denot-
ing how similar they are. W is commonly assumed to
be symmetric and non-negative. The graph Laplacian
L of G is defined as L = D−W , where D = [dij ]n×n is
a diagonal matrix with dii =

∑

j wij . The normalized

graph Laplacian L̄ of G is defined as

L̄ = D−1/2LD−1/2 = I − D−1/2WD−1/2, (8)

where I is the identity matrix. W is also called the
affinity matrix, and W̄ = D−1/2WD−1/2 the nor-
malized affinity matrix. L̄ is symmetric and posi-
tive semidefinite, with eigenvalues in the interval [0, 2]
(Chung, 1997).

Following the idea of regularization in spectral graph
theory (e.g., see (Zhou et al., 2004)), we define the
smoothness measure S(·) by

S(φ) =
1

2

n
∑

i,j=1

wij‖
φ(xi)√

dii

− φ(xj)
√

djj

‖2

F , (9)

where φ(xi) ∈ F , and ‖ · ‖F is a distance metric in F .
Note that F is possibly an infinite-dimensional space.
By this definition, we can see that S(φ) ≥ 0 since W is
non-negative, and the value S(φ) penalizes the large
change of the mapping φ between two nodes linked
with a large weight. In other words, minimizing S(·)
encourages the smoothness of a mapping over the data
graph. Next we rewrite S(φ) in matrix form.

Let kij =< φ(xi),φ(xj) >F . Then the matrix K =
[kij ]n×n is symmetric and positive semidefinite, de-
noted by K � 0, and thus can be thought as a kernel
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over X (Smola & Kondor, 2003). From (9), we have

S(φ) =
1

2

n
∑

i,j=1

wij(
1

dii
kii +

1

djj
kjj − 2

1
√

diidjj

kij)

=

n
∑

i=1

kii −
n

∑

i,j=1

wij
√

diidjj

kij (10)

= I • K − (D−1/2WD−1/2) • K (11)

= (I − D−1/2WD−1/2) • K = L̄ • K, (12)

where • denotes the dot product between two matrices,
defined as A•B =

∑n
i=1

∑m
j=1

aijbij , for A = [aij ]n×m

and B = [bij ]n×m.

3.3. Learning a Kernel Matrix

With the above analysis (5)–(7), and (12), we have
arrived at the following optimization problem:

min
K

: L̄ • K (13)

s.t. : kii = 1, i = 1, 2, ..., n, (14)

kij = 1, ∀(xi,xj) ∈ M, (15)

kij = 0, ∀(xi,xj) ∈ C, (16)

K � 0, (17)

which can be recognized as a semidefinite program-
ming (SDP) problem (Boyd & Vandenberghe, 2004).
This problem is convex and thus the global optimal
solution is guaranteed. To solve this problem, we can
use the highly optimized software packages, such as
SeDuMi (Sturm, 1999) and CSDP (Borchers, 1999).

We can also express the above SDP problem in a more
familiar matrix form. Let Eij be a n × n matrix con-
sisting of all 0’s except the (i, j)th entry being 1. Then
the above SDP problem becomes

min
K

: L̄ • K (18)

s.t. : Eii • K = 1, i = 1, 2, ..., n, (19)

Eij • K = 1, ∀(xi,xj) ∈ M, (20)

Eij • K = 0, ∀(xi,xj) ∈ C, (21)

K � 0. (22)

It should be noted that we have transformed the prob-
lem of learning a mapping φ stated in (2)–(4) into
the problem of learning a kernel matrix K such that
φ is the feature mapping induced by K. The kernel
trick (Schölkopf & Smola, 2002) indicates that we can
implicitly derive φ by explicitly pursuing K. Note
that the kernel matrix K captures the distribution of
the point set {φ(xi)}n

i=1
in the feature space. The

equality constraints (14) constrain φ(xi)’s to be on

the unit hypersphere, the inequality constraints (15)
and (16) force φ(xi) = φ(xj) if xi and xj are must-
link and φ(xi) and φ(xj) to be orthogonal if xi and xj

are cannot-link. By minimizing the objective function
(13), which is equivalent to enforcing smoothness on
φ, φ(xi) and φ(xj) will move close to each other if xi

and xj are similar (lie on the same group or manifold).
This process will continue until a global stable state is
achieved (the objective function is minimized and the
constraints are satisfied). We call this process the pair-

wise constraint propagation. It is expected that after
the propagation, each class becomes compact and dif-
ferent classes become far apart (being nearly orthog-
onal on the unit hypersphere). This phenomenon is
also observed by our experiments (see Section 5.2).
The idea of reshaping the data in a high-dimensional
space by propagating the spatial information among
objects is previously appeared in our recent work (Li
et al., 2007) where the problem of clustering highly
noisy data is addressed.

3.4. Classification

Let K∗ be the kernel matrix obtained by solving the
SDP problem stated in (18)–(22). The final step of our
approach is to obtain k classes from K∗. We apply the
kernel K-means algorithm (Shawe-Taylor & Cristian-
ini, 2004) to K∗ to form k classes.

4. The Algorithm

Based on the previous analysis, we develop a semi-
supervised classification algorithm listed in Algorithm
1, which we called the Pairwise Constraint Propaga-

tion (PCP). The scale factor σ in Step 1 needs to be
tuned, which is discussed in Section 5.1.

Algorithm 1 Pairwise Constraint Propagation

Input: A data set of n objects X = {x1,x2, ...,xn},
the set of must-link constraints M = {(xi,xj)}, the
set of cannot-link constraints C = {(xi,xj)}, and the
number of classes k.
Output: The class labels of the objects in X .

1. Form the affinity matrix W = [wij ]n×n with wij =
exp(−d2(xi,xj)/2σ2) if i 6= j and wii = 0.

2. Form the normalized graph Laplacian L̄ = I −
D−1/2WD−1/2, where D = diag(dii) is the diag-
onal matrix with dii =

∑n
j=1

wij .

3. Obtain the kernel matrix K∗ by solving the SDP
problem stated in (18)–(22).

4. Form k classes by applying the kernel K-means to
K∗.
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Figure 2. (a) Three-Circle with classes denoted by different colors and symbols. The solid red line denotes a must-link
constraint and the dashed red line denotes a cannot-link constraint. (b) & (c) Distance matrices for Three-Circle in the
input space and in the feature space, respectively, where, for illustration purpose, the data are arranged such that points
within a class appear consecutively. The darker is a pixel, the smaller is the distance the pixel represents.

5. Experimental Results

In this section, we evaluate the proposed algorithm
PCP on a number of synthetic and real data sets. By
comparison, the results of two notable and most re-
lated algorithms, Kamvar et al.’s spectral learning al-
gorithm (SL) (Kamvar et al., 2003) and Kulis et al’s
semi-supervised kernel K-means algorithm (SSKK)
(Kulis et al., 2005), are also presented. Note that
most semi-supervised classification algorithms cannot
be directly applied to the tasks of classification from
pairwise constraints we consider here, because they
perform classification from labeled and unlabeled data
and cannot be readily generalized to address classifi-
cation from pairwise constraints and unlabeled data.

In order to evaluate these algorithms, we compare the
results with available ground-truth data labels, and
employ the Normalized Mutual Information (NMI) as
the performance measure (Strehl & Ghosh, 2003). For
two random variables X and Y, the NMI is defined as:

NMI(X,Y) =
I(X,Y)

√

H(X)H(Y)
, (23)

where I(X,Y) is the mutual information between X

and Y, and H(X) and H(Y) are the entropies of X

and Y, respectively. Note that 0 ≤ NMI ≤ 1, and
NMI = 1 when a result is the same as the ground-
truth. The larger is the NMI, the better is a result.

To evaluate the algorithms under different settings
of pairwise constraints, we generate a varying num-
ber of pairwise constraints randomly for each data
set. For a data set of k classes, we randomly gen-
erate j must-link constraints for each class, and j
cannot-link constraints for every two classes, giving to-
tal j × (k + k(k− 1)/2) constraints for each j, where j
ranges from 1 to 10. The averaged NMI is reported for
each number of pairwise constraints over 20 different

realizations. Since all the three algorithms employ the
K-means or kernel K-means in the final step, for each
experiment we run the K-means or kernel K-means 20
times with random initializations, and report the av-
eraged result.

5.1. Parameter Selection

The three algorithms are all graph-based and thus the
inputs are assumed to be graphs. We use the weighted
graphs for all the algorithms, where the similarity ma-
trix W = [wij ] is given by

wij =

{

e−‖xi−xj‖
2/2σ2

i 6= j
0 i = j

. (24)

The most suitable scale factor σ is found over the set
S(0.1r, r, 5)

⋃

S(r, 10r, 5), where S(r1, r2,m) denotes
the set of m linearly equally spaced numbers between
r1 and r1, and r denotes the averaged distance from
each node to its 10-th nearest neighbor.

We use the SDP solver CSDP 6.0.11 (Borchers, 1999)
to solve the SDP problem in the proposed PCP. For
SSKK, we use its normalized cut version since it per-
forms best in the experiments given in (Kulis et al.,
2005). The constraint penalty in SSKK is set to
n/(kc), as suggested in (Kulis et al., 2005), where n is
the number of objects, k is the number of classes, and
c is the total number of pairwise constraints. All the
algorithms are implemented in MATLAB 7.6, running
on a 3.4 GHz, 2GB RAM Pentium IV PC.

5.2. A Toy Example

In this subsection, we illustrate the proposed PCP us-
ing a toy example. We mainly study its capability
of propagating pairwise constraints to the whole data

1https://projects.coin-or.org/Csdp/.
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Table 1. Description of the four sensory data sets from UCI.

Data Iris Wine Ionosphere Soybean
Number of objects 150 178 351 47

Dimension 4 13 34 35
Number of classes 3 3 2 4
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Figure 3. Classification results on the four sensory data sets: NMI vs. Number of constraints. (a) Results on Iris. (b)
Results on Wine. (c) Results on Ionosphere. (d) Results on Soybean.

set. Specifically, we want to see how PCP reshapes
the data in the feature space according to the original
data structure and the given pairwise constraints. The
classification task on the Three-Circle data is shown
in Fig. 2(a), where the ground-truth classes are de-
noted by different colors and symbols, and one must-
link (solid red line) and one cannot-link (dashed red
line) constraints are also provided. At first glance,
Three-Circle is composed of a mixture of curve-like
and Gaussian-like groups. A more detailed observa-
tion is that there is one class composed of separate
groups.

The distance matrices for Three-Circle in the input
space and in the feature space are shown in Figs. 2(b)
and (c), where the data are ordered such that all the
objects in the outer circle appear first, all the objects
in the inner circle appear second, and all the objects
in the middle circle appear finally. Note that this ar-
rangement does not affect the classification results but
only for better illustration of the distance matrices.
We can see that the distance matrix in the feature
space, compared to the one in the input space, ex-
hibits a clear block structure, meaning that each class
becomes highly compact (although in the input space
one of the two classes consists of two well-separated
groups) and the two classes become far apart. Our
computations show that the distance between any two
points in the feature space in different classes falls in
[
√

2 − 1.9262 × 10−5,
√

2 + 1.3214 × 10−6], implying
that the two classes are nearly

√
2 from each other,

which comes from the requirement that two cannot-
link objects are mapped to be orthogonal on the unit
hypersphere.

5.3. On Sensory Data

Four sensory data sets from the UCI Machine Learn-
ing Repository2 are used for testing in this experiment.
The data sets are described in Table 1. These four
data sets are widely used for evaluation of the classifi-
cation and clustering methods in the machine learning
community.

The results are shown in Fig. 3, from which two ob-
servations can be drawn. First, PCP performs better
than SSKK and SL on all the four data sets under dif-
ferent settings of pairwise constraints, especially on the
Ionosphere data. Second, as the number of constraints
grows, the performances of all the algorithms increase
accordingly on Soybean, but vary little on Wine and
Ionosphere. On Iris, as the number of constraints
grows the performance of PCP improves accordingly
but those of SSKK and SL are almost unchanged.

5.4. On Imagery Data

In this subsection, we test the algorithms on three im-
age databases USPS, MNIST, and CMU PIE (Pose, Il-
lumination, and Expression). Both USPS and MNIST
consist of images of handwritten digits with signifi-
cantly different fashion and of sizes 16×16 and 28×28.
The CMU PIE contains 41,368 images of 68 people,
each person with 13 different poses, 43 different illu-
mination conditions, and 4 different expressions. From
these databases, we draw four data sets, which are de-
scribed in Table 2. The USPS0123 and MNIST0123
are drawn respectively from USPS and MNIST, and
PIE-10-20 and PIE-22-23 are drawn from CMU PIE.

2http://archive.ics.uci.edu/ml.
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Table 2. Description of the four imagery data sets.

Data USPS0123 MNIST0123 PIE-10-20 PIE-22-23
Number of objects 400 400 340 340

Dimension 256 784 1024 1024
Number of classes 4 4 2 2
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Figure 4. Classification results on the four imagery data sets: NMI vs. Number of constraints. (a) Results on USPS0123.
(b) Results on MNIST0123. (c) Results on PIE-10-20. (d) Results on PIE-22-23.

USPS0123 (MNIST0123) consists of digits 0 to 3, with
first 100 instances from each class. PIE-10-20 (PIE-22-
23) contains five near frontal poses (C05, C07, C09,
C27, C29) of two individuals indexed as 10 and 20
(22 and 23) under different illuminations and expres-
sions. Original images in PIE-10-20 and PIE-22-23 are
manually aligned (two eyes are aligned at the fixed po-
sitions), cropped, and then down-sampled to 32 × 32.
Each image is represented by a vector of size equal to
the product of its width and height.

The results are shown in Fig. 4, from which we can see
that the proposed PCP consistently and significantly
outperforms SSKK and SL on all the four data sets
under different settings of pairwise constraints. As the
number of constraints grows, the performance of PCP
improves more significantly than those of SSKK and
SL.

We also look at the computational costs of different
algorithms. For example, for each run on USPS0123
(of size 400) with 100 pairwise constraints, PCP takes
about 17 seconds while both SSKK and SL take less
than 0.5 second. PCP does take more execution time
than SSKK and SL since it involves solving for a kernel
matrix with SDP, while either SSKK or SL uses pre-
defined kernel matrix. The main computational cost
in PCP is in solving the SDP problem.

6. Conclusions

A semi-supervised classification approach, Pairwise

Constraint Propagation (PCP), for learning from pair-
wise constraints and unlabeled data is proposed. PCP
seeks a smooth mapping to map the data onto a

unit hypersphere, where any two must-link objects are
mapped to the same point and any two cannot-link
objects are mapped to be orthogonal. Consequently,
PCP simultaneously implements the cluster assump-
tion and the pairwise constraint assumption stated in
Section 2. PCP implicitly derives such a mapping by
explicitly finding a kernel matrix via semidefinite pro-
gramming. In contrast to label propagation in tra-
ditional semi-supervised learning, PCP can effectively
propagate pairwise constraints to the whole data set.
Experimental results on a variety of synthetic and real
data sets have demonstrated the superiority of PCP.

Note that PCP falls into semi-supervised learning since
it performs learning from both constrained and uncon-
strained data. Most previous metric learning methods,
however, belong to supervised learning. PCP always
keeps every two must-link objects close and every two
cannot-link objects far apart. Therefore it essentially
addresses hard constrained classification.

Although extensive experiments have confirmed the ef-
fectiveness of the PCP algorithm, there are several is-
sues worthy to be further investigated in future work.
One issue is to accelerate PCP where solving the asso-
ciated SDP problem is the bottleneck. Another issue
is to handle noisy constraints effectively.
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