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Abstract

Residual gradient (RG) was proposed as an
alternative to TD(0) for policy evaluation
when function approximation is used, but
there exists little formal analysis comparing
them except in very limited cases. This pa-
per employs techniques from online learning
of linear functions and provides a worst-case
(non-probabilistic) analysis to compare these
two types of algorithms when linear func-
tion approximation is used. No statistical
assumptions are made on the sequence of
observations, so the analysis applies to non-
Markovian and even adversarial domains as
well. In particular, our results suggest that
RG may result in smaller temporal differ-
ences, while TD(0) is more likely to yield
smaller prediction errors. These phenomena
can be observed even in two simple Markov
chain examples that are non-adversarial.

1. Introduction

Reinforcement learning (RL) is a learning paradigm
for optimal sequential decision making (Bertsekas &
Tsitsiklis, 1996; Sutton & Barto, 1998) and has been
successfully applied to a number of challenging prob-
lems. In the RL framework, the agent interacts with
the environment in discrete timesteps by repeatedly
observing its current state, taking an action, receiving
a real-valued reward, and transitioning to a next state.
A policy is a function that maps states to actions; se-
mantically, it specifies what action to take given the
current state. The goal of an agent is to optimize its
policy in order to maximize the expected long-term re-
turn, namely, the discounted sum of rewards it receives
by following the policy.
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An important step in this optimization process is pol-
icy evaluation—the problem of evaluating expected
returns of a fixed policy. This problem is often the
most challenging step in approximate policy-iteration
algorithms (Bertsekas & Tsitsiklis, 1996; Lagoudakis
& Parr, 2003). Temporal difference (TD) is a fam-
ily of algorithms for policy evaluation (Sutton, 1988)
and has received a lot of attention from the commu-
nity. Unfortunately, it is observed (e.g., Baird (1995))
that TD methods may diverge when they are combined
with function approximation. An alternative algo-
rithm known as residual gradient (RG) was proposed
by Baird (1995) and enjoys guaranteed convergence to
a local optimum. Since RG is similar to TD(0), a par-
ticular instance of the TD family, we will focus on RG,
TD(0), and a variant of TD(0) in this paper.

Despite convergence issues, little is known that com-
pares RG and TD(0). Building on previous work
on online learning of linear functions (Cesa-Bianchi
et al., 1996) and a similar analysis by Schapire
and Warmuth (1996), we provide a worst-case (non-
probabilistic) analysis of these algorithms and focus
on two evaluation metrics: (i) total squared prediction
error, and (ii) total squared temporal difference. The
former measures accuracy of the predictions, while the
latter measures consistency and is closely related to
the Bellman error (Sutton & Barto, 1998).

Either metric may be preferred over the other in
different situations. For instance, Lagoudakis and
Parr (2003) argue that TD solutions tend to preserve
the shape of the value function and is more suitable for
approximate policy iteration, while there is evidence
that minimizing squared Bellman errors is more robust
in general (Munos, 2003). Our analysis suggests that
TD can make more accurate predictions, while RG can
result in smaller temporal differences. All terms will be
made precise in the next section. Although our theory
focuses on worst-case upper bounds, we also provide
numerical evidence and expect the resulting insights
to give useful guidance to RL practitioners in deciding
which algorithm best suits their purposes.



A Worst-Case Comparison between TD and RG with Linear Function Approximation

2. Preliminaries

Fully observable environments in RL are often mod-
elled as Markov decision processes (Puterman, 1994),
which are equivalent to induced Markov chains when
controlled by a fixed policy. Here, however, we con-
sider a different model that is suitable for worst-case
analysis, as introduced in the next subsection. This
model makes no statistical assumption about the ob-
servations, and thus our results apply to much more
general situations including partially observable or ad-
versarial environments that subsume Markov chains.

Some notation is in order. We use bold-face, lower-case
letters to denote real-valued column vectors such as v.
Their components are denoted by the corresponding
letter with subscripts such as vt. We use ‖·‖ to denote
the Euclidean, or �2-norm: ‖v‖ =

√
v�v where v� is

the transpose of v. For a square matrix M , the set
of eigenvalues of M , known as the spectrum of M , is
denoted σ(M). If M is symmetric, its eigenvalues must
be real, and its largest eigenvalue is denoted ρ(M).

2.1. The Sequential Online Learning Model

Our learning model is adopted from Schapire and War-
muth (1996) and is an extension of the online-learning
model to sequential prediction problems. Let k be the
dimension of input vectors. The agent maintains a
weight vector of the same dimension and uses it to
make predictions. In RL, input vectors are often fea-
ture vectors of states or state–action pairs, and are
used to approximate value functions (Sutton & Barto,
1998). Learning proceeds in discrete timesteps and
terminates after T steps. The agent starts with an ini-
tial input vector x1 ∈ R

k and an initial weight vector
w1 ∈ R

k. At timestep t ∈ {1, 2, 3, · · · , T}:
• The agent makes a prediction ŷt = w�

t xt ∈ R,
where wt is the weight vector at time t. Through-
out the paper, assume ‖xt‖ ≤ X for some known
constant X > 0.

• The agent then observes an immediate reward
rt ∈ R and the next input vector xt+1. Based
on this information, it updates its weight vector
whose new value is denoted wt+1. The change in
weight is ∆wt = wt+1 − wt.

By convention, rt = 0 and xt = 0 for t > T . Define
the return at time t by yt =

∑∞
τ=t γτ−trτ , where γ ∈

[0, 1) is the discount factor. Since γ < 1, it effectively
diminishes future rewards exponentially fast. A quick
observation is that yt = rt +γyt+1, which is analogous
to the Bellman equation for Markov chains (Sutton &
Barto, 1998). The agent attempts to mimic yt by its

prediction ŷt, and the prediction error is et = yt −
ŷt. Our first evaluation metric is the total squared
prediction error : �P =

∑T
t=1 e2

t = ‖e‖2.

Another useful metric in RL is the temporal differences
(also known as TD errors), which measures how con-
sistent the predictions are. In particular, the temporal
difference at time t is dt = rt + γw�

t xt+1 − w�
t xt,

and the total squared temporal difference is �T D =∑T
t=1 d2

t = ‖d‖2.

2.2. Previous Work

Previous convergence results of TD and RG often rely
heavily on certain stochastic assumptions of the en-
vironment such as the assumption that the sequence
of observations, [(xt, rt)]t∈N

, are generated by an ir-
reducible and aperiodic Markov chain. Tsitsiklis and
Van Roy (1997) first proved convergence of TD with
linear function approximation, while they also pointed
out the potential divergence risk when nonlinear ap-
proximation is used.

To resolve the instability issue of TD(0), Baird (1995)
proposed the RG algorithm, but also noted that
RG may converge more slowly than TD(0) in some
problems. Such an observation was later proved
by Schoknecht and Merke (2003), who used spectral
analysis to compare the asymptotic convergence rates
of the two algorithms. Although their results are in-
teresting, they only apply to quite limited cases where,
for example, a certain matrix associated with TD up-
dates has real eigenvalues only (which does not hold
in general). More importantly, they study synchronous
updates while TD and RG are often applied asynchro-
nously in practice. Furthermore, their results assume
that the value function is represented by a lookup ta-
ble, but the initial motivation of studying RG was to
develop a provably convergent algorithm when func-
tion approximation is used.

Schapire and Warmuth (1996) were also concerned
with similar worst-case behavior of TD-like algorithms
within the model described in Subsection 2.1. They
defined a new class of algorithms called TD∗(λ),
which is very similar to the TD(λ) algorithms of Sut-
ton (1988). They developed worst-case bounds for the
total squared prediction error of TD∗(λ), but not the
total squared temporal difference.

2.3. Algorithms

The algorithms we consider all update the weight vec-
tor incrementally and differ only in the update rules.
TD(0) uses the following rule:

∆wt = ηdtxt, (1)
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where η ∈ (0, 1) is the step-size parameter control-
ling aggressiveness of the update. Although TD(0) is
widely used in practice, analysis turns out to be easier
with a close relative of it, TD∗(0). This algorithm dif-
fers from TD(0) in that it adapts the step-size based
on the input vectors (Schapire and Warmuth (1996)
defined TD∗(0) in a different, but equivalent, form):

∆wt =
ηdtxt

1 − γηx�
t xt+1

. (2)

Due to space limitation, we only provide results for
TD∗(0), but similar results hold for TD(0). It is ex-
pected, and also supported by the numerical evidence
in Section 4, that TD(0) and TD∗(0) have similar be-
havior and performance in practice. For this reason,
we refer to both algorithms as TD in the rest of the
paper if there is no risk of confusion. In contrast, RG
uses the following update rule:

∆wt = ηdt (xt − γxt+1) . (3)

3. Main Results

This section contains the main theoretical results. We
will first describe how to evaluate an algorithm in the
worst-case scenario. For completeness, we also sum-
marize the squared prediction error bounds for TD∗(0)
due to Schapire and Warmuth (1996). Then, we ana-
lyze total squared temporal difference bounds and RG.

Our analysis makes a few uses of matrix theory (see,
e.g., Horn and Johnson (1986)), and several tech-
nical lemmas are found in the appendix. Two ba-
sic facts about ρ(M) will be used repeatedly: (i) if
M is negative-definite, then ρ(M) < 0; and (ii) the
Rayleigh-Ritz theorem (Horn & Johnson, 1986, Theo-
rem 4.2.2) states that ρ(M) = maxv �=0

v�Mv
v�v

.

3.1. Evaluation Criterion

Analogous to other online-learning analysis, we treat
�P and �T D as total losses, and compare the total loss
of an algorithm to that of an arbitrary weight vector,
u. We wish to prove that this difference is small for
all u, including the optimal (in any well-defined sense)
but unknown vector u∗.

The prediction using vector u at time t is yu
t =

u�xt. Accordingly, the prediction error and tem-
poral difference at time t are eu

t = yt − yu
t and

du
t = rt + γu�xt+1 − u�xt, respectively. The total

squared prediction error and total squared temporal
difference of u are �uP = ‖eu‖2 =

∑T
t=1

(
yt − u�xt

)2

and �uT D = ‖du‖2 =
∑T

t=1

(
rt + γu�xt+1 − u�xt

)2,
respectively.

3.2. Squared Prediction Errors of TD∗(0)

Using step-size η = 1
X2+1 , Schapire and War-

muth (1996) showed a worst-case upper bound:

�P ≤
(
1 + X2

) (
�uP + ‖w1 − u‖2

2

)
1 − γ2

.

Furthermore, if E and W are known beforehand such
that �uP ≤ E and ‖w1 − u‖ ≤ W , then the step-size
η can be optimized by η = W

X
√

E+X2W
to yield an

asymptotically better bound:

�P ≤ �uP + 2WX
√

E + X2W 2

1 − γ2
. (4)

3.3. Squared Temporal Differences of TD∗(0)

We will extend the analysis of Schapire and War-
muth (1996) to the new loss function �T D by exam-
ining how the potential function, ‖wt − u‖2, evolves
when a single update is made at time t. It can
be shown (Schapire & Warmuth, 1996, Eqn 8) that
−‖w1 − u‖2 ≤ η2X2e�D�De + 2ηe�D� (eu − e),
where

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −γ 0 · · · 0 0
0 1 −γ · · · 0 0

. . .
0 0 · · · 1 −γ 0
0 0 · · · 0 1 −γ
0 0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

Define f = De. According to Lemma A.1(1), du =
Deu, and hence the inequality above is rewritten as:

−‖w1 − u‖2 ≤ η2X2f�f − 2ηf�D−1f + 2ηf�D−1du.

Using the fact that 2p�q ≤ ‖p‖2 + ‖q‖2 for p =
η√
b
D−�f , q =

√
bdu, and arbitrary b > 0, the inequal-

ity becomes −‖w1 − u‖2 ≤ f�M1f + b�uT D, where

M1 = η2X2I +
η2

b
D−1D−� − η(D−1 + D−�) (6)

is a symmetric matrix. Since ρ(M1) is the largest
eigenvalue of M1, we have f�M1f ≤ ρ(M1) ‖f‖2, and
hence, −‖w1 − u‖2 ≤ ‖f‖2

ρ(M1) + b�uT D. Combining
this with Lemma A.4, we have that ‖f‖2 is at most

(1 + γ)2
(

X2 +
1

b(1 − γ)2

) (
b�uT D + ‖w1 − b‖2

)
,

when the step-size is

η =
1

(1 + γ)
(
X2 + 1

b(1−γ)2

) . (7)
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Due to Lemma A.1 (2), we have

d2
t =

(
1 − γηx�

t xt+1

)2
f2

t

≤ (
1 + γηX2

)2
f2

t ≤ (1 + 2γ)2

(1 + γ)2
f2

t .

Therefore, �T D is at most

(1 + 2γ)2
(

X2 +
1

b(1 − γ)2

) (
b�uT D + ‖w1 − u‖2

)
.

Using b = 1, we have thus proved the first main result.

Theorem 3.1. Let η be given by Eqn 7 using b = 1,
then the following holds for TD∗(0):

�T D ≤ (1+2γ)2
(

X2 +
1

(1 − γ)2

) (
�uT D + ‖w1 − u‖2

)
.

Theorem 3.2. If E and W are known beforehand
such that �uT D ≤ E and ‖w1 − u‖ ≤ W , then η can
be optimized in TD∗(0) so that

�T D ≤ (1 + 2γ)2(
�uT D

(1 − γ)2
+

2XW
√

E

1 − γ
+ X2 ‖w1 − u‖2

)
.(8)

Proof. Previous analysis for Theorem 3.1 yields

�T D ≤ (1 + 2γ)2
((

bX2�uT D +
‖w1 − u‖2

b(1 − γ)2

)
+

(
�uT D

(1 − γ)2
+ X2 ‖w1 − u‖2

))

≤ (1 + 2γ)2
((

bX2E +
W 2

b(1 − γ)2

)
+(

�uT D
(1 − γ)2

+ X2 ‖w1 − u‖2

))

for any b > 0. We may simply choose b = W
X(1−γ)

√
E

,
and the step-size in Eqn 7 becomes

η =
1

(1 + γ)
(
X2 + X

√
E

W (1−γ)

) .

3.4. Squared Prediction Errors of RG

By the update rule in Eqn 3 and simple algebra,

∆w�
t (wt − u) = ηdt(xt − γxt+1)�(wt − u)

= ηdt

((
w�

t xt − γw�
t xt+1 − rt

)
− (

u�xt − γu�xt+1 − rt

))
= ηdt(du

t − dt),

‖∆wt‖2 = η2d2
t ‖xt − γxt+1‖2

2

≤ η2d2
t X

2(1 + γ)2.

Similar to the previous section, we use the potential
function ‖wt − u‖2 to measure progress of learning:

−‖w1 − u‖2 ≤
T∑

t=1

(
‖wt+1 − u‖2 − ‖wt − u‖2

)

=
T∑

t=1

(
2∆w�

t (wt − u) + ∆w�
t ∆wt

)

≤
T∑

t=1

(
2ηdt(du

t − dt) + η2d2
t X

2(1 + γ)2
)

= 2ηd�du − 2ηd�d + η2X2(1 + γ)2d�d.

According to Lemma A.1 (1) and using the fact that
2p�q ≤ ‖p‖2 + ‖q‖2 for p = η√

b
D�d, q =

√
beu, and

arbitrary b > 0, the inequality above is written as:

−‖w1 − u‖2 ≤ b ‖eu‖2 +
η2

b
d�DD�d +(

η2X2(1 + γ)2 − 2η
) ‖d‖2

Due to Lemma A.1 (3), d = ΣDe, where

Σ = diag
(

1
1 + γη(x1 − γx2)�x2

,

1
1 + γη(x2 − γx3)�x3

, · · · ,

1
1 + γη(xT−1 − γxT )�xT

, 1
)

. (9)

Then, the inequality above becomes:

−‖w1 − u‖2 ≤ b ‖eu‖2 + e�M2e,

where

M2 = D�Σ

„
η2

b
DD� +

`
η2X2(1 + γ)2 − 2η

´
I

«
ΣD. (10)

Since e�M2e ≤ ρ(M2) ‖e‖2, Lemma A.5 implies the
following theorems when the step-size is

η =
1

(1 + γ)2
(
X2 + 1

b

) . (11)

Theorem 3.3. Let η be given by Eqn 11 using b = 1,
then the following holds for RG:

�P ≤ (1 + 2γ)2
(
X2 + 1

)
(1 − γ)2

(
�uP + ‖w1 − u‖2

)
.

Theorem 3.4. If E and W are known beforehand
such that �uP ≤ E and ‖w1 − u‖ ≤ W , then η can
be optimized in RG so that

�P ≤ (1 + 2γ)2

(1 − γ)2
(
�uP + 2XW

√
E + X2 ‖w1 − u‖2

)
. (12)
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Proof. Previous analysis in this subsection yields

�P ≤ (1 + 2γ)2

(1 − γ)2
((

�uP + X2 ‖w1 − u‖2
)

+(
X2b�uP +

‖w1 − u‖2

b

))

≤ (1 + 2γ)2

(1 − γ)2
((

�uP + X2 ‖w1 − u‖2
)

+(
X2bE +

W 2

b

))
.

We simply choose b = W
X

√
E

and accordingly the step-
size in Eqn 11 becomes

η =
1

(1 + γ)2
(
X2 + X

√
E

W

) .

3.5. Squared Temporal Differences of RG

It is most convenient to turn this problem into one
of analyzing the total squared prediction error in
the original online-learning-of-linear-function frame-
work (Cesa-Bianchi et al., 1996). In particular, define
zt = xt − γxt+1 and thus ‖zt‖ ≤ (1 + γ)X. Now,
RG can be viewed as a gradient descent algorithm op-
erating over the sequence of data [(zt, rt)]t∈{1,2,··· ,T}.
Due to Theorem IV.1 of Cesa-Bianchi et al. (1996), we
immediately have

�T D ≤ 2.25
(
�uT D + X2(1 + γ)2 ‖u‖2

)
,

for any u when the step-size is η = 2
3X2(1+γ)2 . If E and

W are known beforehand so that �uT D ≤ E and ‖u‖ ≤
W , then η can be optimized (Theorem IV.3 of Cesa-
Bianchi et al. (1996)) by η = W

X(1+γ)(WX(1+γ)+
√

E)
to

obtain the following improved bound:

�T D ≤ �uT D + 2WX(1 + γ)
√

E + (1 + γ)2W 2X2. (13)

3.6. Discussions

Based on Eqns 4, 8, 12, and 13, Table 1 summarizes
the asymptotic upper bounds (when T → ∞) assum-
ing E and W are known beforehand to optimize η.1

Although our bounds are all upper bounds, results in
the table suggest that, in worst cases, TD∗(0) (and
also TD(0)) tend to make smaller prediction errors,
while RG tends to make smaller temporal differences.
The gaps between corresponding bounds increase as

1Strictly speaking, the validity of these asymptotic re-
sults relies on the assumptions that (i)

√
E = o(�uP), and

(ii) W and X remain constant as T → ∞. Both assump-
tions are reasonable in practice.

Table 1. Asymptotic upper bounds for total squared pre-
diction error and total squared temporal difference of
TD∗(0) and RG.

�P/�uP �T D/�uT D

TD∗(0) 1
1−γ2 + o(1) (1+2γ)2

(1−γ)2 + o(1)

RG (1+2γ)2

(1−γ)2 + o(1) 1 + o(1)

γ → 1. On the other extreme where γ = 0, all these
asymptotic bounds coincide, which is not surprising as
TD(0), TD∗(0), and RG are all identical when γ = 0.

Since it is unknown whether the leading constants in
Table 1 are optimal, the next section will provide nu-
merical evidence to support our claims about the rel-
ative strengths of these algorithms.

It is worth mentioning that in sequential prediction
or decision problems, the factor 1

1−γ often plays a
role similar to the decision horizon (Puterman, 1994).
Therefore, in some sense, our bounds also character-
ize how prediction errors and temporal differences may
scale with decision horizon, in the worst-case sense.

When �P or �T D are relatively small, the asymptotic
bounds in Table 1 are less useful as the ‖w1 − u‖2 in
the bounds dominate �P or �T D. However, we still get
similar qualitative results by comparing the constant
factors of the term ‖w1 − u‖2 in the bounds.

Since our setting is quite different from that of
Schoknecht and Merke (2003), our results are not com-
parable to theirs.

4. Experiments

This section presents empirical evidence in two Markov
chains that supports our claims in Section 3.6.

The first is the Ring Markov chain (Figure 1 (a)),
a variant of the Hall problem introduced by
Baird (1995) in which RG was observed to converge
to the optimal weights more slowly than TD(0). The
state space is a ring consisting of 10 states numbered
from 0 through 9. Each state is associated with a
randomly selected feature vector of dimension k = 5:
x(0), · · · ,x(9) ∈ R

k. Transitions are deterministic and
are indicated by arrows. The reward in every state is
stochastic and is distributed uniformly in [−0.1, 0.1].
As in Hall , the value of every state is exactly 0.

The second problem is a benchmark problem known as
PuddleWorld (Boyan & Moore, 1995). The state
space is a unit square (Figure 1 (d)), and a start state
of an episode is randomly selected in [0, 0.2] × [0, 0.2].
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(a) Ring (b) per-step squared prediction error (c) per-step squared temporal difference
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(d) PuddleWorld (e) per-step squared prediction error (f) per-step squared temporal difference

Figure 1. Two Markov chains we used: (a) Ring and (d) PuddleWorld (Boyan & Moore, 1995). All results are averaged
over 500 runs, with 99% confidence intervals plotted. Ring and PuddleWorld results are in (b,c) and (e,f), respectively.

The agent adopts a fixed policy that goes north or
east with probability 0.5 each. Every episode takes
about 40 steps to terminate. The reward is −1 un-
less the agent steps into the puddles and receives
penalty for that; the smallest possible reward is −41.
We used 16 RBF features of width 0.3, whose cen-
ters were evenly distributed in the state space. We
also tried a degree-two polynomial feature: for a state
s = (s1, s2)

�, the feature vector had six components:
xs =

(
1, s1, s2, s1s2, s

2
1, s

2
2

)�. Since the results are sim-
ilar to those for RBF features, they are not included.

We ran three algorithms in the experiments: TD(0),
TD∗(0), and RG. For a fair comparison, all algorithms
started with the all-one weight vector and were given
the same sequence of (xt, rt) for learning. The pro-
cedure was repeated 500 times. For Ring , each run
used a different realization of feature x(s) and T = 500;
for PuddleWorld , each run consisted of 50 episodes
(yielding slightly less than 2000 steps in total). A wide
range of step-sizes were tried, and the best choices for
each discount-factor–algorithm combination were used
to evaluate �P and �T D, respectively. Figure 1 (b,c,e,f)
gives the average per-step squared prediction errors
and squared temporal differences for these two prob-
lems, with 99% confidence intervals plotted.

These results are consistent with our analysis: TD(0)

and TD∗(0) tended to make more accurate predictions,
while RG did a better job at minimizing temporal
differences; the differences between these algorithms
were even larger as the discount factor γ approached
1.2 Finally, as a side effect, it is verified that TD(0)
and TD∗(0) had essentially identical performance, al-
though their best learning rates might differ.

5. Conclusion

We have carried out a worst-case analysis to compare
two policy-evaluation algorithms, TD and RG, when
linear function approximation is used. Together with
previously known results due to Schapire and War-
muth (1996) and Cesa-Bianchi et al. (1996), our re-
sults suggest that, although the TD algorithms may
make more accurate predictions, RG may be a bet-
ter choice when small temporal differences are desired.
This claim is supported by empirical evidence in two
simple Markov chains. Although the analysis is purely
mathematical, we expect the implications to deepen
the understanding of these two types of algorithms and
can provide useful insights to RL practitioners.

2This effect was less obvious when γ got too close to 1.
This was because the trajectories in our experiments were
not long enough for such γ to have full impacts.
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There has been relatively little attention to this sort
of online-learning analysis within the RL community.
Our analysis shows that this kind of analysis may
be helpful and provide useful insights. A few direc-
tions are worth pursuing. First, we have focused on
worst-case upper bounds, but it remains open whether
matching lower bounds can be found. More exten-
sive empirical studies are also necessary to see if such
worst-case behavior can be observed in realistic prob-
lems. Second, we wish to generalize the analysis
of total squared temporal difference from TD(0) and
TD∗(0) to TD(λ) and TD∗(λ), respectively. Finally,
we would like to mention that, in their original forms,
both TD and RG use additive updates. Another class
of updates known as multiplicative updates (Kivinen
& Warmuth, 1997) has been useful when the number
of features (i.e., the k in Subsection 2.1) is large but
only a few of them are relevant for making predictions.
Such learning rules have potential uses in RL (Precup
& Sutton, 1997), but it remains open whether these al-
gorithms converge or whether worst-case error bounds
similar to the ones given in this paper can be obtained.

A. Lemmas and Proofs

Lemma A.1. This lemma collects a few basic facts
useful in our analysis (D is given in Eqn 5):

1. In all three algorithms, du = Deu.
2. In TD∗(0), dt = (1 − γηx�

t xt+1)(et − γet+1).
3. In RG, dt = et−γet+1

1+γη(xt−γxt+1)�xt+1
.

Proof. 1. Since yt = rt + γyt+1, we have

du
t = rt + γu�xt+1 − u�xt

=
(
yt − u�xt

) − (
yt − rt − γu�xt+1

)
=

(
yt − u�xt

) − γ
(
yt+1 − u�xt+1

)
= eu

t − γeu
t+1.

In matrix form, this is du = Deu.
2. Since wt = wt+1 − ∆wt and yt = rt + γyt+1,

dt = rt + γw�
t xt+1 − w�

t xt

= rt + γ(wt+1 − ∆wt)�xt+1 − w�
t xt +

(yt − rt − γyt+1)
= (yt − w�

t xt) − γ(yt+1 − w�
t+1xt+1) −

γ∆w�
t xt+1

= et − γet+1 − γηdtx�
t xt+1

1 − γηx�
t xt+1

.

Reorganizing terms will complete the proof.
3. Similar to the proof for part (2) except that ∆wt

is computed by Eqn 3.

Two technical lemmas are useful to prove Lemma A.4.
It should be noted that the bounds they give are tight.
Lemma A.2. For D given in Eqn 5, let A be
D�D or DD�, and B be D−1D−� or D−�D−1.
Then, σ (A) ⊆ [

(1 − γ)2, (1 + γ)2
]

and σ (B) ⊆[
(1 + γ)−2, (1 − γ)−2

]
.

Proof. It can be verified that D�D equals⎛
⎜⎜⎜⎜⎜⎝

1 −γ 0 · · · 0
−γ 1 + γ2 −γ · · · 0

. . .
0 0 · · · 1 + γ2 −γ
0 0 · · · −γ 1 + γ2

⎞
⎟⎟⎟⎟⎟⎠ .

Since D�D is symmetric, σ
(
D�D

) ⊂ R. It fol-
lows from Geršgorin’s theorem (Horn & Johnson, 1986,
Theorem 6.1.1) that σ

(
D�D

) ⊆ [
(1 − γ)2, (1 + γ)2

]
.

The same holds for σ
(
DD�)

. The second part follows
immediately by observing that D−1D−� =

(
D�D

)−1

and D−�D−1 =
(
DD�)−1.

Lemma A.3. Let D be given by Eqn 5, then

σ(D−1 + D−�) ⊆
[

2
1 + γ

,
2

1 − γ

]
.

Proof. It can be verified that D−1 + D−� equals

G =

0
BBBBBBB@

2 γ γ2 · · · γT−2 γT−1

γ 2 γ · · · γT−3 γT−2

. . .

γT−3 γT−4 · · · 2 γ γ2

γT−2 γT−3 · · · γ 2 γ
γT−1 γT−2 · · · γ2 γ 2

1
CCCCCCCA

,

and that (G − I)−1 equals
0
BBBBBBBBB@

1
1−γ2

−γ
1−γ2 0 · · · 0 0

−γ
1−γ2

1+γ2

1−γ2
−γ

1−γ2 · · · 0 0

. . .

0 0 · · · 1+γ2

1−γ2
−γ

1−γ2 0

0 0 · · · −γ
1−γ2

1+γ2

1−γ2
−γ

1−γ2

0 0 · · · 0 −γ
1−γ2

1
1−γ2

1
CCCCCCCCCA

.

Clearly, (G − I)−1 is symmetric, and it follows from
Geršgorin’s theorem that

σ
(
(G − I)−1

) ⊆
[
1 − γ

1 + γ
,
1 + γ

1 − γ

]
.

Therefore,

σ(G − I) ⊆
[(

1 + γ

1 − γ

)−1

,

(
1 − γ

1 + γ

)−1
]

=
[
1 − γ

1 + γ
,
1 + γ

1 − γ

]
.
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Consequently,

σ(G) ⊆
[
1 +

1 − γ

1 + γ
, 1 +

1 + γ

1 − γ

]
=

[
2

1 + γ
,

2
1 − γ

]
.

We are now ready to prove the following lemma.

Lemma A.4. ρ(M1) ≤ − 2η
1+γ + η2

(
X2 + 1

b(1−γ)2

)
where M1 is given in Eqn 6.

Proof. By Weyl’s theorem (Horn & Johnson, 1986,
Theorem 4.3.1),

ρ(M1) ≤ ρ
(
η2X2I

)
+ ρ

(
η2

b
D−1D−�

)
+

ρ
(−η

(
D−1 + D−�))

.

The lemma then follows immediately from Lem-
mas A.2 and A.3.

Lemma A.5. Let M2 be defined by Eqn 10 and sup-
pose the step-size is given by Eqn 11, then

ρ(M2) ≤ − (1 − γ)2

(1 + 2γ)2
(
X2 + 1

b

) .

Proof. Let α = η2

b and β = η2X2(1 + γ)2 − 2η, then
M2 = D�Σ

(
αDD� + βI

)
ΣD. It is known that

ρ(M2) = max
v1 �=0

v�
1 M2v1

v�
1 v1

.

Define v2 = Dv1 and we have:

ρ(M2) = max
v2 �=0

v2Σ
(
αDD� + βI

)
Σv2

v�
2 D−�D−1v2

≤ max
v2 �=0

(1 − γ)2v2Σ
(
αDD� + βI

)
Σv2

v�
2 v2

,

where the last step is due to Lemma A.2 and the fact
that M2 is negative-definite for η 	 1. Similarly, we
define v3 = Σv2 and use the fact that

0 ≤ v�
2 v2 = v�

3 Σ−2v3 ≤ (
1 + γ(1 + γ)ηX2

)2 ‖v3‖2

to obtain:

ρ(M2) ≤ max
v3 �=0

(1 − γ)2v�
3

(
αDD� + βI

)
v�

3

(1 + γ(1 + γ)ηX2)2 v�
3 v3

=
(1 − γ)2ρ

(
αDD� + βI

)
(1 + γ(1 + γ)ηX2)2

≤ (1 − γ)2
(
α(1 + γ)2 + β

)
(1 + γ(1 + γ)ηX2)2

.

If we choose η as in Eqn 11, then the lemma follows
immediately from the fact that

1 +
γX2

(1 + γ)
(
X2 + 1

b

) ≤ 1 +
γ

1 + γ
=

1 + 2γ

1 + γ
.
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