Sample Compression Bounds for Decision Trees

Mohak Shah

MOHAK.SHAHQCRCHUL.ULAVAL.CA

CHUL Research Centre, Faculty of Medicine, Laval University, 2705 Laurier Blvd, Quebec, QC G1V 4G2 Canada

Abstract

We propose a formulation of the Decision
Tree learning algorithm in the Compres-
sion settings and derive tight generaliza-
tion error bounds. In particular, we pro-
pose Sample Compression and Occam’s Ra-
zor bounds. We show how such bounds, un-
like the VC dimension or Rademacher com-
plexities based bounds, are more general and
can also perform a margin-sparsity trade-off
to obtain better classifiers. Potentially, these
risk bounds can also guide the model selec-
tion process and replace traditional pruning
strategies.

1. Introduction

Decision Trees are an important class of learning algo-
rithms. One of the main advantages of these classifiers
obviously is the ease of understandability and inter-
pretability. Moreover, they have shown performance
comparable to the state-of-the-art algorithms such as
the Support Vector Machines on some domains (see,
for example, (Shah et al., 2006)). However, the prob-
lem of over-fitting (and under-fitting) has been indeed
central to the study and further investigations of these
learning algorithms. Decision trees can be quite effec-
tive when a suitable model selection strategy is ap-
plied. This corresponds to selecting the best tree from
the space of all possible decision trees. The more the
number of nodes, the more specific the tree becomes
and hence has a higher chance of over-fitting. On the
other hand, a very restrictive tree in terms of the num-
ber of decision nodes might result in under-fitting. In
order to deal with this problem, a general approach has
been to construct a full tree and then prune the nodes
so as to find optimal size. Various pruning strategies
have been suggested to alleviate the problem of select-
ing the best tree size.

Appearing in Proceedings of the 24" International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

On the learning theoretic front, a common approach
has been to minimize a generalization error bound that
expresses a trade-off between the training error, the
size of the decision tree and some measure of the com-
plexity of the hypothesis class. Various approaches
aimed at proposing tight risk bounds for decision trees
have been adopted. For instance, Vapnik (1982) and
Anthony and Bartlett (1999) proposed bounds that de-
pend on the margin of the linear threshold functions.
This margin is basically a distance measure between
the positive and negative example subsets in the train-
ing set. Golea et al. (1998) proposed a bound on de-
cision trees in terms of the VC dimension of the class
of node functions and the effective number of leaves in
the tree.

Kearns and Mansour (1998) proposed a decision tree
pruning algorithm based on the bound for subtrees
of a given tree. Mansour and McAllester (2000) im-
proved on this by proposing a compositional algorithm
for constructing decision trees. Other approaches have
also been proposed that takes into account, in addi-
tion to the factors mentioned above, the learning algo-
rithm itself that is used to generate the tree. Examples
of such approaches include self-bounding algorithms
(Freund, 1998) and microchoice bounds (Langford &
Blum, 1999). Bartlett and Mendelson (2002, section
4.1) used an alternate measure of the complexity of hy-
pothesis class in the form of Rademacher complexities
for deriving the bounds on decision trees.

In this paper, we visualize the decision trees with a
Sample Compression viewpoint. We propose a sample
compression based formulation of the learning algo-
rithm and derive generalization error bounds that ex-
ploit the compression that the algorithm achieves over
a given training set.

Pure Sample Compression bounds, in a sense, focus
on obtaining as sparse decision trees! as possible. We,
then, relax this bound to allow for a possible trade-off
between sparsity and margin (the inverse of the mes-
sage length) so that solutions can be obtained that do

! Sparse decision tree is one with very few nodes.

Sample Compression Bounds for Decision Trees

not result in under-fitting. Such bounds can then pos-
sibly lead to a forward learning algorithm for decision
trees in conjunction with the risk bound to perform the
model selection. Note that by forward learning algo-
rithm, we mean that the algorithm can make a decision
over the optimal size while learning itself. This can be
done in a greedy manner by computing the bound at
each stage and choosing the node that minimizes it and
selecting a stopping criterion such that the algorithm
stops growing the tree when the bound deteriorates.
This is in contrast with the traditional tree-pruning
strategies. Moreover, these bounds are independent of
the (measures of) complexity of the hypothesis class
unlike the traditional bounds based on VC dimension
or Rademacher complexities.

The rest of the paper is organized as follows: Section 2
present a sample compression formulation of the deci-
sion trees. This (informal) formulation of the decision
tree algorithm in the sample compression settings is
then formalized in the following sections. Sections 3
and 4 give the generalization risk bounds for the de-
cision trees in these compression settings. We state
the precise details about these results and put them
in context in the next section. Our main results ap-
pear in Corollary 2 (in conjunction with Equations 4
and 5), Theorem 3, and Theorem 5 (in conjunction
with Equation 8). Finally, we conclude in Section 5.

2. Sample Compressed Decision Trees

We work in the sample compression settings. An algo-
rithm, in this setting, can be called a sample compres-
sion algorithm iff it satisfies two requirements. First,
there exists a Compression Function that identifies,
from among the examples in the training set, a (prefer-
ably) small subset of examples known as the Com-
pression Set that are used to represent the hypothesis
along with some additional information. Second, there
should exist a Reconstruction Function that can recon-
struct the hypothesis making use of only the examples
in the compression set and the additional information.

In this section we propose, informally, a representation
of decision tree in the sample compression setting that
allows us to reconstruct it from a subset of training ex-
amples and the corresponding additional information.
This will subsequently enable us to derive a general-
ization error bound for a decision tree classifier in the
compression setting. We will formalize these notions
in the next section.

We depict each node of the decision tree in terms of a
training example. That is, we use a training example
to store the value of the threshold for the predicate of

each node in the tree. Hence, learning algorithm for
the decision tree can basically act as the Compression
Function. In order to have a reconstruction function,
however, we also need our algorithm to identify some
additional information that can enable us to recon-
struct the classifier. This can be done as follows.

In addition to the compression set?, we use two strings
to specify the additional information for the recon-
struction of the hypothesis. The first string contains
a (prefix-free) code to specify the parent of the cur-
rent node. This will include k& bits (for a tree with
k nodes) with all the bits set to zero except the one
corresponding to the parent.? ¢ That is, the string will
have all zeros except the ith bit if the example 4 in the
compression set is the parent node. In order to specify
the root node, we will have all the bits as zeros in this
string. Moreover, we will need one more string with
one bit which will be 0 if the current node is a left
child of the parent node and 1 otherwise.

In Section 3 we derive a pure sample compression
bound for the decision tree classifier in this setting.
This bound is minimized for sparse classifiers with low
training error. In Section 4 we derive compression
bounds using the Occam’s Razor principle. First, we
show how we can avoid using the compression set alto-
gether to represent the decision tree (a pure Occam’s
Razor appraoch). There, we represent the classifier
solely in terms of the additional information (message
strings as we explain later) to obtain Occam’s Razor
bounds. We propose bounds for the case when the at-
tribute values are discrete in Section 4.1. In particular,
this bound is useful when the attributes take on binary
values as we will see later. The continuous case is dealt
with in Section 4.2 which then leads to a new learning
algorithm for decision trees using a coding scheme for
the thresholds. There, we derive a bound that can ef-
fectively perform a margin-sparsity trade-off to obtain
better generalization.

3. A Data-Compression Risk Bound

We consider binary classification problems where the
input space X consists of an arbitrary subset of R™
and the output space ¥ = {—1,+1}. An example

z (x,y) is an input-output pair where x € X

Tt conmsists of attributes to specify the threshold for
each node; we use a training example for each threshold
value.

3Note that this can also be done using a more efficient
scheme of using log2(k) bits but would have a less direct
reconstruction scheme.

4The compression set needs to be ordered in order to
specify such a string.

Sample Compression Bounds for Decision Trees

and y € Y. We are interested in learning algorithms
that have the following property. Given a training set
S = {z1,...,2n} of m examples, the classifier A(S)
returned by algorithm A is described entirely by two
complementary sources of information: a subset z; of
S, called the compression set, and a message string o
which represents the additional information needed to
obtain a classifier from the compression set z;.

Given a training set .S, the compression set z; is defined
by a vector i of indices i def (i1,42,...,1)5) with i; €
{1,...,m} Vj and i1 < iy < ... < 43 and where [i
denotes the number of indices present in i. Hence, z;
denotes the ith example of S whereas z; denotes the
subset of examples of S that are pointed to by the
vector of indices i defined above. We will use i to
denote the set of indices not present in i. Hence, we
have S = z; U z; for any vector i € Z where Z denotes
the set of the 2™ possible realizations of i.

The fact that any classifier returned by algorithm A is
described by a compression set and a message string
essentially implies that there exists a Reconstruction
Function R, associated with A, that outputs a classi-
fier R(o,2z;) when given an arbitrary compression set
z; C S and message string o chosen from the set M(z;)
of all distinct messages that can be supplied to R with
the compression set z;. It is only when such a R exists
that the classifier returned by A(S) is always identified
by a compression set z; and a message string o.

We seek a tight risk bound for arbitrary reconstruc-
tion functions that holds uniformly for all compression
sets and message strings. For this, we adopt the PAC
setting where each example z is drawn according to
a fixed, but unknown, probability distribution D on
X x Y. The true risk R(f) of any classifier f is de-
fined as the probability that it misclassifies an example
drawn according to D:

R(f) € Prixyyn (f(x) # y) = Eeyan I (f(x) # y)

where I(a) = 1 if predicate a is true and 0 otherwise.
Given a training set S = {2z1,...,2Z,} of m examples,
the empirical risk Rg(f) on S, of any classifier f, is
defined according to:

def

Rs(£) & 3 1 00) # 00) & s (709 £ 1)

Let Z™ denote the collection of m random variables
whose instantiation gives a training sample S = 2™ =
{z1,...,2m}. We denote Przm.pm(-) by Pzm(-). To
obtain the tightest possible risk bound, we fully exploit
the fact that the distribution of classification errors is
a binomial.

Our starting point is the data-compression risk bound
of Shah (2006, Chap. 8). Their bound utilizes the
binomial tail inversion(Langford (2005), Blum and
Langford (2003)) defined as follows: The binomial tasl
inversion Bin (%, 5) is defined as the largest risk value
that a classifier can have while still having a probabil-
ity of at least ¢ of observing at most A errors out of m
examples:

Bin <)\,5) def sup {r : Bin <>\,7’> > 5}
m m
We now recall the compression bound of Shah (2006):

Theorem 1 For any reconstruction function R that
maps arbitrary subsets of a training set and message
strings to classifiers, for any prior distribution Pz of
vectors of indices, for any compression set-dependent
distribution of messages Ppy(z,), and for any 6 € (0,1],
we have:

Pzn {Vi €ZI,Vo € M(Z;): R(R(0,Z;)) <

%(RZT(R(U, 7)), PI(i)PM(zi)(a)cS)} >1-4

where, for any training set 2™, R, (f) denotes the em-

pirical risk of classifier f on the examples of z™ that
do not belong to the compression set z;.

Theorem 1 applies to any compression set-dependent
distribution of messages Pyq(y,) satisfying:

> Puy(o) <1z (1)
oceM(zi)

and any prior distribution Pr of vectors of indices sat-
isfying » ;.7 Pr(i) <1

The risk bound of Theorem 1 appears to be the tight-
est bound obtainable under this setting. Importantly,
note that, once Pr and Py, are specified, the risk
bound of Theorem 1 for classifier R(o,z;) depends on
its empirical risk and on the product Pr(i)Pay(z;) (o).
However, In (m) is just the amount of in-
formation needed to specify a classifier R(o,z;) once
we are given a training set and the priors Pr and
Prp(z;)- The In(1/Pz(i)) term is the information con-
tent of the vector of indices i that specifies the com-
pression set and the In(1/Ppy(z,)(0)) term is the infor-
mation content of the message string . A closer look
reveals that these are effectively the measures of spar-
sity and margin respectively. Consequently the bound
of Theorem 1 specifies quantitatively how much train-
ing errors learning algorithms should trade-off with the

Sample Compression Bounds for Decision Trees

amount of information needed to specify a classifier by
iando.

Any bound expressed in terms of the binomial tail in-
version can be turned into a more conventional and
looser bound by inverting a standard approximation of
the binomial tail such as those obtained from the in-
equalities of Chernoff and Hoeffding. Shah (2006) pro-
posed the following approximation of the above bound:

Corollary 2 For any reconstruction function R that
maps arbitrary subsets of a training set and message
strings to classifiers, for any prior distribution Pz of
vectors of indices, for any compression set-dependent
distribution of messages Ppy(,, and for any 6 € (0,1],
we have:

PZm{Vi €ZI,Vo € M(Z;): R(R(0,Z;)) <
-1 m—d
1@m<np_d_xln< A)
1
+1In (W)])} 21_5 (2)

and, consequently:

Py {Vi € 7,Yo € M(Z:): R(R(0,Z3)) <
1 | m —d
m—d—x|"\ A

1
*m(%memwwﬂ}Zlé(w

where d %< li| is the sample compression set size of
classifier R(o,Z;) and X def iR, (R(0,Z)) is the
number of training errors that this classifier makes on

the examples that are not in the compression set.

Corollary 2 suggests that the risk bound of classifier
R(o,Z;) is small when its compression set size d and
its number of training errors A are both much smaller
than the number of training examples m.

Let us now identify the distributions for the possi-
ble compression sets and the associated messages for
the thresholded decision trees. Recall that in order to
specify a decision tree classifier under the compression
scheme, the compression set consists of one example
per predicate. For each node we have one attribute
and a corresponding threshold value determined by the
numerical value that this attribute takes on the train-
ing example. Note that more than one attribute can

be specified by one training example without affecting
the size of compression set.

In addition to the compression set, we use two strings
to specify the additional information for the recon-
struction of the hypothesis. The first string contains a
(prefix-free) code to specify the parent of the current
node. This string consists of k bits (for a tree with
k nodes) with all the bits zeros except the one corre-
sponding to the parent. Note that for the root node,
the string has all the bits as 0’s. Moreover, we use one
more bit which is 0 if the current node is a left child
of the parent node and 1 otherwise. As noted before,
a more efficient scheme of coding with logs(k) bits is
possible but lacks straightforward reconstruction.

For the case of thresholded decision trees, let the sub-
set of attributes that specifies our compression set i
be k. Note that |i| is not necessarily equal to |k| even
though we use one example per threshold. In general,
li| < |k| with equality holding when all the examples
denoting the thresholds in the set k are different. How-
ever, the examples in i might need to be indexed in
accordance with the coding scheme of k. We, hence,
use the following distribution of messages:

1 1 1

Pz (o) = W (k[1) 2k Vo o (4)
The rationale for this distribution of messages is the
following. We assign equal probability to each of the
possible |k| attributes (and hence thresholds) that can
be selected from n attributes. This yields the first
factor in Equation 4. In order to associate each node
with its parent node, we need one of the |k| strings
with the bit corresponding to the parent equalling 1
and all other bits being 0. In addition, we also need to
consider the string for the root node with all zeros. We
assign equal probabilities for each node to be able to
take any of these |k| strings®. The second factor in the
above equation denotes this probability. Finally, each
selected node, can be either a left or a right child of
its parent (except for the root node). We assign equal
probability over this hence obtaining the third factor
of Equation 4.

As for the prior Pz(i) over the compression sets, there
are few obvious choices. One of these, that we use in
our calculations further too, consist in:
. 1 .
Pr(i) = Tm)p(lll) (5)
li]

This prior signifies that the final classifier, constructed

®Note that this also bounds the number of possible bi-
nary trees of size |k|.

Sample Compression Bounds for Decision Trees

from the group of examples specified by i, should de-
pend only on the number |i| of examples in this group.
Moreover, we choose a p that decreases as we increase
li| if we have reasons to believe that the number of
nodes of the final classifier does not grow linearly with
m. One possibility, that we use in this case, exists in
using p(k]) = 2 (k| + 1)~2.

Equations 4 and 5 along with the Corollary 2 give a
sample compression bound for the decision tree clas-
sifier. Note that, being a pure sample compression
bound, Corollary 2 in conjunction with Equation 4 is
minimized when a classifier with a sparse solution giv-
ing a low empirical risk is found.

4. Occam’s Razor Bound for Decision
Trees

4.1. The Discrete Case

Let us note how the bound in Corollary 2 can yield a
pure Occam’s razor bound when the compression set
vanishes, in the following manner. More precisely, we
restrict ourselves to the case when Pz (i) = 1 when [i| =
d = 0. That is, all the information now is held in the
distribution of messages Paq(5,). Hence, the classifier
is solely represented now with the help of messages and
does not depend on the size of compression set (which
is zero by definition of Pr(i)). Therefore, in this case
the only requirement of our reconstruction function is
the information from the messages. We denote this
new classifier with the above mentioned restriction by
R(o).

Let us now see the case where we can incorporate the
threshold information for each node in the message
distribution. First, let us see the case when every node
of the decision tree can take one of the values from a
set of discrete values 7. Hence, each node can have
one of the possible | 7| values for the threshold and let
us assume an equal probability for each of the possible
values for each node in the decision tree. Let us denote
this set of threshold values by k, so that the number of
nodes in the decision tree equals |k|. Hence Corollary 2
yields:

Theorem 3 For any reconstruction function R that
maps subsets of message strings to classifiers, for any
distribution of messages P, and for any § € (0,1],
we have:

Pz {vo— € M: R(R(0)) < 1—6XP<m_1A lm (T)

and, consequently:

P, {vo € M: R(R(0) <

mi}\lln(?)—l—ln(W)]}Zl—fs (7)

where A < mR,, (R(c)) is the number of training
errors that this classifier makes, and where:

1 1 1 1
Pulo) =S o 29 e 7

Let us now consider the case when the attributes in the
data take on binary values. That is, each x; € {0, 1}.
In this case, since 7 = {0, 1}, the message distribution
above becomes:

1 1 1

Hence, it can be easily seen that the bound of Theo-
rem 3 is especially tight when the data is binary val-
ued.

Before going further, we take a look at how the bounds
of Corollary 2 and Theorem 3 translate in practice. In
Table 1, we present the empirical result of decision tree
algorithm for several UCI datasets and the associated
risk bounds. The “Ex” and the “Att” columns refer to
the number of examples in the dataset and the number
of attributes respectively. “Size” refer to the number
of nodes in the final Decision tree. The “Err” column
refers to the stratified ten-fold cross validation risk of
the decision tree learning algorithm.® We use the Weka
implementation of decision tree algorithm (Witten &
Frank, 2005). The “Bound” column gives the general-
ization error bound obtained by computing the r.h.s.
of Corollary 2 (with ¢ = 0.05) averaged over the folds.
For the breastw (discrete valued), Vote and Chess’
datasets (both binary valued), the quantity in paren-
theses gives the bound obtained by Theorem 3. As
can be seen the bound is esp. tight in about five of the
nine cases. Moreover, it is non-trivial in other cases
as well. Also, we see that the Occam’s Razor bound
is significantly tighter in case of binary valued data as
seen in the case of Vote and Chess datasets.

Inspired by this, we explore a version of Occam’s razor
bound that can perform a non-trivial margin-sparsity

SWe use default parameters since our main aim is to
illustrate the bounds’ practicality here.

"Two non-binary attributes were removed so as to apply
the Occam razor bound too.

Sample Compression Bounds for Decision Trees

Table 1. Compression Bounds on UCI datasets

Dataset Ex Att | Size | Err | Bound
Vote 435 17 11 0.04 | 0.36(0.29)
Pima 768 | 9 39 0.26 | 0.78
Breastw 699 | 10 27 0.05 | 0.49(0.61)
Tonosphere | 351 35 35 0.09 | 0.81
Mushroom | 8124 | 23 30 0 0.05
Credit-a 690 15 42 0.14 | 0.72
Chess 3196 | 34 59 0.01 | 0.25(0.18)
Heart-s 270 14 35 0.23 | 0.9
Thyroid 3772 | 29 61 0.01 | 0.25

trade-off and hence in effect gives a new algorithm for
learning decision trees based on a coding scheme for
the continuous valued thresholds.

4.2. The Continuous Case

In order to take into account the continuous val-
ued attributes, we make the following assumption
about the input space. We still consider the input
space X consisting of all the n-dimensional vectors
x = (1,...,%,) but now each real valued component
x; € [A;,B;] fori=1,...,n.

We start with the Occam’s razor bound of Langford
(2005) which is a tighter version of the bound proposed
by Blumer et al. (1987). It is also more general in the
sense that it applies to any prior distribution P over
any countable class of classifiers.

Theorem 4 (Langford (2005)) For any prior dis-
tribution P over any countable class F of classifiers,
and for any § € (0,1], we have:

Prspm {77 € £ B < Bin(Ra(),P(3) } 2 15

The proof directly follows from a straightforward
union bound argument and from the fact that

Ser PU) < 1.

In order now to obtain a bound for decision trees, let
us start by choosing a suitable prior P for this class.

As we saw before, a decision tree classifier can be rep-
resented by the following quantities. First a set of in-
dices that forms the nodes of the tree, represented by
k. Second, for each node, we need one bit to signify
whether a node is a left or right child of the parent
node. Let us denote by d the vector containing this
information for all the nodes. Next, with each node is
associated a string of size |k| to locate the parent node.
This coding scheme has a string of all zeros denoting
the root node of the tree. Finally, let us consider the

continuous parameter, i.e. the threshold of each node,
the vector of which is denoted by t.

Let us denote by P(k,d,o) the prior probability as-
signed to the decision tree DX, described by (k,d, o).
We choose a prior of the following form:

1 1 1

P(k,d,o‘) = Wwwgk)d(d)

where g q4(0) is the prior probability assigned to string
o given that we have chosen k and d. Let M(k, d) be
the set of all message strings that we can use given
that we have chosen k and d. If Z denotes the set of
all 2™ possible attribute index vectors and Dy denotes
the set of all 2/¥! binary vectors d of dimension |k|,

we have that 3y c7 > qep, 2oemma) Pk d o) <1
whenever » - v((c.a) 9x.a(o) < 1 vk, d.

The reasons motivating this choice for the prior are
the following. The first factor basically gives a uniform
distribution over choosing each of the |k| nodes from n
attributes. The second factor of P(k,d, o) gives equal
prior probabilities over associating each string from
the set of |k| strings identifying the parent to each
node of the tree. The third factor gives equal prior
probabilities for each of the two possible values for the
bit d; € d denoting whether the current node is a left
or a right child.

To specify the distribution of strings gk a(o), we work
on the lines of Shah (2006). Let [A, B] is some pre-
defined interval in which we are permitted to choose
a threshold t. Moreover we need to choose t from an
interval [a,b] C [A, B], which is an interval of “equally
good” threshold values.® We consider the problem of
coding this threshold value. The following diadic cod-
ing scheme can be used in order to identify the thresh-
olds that belong to this interval:

. . 2!

def 275 —1 25 —1
A= {{1_ ol +1 }‘LH' 9l +1 B -
j=

where A; is the set of threshold values and [is the
maximum number of bits used for the code.

The above coding scheme is obtained as follows: Let
[be the number of bits used for the code. We adopt
the following convention for coding the bits in the I-
bit coding string. A code of [= 0 bits specifies the
threshold value (A + B)/2, the mid-interval value. A
code of [= 1 bit specifies the mid-values of the two
half-intervals. That is, a code of [= 1 bit either spec-
ifies the value (34 + B)/4 or the value (A + 3B)/4,

8By a “good” threshold value, we mean a threshold
value that optimize the node selection criterion such as
information gain, or minimize the risk bound.

Sample Compression Bounds for Decision Trees

when the bit is 0 or 1 respectively. On similar lines,
a code of [= 2 specifies one of the following values:
(TA+ B)/8,(5A + 3B)/8,(3A + 5B)/8,(A + 7B)/8.
Each successive bit halves the interval. Hence, a code
of [bits specifies one value among the set A; of thresh-
old values as shown in the above coding scheme.

The above scheme enables us to find all the threshold
values that lie in the interval [a,b] C [A, B] and the
corresponding number of bits [that we need to use
to code these threshold values. We select the smallest
number [of bits such that there exists a threshold
value in A; that falls in the interval [a,b]. This yields
an upper bound on the number of bits required to
obtain a threshold value falling in the interval [a, b].
We will need at most |log,((B — A)/(b— a))] bits to
do this.

Now, in order to specify the threshold for each node,
we need to specify two quantities. First, the number
l of bits and second, an [-bit string s, that together
identify one of the threshold values in A;. Moreover,
we also need to specify an interval [A, B] of permitted
values for the threshold t.

We proceed along the similar lines to achieve this and
see how this can eventually be done in practice. We
choose the following scheme.

We need to identify an interval [A*, B*] that can be
deduced from the nature of the attribute independent
of the values that this attribute in question takes on
the examples in training set. One possibility typically
exists in using the smallest and the largest value that
the attribute in question can have. An attribute defi-
nition can easily yield this information. We then find
the mid-value as C* = (A" + B*)/2. Also we compute
the smallest and the largest values that the attribute
takes on the training set. We denote these values by
A’ and B’ respectively.

Now, we can find the largest integer k such that
277(C* — A*) > (C* — A"). The next step is to choose
A such that C* — A = 275(C* — A*) for that value
of k. Similarly, we can find the largest integer s’ such
that 27% (B* — C*) > (B’ — C*). This enables us to
choose B such that B — C* = 27 (B* — C*) for that
value of /. After choosing, in this way, [A;, B;] for
each attribute ¢ a first run of the learning algorithm
can be performed. Then, the algorithm can be rerun
by halving again each interval [4;, B;] and repeat until
the risk bound, proposed in Theorem 5, of the classifier
becomes very large.

As a result, the message string ¢ that we use for any
choice of k consists of that pair of numbers x; and
K} that we have just defined and the pair (I;,s;) of

numbers needed to identify the threshold for each at-
tribute (and hence node) ¢ € k. The risk bound does
not depend on how we actually code ¢ but only on
the a priori probabilities we assign to each possible re-
alization of 0. We choose the following distribution:

gk,d((f) o gk,d(ﬁl, N/pll,sl, .. ~7/‘6|k\7/‘61k\71\k|,3|k\)
= H C(ri)C(R)C(L) - 271 (8)
ick
def

where : ((a) = %(a +1)7? VaeN
The sum over all the possible realizations of o gives 1
since Y o0, i"% = 7?/6. Note that by giving equal a
priori probability to each of the 2% strings s; of length
l;, we give no preference to any threshold value in A;,
once we have chosen an interval [A;, B;] that we believe
is appropriate.

Alternatively, for homogeneous systems where each at-
tribute has the same definition, we could use the same
interval value [A, B] for each attribute. In that case,
gk.a(0) would be defined with only one x and one &’
instead |k| pairs of parameters k;, K.

The distribution ¢ that we have chosen for each string
length [; has the advantage of decreasing slowly so that
the risk bound does not deteriorate too rapidly as [;
increases. Other choices are clearly possible.

This choice of prior enables us to give the following
bound for the decision tree learner:

Theorem 5 Given all our previous definitions and
for any § € (0,1], we have:

Prg.pm {Vk, d,o: R(DXy) <

gk,d(0)d
e T)y 210

where gk.a(o) is given by Equation 8.

Bm(st%:d)

Finally, we emphasize that the risk bound of The-
orem 5, used in conjunction with the distribution
of messages given by gk a(c), provides a guide for
choosing the appropriate tradeoff between the message
length (via gk a(o)) and |k|. Note that the risk bound
for a decision tree with a decision surface having a
small coding string (small /;3) may be smaller than
the risk bound of a sparse tree having a large coding
string (larger [;s).

5. Conclusion

In this paper, we presented a Sample Compression for-
mulation of decision tree learning algorithm and de-

Sample Compression Bounds for Decision Trees

rived generalization risk bounds in the compression
settings. In particular, we derived a pure Sample Com-
pression bound and Occam’s razor bounds for the dis-
crete and continuous valued data. The Compression
bound is minimized when a classifier with the small-
est number of nodes making a small training error is
found. On the other hand, the Occam’s Razor bound
of Theorem 3 is minimized when a classifier that uti-
lizes the smallest message string with low training er-
ror is found. Moreover we noted that the bound of
Theorem 3 is tight especially for decision tree classi-
fiers built on binary valued data.

In contrast to the bounds of Corollary 2 in conjunction
with Equation 4 and Theorem 3, the bound of Theo-
rem 5 spreads the reconstruction information for the
classifier more evenly to perform a non-trivial trade-off
between the size of the tree (sparsity) and the message
string (margin) to find better classifiers. In effect, this
also gives an alternate learning algorithm for decision
trees.

These bounds not only provide tight guarantees in
terms of data-compression but can also lead to a for-
ward algorithm for selecting the optimal size of the
decision-tree. That is, instead of building a full tree
and then pruning it, an alternate approach can be to
compute the risk bound at every step of adding an ad-
ditional node to the tree (traditional greedy approach
combined with model selection using the risk bound)
and adopting a stopping criterion when the risk bound
starts deteriorating. This is a step forward in obtain-
ing theoretically motivated and justifiable algorithms
that can learn by bound minimization. Some success-
ful examples of such algorithms have recently appeared
based on Sample Compression and related approaches
(see e.g. (Shah, 2006)). Moreover, the bounds are
independent of the measures of hypothesis class com-
plexity unlike VC dimension bounds or those based on
Rademacher complexities as discussed in Section 1.

Acknowledgements

The author would like to thank the anonymous re-
viewers and the ICML senior program committee for
their comments and suggestions that helped improve
the paper significantly.

References

Anthony, M., & Bartlett, P. (1999). Neural net-
work learning: Theoretical foundations. Cambridge:
Cambridge University Press.

Bartlett, P., & Mendelson, S. (2002). Rademacher and
Gaussian complexities: Risk bounds and structural

results. Journal of Machine Learning Research, 3,

463-482.

Blum, A., & Langford, J. (2003). PAC-MDL bounds.
Proceedings of 16th Annual Conference on Learning
Theory, COLT 2003, Washington, DC, August 2003
(pp. 344-357). Springer, Berlin.

Blumer, A., Ehrenfeucht, A., Haussler, D., & War-
muth, M. (1987). Occam’s razor. Information Pro-
cessing Letters, 24, 377-380.

Freund, Y. (1998). Self bounding learning algorithms.
COLT: Proceedings of the Workshop on Compu-
tational Learning Theory (pp. 247-258). Morgan
Kaufmann Publishers.

Golea, M., Bartlett, P., Lee, W. S., & Mason, L.
(1998). Generalization in decision trees and DNF:
Does size matter? Advances in Neural Information
Processing Systems. The MIT Press.

Kearns, M., & Mansour, Y. (1998). A fast, bottom-up
decision tree pruning algorithm with near-optimal
generalization. Proc. 15th International Conf. on
Machine Learning (pp. 269-277). Morgan Kauf-
mann, San Francisco, CA.

Langford, J. (2005). Tutorial on practical prediction
theory for classification. Journal of Machine Learn-
ing Research, 3, 273-306.

Langford, J., & Blum, A. (1999). Microchoice bounds
and self bounding learning algorithms. Computa-
tional Learing Theory (pp. 209-214).

Mansour, Y., & McAllester, D. (2000). Generalization
bounds for decision trees. Proc. 13th Annu. Con-
ference on Comput. Learning Theory (pp. 69-80).
Morgan Kaufmann, San Francisco.

Shah, M. (2006). Sample compression, margins and
generalization: Extensions to the set covering ma-
chine. Doctoral dissertation, SITE, University of
Ottawa, Ottawa, Canada.

Shah, M., Sokolova, M., & Szpakowicz, S.
(2006). Process-specific information for learning e-
negotiation outcomes. Fundamenta Informaticae,

74, 351-373.

Vapnik, V. (1982). Estimation of dependences based
on empirical data. New York: Springer-Verlag.

Witten, I. H., & Frank, E. (2005). Data mining: Prac-
tical machine learning tools and techniques, 2nd ed.
San Francisco: Morgan Kaufmann.

