
Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection

Nicole Krämer nkraemer@cs.tu-berlin.de
Mikio L. Braun mikio@cs.tu-berlin.de

Technische Universität Berlin, Franklinstr. 28/29, 10587 Berlin, Germany

Abstract

Kernelizing partial least squares (PLS), an
algorithm which has been particularly pop-
ular in chemometrics, leads to kernel PLS
which has several interesting properties, in-
cluding a sub-cubic runtime for learning, and
an iterative construction of directions which
are relevant for predicting the outputs. We
show that the kernelization of PLS introduces
interesting properties not found in ordinary
PLS, giving novel insights into the workings
of kernel PLS and the connections to kernel
ridge regression and conjugate gradient de-
scent methods. Furthermore, we show how
to correctly define the degrees of freedom for
kernel PLS and how to efficiently compute
an unbiased estimate. Finally, we address
the practical problem of model selection. We
demonstrate how to use the degrees of free-
dom estimate to perform effective model se-
lection, and discuss how to implement cross-
validation schemes efficiently.

1. Introduction

Kernel methods have proven to work extremely well for
a large range of machine learning applications, and a
multitude of different variants exist, ranging from sup-
port vector machines (SVMs) to kernel ridge regression
(KRR). Each of these algorithms comes with its own
strengths and weaknesses. For example, SVMs pro-
duce sparse results permitting fast predictions, while
the complexity of implementing SVMs is significantly
larger than, for example, KRR. On the other hand,
KRR produces non-sparse solutions leading to scala-
bility problems.

On the algorithmic-complexity-vs.-scalability axis,
kernel PLS inhabits an interesting middle position:
Kernel PLS can be implemented in a simple iterative

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

scheme whose runtime scales sub-cubic in the num-
ber of training examples. In each iteration, only an
matrix-vector multiplication is required. In this re-
spect, kernel PLS is similar to using conjugate gradi-
ent type methods for solving KRRs, but as we argue
below, kernel PLS usually converges to a good solution
using fewer steps.

Kernel PLS therefore seems to be a promising addition
to the toolbox of existing kernel methods. However,
some ingredients for making kernel PLS readily avail-
able are still missing, and the goal of this paper is to
address some of these issues.

On the theoretical side, we discuss several properties
of kernel PLS not found in ordinary PLS, which help
to explain how kernel PLS works. We illustrate that
for kernels which can be interpreted as smoothing op-
erators (e.g., Gaussian kernels), kernel PLS can be in-
terpreted as an iterative refinement using smoothed
residuals.

For ordinary PLS, there is a close relationship to con-
jugate gradient (CG) methods, namely that the PLS
solutions are equal to the conjugate gradient approx-
imations applied to the normal equation. We show
that this connection is less strong between kernel PLS
and KRR. In fact, it turns out that kernel PLS and
CG for KRR optimize on the same subspaces, but the
objective function used by kernel PLS is more suited
to regression problems leading to faster convergence of
the solutions.

Finally, for regression methods, the notion of degrees
of freedom characterizes the complexity of the model
well. We discuss how to define the degrees of free-
dom correctly for kernel PLS and propose an efficient
algorithm for computing an unbiased estimate.

On the practical side, the issue of efficient and effec-
tive model selection is of prime importance for applica-
tions. Using the degrees of freedom estimate, we per-
form model selection in a minimum description length
framework. For cross-validation schemes, we discuss
how to efficiently implement testing across different
number of components.

Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection

2. Kernelizing PLS

We briefly introduce the ordinary PLS algorithm and
derive a variant of kernelized PLS. We start with defin-
ing some notation. As usual, we consider a learning
problem with inputs (or predictors) xi and outputs
yi. The data matrix X is the matrix whose rows are
the centered xi. The vector y consists of the cen-
tered outputs yi. The number of observations is de-
noted by n, the number of variables is denoted by d.
The number of PLS components is m. For any set
of linearly independent vectors S = s1, . . . , sk, we
denote by PS the projection onto the space that is
spanned by the vectors si. In matrix notation, we
have P = S

(
ST S

)−1
ST . The kernel matrix XXT

is denoted by K. Furthermore, we set A = XT X
and b = XT y. In the linear case, we consider the
linear regression model y = Xβ + e. We only discuss
PLS for a one-dimensional response, although PLS can
also handle multivariate responses. As we illustrate
below, PLS is closely related to conjugate gradients
and Krylov methods. On this account, we recall the
definition of Krylov subspaces. (For more details on
Krylov spaces see e.g. Golub & Van Loan, 1996) For
a matrix C ∈ Rc×c and c ∈ Rc, we call the set of vec-
tors c,Cc, . . . ,Cm−1c the Krylov sequence of length
m. The space spanned by these vectors is called a
Krylov space and is denoted by

Km (C, c) = span
{
c,Cc, . . . ,Cm−1c

}
.

2.1. Ordinary Partial Least Squares

The main idea of PLS is to build a few orthogonal
components T = (t1, . . . , tm) from the original predic-
tors X and to use them in a least squares regression
in place of X. PLS is similar to principal components
regression (PCR). The difference is that PCR extracts
components that explain the variance in the predictor
variables whereas PLS extracts components that have
a large covariance with y.

A latent component t is a linear combination t = Xw
of the predictor variables. The vector w is called the
weight vector. We want to find a component with max-
imal covariance to y, that is, for the first component
t1 = Xw1, we maximize

w1 = argmax
w∈Rd

wT XT yyT Xw

wT w
= XT y . (1)

Subsequent components t2, t3, . . . are chosen such that
they maximize the squared covariance to y and that
all components are mutually orthogonal. Orthogonal-
ity can be ensured by deflating the original predictor
variables X. That is, we only consider the part of X

that is orthogonal on all components tj , j < i:

Xi = X − Pt1,...,ti−1X . (2)

We then replace X by Xi in (1). This is called the
NIPALS method (Wold, 1975). We remark that there
are different techniques to extract subsequent compo-
nents. More information on different versions of PLS
can be found in Rosipal and Krämer (2006).

In order to predict the output for new observations, we
have to determine the vector of regression coefficients
β̂m defined by

ŷm = Pt1,...,tmy = Xβ̂m .

Therefore, we need a representation of the components
in terms of the original data, i.e.

ti = Xiwi = Xw̃i . (3)

This can be done by exploiting the fact (Manne, 1987)
that the matrix L̃ = T T XW is upper bidiagonal,
i.e. l̃ij = 0 for i > j or i < j − 1. Furthermore, setting
D = diag (1/‖t1‖, . . . , 1/‖tm‖), we have

XW = (TD) (DL̃) . (4)

In particular, the columns of T and the columns of
XW span the same space. Note that (4) is in fact
the QR-factorization of XW . Below, we derive an
efficient algorithm for both kernel PLS and its degrees
of freedom based on this relationship. We conclude
this section by remarking that (Helland, 1988)

Km(A, b) = span (w1, . . . ,wm) , (5)
Km(K,Ky) = span (t1, . . . , tm) . (6)

which already points at the close relationship of PLS
and Krylov spaces.

2.2. Kernel Partial Least Squares

A derivation of PLS in terms of the kernel matrix
K = XXT and y is already defined in Rännar et al.
(1994) in order to speed up the computation of PLS.
The extension of PLS to nonlinear regression and clas-
sification using the kernel trick is proposed in Rosipal
and Trejo (2001) and Rosipal et al. (2003). There, a
more general setting with multivariate output is con-
sidered. For the univariate case, the derivation can
however be simplified. There are different equivalent
possibilities to define the PLS solution in terms of the
Kernel matrix. All of them are based on (6) which
implies that

ŷm = PT y = PKm(K,Ky)y = Kαm . (7)

Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection

Here, αm are the coefficients in the kernel expansion

f(x) =
n∑

i=1

αik(x,xi)

for PLS with m components. In order to compute αm,
we start by defining an ordinary basis T̃ = (t̃1, . . . , t̃m)
of Km(K,Ky). E.g. we might simply choose t̃i =
Kiy. In order to determine αm we first represent
the basis T̃ as T̃ = KR . Let us denote the QR-
factorization of T̃ by T̃ = TL . It follows that

T = T̃L−1 = KRL−1 . (8)

Combining (7) and (8), we obtain

ŷm = TT T y = KRL−1T T y .

It follows that

αm = RL−1T T y .

Although a priori any basis T̃ will do, it is crucial to
derive an algorithm that is computationally efficient.
This can be achieved by exploiting (4). More precisely,
we choose T̃ = XW and derive the QR-factorization
iteratively by exploiting that L̃ is bidiagonal. First,
a kernel representation of T̃ = KR can be derived
by exploiting (2), which implies that wi = XT ri with
ri = y − ŷi. We set t̃i = Xwi = Kri, and derive a
recursive formula for the expansion (recall (3))

ti = Xw̃i =: Kγi .

Note that by definition, ti = (X − Pt1,...,tm) wi. As
L̃ = T T T̃ is upper bidiagonal, we have

ti = t̃i − Pti−1 t̃i ,

from which we conclude that

γi = ri −
tT
i−1t̃i

tT
i−1ti−1

γi−1 .

Finally, we have

ŷi = ŷi−1 + Pti
y = Kαi−1 +

tT
i y

tT
i ti

Kγi .

From this, we derive a recursive formula for αi. The
results are summarized in algorithm 1. To ensure nu-
meric stability, we include the stopping criterium in
line 13.

Note that the formulas in steps 9, 11 and 15 in algo-
rithm 1 are redundant. E.g. for the computation of ti

in step 11, it is computationally more efficient to use
the relationship ti = Kγi. However, for the interpre-
tation of Kernel PLS as an iterative refinement (see
next subsection) and for the estimation of its degrees
of freedom, the recursive formula ti = Kri−Pti−1Kri

is more convenient.

Algorithm 1 Iterative Computation of kernel PLS
1: Input: X, y, number of components m
2: Initialize: K = XXT , α0 = ŷ0 = 0
3: for i = 1, . . . ,m do
4: if i = 1 then
5: ri = γi = y
6: t̃i = ti = Ky
7: else
8: ri = ri−1 − Pti−1y

9: t̃i = Kri[= t̃i−1 −KPti−1y]

10: γi = ri −
tT

i−1
eti

tT
i−1ti−1

γi−1

11: ti = Kγi[= Kri − Pti−1Kri]
12: end if
13: exit if |∠(ti, tj)| > 0.1 for any 1 ≤ j < i

14: αi = αi−1 + tT
i y

tT
i ti

γi

15: ŷi = ŷi−1 + Ptiy[= Kαi]
16: end for

2.3. Kernel PLS as Iterative Refinement

Kernel PLS can also be interpreted as an iterative re-
finement of ŷ using smoothed residuals. In order to
compute ŷi, the ith residual ri = y − ŷi−1 is com-
puted first (line 8). The residual ri is then mapped
through K, and ti is constructed by orthogonalizing
Kri with respect to ti−1 (line 11, due to the bidiag-
onality, ti is then also orthogonal to all t1, . . . , ti−1).
Finally, ŷi is updated by adding the projection of y to
ti (line 15).

The key ingredient here is the application of K to
ri. A component of ri along the eigenvector ui of K
is scaled by the corresponding eigenvalue λi. Since
smooth kernels, as are typically employed in machine
learning, have rapidly decaying eigenvalues, most of
these components will be effectively suppressed, and ti

will reflect only the part of the residual corresponding
to directions with large eigenvalues. It turns out that
this is a very effective strategy for learning. As dis-
cussed by Braun et al. (2007), in a kernel setting, the
relevant information about the outputs y is contained
in a number of leading eigendirections. Kernel PLS
iteratively refines ŷ to minimize the residual on this
subspace, thereby extracting the relevant information
and discarding the noise.

2.4. Kernel PLS vs. Conjugate Gradients

It is well-known that PLS is closely connected to
Krylov subspaces and conjugate gradient (CG) meth-
ods (Lingjærde & Christophersen, 2000; Phatak &
de Hoog, 2002). The connection is given as follows.
The ordinary least-squares problem minβ ‖y −Xβ‖2

Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection

is solved by finding the solution of the associated nor-
mal equation (recall that A = XXT , b = XT y)

Aβ = b . (9)

One can show that applying the CG method to this
equation starting with the initialization β0 = 0 pro-
duces the same solution as PLS (Helland, 1988; Phatak
et al., 2002). The CG method iteratively computes ap-
proximate solutions of (9) by minimizing the quadratic
function

φ(β) =
1
2
βT Aβ − βT b. (10)

along directions that are A-orthogonal. The CG algo-
rithm is also closely related to Krylov subspaces and
the Lanczos algorithm (Lanczos, 1950). One can show
that the CG algorithm minimizes (10) over the Krylov
spaces. It follows from (4) that the PLS estimate β̂m

obtained after m steps is obtained by minimizing φ
over Km(A, b)

β̂m = argmin
β∈Km(A,b)

‖y −Xβ‖2

= argmin
β∈Km(A,b)

(
1
2
βT Aβ − βT b

)
.

(11)

This connection is remarkable since Krylov spaces are
also known to allow good approximations of leading
eigenvalues and eigenspaces in the context of Lanczos
methods, such that PLS can be interpreted of mak-
ing use of low-rank approximations to K in a simi-
lar spirit as principal component regression, which ap-
proximates K by restricting K to the exact leading
eigenspaces.

In the context of kernel PLS, a similar result concern-
ing the Krylov spaces holds. Using (6), we conclude
that the mth kernel PLS solution can be written as

αm = argmin
α∈Km(K,y)

‖y −Kα‖2

= argmin
α∈Km(K,y)

(
1
2
αT K2α−αT Ky

) (12)

While this term looks very similar to conjugate gra-
dient applied to the equation K2α = Ky, note
that the Krylov-space is different, since it should read
Km(K2,Ky) for CG.

Using the conjugate gradients approach to the solution
of kernel ridge regression (KRR) leads to optimization
over the same Krylov spaces, however with a different
objective function. In KRR, we have to solve

(K + λI)α = y ,

for some λ > 0. Since explicitly inverting the matrix
is impractical for large numbers of examples, one al-
ternative consists in solving this equation iteratively
using the CG method. This often leads to a signif-
icant reduction in computation time since one itera-
tion only requires a matrix-vector operation (and addi-
tional vector-vector operations). Furthermore, the CG
method is guaranteed to converge to the optimal solu-
tion after n steps, but usually converges much faster.

Now if we compare the CG cost function for the KRR
problem, we get that (with Kλ = K + λI)

φKRR(α) =
1
2
αT Kλα−αT y

=
1
2
(Kλα− y)T K−1

λ (Kλα− y) + const.

Comparing φKRR with (12), we see that both methods
minimize the sum of squared residual, however, CG ap-
plied to KRR (CG-KRR) rescales the errors by K−1

λ ,
leading to an amplification of the error along direc-
tions of small eigenvalues of K of up to 1/λ, emphasiz-
ing some components of the residual. In other words,
the intermediate solutions of CG applied to KRR tries
to find a solution with higher accuracy than actually
specified by the optimization problem.

Practically, this results in larger errors and more it-
erations necessary to obtain a good solution com-
pared to kernel PLS. Consider the following example.
We draw 100 inputs Xi uniformly from [−π, π], and
Yi = sinc(Xi) + εi with εi being normally distributed
and having standard deviation 1/10. We choose an
rbf-kernel of width 1/2 and set λ = 10−3. Both ker-
nel PLS and CG-KRR find good solutions after 10
iterations. Comparing the resulting fit functions for
CG-KRR and kernel PLS (Figures 1(a) and 1(b)), one
can see that the kernel PLS solutions converge faster.
This is also reflected by the sum of squared residuals
(Figure 1(c)). The observations on the different objec-
tive functions is also reflected by Figure 1(d), which
plots the difference between α5 and α10 decomposed
by eigenvector directions of K. One can see that kernel
PLS is more accurate in the leading eigenvectors, and
less accurate on the directions corresponding to small
eigenvectors, while the CG-KRR solutions distributes
the error more evenly. By mapping α through K, any
information contained in directions corresponding to
small eigenvalues is discarded anyway, such that ker-
nel PLS leads to better fits.

3. Degrees of Freedom

In kernel PLS, both the number of PLS compo-
nents and the kernel parameters have to be estimated.

Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

(a) CGs applied to KRR

−4 −3 −2 −1 0 1 2 3 4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) Kernel PLS

0 2 4 6 8 10
10

0

10
1

10
2

number of components

su
m

 o
f s

qu
ar

ed
 re

si
du

al
s

cg
kpls

(c) sum of squared residuals

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

eigenvectors of the kernel matrix

su
m

 o
f s

qu
ar

ed
 re

si
du

al
s

cg
kpls

(d) residual by eigendirections

Figure 1. Comparing kernel PLS to conjugate gradients
(CG) applied to kernel ridge regression (KRR).

Roughly, we can distinguish between two approaches
for model selection.

The k-fold cross-validation method is based on a re-
peated random splitting of the sample into training
and test data. As kernel PLS has a sub-cubic run-
time for learning, cross-validation is very efficient as
long as k is not too large. The runtime of leave-one-
out-cross-validation (i.e. k = n) is however cubic in
the number of samples, and in contrast to, e.g., kernel
ridge regression, there is no efficient computation in
terms of generalized cross-validation (Wahba, 1990).
This is mainly due to the fact that kernel PLS is not
linear in the sense that ŷ depends nonlinearly on y.

Information criteria rely on the fact that the true error
of a model can be estimated in terms of its training
error and its complexity. In regression problems, the
complexity is defined in terms of degrees of freedom.
For any regression method that fits the response data
y by a vector ŷ, Efron (2004) defines

df = Ey

[
trace

(
∂ŷ

∂y

)]
.

Note that if ŷ is linear in y, i.e. there is a n × n ma-
trix H (called the hat-matrix) such that ŷ = Hy,
we retrieve df = trace(H), which coincides with the
well-known definition given in Hastie and Tibshirani
(1990). We obtain an unbiased estimate of the degrees
of freedom via

d̂f = trace
(

∂ŷ

∂y

)
.

Degrees of freedom are not only relevant for model
selection, they also allow us to quantify the intrinsic
complexity of a regression method. As kernel PLS
depends nonlinearly on y (via T), we derive the esti-
mated degrees of freedom by an explicit computation
of the first derivative of ŷm. In contrast to Phatak
et al. (2002), who compute the first derivative of β̂m

based on relationship (11) (which turns out to be ex-
tremely time consuming and numerically instable), we
follow the iterative approach of Serneels et al. (2004)
for the derivative of β̂m, and make explicit use of the
recursive definition of kernel PLS of Algorithm 1. To
this end, we have to determine the first derivative of
the projection operator Pvz = v

(
vT v

)−1
vT z, with

both vectors v and z depending on y.
Theorem 1. The first derivate of Pvz is

∂Pvz

∂y
=

1
vT v

(
vzT + vT zIn

)
(In − Pv)

∂v

∂y
+ Pv

∂z

∂y
.

Proof. We split the computation of the derivative into
two parts by using the fact that after normalization of

Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection

the vector v via v ← v/‖v‖, the projection operator is
simply vvtz. Using elementary calculus, we see that

∂ (v/‖v‖)
∂y

=
1
‖v‖

(In − Pv)
∂v

∂y
.

Furthermore, using the product rule, we have

∂
(
vvT z

)
∂y

=
(
vzT + vT zIn

) ∂v

∂y
+ vvT ∂z

∂y
.

Combining these two results via the chain rule, we
obtain the desired result.

We can now derive the degrees of freedom of kernel
PLS by using Theorem 1 and by differentiating the
recursive formulas in Algorithm 1. This is displayed
in Algorithm 2. Figure 2 illustrates the behavior of

Algorithm 2 Kernel PLS with first derivative of PLS
Input: K, y, m
Initialize: ŷ0 = α0 = 0n, ∂ by0

∂y = 0n×n

for i = 1, . . . ,m do
if i = 1 then

ri = γi = y
t̃i = ti = Ky
∂ti

∂y = ∂eti

∂y = K
else

ri = ri−1 − Pti−1y

t̃i = Kri = t̃i−1 −KPti−1y
∂eti

∂y = ∂eti−1
∂y −K

(
∂Pti−1y

∂y

)
γi = ri −

tT
i−1

eti

tT
i−1ti−1

γi−1

ti = Kγi = t̃i − Pti−1 t̃i

∂ti

∂y = ∂eti

∂y −
∂Pti−1

eti

∂y
end if
exit if |∠(ti, tj)| > 0.1 for any 1 ≤ j < i

αi = αi−1 + tT
i y

tT
i ti

γi

ŷi = Kαi = ŷi−1 + Ptiy
∂ byi

∂y = ∂ byi−1
∂y + ∂Pti

y

∂y
end for

the degrees of freedom of kernel PLS. We use the sinc-
data introduced in Section 2.4. We use rbf kernels
with bandwidths 1/2 and 1/10 respectively. Keep-
ing the input data X fixed, we generate the output
y 100 different times (using a standard deviation of εi

of 1/10) and estimate the degrees of freedom of kernel
PLS. The graphs in Figure 2 depict the mean degrees
of freedom and their boxplots.

In both cases the degrees of freedom is a concave func-
tion, i.e., the degrees of freedom of kernel PLS exceed
the number of components. To our experience from

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

16

18

20

number of components

es
tim

at
ed

 d
eg

re
e

of
 fr

ed
om

s

(a) Rbf kernel with width 1/2

0 5 10 15 20
0

10

20

30

40

50

60

number of components
es

tim
at

ed
 d

eg
re

e
of

 fr
ed

om
s

(b) Rbf kernel with width 1/10

Figure 2. Estimated degrees of freedom for Kernel PLS.

simulated and real world data, the concavity of the
graphs is typical for kernel PLS. This supports the
conjecture voiced by Frank and Friedman (1993) that
df ≥ m. In particular, applying the näıve approach
df(PLS) = m tends to underestimate the complexity
of kernel PLS and is expected to choose models param-
eters that overfit. In the next section, we compare the
performance of kernel PLS with three different infor-
mation criteria for model selection. We use the Akaike
information criterion (AIC), the Bayesian information
criterion (BIC) and generalized minimum description
length (Hansen & Yu, 2001), which is defined as

gMDL =
n

2
log S +

d

2
log F +

1
2

log n,

S = RSS/(n− d), F = (yT y −RSS)/dS,

where RSS stands for the residual sums of squares.

4. Experiments

We now present experimental results for the proposed
model selection schemes. We will also discuss how
to efficiently implement these procedures practically.
Note that we do not want to prove the competitive-
ness of kernel PLS. This has been done before, e.g. by
Rosipal and Trejo (2001).

Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection

We compare three sets of model selection schemes:
(1) the AIC, BIC, and gMDL methods based on our
degrees of freedom estimate, (2) leave-one-out cross-
validation as a baseline, and (3) 5-fold cross-validation
as a computationally faster variant.

In order to implement cross-validation schemes effi-
ciently for kernel PLS, note that the iterative compu-
tation of kernel PLS from Algorithm 1 not only com-
putes the final parameter vector for m components,
but also computes all αi for 1 ≤ i ≤ m. Therefore,
one computation allows to compute the test errors for
all choices up to m components. Since the main algo-
rithm requires O(mn2) computations, it follows that
the leave-one-out cross-validation error can be com-
puted in O(mn3) for a given kernel and all numbers
of components up to m. This computational complex-
ity is similar to that of computing the leave-one-out
cross-validation error for KRR in closed form (Wahba,
1990). For k-fold cross-validation, the computational
cost become significantly better, as the runtime is of
order O(kmn2).

The degrees of freedom estimate also computes all in-
termediate quantities, such that all degrees of freedom
can be computed at once. However, the algorithm in-
volves one matrix-matrix multiplication, such that the
overall complexity is practically cubic (although the
theoretical run-time is sub-cubic). Note that matrix-
matrix multiplications can be parallelized efficiently
in contrast to matrix inversions. In summary, all
m degrees of freedom estimates can be computed in
O(mn3).

As data sets, we chose the “bank” and “kin” regres-
sion data sets from the delve repository1. Both data
sets are synthetic data sets generated from simula-
tions. The bank data set models customers waiting
in a queue, and the tasks consists in predicting the
percentage of customers who loose their patience be-
fore arriving at the head of the queue. The kin data
set is based on a model of a robotic arm, and the task
consists in predicting the position of the arm based on
the angles of its joints. The data sets come in four
different flavors, “fh”, “fm”, “nh”, “nm”, where “f”
indicates fairly linear connection between inputs and
outputs, “n” non-linear connection, “h” “high noise”,
and “m” medium levels of noise. Both data sets are
eight-dimensional, and consist of 8192 data points.

For our experiments, the data sets are split into 20
realizations of 100 training examples and 8092 test ex-
amples. Furthermore, the inputs are normalized to
lie in the interval [−1, 1]. We use a Gaussian ker-

1http://www.cs.toronto.edu/˜delve

nel with widths chosen from 20 logarithmically spaced
points between 1 and 104, and the maximum number
of components are set to 50. Both kernel width and
the number of components are chosen using the respec-
tive model selection criterion. Tables 1 and 2 show the
resulting mean squared errors and standard deviations
over the 20 realizations.

As we expected, leave-one-out cross-validation leads
to the best performances. While the AIC and BIC
perform poorly on the data sets, the gMDL criterion
is on par with leave-one-out cross-validation. But also
the computationally much more efficient 5-fold cross-
validation still leads to comparably good results.

In summary, we see that the gMDL criterion leads to
effective model selection giving further evidence for the
practical relevance of our degrees of freedom estima-
tor. On the cross-validation side, even the relatively
coarse, but fast, 5-fold cross validation performs well.
The additional benefit of the gMDL criterion is that it
also produces a degrees of freedom estimate which can
then be used to compare kernel PLS to other (linear)
methods. Both methods lead to performances on par
to those achieved by leave-one-out cross-validation.

5. Conclusions

We have discussed several topics related to kernel PLS
relevant to the more widespread adoption of kernel
PLS in a machine learning setting. It has turned out
that kernel PLS has some interesting properties not
shared with ordinary PLS, allowing for alternative in-
terpretations of the algorithm beyond co-optimizing
covariance. Furthermore, we have addressed practical
issues including efficient implementations, estimation
of degrees of freedom, and model selection, using ei-
ther degrees of freedom or cross-validation based cri-
teria. In practical experiments, we have shown how to
perform efficient and effective model selection.

References

Braun, M. L., Buhmann, J. M., & Müller, K.-R.
(2007). Denoising and Dimension Reduction in Fea-
ture Space. Advances in Neural Information Pro-
cessing Systems 19. Cambridge, MA: MIT Press.

Efron, B. (2004). The Estimation of Prediction Error:
Covariance Penalties and Cross-Validation. Journal
of the American Statistical Association, 99, 619–633.

Frank, I., & Friedman, J. (1993). A Statistical View of
Some Chemometrics Regression Tools. Technomet-
rics, 35, 109–135.

Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection

Table 1. Results on the “bank” data set (best result, on par = within 2× standard deviation of best result)

Method fh fm nh nm

AIC 9.38 ± 2.49 ×10−3 4.18 ± 1.71 ×10−3 6.09 ± 1.11 ×10−3 1.77 ± 0.17 ×10−3

BIC 6.25 ± 0.58 ×10−3 2.18 ± 0.41 ×10−3 4.32 ± 0.75 ×10−3 1.23 ± 0.17 ×10−3

gMDL 6.25 ± 0.58 ×10−3 2.16 ± 0.38 ×10−3 4.00 ± 0.43 ×10−3 1.23 ± 0.17 ×10−3

5-fold CV 6.29 ± 0.46 ×10−3 2.31 ± 0.44 ×10−3 4.16 ± 0.56 ×10−3 1.16 ± 0.11 ×10−3

LOO-CV 6.30 ± 0.53 ×10−3 2.28 ± 0.35 ×10−3 4.12 ± 0.65 ×10−3 1.18 ± 0.16 ×10−3

Table 2. Results on the “kin” data set (best result, on par = within 2× standard deviation of best result)

Method fh fm nh nm

AIC 3.17 ± 0.43 ×10−2 2.99 ± 0.47 ×10−2 6.92 ± 0.33 ×10−2 4.91 ± 0.46 ×10−2

BIC 2.44 ± 1.37 ×10−2 2.77 ± 7.15 ×10−3 6.92 ± 0.33 ×10−2 4.91 ± 0.46 ×10−2

gMDL 2.31 ± 0.15 ×10−3 4.84 ± 0.51 ×10−4 5.73 ± 1.07 ×10−2 4.84 ± 0.91 ×10−2

5-fold CV 2.29 ± 0.12 ×10−3 4.38 ± 0.65 ×10−4 5.14 ± 0.53 ×10−2 4.23 ± 0.32 ×10−2

LOO-CV 2.30 ± 0.17 ×10−3 4.60 ± 0.36 ×10−4 5.26 ± 0.63 ×10−2 4.19 ± 0.30 ×10−2

Golub, G., & Van Loan, C. (1996). Matrix Computa-
tions. Johns Hopkins University Press.

Hansen, M., & Yu, B. (2001). Model Selection and
Minimum Descripion Length Principle. Journal of
the American Statistical Association, 96, 746–774.

Hastie, T., & Tibshirani, R. (1990). Generalized Ad-
ditive Models. Chapman and Hall, London.

Helland, I. (1988). On the Structure of Partial Least
Squares Regression. Communications in Statistics,
Simulation and Computation, 17, 581–607.

Lanczos, C. (1950). An Iteration Method for the Solu-
tion of the Eigenvalue Problem of Linear Differential
and Integral Operators. Journal of Research of the
National Bureau of Standards, 45, 225–280.

Lingjærde, O., & Christophersen, N. (2000). Shrinkage
Structure of Partial Least Squares. Scandinavian
Journal of Statistics, 27, 459–473.

Manne, R. (1987). Analysis of Two Partial-Least-
Squares Algorithms for Multivariate Calibration.
Chemometrics and Intelligent Laboratory Systems,
2, 187–197.

Phatak, A., & de Hoog, F. (2002). Exploiting the Con-
nection between PLS, Lanczos Methods and Conju-
gate Gradients: Alternative Proofs of Some Proper-
ties of PLS. Journal of Chemometrics, 16, 361–367.

Phatak, A., Rilley, P., & Penlidis, A. (2002). The
Asymptotic Variance of the Univariate PLS Esti-
mator. Linear Algebra and its Applications, 354,
245–253.

Rännar, S., Lindgren, F., Geladi, P., & Wold, S.
(1994). A PLS Kernel Algorithm for Data Sets with
many Variables and Fewer Objects, Part I: Theory
and Applications. Journal of Chemometrics, 8, 111–
125.

Rosipal, R., & Krämer, N. (2006). Overview and Re-
cent Advances in Partial Least Squares. In Sub-
space, latent structure and feature selection tech-
niques, Lecture Notes in Computer Science, 34–51.
Springer.

Rosipal, R., & Trejo, L. (2001). Kernel Partial Least
Squares Regression in Reproducing Kernel Hilbert
Spaces. Journal of Machine Learning Research, 2,
97–123.

Rosipal, R., Trejo, L., & Matthews, B. (2003). Kernel
PLS-SVC for Linear and Nonlinear Classification.
Proceedings of the Twentieth International Confer-
ence on Machine Learning (pp. 640–647). Washing-
ton, DC.

Serneels, S., Lemberge, P., & Espen, P. V. (2004). Cal-
culation of PLS Prediction Intervals Using Efficient
Recursive Relations for the Jacobian Matrix. Jour-
nal of Chemometrics, 18, 76–80.

Wahba, G. (1990). Spline Models For Observational
Data. Society for Industrial and Applied Mathe-
matics.

Wold, H. (1975). Path models with Latent Variables:
The NIPALS Approach. In et H. B. al. (Ed.),
Quantitative Sociology: International Perspectives
on Mathematical and Statistical Model Building,
307–357. Academic Press.

