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Abstract

The large number of genes and the relatively
small number of samples are typical charac-
teristics for microarray data. These charac-
teristics pose challenges for both sample clas-
sification and relevant gene selection. The
support vector machine (SVM) is a widely
used classification technique, and previous
studies have demonstrated its superior clas-
sification performance in microarray analy-
sis. However, a major limitation is that the
SVM can not perform automatic gene selec-
tion. To overcome this limitation, we pro-
pose the hybrid huberized support vector ma-
chine (HHSVM). The HHSVM uses the hu-
berized hinge loss function and the elastic-net
penalty. It has two major benefits: 1. auto-
matic gene selection; 2. the grouping effect,
where highly correlated genes tend to be se-
lected/removed together. We also develop an
efficient algorithm that computes the entire
regularized solution path for HHSVM. We
have applied our method to real microarray
data and achieved promising results.

1. Introduction

The DNA microarray technology is a powerful tool for
biological and medical research. It can detect thou-
sands of gene expression levels simultaneously, provid-
ing a wealth of information. On the other hand, how-
ever, microarray data sets usually contain only a small
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number of samples. These characteristics pose great
challenges for sample classification and gene selection.
In the previous studies, many machine learning tech-
niques have been applied to microarray analysis, for
example, the penalized logistic regression, the boost-
ing algorithm, the support vector machine (SVM),
the nearest neighbor method. The SVM is one of
the most effective methods for microarray classifica-
tion (Mukherjee et al., 2000; Guyon et al., 2002; Ra-
maswamy et al., 2001); however, its major limitation
is that the SVM can not perform automatic variable
selection. Since in microarray analysis people are also
interested in identifying the informative genes, it is
desirable to have a tool that can achieve both classifi-
cation and variable selection simultaneously.

Guyon et al. (2002) proposed the recursive feature
elimination (RFE) method to overcome this limitation
of the SVM. The method, called the SVM-RFE, recur-
sively eliminates irrelevant genes. At each iteration,
the SVM-RFE trains for an SVM classifier, ranks the
genes according to some score function and eliminates
one or more genes with the lowest ranking scores. This
process is repeated until a small number of variables
are left in the model. However, the SVM-RFE is com-
putationally intensive, especially for microarray data,
which include a large number of variables. Bradley
and Mangasarian (1998) proposed the L1-norm SVM,
which can perform variable selection using the L1-
norm regularization. The L1-norm SVM, however,
also has its limitations. Firstly, due to the L1-norm
penalty function, the number of selected variables is
upper bounded by the sample size. Therefore, when
the number of relevant variables exceeds the sample
size, it can only discover a portion of them. Secondly,
for the highly correlated and relevant variables, the
L1-norm SVM tends to pick only one or few of them.
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In this paper, we propose the hybrid huberized sup-
port vector machine (HHSVM) for microarray clas-
sification. The HHSVM has the form of “loss” +
“penalty”, where it uses the huberized hinge loss func-
tion to measure misclassification and the elastic-net
penalty to control the complexity of the model. The
HHSVM has two major benefits:

• It performs automatic variable selection;

• It has the grouping effect (Zou & Hastie, 2005),
where highly correlated variables tend to be se-
lected or removed together.

Inspired by the LAR/LASSO method (Efron et al.,
2004) and the general piece-wise linear solution path
strategy of Rosset and Zhu (2006) , we develop an effi-
cient algorithm, which solves the optimal solutions for
every possible value of the regularization parameter.

The rest of the paper is organized as follows: in Section
2, we describe the HHSVM model; in Section 3, we
develop the solution path algorithm; in Section 4, we
apply the HHSVM method to real microarray data
sets; and we conclude the paper with Section 5.

2. Model

2.1. The Support Vector Machine

The support vector machine (SVM) is a widely used
tool for 2-class classification and it is inspired by the
idea of maximizing the geometric margin (Vapnik,
1995; Cortes & Vapnik, 1995). This section provides
a brief review of the SVM and interested readers can
refer to (Burges, 1998; Scholkopf et al., 1999) for de-
tailed tutorials. Let {x1,x2, ...,xn} represent the n in-
put vectors, where xi ∈ R

p, and let {y1, y2, ..., yn} be
the corresponding output labels, where yi ∈ {1,−1}.
The SVM solves the following optimization problem:

max
β0,β

1

‖β‖2
2

(1)

s.t. yi(β0 + xT
i β) ≥ 1 − εi (2)

n∑

i=1

εi ≤ C (3)

εi ≥ 0, for i = 1, 2, . . . , n, (4)

where εi (i = 1, ..., n) are slack variables. C ≥ 0 is a
tuning parameter, and it controls the overlap between
the two classes of input data. After solving the opti-
mal solution β̂0 and β̂, a point with input vector x is
assigned with the label sign(β̂0 + xT β̂).

Many researchers have recognized that the SVM
can be equivalently transformed into the “loss” +

“penalty” format:

min
β0,β

n∑

i=1

[1 − yi(β0 + xT
i β)]+ +

λ

2
‖β‖2

2, (5)

where the loss function (1−t)+ = max(1−t, 0) is called
the hinge loss and the “penalty” is the L2-norm func-
tion of the fitted coefficients. λ ≥ 0 is a regularization
parameter, which controls the balance between the
“loss” and the “penalty”. The same L2-norm penalty
has also been used in the ridge regression (Hoerl &
Kennard, 1970) and neural networks. By shrinking
the magnitude of the coefficients, the L2-norm penalty
reduces the variance of the estimated coefficients and
achieves the bias-variance trade-off, resulting in better
prediction accuracy.

2.2. The L1-norm SVM

The L1-norm penalty was first used in the LASSO
method (Tibshirani, 1996) for regression analysis. In-
spired by this idea, Bradley and Mangasarian (1998)
proposed the L1-norm SVM. It replaces the L2-norm
penalty in the standard SVM with the L1-norm
penalty:

min
β0,β

n∑

i=1

[1 − yi(β0 + xT
i β)]+ + λ‖β‖1 (6)

Similar to the L2-norm penalty, the L1-norm penalty
can reduce the variance of the estimates and improve
the prediction accuracy. Furthermore, it has a unique
property: performing automatic variable selection.
Because of the nature of the L1-norm function, when
λ1 is large enough, it tends to reduce the coefficients of
irrelevant variables to exactly zero. Therefore, when λ
increases, more and more irrelevant variables are elim-
inated from the model, achieving automatic variable
selection. This is desirable for microarray analysis,
where scientists are often interested in identifying the
relevant variables.

2.3. The Hybrid Huberized SVM

Zou and Hastie (2005) argue that the L1-norm penalty
has two major limitations:

1. The number of variables selected by the L1-norm
penalty is upper bounded by the sample size n.
In microarray analysis we nearly always have the
case p ≫ n, but the L1-norm SVM can identify
at most n relevant genes;

2. For highly correlated and relevant variables, the
L1-norm penalty tends to select only one or few
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of them. In microarray analysis, genes sharing
the same biological pathway tend to have highly
correlated expression levels. It is often desirable
to identify all of them if they are related to the
underlying biological process.

To overcome these limitations, Zou and Hastie (2005)
propose the elastic-net penalty:

λ1‖β‖1 +
λ2

2
‖β‖2

2,

which is a hybrid between the L1-norm and the L2-
norm penalties. The elastic-net penalty retains the
benefits of the L1-norm penalty, but the number of
variables that it can select is no longer bounded by n.
Another nice property of the elastic-net penalty is that
it tends to generate similar coefficients for the highly
correlated variables (grouping effect); hence, highly
correlated variables tend to be selected or removed to-
gether.

In this paper, we apply the elastic-net penalty to the
SVM and propose the hybrid huberized support vector
machine (HHSVM):

min
β0,β

n∑

i=1

ℓH

(
yi(β0 + xT

i β)
)

+ λ1‖β‖1 +
λ2

2
‖β‖2

2, (7)

where λ1, λ2 ≥ 0 are regularization parameters. In-
creasing λ1 tends to eliminate more irrelevant vari-
ables; and increasing λ2 makes the grouping effect
more prominent, which will be illustrated by the the-
orem at the end of this section.

Notice that instead of using the standard hinge loss
function of the SVM, we use the huberized hinge loss
function (Rosset & Zhu, 2006) to measure misclassifi-
cation:

ℓH(t) =






0, for t > 1;
(1−t)2

2δ
, for 1 − δ < t ≤ 1;

1 − t − δ
2 , for t ≤ 1 − δ,

where δ ≥ 0 is a pre-specified constant.

Figure 1 compares the standard hinge loss function
and the huberized hinge loss function. Notice that
they have a similar shape when yf is negative (mis-
classification): they both increase linearly as yf de-
creases. Therefore, the classification performance of
these two functions should be similar to each other.
Also notice that the huberized hinge loss function is
differentiable everywhere, which is not the case for the
hinge loss function. As shown in the next section, this
differentiability can significantly reduce the computa-
tional cost for the HHSVM algorithm, especially for
the initial setup.

Figure 1. The Hinge and Huberized Hinge Loss Functions
(δ = 2). Note that the Elbow corresponds to the region
(1− δ, 1]; the Left and the Right correspond to the regions
(−∞, 1 − δ] and (1,∞), respectively.

Before delving into details for the HHSVM algorithm,
we illustrate the grouping effect with the following the-
orem:

Theorem 1 Let β̂0 and β̂ denote the optimal solution
for problem (7). For any pair (j, j′), we have

|β̂j − β̂j′ | ≤ 1

λ2
‖xj − xj′‖1 =

1

λ2

n∑

i=1

|xij − xij′ |

If the input vector xj and xj′ are centered and nor-
malized, then

|β̂j − β̂j′ | ≤
√

n

λ2

√
2(1 − ρ),

where ρ is the sample correlation between xj and xj′ .

Due to the lack of space, we skip the proof in this man-
uscript. Theorem 1 suggests that highly correlated
variables tend to have similar estimated coefficients;
hence, they tend to be selected or removed together
when λ2 is sufficiently large.

3. Algorithm

The HHSVM involves two tuning parameters λ1 and
λ2. According to our experience, the prediction perfor-
mance is often more sensitive to λ1, since it has more
impact on selecting variables; therefore, the value of
λ1 must be chosen more carefully. For parameter tun-
ing, people usually specify a number of candidates,
test each of them and choose the best one according
to some criterion. However, this trial-and-error ap-
proach is computationally expensive and the optimal
parameter setting can be easily missed. In this paper,
we propose an efficient algorithm, which solves the op-
timal solutions for every possible value of λ1. The al-
gorithm is based on the fact that the solution (β̂0, β̂)
is a piece-wise linear function (in a multi-dimensional
space) of λ1.
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3.1. Problem Setup

Since the huberized hinge loss function has different
definitions in different regions, for simplicity we define
each region as:

• R = {i : yif(xi) > 1} (Right),

• E = {i : 1 − δ < yif(xi) ≤ 1} (Elbow),

• L = {i : yif(xi) ≤ 1 − δ} (Left),

where f(xi) = β0 + xT
i β. We also define the indices

for non-zero βj as the active set A:

• A = {j : βj 6= 0, j = 1, 2, ..., p} (Active).

Since problem (7) is an unconstrained convex opti-
mization problem, for any optimal solution the deriv-
atives of its objective function must be zero. Setting
the derivative with respect to β0 to zero, we get:

∑

i∈E

1

δ
(β0 + xT

i β − yi) −
∑

i∈L

yi = 0 (8)

Setting the derivative with respect to βj (j ∈ A) to
zero, we get:

∑

i∈E

1

δ
(β0 + xT

i β − yi)xij −
∑

i∈L

yixij +

λ2βj + λ1sign(βj) = 0, for j ∈ A (9)

In the linear system (8)-(9), there are |A|+1 unknowns
and |A|+1 equations, where |A| represents the number

of elements in set A. So, the optimal solution β̂0 and
β̂j (j ∈ A) can be uniquely determined, given that the
system is nonsingular.

When sets L, E ,R and A are fixed, the structure for
equation (8)-(9) is also fixed. Under this condition, β̂0

and β̂j (j ∈ A) are linear functions of λ1, which can
be seen from (9). However, as λ1 keeps decreasing,
sooner or later some of the sets L, E ,R and A will
change. We call this an event. After an event occurs
the new β̂0 and β̂j (j ∈ A) are still linear functions of
λ1, but their derivatives with respect to λ1 will change.
Therefore, the entire optimal solution path is piece-
wise linear in λ1, and between any two consecutive
events, β̂0 and β̂j (j ∈ A) change linearly with λ1.
Each event corresponds to a kink on the piece-wise
linear solution path.

Our algorithm starts from λ1 → ∞; continuously de-
creases λ1; solves the optimal solutions along this path;
and terminates if λ1 reaches 0 or some other stopping

Table 1. Outline of the HHSVM Algorithm

Initialization: Calculate β0

0 , β0

j (j = 1, ..., p), λ0

1,
A

0, L0,R0, E0 according to Section 3.2

and set k = 0;
Step 1: Solve the linear system (11)-(12);
Step 2: Calculate ∆λ1 and determine the next

event according to Section 3.3;

Step 3: If the stopping criterion is met, then

stop the algorithm;

Step 4: Otherwise, let k = k + 1 and update βk
0 ,

βk
j (j = 1, ..., p), λk

1 , A
k, Lk,Rk and E

k

according to Section 3.3;

Step 5: Goto Step 1;

criterion is met. The algorithm provides the optimal
solutions on each kink. For any λ1 between two con-
secutive kinks, the solution can be precisely obtained
using linear interpolation. Table 1 shows the outline
of the HHSVM algorithm.

3.2. Initial Solution

The algorithm starts from λ1 → ∞. From the objec-
tive function of problem (7), we can see that β = 0 at
this stage. So, the problem can be reduced to:

min
β0

n∑

i=1

ℓH (yiβ0) , (10)

which involves only one parameter β0. Since the hu-
berized hinge loss function is convex and differentiable
everywhere, this one-variable optimization problem
can be easily solved. Let β̂0 represent the optimal
solution. In fact, we can develop the analytical solu-
tion for β̂0, but due to the lack of space, we skip the
details.

When λ1 → ∞, A = Φ (β = 0) and sets L, E
and R can be determined using the values of yiβ̂0

(i = 1, ..., n). Reducing λ1 tends to increase the mag-
nitude of β, and we can find a critical point, denoted as
λ∗

1, where exactly one βj (j = 1, ..., p) joins A. The pa-
rameter will become non-zero if λ1 is further reduced.

Since equation (9) must hold for any j ∈ A, we can
determine the critical point λ∗

1 by:

λ∗
1 = max

j∈{1,..,p}

(
|
∑

i∈E

1

δ
(β̂0 − yi)xij −

∑

i∈L

yixij |
)

At the critical point, A contains exactly one element
(A = {j∗}), and this element j∗ can be identified as:

j∗ = argmaxj∈{1,..,p}

(
|
∑

i∈E

1

δ
(β̂0 − yi)xij −

∑

i∈L

yixij |
)
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From equation (9), the sign for βj∗ is:

sign(βj∗) = sign

(
−
∑

i∈E

1

δ
(β̂0 − yi)xij∗ +

∑

i∈L

yixij∗

)

Let the superscript k indicate the iteration number
and assume k = 0 at the initial stage. Now, we have
Ak = {j∗}, βk

0 = β̂0, βk
j = 0 (j = 1, ..., p), λk

1 = λ∗
1,

and Lk,Rk, Ek are determined by yiβ̂0 (i = 1, ..., n).

We note that the initial conditions can be easily solved
here because of the differentiability of the huberized
hinge loss function; however, this is not the case for
the hinge loss function. Since the hinge loss is not dif-
ferentiable everywhere, it is difficult to determine the
critical point λ∗

1 and the corresponding A,L, E and R
at the initial stage. Zhu et al. (2004) proposed an ap-
proach for solving the initial solution for the L1-norm
SVM. The approach was based on linear programming,
and it is can be computationally intensive, especially
when p is large.

3.3. Solution Path

The algorithm continuously decreases λ1 until it
reaches 0. Let λ1 = λk

1 + ∆λ1, where ∆λ1 < 0. When
λ1 is reduced by a small enough step, sets L, E ,R and
A do not change, because of their continuity with re-
spect to λ1. Therefore, based on system (8)-(9), the
derivatives of β0 and βj (j ∈ A) with respect to λ1 can
be solved from the following equations:

∑

i∈E

(
∆β0

∆λ1
+
∑

k∈A

xik

∆βk

∆λ1
) = 0 (11)

∑

i∈E

1

δ
(
∆β0

∆λ1
+
∑

k∈A

xik

∆βk

∆λ1
)xij + λ2

∆βj

∆λ1

+ sign(βj) = 0, for j ∈ A (12)

Since there are |A|+1 unknowns and |A|+1 equations,
∆β0

∆λ1
and

∆βj

∆λ1
(j ∈ A) are uniquely determined, given

that the system is nonsingular. When |∆λ1| is suf-
ficiently small, the optimal solution and fitted values
are linear in λ1:

β0 = βk
0 +

∆β0

∆λ1
(λ1 − λk

1)

βj = βk
j +

∆βj

∆λ1
(λ1 − λk

1), for j ∈ A

f(xi) = fk(xi) +



∆β0

∆λ1
+
∑

j∈A

∆βj

∆λ1



 (λ1 − λk
1)

If we keep reducing λ1, some of the sets L, E ,R and A
will change. We call this an event, and four types of
events may occur:

1. A point i reaches the boundary between L and E ;

2. A point i reaches the boundary between R and E ;

3. A parameter βj becomes zero (j leaves A );

4. A zero-valued parameter βj becomes non-zero (j
joins A).

The boundary between L and E is 1−δ and the bound-
ary between R and E is 1. Therefore, when yif(xi) for
a point crosses 1 − δ or 1, one of the first two events
occurs. To determine the step size ∆λ1 for the first
event, for each i ∈ L or E we calculate:

∆λi
1 =

1 − δ − yif
k(xi)

yi(
∆β0

∆λ1
+
∑

j∈A
∆βj

∆λ1
)

Let ∆λ1,1 represent the step size for the first event.
Since λ1 only decreases, ∆λ1,1 ≤ 0 and its value should
be determined by:

∆λ1,1 = max{∆λi
1 : i ∈ L or E , ∆λi

1 ≤ 0}

Similarly, for the second event we calculate:

∆λi
1 =

1 − yif
k(xi)

yi(
∆β0

∆λ1
+
∑

j∈A
∆βj

∆λ1
)
,

for each i ∈ R or E . And the step size for the second
event is:

∆λ1,2 = max{∆λi
1 : i ∈ R or E , ∆λi

1 ≤ 0}

When a non-zero βj reduces to 0, the third event oc-
curs. Therefore, we calculate for each j ∈ A:

∆λj
1 = −βk

j /
∆βj

∆λ1

The step size for the third event is:

∆λ1,3 = max{∆λj
1 : j ∈ A, ∆λj

1 ≤ 0}

The fourth event (a zero-valued βj becomes non-zero)
is a little complicated to determine. First, for j =
1, . . . , p we define:

Cj =
∑

i∈E

1

δ
(β0 + xT

i β − yi)xij −
∑

i∈L

yixij + λ2βj ,

which is part of the left hand side for equation (9).
From (9) and the initial conditions, we know that:
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• |Cj | = λ1, sign(Cj) = −sign(βj), for j ∈ A;

• |Cj | < λ1, for j /∈ A

Notice that when |∆λ1| is sufficiently small, Cj is also
a linear function of λ1:

Cj = Ck
j +

[
∑

i∈E

1

δ
(
∆β0

∆λ1
+
∑

k∈V

∆βk

∆λ1
)xij

]
(λ1 − λk

1)

As λ1 decreases, the value for a |Cj | (j /∈ A) will first
meet the decreasing λ1, after which the corresponding
βj will become non-zero if we further reduce λ1.

Therefore, to determine the step size for the fourth
event, for each j /∈ A we calculate:

∆λj
1 =






Ck
j +λk

1

−1−
P

i∈E
1

δ
(
∆β0

∆λ1
+
P

k∈V

∆βk
∆λ1

)xij

,

if Cj decreases as λ1 is reduced;

Ck
j −λk

1

1−
P

i∈E
1

δ
(
∆β0

∆λ1
+
P

k∈V

∆βk
∆λ1

)xij

, otherwise.

The step size ∆λ1,4 for the fourth event is:

∆λ1,4 = max{∆λj
1 : j /∈ A}

After solving for ∆λ1,1,∆λ1,2,∆λ1,3 and ∆λ1,4, the
overall step size ∆λ1 can be obtained:

∆λ1 = max{∆λ1,1,∆λ1,2,∆λ1,3,∆λ1,4},

and we update L, E ,R and A according to the cor-
responding event. Variable λ1, β0, βj , Cj and the fit-
ted value f(xi) should also be updated. Finally, let
k = k + 1 and the algorithm goes to the next iter-
ation: solving linear system (11)-(12) and calculating
the step size ∆λ1. This entire process is repeated, until
λ1 reaches 0.

Between any two consecutive events, the optimal so-
lutions are linear in λ1, and after an event occurs, the
derivative of the optimal solution with respect to λ1

are changed. Therefore, the regularized solution path
is piece-wise linear in λ1, where each event corresponds
to a kink on the path. The algorithm provides the op-
timal solutions at these kinks, and for any λ1 between
two consecutive kinks the solution can be calculated
precisely by linear interpolation.

3.4. Computational Cost

The major computational cost for each iteration is
for solving linear system (11)-(12). Since in this sys-
tem there are |A| + 1 unknowns, the computational
cost seems to be O(|A|3) for each iteration. However,

between any two steps only one element is changed
for sets L, E ,R and A, so using inverse updating and
downdating the computational cost can be reduced to
O(|A|2). It is difficult to predict the number of iter-
ations. According to our experience O(min(n, p)) is
a reasonable estimate. The heuristic is that the algo-
rithm needs O(n) to move all the points to R and O(p)
steps to add all the parameters into A.

Since p is the upper bound for |A|, the overall com-
putational cost is upper bounded by O(min(n, p)p2).
However, the two classes usually can be perfectly sep-
arated when there are more active variables than the
sample size (|A| > n), and the algorithm should ter-
minate when the two classes are already perfectly sep-
arated. Therefore, when p ≫ n, O(min(n, p)p2) is a
loose upper bound for the computational cost of our
algorithm.

4. Experiment

In this section, we apply the HHSVM method on two
real microarray data sets, and we compare its perfor-
mance with the standard SVM, SVM-RFE and L1-
norm SVM.

4.1. Leukemia Data

The SVM, SVM-RFE, L1-norm SVM and HHSVM are
applied to a leukemia data set (Golub et al., 1999).
The data set includes two types of acute leukemia,
acute myeloid leukemia (AML) and acute lymphoblas-
tic leukemia (ALL). It contains 38 samples for training
and 34 samples for testing, and each sample includes
2,185 genes. We apply the three methods to the train-
ing data, use 10-fold cross-validation for parameter
tuning and evaluate their performance on the testing
data. Table 2 shows our results. It can be seen that
the HHSVM has better prediction performance than
the other methods. For the SVM, we tried different
kernel methods and the best performance is achieved
on the linear kernel. For the SVM-RFE, we use the
same approach as Guyon et al. (2002), eliminating
half of the remaining genes at each iteration. It is also
worth mentioning that all the 22 genes selected by the
L1-norm SVM are also selected by the HHSVM.

The previous results are based on the original sepa-
ration for the training and testing data. We also test
the performance of the four methods using a randomly-
splitting approach. The original training and testing
data are combined together and we randomly split it
into 38 and 34 samples for training and testing, re-
spectively. Following the same procedure as before,
we train each method on the training data and test
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Table 2. Results on the Leukemia Data: based on the orig-
inal separation of the training and testing data

CV Error Testing # of

Error Genes

Golub 3/38 4/34 50
SVM 0/38 1/34 All
SVM-RFE 0/38 2/34 128
L1-norm SVM 3/38 1/34 22
HHSVM 0/38 0/34 84

Table 3. Results on the Leukemia Data: based on the
randomly-splitting approach; numbers in parentheses are
the corresponding standard errors

Ave. Testing Ave. # of

Error Genes

SVM 2.33% (0.39%) All
SVM-RFE 2.25% (0.46%) 256
L1-norm SVM 8.22% (0.48%) 20.3 (0.4)
HHSVM 1.67% (0.24%) 87.9 (5.5)

them on the testing data. The entire process is re-
peated 50 times and the results are summarized in
Table 3. Table 4 lists the top 10 genes that have been
frequently selected by the HHSVM. The SVM, SVM-
RFE and HHSVM still work well, where the HHSVM
has the best prediction error. However, the randomly-
splitting result for the L1-norm SVM is not as good as
before. It is likely that some highly correlated and rel-
evant genes can not be captured by the L1-norm SVM
in the randomly-splitting experiment.

4.2. Breast Cancer Data

The breast cancer data (West et al., 2001) consist of 49
tumor samples, among which 25 are estrogen receptor
(ER) positive and 24 are ER negative. Each sample
consists of 7,129 genes. Similar to what we did to the
leukemia data, we use the randomly-splitting proce-
dure to evaluate the four methods. At each iteration
31 samples (16 positive and 15 negative) are used for
training and the rest 18 samples (9 positive and 9 neg-
ative) for testing. Table 5 shows the testing results,
and the HHSVM has the best prediction performance.
Table 6 lists the top 10 frequently selected genes by the
HHSVM. Shevade and Keerthi (2003) identified 6 rel-
evant genes from the same data set, where Y box bind-
ing protein-1 (YB-1) mRNA and H.sapiens mRNA for
cathepsin C are also in our top 10 list.

Table 4. Some Genes Selected by the HHSVM on the
Leukemia Data: based on the randomly-splitting approach

Gene annotation Selected

frequency

Lysosomal Mal Pro-X
Carboxypeptidase
Precursor 50/50
ARH9 Aplysia ras-related
homolog 9 50/50
RAS-related
Protein RAB-1A 48/50
Mitochondrial 1,25-
dihydroxyvitamin
D3 24-hydroxylase mRNA 47/50
GUSB Glucuronidase, beta 47/50
NCA Non-specific
cross reacting antigen 46/50
GIP Gastric
inhibitory polypeptide 45/50
Rhodanese 44/50
Calcitonin 44/50
Alpha-2,8-polysialyltransferase
(PST) gene 44/50

Table 5. Results on the Breast Cancer Data: based on the
randomly-splitting approach; numbers in parentheses are
the corresponding standard errors

Ave. Testing Ave. # of

Error Genes

SVM 9.56% (0.54%) All
SVM-RFE 10.11% (0.80%) 128
L1-norm SVM 18.93% (0.88%) 12.1 (0.4)
HHSVM 8.67% (0.87%) 199.0 (6.4)

5. Conclusion

In microarray analysis, the large number of genes and
the relatively small number of samples pose great chal-
lenges for tissue classification and gene selection. To
tackle these problems, we propose the hybrid huber-
ized support vector machine (HHSVM). The HHSVM
uses the huberized hinge loss function to measure mis-
classification and the elastic-net penalty to control the
complexity of the model. The elastic-net penalty helps
achieve the automatic variable selection and it pro-
vides the grouping effect. The huberized hinge loss
function enables us to develop an efficient algorithm,
which solves the entire regularized solution path. We
compare the HHSVM with other methods on two mi-
croarray data sets and the HHSVM achieves promising
results on both classification and gene selection.



Hybrid Huberized SVMs for Microarray Classification

Table 6. Some Genes Selected by the HHSVM on the
Breast Cancer Data: based on the randomly-splitting ap-
proach

Gene annotation Selected

frequency

Y box binding
protein-1 (YB-1) mRNA 50/50
Human high mobility
group protein (HMG-I(Y))
gene exons 1-8 50/50
Homo sapiens
(clone zap128) mRNA 50/50
Human hGATA3 mRNA for
trans-acting T-cell specific
transcription factor 50/50
H.sapiens mRNA
for cathepsin C 50/50
Human DR-nm23 mRNA 49/50
Human mRNA for
oestrogen receptor 49/50
Human androgen
receptor mRNA 47/50
Human X box binding
protein-1 (XBP-1) mRNA 47/50
Human insulin-like
growth factor binding
protein 4 (IGFBP4) mRNA 47/50
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