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Abstract     

We address feature selection problems for 
classification of small samples and high 
dimensionality. A practical example is 
microarray-based cancer classification problems, 
where sample size is typically less than 100 and 
number of features is several thousands or 
higher. One of the commonly used methods in 
addressing this problem is recursive feature 
elimination (RFE) method, which utilizes the 
generalization capability embedded in support 
vector machines and is thus suitable for small 
samples problems. We propose a novel method 
using minimum reference set (MRS) generated 
by the nearest neighbor rule. MRS is the set of 
minimum number of samples that correctly 
classify all the training samples. It is related to 
structural risk minimization principle and thus 
leads to good generalization. The proposed MRS 
based method is compared to RFE method with 
several real datasets, and experimental results 
show that the MRS method produces better 
classification performance.  

1.  Introduction 

High dimensional data analysis is an extremely crucial 
task in various applications, such as multi/hyperspectral 
data-based target detection and classification (Schweizer 
and Moura, 2000), and microarray data-based cancer 
classification (Xiong and Chen, 2006). On one hand, the 
high dimensionality provides rich information about the 
data and offers the potential to distinguish between 
different classes. On the other hand, in most practical 
cases, the number of labeled training data is very small 
compared to the number of features available. For 
example, in microarray data-based cancer classification 
problems, typical number of samples for each class is less 
than 100 and the dimensionality is several thousands or 
tens of thousands. Learning from small samples with high 
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dimensionality poses a significant challenge to machine 
learning society, for example, computational complexity 
(the computational demands for searching in high 
dimensional spaces grow exponentially with data 
dimension) and overfitting (models obtained from high 
dimensional data fit the training data very well, but 
perform poorly on previously unseen data). 

Developing classification methods to overcome the over-
fitting problems has already attracted significant interest 
from machine learning community (Bradley and 
Mangasarian 1998; Fung et al., 2002; Vapnik and 
Chapelle 2000; Guyon et al., 2002; Reunanen, 2003; 
Weston et al., 2003). As one of the most commonly-used 
learning methods, support vector machine (SVM) has 
shown excellent performance in handling large feature 
space and overfitting problems (Chapelle et al., 2002; 
Guyon et al., 2002; Vapnik 1998; Haykin 1999; Weston 
et al., 2000). A SVM yields its decision function derived 
from the structural risk minimization (SRM) principle. 
Unlike the empirical risk minimization, which minimizes 
the errors on training data and consequently leads to 
overfitting, the SRM principle suggests that we should 
minimize an upper bound on the expected risk by 
controlling both the number of training errors and the 
capacity of the set of candidate functions measured by the 
so-called Vapnik-Chervonenkis dimension (Vapnik, 
1998).  

Another approach for counteracting the overfitting 
problems and for reducing the computational complexity 
for the analysis of small samples with high 
dimensionality is feature selection. Feature selection is 
the process of searching for a subset of relevant features 
from a larger set of original ones in terms of some pre-
defined criteria, such as classification performance or 
class separability. In fact, feature selection methods play 
a significant role for solving small sample classification 
problems where the number of features is much larger 
than the number of training samples. It has been shown 
that feature selection can also improve the performance 
of SVMs for small sample classification problems. 
Enlightened to the fact that SVM generalizes well, Guyon 
et al. (2002) recently developed a feature selection 
method, called recursive feature elimination (RFE), for 
small sample classification problems. The RFE method is 
originally applied to microarray-based cancer 
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classification where the number of training samples is 
less than 100 and the number of features is several 
thousands, and has become an effective approach in 
small-sample feature selection problems. Based on the 
idea of Optimal Brain Damage theory (Le Cun et al., 
1990), RFE seeks to improve generalization performance 
by removing the least important features whose deletion 
will have the least effect on training errors. The 
importance of a feature is evaluated in terms of a criterion 
derived from SVMs.  

While it has shown great promise in small-sample feature 
selection problems, the RFE method tends to remove 
redundant and weak features and retains independent 
features. As pointed out by Guyon and Elisseeff (2003): 
(1) presumably redundant features may provide better 
class separation, and (2) two weak features that are 
useless by themselves can provide a significant 
performance improvement when used together. Thus, 
simply removing redundant or weak features may 
degrade classification performance. This is particularly 
true when few features are retained as we observed in our 
experiments. Another potential issue is that the maximal 
margin decision boundary derived from SVMs exists in 
nonlinear feature space, not necessary in observation 
space (Karacal and Krim 2002).  

It is generally accepted that the generalization 
performance is closely related to the trade-off between 
the number of training samples used and the model 
capacity (Bottou and Vapnik, 1992). As pointed out by 
Vapnik (Bishop, 1998), “the function that describes data 
well and belongs to a set of functions with low capacity 
will generalize well regardless of the dimensionality of 
the input space.” As a local algorithm, one nearest 
neighbor (1-NN) classifier has a very low capacity. 
Karacal and Krim (2002) recently showed that the 
complexity of a 1-NN classifier is directly related to the 
reference set derived from the training set. A reference 
set is a subset of training set that can correctly classify all 
training samples through the 1-NN rule. Thus, a better 
generalization can be achieved by replacing the training 
set with a small reference set. In this paper, we propose a 
minimum reference set (MRS) based feature selection 
method. The MRS method evaluates feature sets in terms 
of the size of MRS in observation space. We argue that 
for two feature subsets that classify all the training 
samples correctly through 1-NN rule, the one with 
smaller MRS is expected to generalize well. We compare 
MRS and RFE methods on various practical datasets and 
show that the MRS method significantly improves 
generalization accuracy. 

The remainder of this paper is organized as follows. 
Section 2 first introduces the RFE method. We then 
describe the proposed MRS method. Section 3 presents 
the experimental results of six datasets with simple 
samples. Finally, Section 4 presents our conclusions. 

2.  Method 

2.1  Recursive Feature Elimination  

For a linearly separable problem, SVMs find a 

discriminant function, ( )i ig b= ⋅ +x w x , where b is a 

bias term, n
ix ℜ∈ are samples, and iy  are 

corresponding class labels { 1}, 1,...,iy i m= ± = . The 

discriminant function satisfies following constraint: 
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For linearly non-separable cases, one can introduce slack 

variables iξ and accordingly, the discriminant function is 

defined by: 
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iξ  measure the deviation of a data point from optimal 

hyperplane (Vapnik, 1998). SVMs are designed by 
minimizing 
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where iα are the Lagrange coefficients. 

The linear SVMs can be readily extended to nonlinear 
SVMs where more sophisticated decision boundaries are 
needed. This is done by applying the kernel trick, i.e., 
simply replacing every dot product )( xx i ⋅ in linear 
SVMs by a nonlinear kernel function )( xxK i ⋅ , which 
satisfies Mercer’s Theorem (Vapnik, 1998). 

The RFE method is based on the concept in Optimal 
Brain Damage (Le Cun et al., 1990) and SVMs. It seeks 



Minimized Reference Set Based Feature Selection for Small Sample Classifications 
 

 

to improve generalization capability and speed of 
learning by recursively removing features with the 
smallest weight values wi calculated from SVM training. 
At each step, the vector w is calculated by training a 
SVM using the remaining features. RFE simply removes 
a weak feature measured by its weight value wi. It does 
not consider the effect of removing a feature on the 
performance of SVMs. However, a weak feature may still 
be an important feature when used with other features 
together. Thus, simply removing redundant or weak 
features may degrade classification performance. 

2.2  Minimum Reference Set 

In this section, we describe the proposed MRS feature 
selection method, which uses reference set sizes to 
evaluate the importance of a set of features.  

A minimum reference set is the smallest subset of 
training set that can correctly classify all training samples 
through the 1-NN rule. Since the complexity of a 1-NN 
classifier is directly related to the number of training 
samples involved, the size of a MRS is closely tied to the 
structural risk minimization (SRM), and thus the 
generalization ability. 

The SRM principle for learning from samples of small 
size is to find the decision function that minimizes the 
guaranteed risk on test data (Vapnik, 1998). This is 
achieved by controlling model capacity. Let ℑ be a set of 
indicator functions defined on the training set (x1, y1), ⋯ , 
(xm, ym), and let R(f) denote the risk for an indicator 
function f ∈ ℑ. The guaranteed risk can be derived 
through the bounds on the actual risk (Vapnik, 1998). 

Theorem 1 (Luntz and Brailovsky). The leave-one-out 
estimator is almost unbiased.  

Theorem 2. Let E[R(f)] be the expectation of the 
probability of error taken over both training and test data 
for an optimal indicator function f constructed on 
training samples of size m and 1-NN. Let Nm denote the 
size of the MRS formed on the basis of training samples 
of size m. Then the following inequality holds true, 

m

NE
fRE m )(

)]([ ≤  (5) 

 

To prove this theorem, we follow the similar steps to 
Vapnik (1998). Apparently, the removal of a sample xi ∉ 
MRS from the training set will not change the MRS. 
Thus, in the leave-one-out method, samples xi ∉ MRS 
will be correctly classified. Therefore, the number of 
errors by the leave-one-out method does not exceed the 
size of the MRS, that is, the largest error rate for training 
data using the leave-one-out method is Nm /m. According 
to Theorem 1, Eq. (5) is true. 

� 

From Theorem 2, we conclude that the generalization 
ability of the indicator function constructed on the basis 
of the MRS depends on the size of the MRS. Minimizing 
the size of the MRS on the basis of empirical data leads 
to minimizing the structure risk R(f). For two feature sets 
with the same size, we can create two minimum reference 
sets for zero training errors. The feature set with a smaller 
MRS is expected to have better generalization ability, as 
fewer training samples are used for constructing the 
classifier. Thus, the proposed MRS method seeks for the 
feature subset that needs smallest MRS for classification.    

We first describe the procedures to find a MRS. Starting 
with an empty set, we update a reference set by adding 
the closest samples between classes until all training 
samples are correctly classified through 1-NN classifier. 
Apparently, this algorithm always converges. In the worst 
case, all training samples are included into the reference 
set (Karacal and Krim 2002). For calculating distances 
between samples on different classes, the Euclidean 
distance, ( , )i jd x x , is used. 

______________________________ 
 

MRS_ID: MRS Identifier Algorithm 
______________________________ 

I = set of selected samples = ∅ . 
)(Ierr : classification error using 1-NN and training 

samples in I. 
d : ranked distances calculated from samples of between 
classes. 

kd : thk element in d 

Step1: calculate all pairwise distance ( , )i jd x x for 

samples from two classes, i.e, iy = 1 and jy = -1 

Step2: sort the distance from the smallest to the largest 
and store the ranked distance in d. Set k = 1. 
Step3:repeat  
 Find i and j which is related to ( , )i jd x x = kd  
 if { , }i j ⊄ I 

update { , }I I i j← ∪  
end if 

  k = k + 1 
until )(Ierr = 0 
return (I) 
The final set I is the MRS.  

Next, assume that the number of features to be selected is 
k. the MRS method randomly chooses a set of k features 
and swaps one feature at a time between the selected 
feature set SF and the remaining feature pool RF. For 
each feature combination, MRS Identify algorithm is 
executed to obtain a MRS. If the size of the MRS for the 
new feature set SF (after swapping) is smaller than that 
before swapping, the swapping is accepted; otherwise, 
the feature set remains the same. We repeat this process 
for all the features in SF. The feature set with the 
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smallest number of a reference set is considered as the 
best feature set. 

______________________________________ 

 MRS Feature Selection Algorithm 
______________________________________ 
 

k = the number of selected features 

n = original number of features 

N(F) = the size of reference set with feature set F 

S = the size of MRS 

F = final feature set 

SF = set of selected features  

RF = set of remaining features 

 

Step1: Randomly select k features, 

SF = 1 2 3{ , , ,..., }kf f f f   

RF = 1 2{ , ,..., }k k nf f f+ +  

Step2: Search possible k features with smallest MRS. 

perform MRS_ID for samples with feature set SF,  

F = SF;    S = N(SF). 

for i = 1 to k 

for j = k+1 to n 

swap if  in SF and jf  in RF 

  perform MRS_ID for samples with feature set SF 

 S1 = N(SF). 

If  S1 < S, 

        accept the swap (S = S1,  F = SF). 

end if 

              end j 

 end i 

            return (F) 

The best feature set with smallest MRS is saved in F. 

Computationally, the MRS feature selection method 
executes MRS_ID k × (n – k) times. Each time, one 
feature in SF will be replaced by a different feature. The 
new feature set is then evaluated as a whole, instead of 
evaluating one feature at a time as in the RFE method. 
For better results, the search process can be repeated 
several times with random restart (step 1). Alternatively, 
one can run the algorithm just once by using a 
deterministic starting feature subset created by another 
feature selection algorithm (e.g., RFE). The latter case is 
employed in our study. 

Two major differences between MRS method and RFE 
method are: (1) MRS evaluates the importance of a group 
of features, while RFE evaluates the importance of 
individual features, one at a time; and (2) MRS evaluates 
feature sets using reference set sizes which are directly 
tied to the structural risk minimization principle and thus 
good generalization, while RFE evaluates individual 
features in terms of their weights calculated from SVM 
training. Next, we apply the MSR method to six datasets, 
each with a small number of training samples. 

3.  Experimental Results 

3.1  Datasets Description 

Six datasets, all with small number of training samples, 
are used to compare RFE and MRS. The first dataset 
(sonar) is downloaded from UCI machine learning 
repository (http://www.ics.uci.edu/~mlearn) and the other 
five sets are microarray datasets, as summarized in 
Table1. For all the microarray data sets, since the largest 
number of samples for each class is less than 60, we use 
bootstrapping method for evaluating the proposed method. 
Specifically, for each dataset, we randomly generate 
(sampling with replacement) 70% training samples and 
30% test samples. This is done 15 times. Thus, for each 
dataset, we now have 15 sub-groups of a training set and 
a test set, and test results are averaged over the 15 
randomly generated sub-groups of test sets. 

3.2  Results 

To evaluate the MRS feature selection method, selected 
features are compared with those selected by RFE 
method. Since MRS and RFE features are selected 
through 1-NN and SVMs, respectively, we compare 
classification performance with both 1-NN and SVMs as 
classifiers. We use linear SVMs in all cases.  

Figures 1 to 6 show the classification accuracy versus the 
number of selected features. Lines with cross markers 
represent results for MRS features (solid lines with cross 
markers for a SVM classifier (MRS-SVM) and dashed 
lines with cross markers for an 1-NN classifier (MRS-
NN)). Lines without cross markers are for RFE features 
(solid lines for a SVM classifier (RFE-SVM) and dashed 
lines for an 1-NN classifier (RFE-NN)).  

For sonar data (Figure1), MRS features clearly 
outperform RFE features, either with the 1-NN or the 
SVM classifier. For ALL/AML data (Fig. 2) and COLON 
data (Fig. 5), when the number of features is larger than 
30, both methods are comparable. When the number of 
feature is less than 30, MRS features produce better 
classification accuracy. For CNS data (Fig. 3), with more 
than 15 features, results for MRS and RFE methods are 
comparable. With less than 15 features to use, RFE 
features with a SVM classifier yields highest accuracy. 
Finally, for BREAST data (Fig. 4) and LYMPH data (Fig. 
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6), MRS features clearly produce better classification 
accuracy than RFE methods. It is interesting to note that 
for BREAST data and LYMPH data, regardless of the 
classifiers to use, MSR methods perform better than RFE 
methods in most cases (Figs. 4 and 6). In conclusion, 
MRS methods outperform RFE methods most of the time, 
especially when the number of features is small. Note that 
in practice, small number of features is preferred to 
overcome overfitting problems for small sample 
classification problems. Thus, the MRS method is of 
practical use and interest.  

To visualize the features selected by MRS and RFE 
methods, we plot both training and test data of 
ALL/AML with the best two features. We randomly 
select a training data set and a test set generated by 
bootstrapping and run MRS and RFE feature selection 
methods to select two best features. Figures 7 and 8 show 
the training and test data with the top two features 
selected by the MRS method, respectively. Figures 9 and 
10 show the training and test data with the top two 
features selected by the RFE method, respectively. 
Apparently, two classes in MRS features are better 
separated than in RFE features.  

Figure 11 shows the average percentage of training 
samples in minimum reference set (the ratio of training 
samples in reference set to the number of original training 
samples) versus number of features with COLON data. 
As expected, for different number of features to use, 
number of samples in MRS differs.  

4.  Conclusion 

Classification problems with small sample sizes and very 
high dimensionality have drawn increasing attention in 
machine learning community. An essential step in small 
sample classification is feature selection. In this paper, 
we propose and apply a minimum reference set based 
method to feature selection and compare it to the 
commonly used RFE method. In a RFE method, a feature 
is removed if it is weak at a particular step. The weakness 
is evaluated in terms of its weight value in constructing a 
SVM decision hyperplane. A weak feature, however, 
might be important when combined with other features. 
Our proposed method assesses features as a group based 
on the minimum reference set derived from a 1-NN 
classifier. MRS methods implement structural risk 
minimization principle and guarantee to generalize well.  
We compare the proposed MRS method to RFE method 
on six datasets, each with small training samples. The 
MRS method makes significantly improvement over the 
RFE method, especially for small number of features, 
which are of practical use. Our future work will address 

the problem of extension of the MRS method to multi-
class feature selection problems. Unlike RFE method 
which is based on SVMs, MRS method is based on 1-NN 
method. Consequently, we expect that the MRS method 
can be readily applied to feature selection for multi-class 
classification problems. 

 
 

Table 1 Data description 

 

SONAR: This data set consists of 208 instances and 60 
attributes (Gorman and Sejnowski 1988). The task 
is to classify sonar signals that bounce off a metal 
cylinder or a roughly cylindrical rock. The data are 
divided equally into two sets: 104 instances are 
used for training and rests are used as test.  

ALL/AML: ALL-AML Leukemia Data (Golub et al., 
1999). This data set contains 72 samples of human 
acute leukemia. 47 samples belong to acute 
lymphoblastic leukemia(ALL), and the other acute 
myeloid leukemia(AML). Each sample presents the 
expression levels of 7129 genes. 

CNS: Embryonal Tumors of Central Nervous System 
Data (Pomeroy et al., 2002). This data set contains 
60 patient samples, 21 are survivors of a treatment, 
and 39 are failures. There are 7129 genes in the 
data set.  

BREAST: Breast Cancer Data (West et al., 2001). This 
data contains 7129 genes in 49 breast tumor 
samples. There are two classes: 25 samples are 
estrogen receptor positive (ER+), whereas the 
remaining 24 samples are estrogen receptor 
negative (ER-). 

COLON : Colon Tumor Data (Alon et al., 1999). This 
data set contains 62 samples collected from colon-
cancer patients. Among them, 40 samples are from 
tumors and 22 biopsies are from healthy parts of 
the colons of the same patients. 2000 genes are 
selected to measure their expression levels.  

LYMPH: Lymphoma Data (Shipp et al., 2002). This data 
set contains 77 tissue samples, 58 are diffuse large 
B-cell lymphomas (DLBCL) and remaining 19 
samples are follicular lymphomas (FL). Each 
sample is represented by the expression levels of 
7129 genes. 
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Figure 1 Test accuracy for sonar data 

 

Figure 2 Test accuracy for ALL/AML data 

 

Figure 3 Test accuracy for CNS data 
 

Figure 4 Test accuracy for BREAST data 

 

Figure 5 Test accuracy for COLON data 

 

Figure 6 Test accuracy for LYMPH data 
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Figure 7 Train data distribution of ALL/AML with the best two 
features selected by MRS. 
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Figure 8 Test data distribution of ALL/AML with the best two 
features selected by MRS. 
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Figure 9 Train data distribution of ALL/AML with the best two 
features selected by RFE. 
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Figure 10 Test data distribution of ALL/AML with the best two 
features selected by RFE. 

 

 

 

 

 

 

 

 

 

 

Figure 11 Average percentage of samples in MRS for COLON 
data (averaged over 15 bootstrapped training data sets). 

 

 

0 10 20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

Number of Features

N
um

be
r 

of
 S

am
pl

es
 (

%
)



Minimized Reference Set Based Feature Selection for Small Sample Classifications 
 

 

Acknowledgments 

We would like to thank the reviewers for their valuable 
comments. This material is based upon work supported in 
part by the U. S. Army Research Office under contract 
number W911NF-06-1-0351 and by NSF award IIS-
0644366. 

References 

Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, 
S., Mack, D., and Levine, A.J. (1999). Broad patterns of 
gene expression revealed by clustering analysis of 
tumor and normal colon tissue probed by 
oligonucleotide arrays. Proc. Natl. Acad. Sci. USA, 96, 
6745-6750, June. 

Bishop, C. M. (Ed.) (1998). Neural Networks and 
Machine Learning, NATO ASI Series, Series F: 
Computer and Systems Sciences, 168, Berlin: Springer-
Verlag. 

Bottou, L. and Vapnik, V. (1992). Local Learning 
Algorithms, Neural Computing, 4, 888-890. 

Bradley, P. S. and Mangasarian, O. L. (1998). Feature 
selection via concave minimization and support vector 
machines. Proc. 13th ICML, 82-90, San Francisco, CA. 

Chapelle, O. Vapnik, V. Bousquet, O. and Mukherjee, S. 
(2002). Choosing kernel parameters for support vector 
machines. Machine Learning, 46(1-3), 131-159.  

Le Cun, Y., Denker, J., and Solla, S. (1990). Optimal 
Brain Damage. Advances in Neural Information 
Processing Systems 2, 598-605. 

Fung, G., Mangasarian, O. L., and Smola, A. J. (2002). 
Minimal kernel classifiers. Journal of Machine 
Learning Research 3, 303-321. 

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., 
Gassenbeek, M. Mesirov, J.P., Coller, H., Loh, M.L., 
Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., and 
Lander, E.S. (1999). Molecular classification of cancer: 
class discovery and class prediction by gene expression 
monitoring. Science, 286, 531-537. 

Gorman, R. P., and Sejnowski, T. J. (1988).  Analysis of 
Hidden Unitsin a Layered Network Trained to Classify 
Sonar Targets, Neural Networks, 1, 75-89. 

Guyon, I., Weston J., Barnhill, S., and Vapnik, V. (2002). 
Gene selection for cancer classification using support 
vector machines. Machine Learning, 46(1-3), 389-422. 

Guyon, I., and Elisseeff, A. (2003). An introduction to 
variable and feature selection. JMRL special Issue on 
variable and Feature Selection 3, 1157-1182. 

Haykin, S. (1999). Neural Networks a comprehensive 
foundation (2nd edition). Prentice-Hall, NJ, 1999 

Karacal, B., and Krim, H. (2002). Fast Minimization of 
structural risk by nearest neighbor rule. IEEE 
transactions on neural networks, 14(1), 127-137. 

Luntz, A. and Brailovsky, V. (1969). On estimation of 
characters obtained in statistical procedure of 
recognition. Technicheskaya Kibernetica, 3. 

Pomeroy, S.L., Tamayo, P. Gaasenbeek, M., Sturla, L.M., 
Angelo, M., McLaughlin, M.E., Kim, J.Y.H., 
Goumnerova, L.C., Black, P.M., Lau, C., Allen, J.C., 
Zagzag, D., Olson, J.M., Curran, T. Wetmore, C., 
Biegel, J.A., Poggio, T., Mukherjee, S., Rifkin, R., 
Califano, A., Stolovitzky, G., Louis, D.N., Mesirov, J.P., 
Lander, E.S., and Golub, T.R. (2002). Prediction of 
central nervous system embryonal tumor outcome 
based on gene expression. Letters to Nature, Nature, 
415, 436-442. 

Reunanen, J. (2003). Overfitting in making comparisons 
between variable selection methods. JMLR special 
Issue on variable and Feature Selection 3, 1371-1382. 

Schweizer, S. and Moura, J. (2000). Hyperspectral 
imagery: clutter adaptation in anomaly detection. IEEE 
Trans. on Information Theory, vol. 46(5), 1855-1871. 

Shipp, M.A., Ross, K.N., Tamayo, P., Weng, A.P., Kutok, 
J.L., Aguiar, R.C.T., Gaasenbeek, M., Angelo, M., 
Reich, M., Pinkus, G.S., Ray, T.S., Koval, M.A., Last, 
K.W., Norton, A., Lister, T.A., Mesirov, J., Neuberg, 
D.S., Lander, E.S., Aster, J.C., Golub, T.R. (2002). 
Diffuse Large B-Cell Lymphoma Outcome Prediction 
by Gene Expression Profiling and Supervised Machine 
Learning. Nature Medicine, vol.8, 68-74. 

Vapnik, V. (1998). Statistical Learning Theory. John 
Wiley and Sons, New York. 

Vapnik, V. and Chapelle, O. (2000). Bounds on error 
expectation for support vector machines. Neural 
Computation, 12(9), 2000 

West, B., Blanchette, C., Dressman, H. Huang, E. and 
et.al. (2001). Predicting the clinical status of human 
breast cancer by using gene expression profiles. Proc. 
Natl. Acad. Sci. USA, 98, 11462-11467. 

Weston, J., Mukherjee, S., Chapelle, O. Pontil, M. Poggio, 
T. and Vapnik, V. (2000). Feature selection for support 
vector machines. In Advances in Neural Information 
Processing Systems. 

Weston, J. Elisseeff, A. Scholkopf, B. and Tipping, 
M.(2003) Use of the zero-norm with linear models and 
kernel methods. JMLR special Issue on variable and 
Feature Selection 3, 1439-1461.  

Xiong, H. and Chen, X. (2006). Kernel-Based Distance 
Metric Learning for Microarray Data Classification. 
BMC Bioinformatics, 7:299. 

 


