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Abstract nificantly reduce the effective complexity of the multidas
problem, therefore transferring knowledge between rdlate

This paper suggests a method for multiclass
classes.

learning with many classes by simultaneously
learning shared characteristics common to the  The obvious question that arises is how to select the fea-
classes, and predictors for the classes interms of  ture mapping appropriate for a given task. One method to
these characteristics. We cast this as a convex op-  resolve this need is by manually designing a domain spe-

timization problem, usingrace-normregulariza- cific kernel. When the route of manual kernel design is
tion and study gradient-based optimization both not feasible one can attempt to learn a data specific feature
for the linear case and the kernelized setting. mapping (Crammer et al., 2002). In practice, researchers

often simply test several of the standard kernels in order to
) assess which attains better performance on a validation set
1. Introduction However, these approaches fail to provide a clear mech-
. . . . anism for utilizing existing underlying structures betwee
In this paper we address the question of how to utilize hid-, 9 9 ying stri . .
den structure in order to improve multiclass classificationthe target classes. We would therefore like to find an effi-
. pro . cient way to learn feature mappings that capture those un-
accuracy. Our goal is to provide a mechanism for learn- . . .
. . - derlying structures that characterize a given set of ctasse
ing the underlying characteristics that are shared between
the target classes. We demonstrate the benefit of extractinthe observation that learning a hidden representation of
common characteristics within the powerful notion of largesome shared characteristics can facilitate learning has a
margin multiclass linear classifiers. long history in multiclass learning (e.g. Dekel et al.
L . . (2004)). This notion is often termed learning-to-learnror i
The challenge of accurate classification of an instance int :
) erclass transfer (Thrun, 1996). While some approaches as-
one of alarge number of target classes surfaces in many do- ; . o
: ; " . o Sume some information on the shared characteristics is pro-
mains, such as object recognition, face identificatiorn; tex_. : :

; o " vided to the learner in advance (e.g (Fink et al., 2006)), oth
tual topic classification, and phoneme recognition. In many | . heuristics in ord he shared
of these domains it is natural to assume that even thoug rs rely on various heuristics In order to extract the share

. eatures (e.g. (Torralba et al., 2004)).

there are a large number of classes (e.g. different people
in a face recognition task), classes are related and buil&imultaneously learning the underlying structure between
on some underlying common characteristics. For examthe classes and the class models is a challenging optimiza-
ple, many different mammals share characteristics such aon task. Many of the heuristic approaches explored in the
a striped texture or an elongated snout, and people’s facgmst aim at extracting powerful non-linear hidden charac-
can be identified based on underlying characteristics sucteristics. However, this goal often entails non-convex-opt
as gender, being Caucasian, or having red hair. Recovermization tasks, prone to local minima problems. In con-
ing the true underlying characteristics of a domain can sigtrast, we will focus on modeling the shared characteris-

tics, as linear transformations of the input space. Thus, ou
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that such models can be efficiently learned in a convex optishared among multiple classes. We restrict ourselves to
mization scheme, and albeit restricted to simple linear-mapmodelling each common characteristi@s a linear func-
pings, they can still significantly improve the accuracy oftion F'x of the input vectors. The activation of each class

multiclass linear classifiers. y is then taken to be a linear functictf (F*x) of the vector
F'x of common characteristics, instead of a linear func-
2. Formulation tion of the input vectors. Formally our model substitutes

the weight matrixi¥’ € R™** with the productV = FG
The goal of multiclass classification is to learn a mappingof a weight matrixt” € R™"*?, whose columns define the
H : X — Y from instances inX to labels iny = p common characteristics, aii@ € RP**, whose columns
{1,...,k}. We consider linear classifiers ovat = R", predict the classes based on the common characteristics:
parametrized by a weight vectd¥,, ¢ R™ for each class
y € ), and which take the form: He p(z) = argmax G; . (Fz) = argmax (FG)Z ‘z
cy yey
Hy (z) = argmax W, -z . (@h) Y Y (5)
yey
It should be emphasized thatfifandG are not constrained
in any way, the hypothesis space defined by Eq. (1) and
by Eq. (5) is identical, since any linear transformations in

i nxm i X
Ia mgtr:;(é( teh RI whosg columns ha;e gl\I/en 'lfj'%.t' duced by applying” and therZ, can always be attained by
nspired by e large margin approach for classiiication,, single linear transformatidry’. We aim to show that nev-
Cram'm.er_ "’?”d Singer (2001) suggest learning the W?'.ghtgrtheless, regularizing the decompositibi;, as we dis-
by minimizing a trade-off between an average emplrlcalcuss shortly, instead of the Frobenius norm of the weight

loss (to be discussed shortly) and a regularizer of the fOrm'matrix W, can yield a significant generalization advantage.

We wish to learn the weights from a setioflabeled train-
ing examplegx;,y;) € X x ), which we summarize in

DoIwy P = (Wi (2)  When the common characteristi#s are known, we can
y replace the input instances with the vectorsEx; and
revert back to our original formulation Eq. (4), with the
matrix G taking the role of the weight matrix. Each char-
acteristicr is now afeature (Fx;), in this transformed
Sproblem. The challenge we address in this paper is of si-
multaneously learning the common characteristics (or la-
(3) tentfeaturesy” and the class weights:.

where||W || is the Frobenius norm of the matriX whose
columns are the vectoid’,. The loss function suggested
by Crammeret al is the maximal hinge loss over all com-
parisons between the correct class and an incorrect clas
LW (x,y)) = max 1+ W, -x—-W, -X}+
Increasing the nornjF, || allows smaller values ofr,, to
where(z]; = max(0, z). For a trade-off parametér, the  yie|q the same prediction. Therefore, in order for the reg-
weights are then given by the following learning rule: ularizer ||G||¢ to be meaningful, we must also control the
magnitude ofF’. We thus suggest to regularize, in addition

1 i )
mmi/niuwnﬁ + CZﬁ(W; (xi,9:)) - (4) to|Glr, also}_ ||F|* = ||F||Z This leads to the follow-
i=1 ing learning rule:

For a binary classification problery, = {1, 2}, this for-
mulation reduces to the familiar Support Vector Machine
(SVM) formulation (with Wy = —W, = iwgem at the
optimum, andC' appropriately scaled). For a larger num-
ber of classes, the formulation generalizes SVMs by requir-
ing a margin between every pair of classes, and penalizinghs we are accustomed to in large-margin methods, we do
for each training example, the amount by which the marnot have to limit the number of characteristies We can

gin constraint it violated. Similarly to SVMs the optimiza- consider the rule Eq. (6) where the minimization is over
tion problem Eq. (4) is convex, and by introducing a “slack matricesF’, G of arbitrary inner dimensionality. We are re-
variable” for each example, it can be written as quadratidying here on theormof F andG for regularization, rather
programming. It should be noted that while we choose tahan theirdimensionality.

focus on the loss function of Crammer and Singer (2001),|_he optimization objective of Eq. (6) is non-convex, and

the methods we propose can be directly applied to Otheirnvolves matrices of unbounded dimensionality. However,
multiclass losses.

instead of explicitly learnindg”, G, the optimization prob-
Recall that our goal is to attain a classifiéf with im- lem Eg. (6) can also be written directly as a convex learning
proved generalization by extracting characteristics éinat  rule for W. Following Srebro et al. (2005), we consider the

. 1 2 1 2 % .
1}17%15\\F||F + §HG||F + CZK(FG (xi,9:)) - (6)

i=1
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trace-norm of a matrixV: explicitly:
o1 Vij#y Qij =20
IWle = min ~(IF|2+GIR) ()
max » (~Qiy,) St Vi (-Qu)=)_ Qi<c
. . - i £ Yi
The trace-norm is a convex functiondf, and can be char- ¢ tge ’ y< 1
acterized as the sum of its singular values (Boyd & Vanden- IQ°KQIl2 < (10)
berghe, 2004). Eqg. (10) is a convex problem of that involves a semi-
|Wls = Z Vil (8)  definite constraint (the spectral-norm constraint) on the m
3 trix Q'K @ whose size is independent of the size of the
training set, and only depends on the number of clakses
Using Eq. (7), we can rewrite Eq. (6) as: (the size of@ and the number of quadratic interactions in
Q'K (@Q do grow with the training set size, as in a standard
m SVM).
min||W +C 4 W (xq, ys . 9 . . .
w Wil ; (W (i, ) ®) The following Representer Theorem describes the opti-

mum weight matrixi? in terms of the dual optimung),
Furthermore, following Fazel et al. (2001) and Srebro et al@nd allows the use of the kernel mechanism for prediction.

2005), the optimization problem Eqg. (9) can be formulated .
;s a s)emi—de[f)inite progr:m (SDP).q © Theorem 1 Let Q bethe optimum of Eq. (10) and V' bethe

matrix of eignevectors of Q' K@, then for some diagonal
To summarize, we saw how learning to classify based orp ¢ R***, the matrix W = X (QV*DV') is an optimum
shared characteristics yields a learning rule in which thex Eq. (9), with ||[IW||x = S,.|D
Frobenius-norm regularization is replaced with a trace-

norm regularization. Proof Using complementary slackness and following ar-
guments similar to those of Srebro et al. (2005), it can be
shown thatX @) and the optimumi?’ of Eq. (9) share the
same singular vectors. That is,Xf(Q = USV is the sin-

So far, we assumed we have direct access to the featuglar value decomposition o Q, thenWW = UDV for
representatiox. However, much of the success of large- some diagonal matri®0. FurthermoreD,.,. = 0 whenever
margin methods stems form the fact that one does not nee$l., # 1, i.e. SD = D. Note also that the right singular
access to the feature representation itself, but only to thegectorsV of X@Q = USV are precisely the eigenvectors of
inner product between feature vectors, specifiedkyael  (XQ)'(XQ) = Q' X' XQ = Q' K(Q. We can now express
function k(x, x’). In order to obtain a kernelized form of W as follows. First note thaf” = UDV'. SinceD = SD
trace-norm regularized multiclass learning, we first byiefl we may expres$§l’ asUSDV. SinceVV? = I we may
describe the dual of Eqg. (9), and how the optimimcan  further expand this expressionteSV Vi DV. Finally, re-

be obtained from the dual optimum. placingU SV with X Q we obtainW = X (QV'DV).

By applying standard Lagrange duality we deduce the dua@:orollary 1 Thereexists a € R™** st. W = Xa isan
of Eq. (9) is given by the following optimization problem, optimum of Eq. (9)
which can also be written as a semi-definite program:

-

3. Dualization and Kernelization

The situation is perhaps not as pleasing as for standard
Vijty, Qij >0 SVMs where the weight vector can be explicitly repre-
B sented in terms of the dual optimum solution. Here, even
max » (—Qiy,) St Vi (=Qu) = Z @iy <c after obtaining the dual optimur®, we still need to re-
@ i cover the diagonal matri©. However, substitutingl” =
[X@Qll2 <1 XQV'DV into Eq. (9), the first term becomés, |D,..|,
while the second is piecewise linear KKQV!DV. We
where @ € R™** denotes the dual Lagrange variable therefore obtain a linear program (LP) in theunknown
and || X Q|| is the spectral norm of(( (i.e. the maxi- entries on the diagonal d?, which can be easily solved to
mal singular value of this matrix). The spectral norm con-recoverD, and hencéV. It is important to stress that the
straint can be equivalently specified[HsXQ)!(X Q)| =  number of variables of this LP depends only on the number
QH(XtX)Q]l2 < 1. This form is particularly interesting, of classes, and not on the size of the data set, and that the
since it allows us to write the dual in terms of the Gramentire procedure (solving Eq. (10), extractivigand recov-
matrix K = XX instead of the feature representati®n  ering D) uses only the Gram matriX and does not require
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direct access to the explicit feature vectafs representatiotX” explicitly, but only a kernek from which

. 22 e
Even if the dual is not directly tackled, the representationWe can obtain the Gram matrik’ = X°.X. In this sit

of the optimumW guaranteed by Thm. 1 can be used touauon we do not have accessin nor can we obtairf”

solve the primal Eg. (9) using the Gram matfixinstead expllpltly. As discussed aboye, what vean obtain is a
. . . matrix « such thati = X« is an optimum of Eq. (9).
of the feature vector¥’, as we discuss in Section 5.

Let W = UDV be the singular value decomposition of

) ) W (which we cannot calculate, since we do not have ac-
4. Learning a Latent Feature Representation cess toX). We have that’ = U+/D is an optimum of

. Eq. (6). What wecan calculate is the singular value de-
As alluded to above, learningj can be thought of as learn composition ofa'Ka = o' X! Xa = W'IW = VD2V,

; : S
(idion. Sincer" s 1eared fointy over all ciasses, 1 et 21 s OGN and V (but notU). Now, note that
fectively transfers knowledge between the classes Lowpil/QvatK = DTV(a' X)X = DTIEVIWIX =

Y S ge bet . > “OWh-12yyiputx = DYV2UCX = FtX, providing us
norm decompositions were previously discussed in thes\?vith an explicit representation of the learned feature spac
terms by Srebro et al. (2005). More recently, Argyriou

et al. (2007) studied a formulation equivalent to using thethat we can calculate frorft anda alone.

trace-norm explicitly for transfer learning between multi In either case, we should note the optimum of Eq. (6) is not
ple tasks. Considekt binary classification tasks, and use unique, and so also the learned feature space is not unique:
W; as alinear predictor for thgth task. Usingan SVMto if F,G is an optimum of Eq. (6), theF'R), (R'G) is
learn each class independently corresponds to the learniraso an optimum, for any unitary matriRR* = I. In-
rule: stead of learning the explicit feature representatitx) =

1 1 Ftx, we can therefore think of trace-norm regularization
min Z(f||Wi||2+C€j(Wj)) = min—HW||§+CZ£j(Wj) as learning the implied kerndl, (x',x) = (F'x’, F'x).
w j 2 w2 j Even whenF' is rotated (and reflected) b, the learned

kernelky is unaffected.
where/; (V) is the total (hinge) loss df/’; on the training

examples for task. Replacing the Frobenius norm with

the trace norm: 5. Optimization

. The optimization problem Eq. (9) can be formulated as a
mml,n”WHE +C Z (W) A1) semi-definite program (SDP) and off-the-shelf SDP solvers
J can be used to recover the optimid. However, such
solvers based on interior point methods scale poorly with
the size of the problem and typically cannot handle prob-
lems with more than several hundred dimensions, classes
gand training points1(0* variables). Hence, we choose to

given byG . After such a feature representation is learned,™ ™ ™ N :
a new task can be learned directly using the feature vec2ptimize Eq. (9) using simple, but powerful gradient-based
methods.

tors F''x using standard SVM machinery, taking advantage

of the transfered knowledge from the other, previously- . o
learned, tasks. 5.1. Gradient Based Optimization

corresponds to learning a feature representation) =
F'x that allows good, low-norm prediction for alltasks,
where the linear predictor for tagkin this feature space, is

In the multiclass setting, the predictdi, are never inde-  The optimization problem Eq. (9) is non-differentiable and
pendent, as even in the standard Frobenius norm formul&0 not immediately amenable to gradient-based optimiza-
tion Eq. (4), the loss couples together the predictors fer th tion. In order to perform the optimization, we consider a
different classes. However, the between-class transfer apmoothed approximation to Eq. (9).

forded by impli'citly learning shared characteristics imu We begin by replacing the trace-norm with a smooth proxy.
s_tronger._ As will be_demonstrated later, such transferiis pa Eq. (8) characterizes the trace-norm as the sum of the sin-
ticularly important if only a few number of examples are gyar values of’. Although the singular values are non-
available from some class of interest. negative, the absolute value in Eq. (8) emphasizes the rea-
Although this paper studies multiclass learning, the techson the trace-norm is non-differentiable. In order to abtai
nical contributions, including the optimization approach @ smooth approximation to the trace-norm, we replace the
study of the dual problem, and kernelization, apply equallynon-smooth absolute value with a smooth functiode-

well also to the multi-task formulation Eq. (11). fined as,

2
It is interesting to note that we can learn a feature represen g(7) = 3 t+5 y<r
tation¢(x) = F'x even when we are not given the feature Iv] otherwise
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Wherer is some predefined cutoff point. Fig. 1 illustrates N /o2
the functiong and the effect of the parameter We can LN 15
easily see thaj is continuously differentiable, and that : £ 06 \\\ / "
|g(x) — ||| < §. Our smoothed proxy for the trace norm &, \ / gr N\
thus replaces Eq. (8) with . N/ o \‘
IWls = Zg(%) ’ (12) B 70'Ssingulabr value P ° ma%g;r-wr : :
3

where~; are the singular values d¥/. Using the chain Figure 1.Left: The smoothed absolute value functignSmaller
rule, we can calculate its gradient as, values ofr translate to a sharper function and a better estimate
of the absolute values. Right: The binary version of the log-loss

o||W s in comparison with the binary hinge-loss. Larger values af-
HaWH =Ug' (D)V 13) crease the accuracy of the log-loss approximation.

whereW = UDV is the SVD of W and ¢’(D) is an *0 2500
element-wise computation of the derivatiyeof g on the %0 32000
diagonal ofD. %:z 2 1500
We now turn our attention on the non-differentiable multi- S 2 1000
class hinge-loss of Eqg. (3). Since neither the hifjgenor 10 € 0
the max operators are differentiable we employ an adap- o—— %% 0"'200 e 95 1000
tation of the log-loss for the multiclass setting, with a pa- A Training Examples
rametery controlling its sharpness (Zhang & Oles, 2001; . _
Dekel et al., 2003), Figure 2.Left: The values of the original (non-smooth) opti-

mization objective Eq. (9) for minima of the smoothed objective
Eqg. (14) as a function of the smoothing parametésolid) com-
ts (W (xi,5:)) = l log | 1+ Z A (LHWrxi =Wy, xi) | pared to the true optimum of Eq. (9) (dotted). Right: Running
A times of SDP solver for Eq. (9) (dotted) vs the gradiend based
e method for solving Eq. (14) (witth = 20) as a function of the
This is a convex and continuously differentiable functién o humber of training instances.
W which approaches the multiclass hinge-loss\as co
(Fig. 1). In summary, instead of Eq. (9) we consider thethe SDP optimization becomes unreasonably slow. In con-
following optimization problem: trast, the gradient based optimization easily scales tlyfai
large training sets.

min||Wils +C» s (W;(xi,v:)) (14)
w ; 5.2. Kernelized Gradient Optimization

which is a convex and continuously differentiable function We now turn to devising a gradient-based optimization ap-

. o proach appropriate when only the Gram mafiix= X*X
.F'g'_ 2-left shows how optimization .of_the smoothed ob-jq available, but not the feature vectols themselves.
jective Eq. (14) aPPrOX,'mate'y optlmlzes Eq. (9). € Corollary 1 assures us that the optimum of Eq. (9) is of the
generated 160 training instances with 16 classes and 165\, v and so we can substitulé — X« into Eq. (14)
dime_nsional feature vectors using a r_andtihx 16 weight and minimize overv. To do so using gradient methods, we
matrix. For each value of, and a fixedr = 0.01 we need to be able to compute both the smoothed objective and

compared the weight matri¥’ recovered using conjugate jis yerivative fromi” anda alone, without reference ta
gradient descent on Eq. (14) to the optimizer of Eq. (9)g,njicitly.

found using an interior point SDP solver (we used SDP3

which outperformed other solvers such as SeDuMi and/Ve first tackle the smoothed trace normof: Let Xa =
SDPAM). The figure plots the value of the original (non- UDV denote the SVD of{« then the SVD ofa’ Ka is
smooth) objective of both solutions. For large valuesof ~given byV*D?V. We can thus recoved from the SVD of
the smoothed optimization solves the original problem witha! K «, and use Eq. (12) to calculaf& a|| 5.

very good accuracy. In order to compute the gradient X || s with respect to

Fig. 2-right describes the gained performance using the grax, we calculate:

dient based smooth objective Eq. (14) while gradually in-

creasing the number of instances from 80 to 1000. Itis 9 Xalls _ 9] Xels
apparent that even for relatively small number of instances doa 0Xa

= X'Ug (D)V
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insertingD(VVY)D~! = DID™' =1TI:

= X'UMDVV'D g (D)V
= X' (UDV)V'D ¢ (D)V

Singular Value Magnitude

and sinceXa = UDV:

I o) 10 20 30 40 50 60 70
= X" (Xa)V'D g (D)V = KaV'D ¢/ (D)V (15)
Figure 3.Spectra of learned matrices in the synthetic (left) and
Recall that boti/ and D can be obtained from the SVD of real (right) experiments. The weight matrix resulting from trace
o' Ka, and so Eq. (15) provides a calculation of the gradi-regularization (solid), and the weight matrix resulting from Frobe-
entin terms ofk” anda. Thus, we can efficiently apply our nius regularization. (dotted). Thg Weight.matrix that generated the
gradient based optimizations to a kerkék, x'). dataW* (dashed) in the synthetic experiment only.

6. Spectral Properties of Trace Norm weight matrix. In order to show this is not necessarily the
Regularization case, we repeated the experiment described abovél but

was selected to have the singular values form a harmonic
One way to appreciate the difference between the Frobeseries ¢, 3, ..., 155). We similarly recovered two matri-
nius norm and the trace norm of a matiX is by observ- cesWr and Wy using the Frobenius norm optimization
ing that the squared Frobenius norm equals the sum of thend the trace norm optimization . It was observed that the
squared singular valuey,, 72, while the trace norm is the generalization error over 500 new test instances, was sig-
sum of the singular values themselvgs, v;. Thus, choos-  nificantly higher forlWx (26%) than forWs, (17%).

ing to minimize|| F'[[? + |G|z rather tharf[ V|2, imposes Next, a singular value decomposition was performed on

a regularization preference for iy norm on the spec- Wy, and W followed by reconstructing these matrices
trum of W (rather than anL, norm). When the various sing thep leading singular values and vectors (=

target classes share common char.acterlstlcs we e>.<pectt ?2, ..., 100). Performance of the reconstructed weight
spectrum ofi¥’ to be non-uniform, since a large portion of

th t tb trated on f : | matrices was evaluated on the test set. It was observed
€ Shectrum must be concentrated on few eigenvalues. Itrf'1at any SVD dimensionality reduction deteriorated the tes
these cases thke, spectrum regularization imposed by the

Frobeni il tend to att e th ¢ | performance. Moreover, the generalization error for the re
robenius norm wit tend to attenuate the Spectrum. 1n cong,, .o g1y, was consistently worse than the performance of
trast, thel,; spectrum regularization imposed by the trace

. ) " “the reducedVx. It could therefore be concluded that post-
norm does not share this tendency, and is thus better suit

¢ derlvi truct t ch teristicsatmt ¢ dimensionality reduction could not attenuate the im-
0 preserve underlying structures ot charactenstics portance of finding the underlying structure as an integral
shared between the target classes.

part of the learning procedure.

In order to illustrate this effect we generated 100 classes

over R120 and randomly sampled 4500 training instancesy Experiments

from a 120-dimensional normal distribution. 120 x 100

matrix W* was then used to label the data, by choosing for7.1. Experiment I: Letter Recognition

each instance the labely = argmax ;- z. The matrix By analyzing over 100 writing systems, Changizi and Shi-

re
W* was selected to have a sigjr;noidal pattern of singulamojo (2005) have demonstrated the fact that each writing
values, depicted in the dashed spectrum on Fig. 3. We thesystem can be characterized by a set of underlying strokes.
recovered two matriceB’r and Wy using the Frobenius Therefore, our first experiment focuses on recognition of
norm optimization from Eq. (4) and the trace norm opti- the 26 characters made available in the Uter dataset.
mization from Eq. (9). The generalization error over 500The data was composed of 2000 instances, roughly dis-
new test instances, was significantly higher ¥og (47%) tributed over the 26 classes. The data was partitioned to
than forlWWs, (31%). The spectrum of the two learned mod- three sets: 1000 were used as a training set, 500 were held
els is depicted in Fig. 3. It could be observed that Frobe-out and used to select the optimal valugiband 500 were
nius based regularization leads to the attenuated spectruased as a test set. Data was represented using a Gaussian
of Wg. kernel witho = 0.07.

A question may arise whether it was possible to encour\We then recovered two matric&sr (Frobenius norm reg-
age the underlying common structure between the classagarization) from Eq. (4) andVx, (trace norm regulariza-
by applying a dimensionality reduction procedure to thetion) from Eq. (9). The trade-off parametérwas deter-



Uncovering Shared Structures in Multiclass Classification

40

Deer
3 o
2 30f e
8 [
@ [ ]
S 200 e ® o°°
Afiican+Wild+Dog g) ° °
« 2 8 oo° o, o °
) 10f ~o.."‘.. * e,
c 3 0% o % o
& .
S of e [7 o ° ®
>
Bobcat| “4 Q
€ © ] L
é =101
;,..E , ! S o
_20 L L L L L L
5 10 15 20 25 30 35 40

number of training instances

Figure 5.The gain in performance entailed by choosing trace
norm regularization over Frobenius norm regularization, as a
Figure 4 Representative images of Deer (Addax, Caribou, Com-fynction of the number of training instances available in each
mon Deer), Canines (African Wild Dog, Dingo, Hyena), Felines mammal class.
(Cheetah, Bobcat, Serval), and Rodents (Black Rat, Deer Mouse,

Flying Squirrel). minimal Euclidean distance necessary for converting the

descriptors in signature-A to be identical to the descripto
of signature-B (for details see Zhang et al. (2006) and the

mined exhaustively by searching ovEs values between -\
references within).

279 and2°. The value was later fine tuned by searching
within a smaller window withirC' - 27'% andC'- 2'>. All  Using the above representation we learned the two matrices
values were tested on the fixed holdout set. Performancg/,. (Frobenius norm regularization) afitls; (trace norm
was evaluated over 500 new test instances, and the generaégularization). The trade-off parametéwas determined
ization error was significantly higher fé¥x (10.1%) than  using the same procedure used in Experiment 7.1. The ac-

for Wy (8.7%). curacy of the multiclass SVM based on trace norm regu-
larization §3%) is observed to be higher than that attained
7.2. Experiment Il: Mammal Recognition Dataset using the Frobenius norm regularizati®®9%o).

Our second experiment focused on the challenging task dh the previous sections it was suggested that learfing
classifying mammal images. We chose the 72 mammalsan be thought of as learning a latent feature SgacE,

that have at least 12 profile instances in the mammal benclwhich is useful for prediction. Sincg' is learned jointly
mark made available by Fink and Uliman (2007). Of thesepver all classes, it can be thought of as transferring knowl-
approximately 1,000 images were used for training and a&dge between the classes. Under these conditions a new
similar number were used for testing. The test set was furelass can be acquired from fairly few training examples.
ther partitioned, where half was held out and used to seWe therefore predict that classes with few training exam-
lect C' and the rest where used for testing. The numbeples will, on average, gain more from applying trace norm
of instances of each class varied significantly from 6 to 30regularization. This effect is depicted in Fig. 5. Specifi-
training examples. It should be noted that the 72 targetally, it could be observed that of the few classes that gain
classes are expected to share many common characteristitem Frobenius regularization, four are of the top six most
due to genetic resemblance and evolutionary convergencé&equent mammals.

Four genetically related families (Deer, Canines, Feline

and Rodents), are depicted in Fig. 4. 3 order to verify this phenomenon we selected one of the

most frequent classes (Wombats), which contains 30 train-
We build upon the comparison performed in Zhang et aling examples and repeatedly releari&g andWs, while
(2006) in selecting an image representation suitable for threducing the humber of wombat examples to 24, 18, and
high degree of intraclass variability present in the mammall2. Under these conditions the accuracy of correct clas-
dataset. This representation is based on extracting alvisusification of wombats naturally deteriorated, but the dffec
signature from the images. The visual signatures includevas noticeably less severe for the trace norm regularizatio
40 clusters of local descriptors, extracted from interest r While the Frobenius norm regularization performed better
gions of the image. The resulting signatures are comparedthen all 30 instances where available during learning (by
using an Earth Moving Distance (EMD) Kernel. The EMD 2.2%), when 24 instances where available the gap had nar-
distance between signature-A and signature-B is found byowed to 1.2%. When even fewer examples where available
solving the transportation problem, namely, by finding thethe leads where reversed and the trace norm outperformed
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the Frobenius norm by 1.4% for 18 instances and 3.7% fotion matrix is thusZWtX, rather tharlW!X in Eq. (16).

12 instances. It should be noted that the false alarm ratelowever, the trace-norm regularization is applied to the
over the remaining classes remained fairly constant. Thesgrediction matrixZ WX, rather than to the weight matrix.
results suggest that the learned common characteristics ¢
indeed facilitate the acquisition of a novel class when onl
few examples are available for training.

T this paper we suggested an efficient method to extract
Ythe underlying structures that characterize a set of target
classes. We believe that this approach is part of a trend
Finally, the spectrum of the two learned models (Fig. 3),that emphasizes the importance of sharing representhtiona
depicts the fact that Frobenius based regularization leadenowledge in order to enable large scale classification.

to the attenuated spectrum Bfz. It might be suggested
that this effect manifests the advantage of trace norm re
ularization in preserving underlying structure betweesn th
mammal classes.
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