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Abstract

By the term “quantization”, we refer to the
process of using quantum mechanics in order
to improve a classical algorithm, usually by
making it go faster. In this paper, we initiate
the idea of quantizing clustering algorithms
by using variations on a celebrated quantum
algorithm due to Grover. After having intro-
duced this novel approach to unsupervised
learning, we illustrate it with a quantized
version of three standard algorithms: divisive
clustering, k-medians and an algorithm for
the construction of a neighbourhood graph.
We obtain a significant speedup compared to
the classical approach.

1. Introduction

Unsupervised learning is the part of machine learning
whose purpose is to give to machines the ability to find
some structure hidden within data. Typical tasks in
unsupervised learning include the discovery of “natu-
ral” clusters present in the data (clustering), finding
a meaningful low dimensional representation of the
data (dimensionality reduction) or learning explicitly a
probability function (also called density function) that
represents the true distribution of the data (density
estimation). Given a training data set, the goal of a
clustering algorithm is to group similar datapoints in
the same cluster while putting dissimilar datapoints
in different clusters. Some possible applications of
clustering algorithms include: discovering sociological
groups existing within a population, grouping auto-
matically molecules according to their structures, clus-
tering stars according to their galaxies, and gathering
news or papers according to their topic.
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Multidisciplinary by nature, Quantum Information
Processing (QIP) is at the crossroads of computer
science, mathematics, physics and engineering. It con-
cerns the implications of quantum mechanics for infor-
mation processing purposes (Nielsen & Chuang, 2000).
Quantum information is very different from its classi-
cal counterpart: it cannot be measured reliably and it
is disturbed by observation, but it can exist in a super-
position of classical states. Classical and quantum
information can be used together to realize wonders
that are out of reach of classical information processing
alone, such as being able to factorize efficiently large
numbers, with dramatic cryptographic consequences
(Shor, 1997), search in a unstructured database with a
quadratic speedup compared to the best possible clas-
sical algorithms (Grover, 1997) and allow two people
to communicate in perfect secrecy under the nose of an
eavesdropper having at her disposal unlimited comput-
ing power and technology (Bennett & Brassard, 1984).

Machine learning and QIP may seem a priori to have
little to do with one another. Nevertheless, they have
already met in a fruitful manner (see the survey of
Bonner & Freivalds, 2002, for instance). In this paper,
we seek to speed-up some classical clustering algo-
rithms by drawing on QIP techniques. It is impor-
tant to have efficient clustering algorithms in domains
for which the amount of data is huge such as bioinfor-
matics, astronomy and Web mining. Therefore, it is
natural to investigate what could be gained in perform-
ing these clustering tasks if we had the availability of
a quantum computer.

The outline of the paper is as follows. In Section 2,
we review some basic concepts of QIP, in particular
Grover’s algorithm and its variations, which are at the
core of our clustering algorithm quantizations. In Sec-
tion 3, we introduce the concept of quantization as well
as the model we are using. We also briefly explain
in that section the quantum subroutines based on
Grover’s algorithm that we are exploiting in order to
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speed-up clustering algorithms. Then, we give a quan-
tized version of divisive clustering, k-medians and the
construction of a c-neighbourhood graph, respectively,
in Sections 4, 5 and 6. Finally, we conclude in Section 7
with a discussion of the issues that we have raised.

2. Quantum Information Processing

Quantum information processing draws its uncanny
power from three quantum resources that have no clas-
sical counterpart. Quantum parallelism harnesses the
superposition principle and the linearity of quantum
mechanics in order to compute a function simulta-
neously on arbitrarily many inputs. Quantum inter-
ference makes it possible for the logical paths of a
computation to interfere in a constructive or destruc-
tive manner. As a result of interference, computa-
tional paths leading to desired results can reinforce
one another, whereas other computational paths that
would yield an undesired result cancel each other out.
Finally, there exist multi-particle quantum states that
cannot be described by an independent state for each
particle (Einstein, Podolsky & Rosen, 1935). The cor-
relations offered by these states cannot be reproduced
classically (Bell, 1964) and constitute an essential
resource of QIP called entanglement.

2.1. Basic Concepts

In this section, we briefly review some essential notions
of QIP. A detailed account of the field can be found
in the book of Nielsen and Chuang (2000). A gubit (or
quantum bit) is the quantum analogue of the classical
bit. In contrast with its classical counterpart, a qubit
can exist in a superposition of states. For instance, an
electron can be simultaneously on two different orbits
of the same atom. Formally, using the Dirac notation,
a qubit can be described as [1) = «|0) 4+ 8|1) where o
and (8 are complex numbers called the amplitudes of
classical states |0) and |1), respectively, subject to the
normalization condition that |a|? + |3|> = 1. When
state |¢) is measured, either |0) or [1) is observed,
with probability |a|? or |3|?, respectively. Further-
more, measurements are irreversible because the state
of the system collapses to whichever value (]0) or |1))
has been observed, thus losing all memory of former
amplitudes o and .

All other operations allowed by quantum mechan-
ics are reversible (and even unitary). They are rep-
resented by gates, much as in a classical circuit.
For instance, the Walsh-Hadamard gate H maps |0) to
7510) + (1) and |1) to 5|0) — 5[1). Figure 1 illus-
trates the notions seen so far, where time flows from
left to right. Note that a single line carries quan-

tum information, whereas a double line carries classical
information; M denotes a measurement.

0 with probability 1/,
1 with probability /o

0) o— {

Figure 1. Example of a simple quantum circuit.

In this very simple example, we apply a Walsh—
Hadamard gate to state 0), which yields —[0)+75[1).
The subsequent measurement produces either 0 or 1,
each with probability |%|2 = 1/5, and the state col-
lapses to the observed classical value. This circuit can
be seen as a perfect random bit generator.

The notion of qubit has a natural extension, which is
the quantum register. A quantum register |¢), com-
posed of n qubits, lives in a 2"-dimensional Hilbert
space. Register |[¢) = 2?281 ;i) is specified by com-
plex amplitudes «g, a1,..., agn_1 subject to normal-
ization condition Y |a;|> = 1. Here, basis state |i)
denotes the binary encoding of integer ¢. Unitary oper-
ations can also be applied to two or more qubits. For-
tunately (for implementation considerations), any uni-
tary operation can always be decomposed in terms of
unary and binary gates. However, doing so efficiently
(by a polynomial-size circuit) is often nontrivial.

Figure 2 illustrates the process by which a function f
is computed by a quantum circuit C. Because unitary
operations must be reversible, we cannot in general
simply go from |z) to |f(x)). Instead, we must map
|z, b) to |x,b+ f(z)), where the addition is performed
in an appropriate finite group and the second input is a
quantum register of sufficient size. In case of a Boolean
function, |b) is a single qubit and we use the sum mod-
ulo 2, also known as the exclusive-or and denoted “®”.
In all cases, it suffices to set b to zero at the input of
the circuit in order to obtain f(z).

|z) . )
C
) b+ f(x))

Figure 2. Unitary computation of function f.

When f is a Boolean function, it is often more con-
venient to compute f in a manner that would have
no classical counterpart: if z is the classical input, we
flip its quantum phase from +|z) to —|z) (or vice
versa) precisely when f(z) = 1. This process, which is
achieved by the circuit given in Fig. 3, is particularly

|z) ]

(~1®a)

C
1) 1)

Figure 3. Computing a function by phase flipping.
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interesting when it is computed on a superposition of
all (or some) inputs. That operation plays a key role
in Grover’s algorithm (Section 2.2).

2.2. Grover’s Algorithm and Variations

In the original version of Grover’s algorithm (Grover,
1997), we are given a Boolean function f as a black
box and we are promised that there exists a unique
xo such that f(xg) = 1. Classically, finding that xg
would require an average of n/2 queries of the black
box, where n is the number of points in the domain
of f. Grover’s algorithm solves the same problem after
roughly \/n accesses to the black box, but of course
those accesses are made in quantum superposition.

Grover’s algorithm starts by using a stack of Walsh—
Hadamard gates on the all-zero state in order to create
an equal superposition of all possible inputs. It then
proceeds by repeating the so-called Grover iteration,
which is composed of two steps: a call to the quantum
circuit given in Fig. 3, which flips the phase of the
unknown x such that f(z) = 1 (the “target state”)
and an inversion about the average, which is indepen-
dent of f. This iteration has to be repeated roughly
Zv/n times. The effect of a single Grover iteration is
to slightly increase the amplitude of the target state,
while decreasing the amplitudes of the other states.
After the right number of Grover iterations, the ampli-
tude of the target state is very close to 1, so that we are
almost certain to obtain it if we measure the register
at that time.

Following Grover’s original idea, generalizations of his
algorithm have been developed that deal with the
case in which there are more than a single x so that
f(z) =1. In that case, roughly g\/ni/t Grover iter-
ations should be applied before measuring (Boyer,
Brassard, Hgyer & Tapp, 1998), where ¢ is the num-
ber of solutions. In case the number ¢ of solutions is
unknown, the same paper shows that it remains pos-
sible to find one of them in a time proportional to
\/n/t. Other extensions of Grover’s algorithm have
been developed, in which it is possible to count (either
exactly or approximately) the number of solutions
(Brassard, Hgyer, Mosca & Tapp, 2002).

Several applications of Grover’s algorithm have been
developed to find the minimum of a function (Diirr
& Hgyer, 1996) and the ¢ smallest values in its image
(Diirr, Heiligman, Hoyer & Mhalla, 2004) after ©(y/n)
and ©(y/cn ) calls on the function, respectively. Other
applications can approximate the median or related
statistics (Nayak & Wu, 1999) with a quadratic gain
compared to the best possible classical algorithms.

denoted D,, = {z1,.

3. Quantization of Clustering
Algorithms

As a motivating example, consider the following sce-
nario, which corresponds to a highly challenging clus-
tering task. Imagine that you are an employee of the
Department of Statistics of the United Nations. Your
boss comes to you with the complete demographic data
of all the inhabitants of Earth and asks you to analyse
this data with a clustering algorithm in the hope of
discovering meaningful clusters. Seeing how reluctant
you seem to be in front of all this data, he tells you
not to worry because, in order to help you achieve
this task, he was able to “borrow” the prototype of
a full-size quantum computer from the National Secu-
rity Agency. Can this quantum computer be used to
speed-up the clustering process?

By the term quantization, we refer to the process of
starting from a classical algorithm and converting it
into a quantum algorithm in order to improve it!,
generally by making it go faster. The first quantized
clustering algorithm, although it was not developed
for this purpose, is due to Diirr, Heiligman, Hgyer and
Mhalla (2004). They have studied the quantum query
complexity of graph problems and developed among
other things a quantized version of Boruvka’s algo-
rithm (1926), capable of finding the minimum span-
ning tree of a graph in a time in ©(n3/2?), where n is
the number of vertices in the graph?. Suppose that
each datapoint x; of the training set is represented
by a vertex and that each pair of vertices (x;,x;) is
linked by an edge whose weight is proportional to some
distance measure Dist(z;, z;). Once the minimal span-
ning tree of this graph has been computed, it is easy
to group the datapoints into k clusters by removing
the k — 1 longest edges of this tree.

Although related, the task of quantizing clustering
algorithms should not be confused with the design of
classical clustering algorithms inspired from quantum
mechanics (Horn and Gottlieb 2001; 2002) or the task
of performing clustering directly on quantum states
(Aimeur, Brassard & Gambs, 2006).

3.1. The Model

In traditional clustering, the assumption is made that
the training data set D, is composed of n points,
..,xy}. BEach datapoint z corre-

! Not to be confused with an alternative meaning of
quantization, which is to divide a continuous space into
discrete pieces.

21n the case of a complete graph, all possible classical
algorithms require a time in Q(n?).
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sponds to a vector of attributes. For instance, z € R?
if points are described by d real attributes. The goal of
a clustering algorithm is to partition the set D,, in sub-
sets of points called clusters, such that similar objects
are grouped together within the same cluster (intra-
stmilarity) and dissimilar objects are put in differ-
ent clusters (inter-dissimilarity). A notion of distance
(or a similarity measure) between each pair of points
is assumed to exist and is used by the algorithm to
decide on how to form the clusters.

In this paper, we depart from this traditional setting
by adopting instead the framework of the black box
model. Specifically, we assume that our knowledge
concerning the distance between points of the training
data set is available solely through a black box, also
known as an “oracle”. We make no a priori assump-
tions on the properties of this distance, except that it
is symmetric® and non-negative. (In particular, the
triangle inequality need not hold.) This model is close
in spirit to the one imagined by Angluin (1988), which
is used in computational learning theory to study the
query complexity of learning a function given by a
black box. A quantum analogue of Angluin’s model
has been defined by Servedio (2001). The main differ-
ence between Angluin’s model and ours is that we are
not interested in learning a function but rather in per-
forming clustering .

In the classical black-box setting, a query corresponds
to asking for the distance between two points x; and x;
by providing indexes i and j to the black box. In accor-
dance with the general schema given in Fig. 2, the cor-
responding quantum black box is illustrated in Fig. 4;
we call it O (for “oracle”). In particular, it is pos-
sible to query the quantum black box in superposi-
tion of entries. For instance, if we apply the Walsh—
Hadamard gate to all the input qubits initially set
to |0) (but leave the |b) part to |0)), we can set the
entry to be a superposition of all the pairs of indexes
of datapoints. In that case, the resulting output is a
superposition of all the triples |i, j, Dist(x;, z;)).°

3If the distance is not symmetric, the algorithms pre-
sented here can easily be modified at no significant increase
in the running time.

4 We are not aware of prior work in the study of clus-
tering complexity in Angluin’s model, be it in the classical
or quantum setting. However, a similar problem has been
considered in the classical PAC (Probably Approximately
Correct) learning setting (Mishra, Oblinger & Pitt, 2001).
The issue was to study the number of queries that are
necessary to learn (in the PAC learning sense) a specific
clustering from a class of possible clusterings.

® Not to be confused with simply a superposition of all
the distances between pairs of points, which would make
no quantum sense in general.

|7) |2)
17) 17)
|b) |b+ Dist(z;,x;))

Figure 4. Illustration of the distance oracle: ¢ and j are the
indexes of two points from D, and Dist(x;,x;) represents
the distance between them. The addition b + Dist(xs,x;)
is performed in an appropriate finite group between the
ancillary register b and the distance Dist(z;, ;).

The explicit construction of O from a particular train-
ing set D,, is a fundamental issue, which we discuss in
Section 7. For now, we simply assume that the clus-
tering instance to be solved is given as a black box,
which is the usual paradigm in quantum information
processing as well as in Angluin’s classical model.

3.2. Quantum Subroutines

In this section, we present three quantum subroutines,
which we are going to use in order to accelerate classi-
cal clustering algorithms. All these subroutines are
variations on Grover’s algorithm. In fact, the first
two are straightforward applications of former work by
Diirr et al. (1996; 2004), although they are fine-tuned
for our clustering purposes. The third subroutine is a
novel, albeit simple, application of Grover’s algorithm.

The quant_find_max algorithm described below (Algo-
rithm 1) is directly inspired by the algorithm of Diirr
and Hgyer (1996). It serves to find the pair of points
that are farthest apart in the data set (the distance
between those two points is called the “diameter” of
the data set). A similar algorithm, which we do not
need in this paper, would find the datapoint that is
most distant from one specific point.

Algorithm 1 quant_find_max(D,,)

Choose at random two initial indexes i and j

Set dimae = Dist(x;, ;)

repeat
Using Grover’s algorithm, find new indexes ¢ and j
such that Dist(xz;, ;) > dmas provided they exist;
Set dimae = Dist(x;, x;)

until no new i, j are found

return i, j

The algorithm starts by choosing uniformly at random
two indexes 7 and j. A first guess for the diameter is
obtained simply as dpqz = Dist(z;, ;). By virtue of
the phase-flipping circuit described in Figures 5 and 6,
Grover’s algorithm is then used to find a new pair (i, j)
of points, if it exists, such that Dist(x;,2;) > dmaa-
If no such pair exists, we have found the diameter
and the algorithm terminates. Otherwise, the tenta-
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Figure 5. Phase-flipping component of Grover’s algorithm,
in which the output is identical to the input, except
that the global phase of |i)|j) is flipped if and only if
Dist(x;, ;) > dmas- See Fig. 6 for definition of P.

1j
|

|dmaac

o

11

|d) |d)
‘dmam> |dmaz>
1b) b® [d > dinas))

Figure 6. Sub-circuit P for use in Fig. 5, where [z] is the
Iverson bracket defined by [z] = 0 if z is false and [z] =1
otherwise, and “@” denotes the exclusive-or.

tive distance dy,q, is updated to be Dist(x;,x;) and
the procedure is repeated. It follows from the analysis
of Diirr and Hgyer (1996) that convergence happens
after an expected number of queries in the order of
/D, where p = n? is the number of pairs of datapoints,
hence the total number of queries is in O(n).

The second subroutine we are going to use for
the quantization of classical clustering algorithms is
directly inspired by the algorithm for finding the ¢
smallest values of a function, due to Diirr, Heilig-
man, Hgyer and Mhalla (2004). We call this sub-
routine quant_find_c_smallest_values. Finding the min-
imum of a function can be seen as a special case of
the application of this algorithm for the case ¢ = 1.
Using the approach that we have just explained for
quant_find_max, it is possible to adapt this algorithm
to search for the ¢ closest neighbours of a point in a

time in ©(y/cn).

Our third and last subroutine is a novel algorithm,
which we call quant_cluster_median, for computing the
median of a set of m points Q,, = {z1,. .., 2m}. When
the z;’s are simply numbers or, more generally, when
all the points are colinear, the quantum algorithm of
Nayak and Wu (1999) can be used to find the median
in a time in ©(y/m ). However, we shall need to find
medians in the more general case in which all we know
about the points is the distance between each pair
(the triangle inequality need not hold), when the algo-
rithm of Nayak and Wu (1999) does not apply.

By definition, the median of Q,, is a point within the
set whose sum (or average) distance to all the other

points is minimum. This notion of median is partic-
ularly intuitive in the L;—norm sense but can be gen-
eralized to other situations (see the survey of Small,
1990, for instance).

Finding the median can be done classically by com-
puting for each point inside the set its sum distance
to all the other points and taking the minimum. This
process requires a time in ©(m?), again when m is the
number of points considered. In the general case in
which there are no restrictions on the distance func-
tion, we are not aware of a more efficient classical
approach. Quantum mechanically, we can easily build
the quantum circuit illustrated in Fig. 7, which takes
|i) as input, 1 < i < m, and computes the sum of the
distances between z; and all the other points in Q,,.
For this, it suffices to apply the black box of Fig. 4 suc-
cessively with each value of j, 1 < j < m. (We assume
that Dist(z;,z;) = 0.) This takes a time in O(m), but
see Section 7 for possible improvements.

%) :@: |2)
|b) b+ >"0L, Dist(2i, 25))

Figure 7. Computing the sum of distances between z; and
all the other points in the set Qm = {z1,...,2m}.

The minimum-finding algorithm of Diirr and Hgyer
(1996) can then be used to find the minimum such sum
over all possible z; with ©(y/m) applications of the
circuit of Fig. 7. Since each application of the circuit
takes a time in ©(m), the overall time to compute the

median is in ©(m/m) = O(m?/?).

4. Divisive Clustering

One of the simplest ways to build a hierarchy of clus-
ters is by starting with all the points belonging to
a single cluster. The next step is to split this clus-
ter into two subclusters. For this purpose, the two
datapoints that are the farthest apart are chosen as
seeds. Afterwards, all the other points are attached
to their nearest seed. This division technique is then
applied recursively on the resulting subclusters until
all the points contained inside a cluster are sufficiently
similar. See Algorithm 2 for details.

The part of this algorithm that is the most costly is to
find the two farthest points within the initial data set
of n points. If the datapoints are given as vectors in R?
for an arbitrarily high dimension d, this process gener-
ally requires ©(n?) comparisons %. Quantum mechan-

ically, however, we can use quant_find_max as a sub-

S However, if d is small (such as d = 1,2 or 3) and we
are using a metric such as the Euclidean distance, linear or
subquadratic algorithms are known to exist.
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Algorithm 2 Div_clustering(D)

if points in D are sufficiently similar then
return D as a cluster

else
Find the two farthest points x, and x in D
using quant_find_max
for each x € D do

Attach z to the closest between x, and x

end for
Set D, to be all the points attached to z,
Set Dy, to be all the points attached to z
Call Div_clustering(D,,)
Call Div_clustering(Ds)

end if

routine to this algorithm, which finds the two farthest
points in a time in ©(n), as we have seen.

For the sake of simplicity, let us analyse the situa-
tion if the algorithm splits the data set in two sub-
clusters of roughly the same size.” This leads to the
construction of a balanced tree and the algorithm has
a global running time 7'(n) given by asymptotic recur-
rence T'(n) = 2T(n/2) + ©(n), which is in O(nlogn).

5. k-medians

The k-medians algorithm, also called k-medoids,
(Kaufman & Rousseeuw, 1987) is a cousin of the
better-known k-means clustering algorithm. It is an
iterative algorithm, in which an iteration consists of
two steps. During the first step, each datapoint is
attached to its closest cluster centre. During the sec-
ond step, the centre of each cluster is updated by
choosing among all the points composing this cluster
the one that is its median. The algorithm stops when
the centre of the clusters have stabilized (or quasi-
stabilized). The algorithm is initialized with k& random
points chosen as starting centres, where k is a param-
eter supplied to the algorithm, which corresponds to
the desired number of clusters.

The main difference between k-means and k-medians
is that k-means is allowed to use a virtual centroid that
is simply the average of all the points inside the cluster.
In contrast, for k-medians we restrict the centre of the
cluster to be a “real” point of the training set. One
advantage of k-medians over k-means is that it can be
applied even if the only information available about

” Admittedly, this is not an altogether realistic assump-
tion, especially if the data set contains outliers. However,
in that case, we should begin by following the usual classi-
cal practice of detecting and removing those outliers before
proceeding to divisive clustering.

the points is the distance between them, in which case
it may be impossible to compute averages, hence to
apply the k-means algorithm.

Algorithm 3 k-medians(D,k)

Choose k points uniformly at random to be the
initial centres of the clusters
repeat
for each datapoint in D do
Attach it to its closest centre
end for
for each cluster Q do
Compute the median of the cluster and make
it its new centre
end for
until (quasi-)stabilization of the clusters
return the clusters found and their centres

In order to analyse the efficiency of one iteration of
this algorithm, let us assume for simplicity that the
clusters have roughly the same size n/k. (If not,
the advantage of our quantum algorithm compared to
the classical approach will only be more pronounced.)
If the medians were computed classically, each of them
would need a time in O(()?), for a total of ©(3n?)
for finding the centres of all k£ clusters. Quantum
mechanically, we have seen that it is possible to com-
pute the median of a cluster of size n/k in a time in
O(%+/ %) using the quant_cluster_median subroutine.
This yields a running time in @(ian/Q) for one itera-
tion of the quantum k-medians algorithm, which is
v/n/k times faster than the classical approach, every-
thing else being the same in terms of convergence rate.

6. Construction of a c-neighbourhood
Graph

The construction of a neighbourhood graph is an
important part in several unsupervised learning algo-
rithms such as ISOMAP (Tenenbaum, de Silva & Lang-
ford, 2000) or the clustering method by random walk
(Harel & Koren, 2001). Suppose that the points of the
training set are the vertices of a complete graph, where
an edge between two vertices is weighted according to
the distance between these two datapoints. A c-neigh-
bourhood graph can be obtained by keeping for each
vertex only the edges linking it to its ¢ closest neigh-
bours. Algorithm 4 gives a quantized algorithm for
the construction of a c-neighbourhood graph.

For each datapoint, we can find its ¢ closest neighbours
in a time in ©(y/cn ) using quant_find_c_smallest_values.
This leads to a total cost in ©(n?/?) for computing the
global c-neighbourhood graph, provided we set ¢ to be
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Algorithm 4 c-neighbourhood_graph_construction(D,c)

for each datapoint z; of D do
Use quant_find_c_smallest_values to find the ¢
closest neighbours of x;
for each c closest neighbours of x; do
Create an edge between z; and the current
neighbour, which is proportional to the
distance between these two points
end for
end for
return the computed graph

a constant. Classically, if we have to deal with an arbi-
trary metric and we know only the distance between
pairs of points, this would require a time in the order
of ©(n?) to find the closest neighbours for each of the
n points. However, if we have access for each data-
point to all the d attributes that describe it, it is pos-
sible to use Bentley’s multidimensional binary search
trees, known as kd-trees® (Bentley, 1975), to find the
c closest neighbours of a specific datapoint in a time
in ©(clogn). The construction of the kd-tree requires
to sort the datapoints according to each dimension,
which can be done in a time in O(dnlogn), where d is
the dimensionality of the space in which the datapoints
live and n is the number of datapoints.

7. Discussion and Conclusion

In this paper, we have seen how to speed up a selection
of classical clustering algorithms by quantizing some
of their parts. However, the approach we have used is
not necessarily realistic because it requires the avail-
ability of a quantum black box that can be used to
query the distance between pairs of points in superpo-
sition. Even though this is the model commonly used
in quantum information processing, we reckon that, in
real life, we might not be given directly such a black
box. Instead, we would be more likely to be given a
training data set D,, that contains the description of
n datapoints. An important issue is how to construct
ourselves, from this training set, an efficient quantum
circuit that has the same functionality as the black box
we had assumed throughout this paper. We recognize
that this is a fundamental question, but it is currently
beyond the scope of this paper.

We believe that our quantized version of the k-medians
algorithm (Section 5) can be improved even further
by developing a quantum algorithm to estimate the

8 Originally, “kd tree” stands for “k-dimensional tree”.
Of course those trees would be d-dimensional in our case
but it would sound funny to call them “dd trees”!

sum of a set of values instead of simply adding them
one by one as we propose in Fig. 7. Currently known
algorithms to estimate the average (Grover, 1998) can-
not be used directly because of precision issues, but
methods based on amplitude estimation (Brassard,
Hgyer, Mosca & Tapp, 2002) are promising.

In order to make a fair comparison between a classical
clustering algorithm and its quantized counterpart, it
is also important to consider the best possible classical
algorithm and the advantage that can be gained if we
have a full description of the datapoints, rather than
just the distance between them. For instance, in the
case of the construction of a c-neighbourhood graph,
we have seen in Section 6 that classical kd-trees can
be used to compute this graph so efficiently that it
may not be possible to gain a significant improvement
by quantizing the algorithm. It is therefore important
to study also the lower bounds that can be achieved
for different clustering settings, both classically and
quantum mechanically. In particular, in which situa-
tion can (or cannot) the quantized version provide a
significant improvement? For instance, in the case of
clustering with a minimal spanning tree, Diirr, Heilig-
man, Hoyer and Mhalla (2004) have proved that their
algorithm is close to optimal. It follows that no clus-
tering algorithm based on the construction of a mini-
mal spanning tree, be it quantum or classical, can do
better than Q(n3/2).

Among the possible extensions to the study initiated
in this paper, we note that the quantization approach
could be applied to other clustering algorithms. More-
over, this quantization does not need to be restricted
to using only variations on Grover’s algorithm: it could
also use other techniques from the quantician’s tool-
box, such as quantum random walks (Ambainis, 2003)
or quantum Markov chains (Szegedy, 2004). Devel-
oping entirely new quantum clustering algorithms
instead of simply quantizing some parts of classical
algorithms is a most interesting research avenue, which
could lead to more spectacular savings. Finally, we be-
lieve that the quantization paradigm could also be ap-
plied to other domains of machine learning, such as di-
mensionality reduction and the training of a classifier.
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