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Abstract

We propose a class of graphical models ap-
propriate for structure prediction problems
where the model structure is a function of
the output structure. Incremental Sigmoid
Belief Networks (ISBNs) avoid the need to
sum over the possible model structures by
using directed arcs and incrementally speci-
fying the model structure. Exact inference in
such directed models is not tractable, but we
derive two efficient approximations based on
mean field methods, which prove effective in
artificial experiments. We then demonstrate
their effectiveness on a benchmark natural
language parsing task, where they achieve
state-of-the-art accuracy. Also, the model
which is a closer approximation to an ISBN
has better parsing accuracy, suggesting that
ISBNs are an appropriate abstract model of
structure prediction tasks.

1. Introduction

In recent years, structure prediction problems, i.e.
classification problems with a large (or infinite) struc-
tured set of output categories, have attracted much
attention. These problems frequently arise in natural
language processing (e.g. prediction of phrase struc-
ture trees for sentences), biology (e.g. protein struc-
ture prediction), chemistry, or image processing. To
build probabilistic models of such problems, it is com-
mon to decompose the output structures (e.g. phrase
structure trees, protein structures) into a sequence of
decisions about the output. We can then construct a
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history-based probability model for these sequences:

P (S) = P (D1, ...,Dm) =
∏

t

P (Dt|D1, . . . ,Dt−1), (1)

where S is the output structure and D1, . . . ,Dm is its
equivalent sequence of decisions.

We would like to build a graphical model of this deci-
sion sequence which allows us to infer each of these
conditional probabilities. One approach would be
to use a dynamic graphical model with latent state
variables (Murphy, 2002), but the resulting graphical
model would only have arcs which are local in the de-
cision sequence. Many problems have underlying sta-
tistical dependencies which are local only in their out-
put structure, not in any possible decision sequence.
For example, in natural language sentences, subject-
verb agreement can be expressed via a specific struc-
tural configuration in the phrase tree, but the subject
and verb may be arbitrarily far apart in the decision
sequence. To build graphical models for such non-
Markovian problems, we need the arcs of the graphical
model to be dependent on the output structure.

The most common approach to building probability
models for such problems is to simply not have any
latent variables (e.g. (Charniak, 2000; Collins, 1999;
Durbin et al., 2003)), but this relies on a hand-built set
of features to represent the unbounded decision histo-
ries in (1). One alternative proposal (Henderson, 2003)
was a model which used the hidden units of a neural
network to induce a set of history features. This model
achieved state-of-the-art results because its pattern of
interconnection between hidden layers was defined in
terms of locality in the output structure, as argued
for above. However, there was no clear probabilistic
semantics for the induced hidden representations.

In this paper we propose a class of graphical mod-
els which we call Incremental Sigmoid Belief Networks
(ISBNs), which are closely related to the neural net-
work of (Henderson, 2003), but which have a clear
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probabilistic semantics for all their variables. ISBNs
are a kind of Sigmoid Belief Network (Neal, 1992),
but are dynamic models and have an incrementally
specified model structure. Each position in the deci-
sion sequence has a vector of latent state variables,
which are connected to variables from previous po-
sitions via a pattern of arcs determined by the pre-
vious decisions. This gives us a form of switching
model (Murphy, 2002), where each decision switches
the model structure used for the remaining decisions.
In other words, the model structure is specified in-
crementally by the decision sequence. Because these
models use directional arcs and only allow decisions
to switch the future model structure, the portion of
the model structure which effects the inference of any
given P (Dt|D1, . . . ,Dt−1) is always known, thereby
avoiding the need to sum over model structures, as
discussed in section 3. As we will show in this pa-
per, these properties of ISBNs allow us to have large
numbers of latent state variables without making the
models impractical to use.

Large numbers of latent variables in heavily inter-
connected directed models make exact inference in-
tractable. We demonstrate the practical applicabil-
ity of these models by providing efficient approxi-
mations. We consider two forms of approximation
for ISBNs, a feed-forward neural network approxima-
tion (NN) and a form of mean field approximation
(MF) (Saul & Jordan, 1999). We first show that the
neural network model in (Henderson, 2003) can be
viewed as a coarse approximation to inference with
ISBNs. We then propose an incremental mean field
method, which provides an improved approximation
but remains tractable. Both these approximations give
us valid probability models.

We performed two empirical evaluations. In the first
experiment, we trained both of the approximation
models on artificial data generated from random IS-
BNs. The NN model achieves a 60% average rela-
tive error reduction over a baseline model and the MF
model achieves a further 27% average relative error
reduction over the NN model. These results demon-
strate that the distribution of output structures spec-
ified by an ISBN can be approximated, that these ap-
proximations can be learned from data, and that the
MF approximation is indeed better than the NN ap-
proximation. In the second experiment, we apply both
of the approximation models to phrase structure pars-
ing with data from the Wall Street Journal Penn Tree-
bank. The MF model achieves statistically significant
error reduction of about 8% over the NN model. Re-
sults of the MF model are non-significantly worse (less
than 1% relative error increase) than the results of the

best history-based model of parsing (Charniak, 2000).
We argue that this correlation between better approx-
imation and better accuracy suggests that ISBNs are
a good abstract model for structure prediction.

2. Inference with Sigmoid Belief

Networks

A Sigmoid Belief Network (SBN) (Neal, 1992) is a type
of Bayesian Network with binary variables and condi-
tional probability distributions in the form:

P (Si = 1|Par(Si)) = σ(
∑

Sj∈Par(Si)

JijSj),

where Par(Si) are the parents of Si, σ denotes the lo-
gistic sigmoid function, and Jij is the weight for the
arc from variable Sj to variable Si. SBNs are similar
to feed-forward neural networks, but unlike neural net-
works SBNs have a precise probabilistic semantics of
their hidden variables. In this paper we consider a gen-
eralized version of SBNs where we allow variables with
any range of discrete values. The normalized exponen-
tial function is used to define the conditional probabil-
ity distributions at these nodes.

Exact inference with all but very small SBNs is not
tractable. Initially sampling methods were used (Neal,
1992), but this is also not feasible for large networks,
especially for the dynamic models of the type described
in section 3. Variational methods have also been pro-
posed for approximating SBNs (Saul & Jordan, 1999).
The main idea of variational methods (Jordan et al.,
1999) is, roughly, to construct a tractable approximate
model with a number of free parameters. The free
parameters are set so that the resulting approximate
model is as close as possible to the original graphical
model for a given inference problem.

The simplest example of a variation method is the
mean field method, originally introduced in statisti-
cal mechanics and later applied to neural networks
in (Hinton et al., 1995). Let us denote the set of visible
variables in the model by V and hidden variables by
H = h1, . . . , hl. The mean field method uses a fully
factorized distribution Q(H|V ) =

∏

i Qi(hi|V ) as the
approximate model, where each Qi is the distribution
of an individual latent variable. The independence be-
tween the variables hi in this approximate distribution
Q does not imply independence of the free parame-
ters which define the Qi. These parameters are set to
minimize the Kullback-Leibler divergence between the
approximate distribution Q(H|V ) and the true distri-
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bution P (H|V ) or, equivalently, to maximize:

Lv =
∑

H

Q(H|V ) ln
P (H,V )

Q(H|V )
. (2)

The expression Lv is a lower bound on the log-
likelihood lnP (V ). It is used in the mean field the-
ory (Saul & Jordan, 1999) as an approximation of the
likelihood. However, in our case of dynamic graphical
models, we have to use a different approach which al-
lows us to construct an incremental structure predic-
tion method without needing to introduce the addi-
tional parameters proposed in (Saul & Jordan, 1999),
as we will discuss in section 5.2.

3. Exploiting Structural Locality

As discussed in the introduction, we want to extend
SBNs to allow the model structure to depend on the
structure being output. In particular, we want the arcs
of the model to reflect the same statistical dependen-
cies which are reflected by locality in the output struc-
ture. When these arcs connect latent variables, infor-
mation can be propagated between latent variables,
thereby providing an even larger structural domain of
locality than that provided by single arcs. This pro-
vides a potentially powerful form of feature induction,
which is nonetheless biased toward a notion of locality
which is appropriate for the problem.

To extend SBNs for processing arbitrarily long se-
quences such as the decision sequence D1, ...,Dm, we
use dynamic models. This gives us a kind of Dynamic
Bayesian Network (DBN). In DBNs, a new set of vari-
ables is instantiated for each position in the sequence,
but the arcs and weights for these variables are the
same as in other positions. The arcs which connect
variables instantiated for different positions must be
directed forward in the sequence, thereby allowing a
temporal interpretation of the sequence.

In order to have arcs which reflect locality in the out-
put structure, we need to specify arcs based on the
actual outputs of the decision sequence, not based on
adjacency in the sequence. We allow a decision to
effect the placement of any arc whose destination is
after the decision. This gives us a form of switching
model (Murphy, 2002), where each decision switches
the model structure used for the remaining decisions.
The incoming arcs for a given position are a discrete
function of the sequence of decisions which precede
that position. For this reason we call our model an
“incremental” model, not just a dynamic model. The
structure of the model is determined incrementally as
the decision sequence proceeds.

Incremental Sigmoid Belief Networks allow the model
structure to depend on the output structure without
overly complicating the inference of the desired condi-
tional probabilities P (Dt|D1, . . . ,Dt−1). At position
t in the sequence, the only arcs whose placement are
not specified by D1, . . . ,Dt−1 have their destinations
after t. Also, there are no visible variables after t.
Therefore none of the arcs whose placement is not
yet known can have any impact on the inference of
P (Dt|D1, . . . ,Dt−1). This is why in figure 1, discussed
below, it is not necessary to try to draw the portion of
the graph after t. This property of ISBNs allows us to
do inference without the need to sum over all possible
model structures, which in general would make infer-
ence intractable. Note that this property would not
hold if we used an undirected graphical model, such as
Conditional Random Fields.

4. The Probabilistic Model of Structure

Prediction

In this section we complete the definition of Incremen-
tal Sigmoid Belief Networks for structure prediction.
We only consider joint probability models, since they
are generally simpler and, unlike history-based condi-
tional models, do not suffer from the label bias prob-
lem (Bottou, 1991). Also, in many complex predi-
cation tasks, such as phrase structure parsing, all the
most accurate models make use of a joint model (Char-
niak & Johnson, 2005; Henderson, 2004).

We use a history-based probability model, as in equa-
tion (1), but instead of treating each Dt as an atomic
decision, it is convenient to further split it into a se-
quence of elementary decisions Dt = dt

1, . . . , d
t
n:

P (Dt|D1, . . . ,Dt−1) =
∏

k

P (dt
k|h(t, k)),

where h(t, k) denotes the decision history
D1, . . . ,Dt−1, dt

1, . . . , d
t
k−1. For example, a deci-

sion to create a new node in a labeled output
structure can be divided into two elementary deci-
sions: deciding to create a node and deciding which
label to assign to it.

An example of the kind of graphical model we pro-
pose is illustrated in figure 1. It is organized into vec-
tors of variables: latent state variable vectors St′ =
st′

1 , . . . , st′

n , representing an intermediate state at posi-
tion t′, and decision variable vectors Dt′ , representing
a decision at position t′, where t′ ≤ t. Variables whose
value are given at the current decision (t, k) are shaded
in figure 1, latent and current decision variables are left
unshaded.
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Figure 1. ISBN for estimating P (dt

k|h(t, k)).

As illustrated by the arcs in figure 1, the probability of
each state variable st′

i depends on all the variables in
a finite set of relevant previous state and decision vec-
tors, but there are no direct dependencies between the
different variables in a single state vector. Which pre-
vious state and decision vectors are connected to the
current state vector is determined by a set of struc-
tural relations specified by the model designer. For
example, we could select the most recent state where
the same output structure node was on the top of the
processor’s stack, and a decision variable representing
that node’s label. Each such selected relation has its
own distinct weight matrix for the resulting arcs in
the graph, but the same weight matrix is used at each
position where the relation is relevant.

As indicated in figure 1, the probability of each ele-
mentary decision dt′

k depends both on the current state

vector St′ and on the previously chosen elementary ac-
tion dt′

k−1 from Dt′ . This probability distribution has
the form of a normalized exponential:

P (dt′

k = d|St′ , dt′

k−1)=
Φh(t′,k) (d) e

∑

j
Wdjst′

j

∑

d′Φh(t′,k) (d′) e

∑

j
Wd′jst′

j

, (3)

where Φh(t′,k) is the indicator function of the set of
elementary decisions that may possibly follow the last
decision in the history h(t′, k), and the Wdj are the
weights of the arcs from the state variables.

5. Approximating Inference in ISBNs

Exact inference with ISBNs is straightforward, but not
tractable, so we need to develop methods for approx-
imating the inference problems required for structure
prediction. Gibbs sampling is also absolutely infeasi-
ble because of the huge space of variables and need
to resample after making each new decision in the se-
quence. Thus, we know of no reasonable alternatives
to the use of variational methods.

5.1. A Feed-Forward Approximation

In this section we will introduce the application of vari-
ational methods to ISBNs, and present the sense in
which neural network computation can be regarded
as a mean field approximation, under the additional
constraint of strictly feed-forward computation. We
will call this approximation the feed-forward approxi-
mation. As in any mean field approximation, each of
the latent variables in the variational model is inde-
pendently distributed. But unlike the general case of
mean field approximation, in the feed-forward approx-
imation we only allow the parameters of the distribu-
tions Qi to depend on the approximate distributions
of their parents. This additional constraint increases
the potential for a large KL divergence with the true
model, but it significantly simplifies the computations.

The set of hidden variables H in our graphical model
consists of all the state vectors St′ , t′ ≤ t, and the cur-
rent decision dt

k. All the previously observed decisions
h(t, k) comprise the set of visible variables V . The ap-
proximate fully factorisable distribution Q(H|V ) can
be written as:

Q(H|V ) = qt
k(dt

k)
∏

t′i

(

µt′

i

)st′

i
(

1 − µt′

i

)1−st′

i

.

where µt′

i is the free parameter which determines the
distribution of state variable i at position t′, namely
its mean, and qt

k(dt
k) is the free parameter which de-

termines the distribution over decisions dt
k, namely the

estimate of P (dt
k|h(t, k)).

Because we are only allowed to use the approximate
distributions of the parent variables to compute the
free parameters µt′

i , the optimal assignment is given

by µt′

i = σ(ηt′

i ), where ηt′

i is a weighted sum of the
parent variables’ means:

ηt′

i =
∑

t′′∈R(t′)

∑

j

J
τ(t′,t′′)
ij µt′′

j +
∑

k

B
τ(t′,t′′)

idt′′

k

, (4)

where R(t′) is the set of related previous positions, and
τ(t′, t′′) is the relevant relation between the position t′′

and the position t′.

In order to maximize (2), the approximate distribution
of the next decision qt

k(d) should be set to

qt
k(d) =

Φh(t,k) (d) e

∑

j
Wdjµt

j

∑

d′ Φh(t,k) (d′) e

∑

j
Wd′jµt

j

, (5)

as follows from expression (3). The resulting estimate
of the structure probability is given by:

P (S) ≈
∏

t,k

qt
k(dt

k). (6)
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This approximation method replicates exactly the
computation of the feed-forward neural network
in (Henderson, 2003), where the above means µt′

i are
equivalent to the neural network hidden unit activa-
tions. Thus, that neural network probability model
can be regarded as a simple approximation to the
graphical model introduced in section 4.

In addition to the drawbacks shared by any mean field
approximation method, this feed-forward approxima-
tion cannot capture top-down reasoning. By top-
down reasoning we mean the need to update the state
vector means µt′

i after observing a decision dt
k, for

t′ ≤ t. The next section discusses how top-down rea-
soning can be incorporated in the approximate model.

5.2. A Mean Field Approximation

The standard use of the mean field theory for
SBNs (Saul & Jordan, 1999) is to approximate proba-
bilities using the value of Lv from expression (2). Un-
fortunately this is not feasible with ISBNs. To approx-
imate P (dt

k|h(t, k)) using the value of Lv, we have to
include the current decision dt

k in the visible variables
V , and compute a separate estimate Lt,k

v (dt
k) for each

possible value of dt
k. Then P (dt

k|h(t, k)) can be ap-
proximated as the normalized exponential of Lt,k

v (dt
k)

values. This computation is especially infeasible with
labeled output structures, where the number of possi-
ble alternative decisions dt

k can be large, as for example
when predicting the words in a phrase structure tree.
Even if we choose not to recompute mean field param-
eters for all the preceding states St′ , but only for the
current state St (as proposed below), tractability still
remains a problem.1

In our modification of the mean field method, we con-
sider the next decision dt

k as a hidden variable, as
above in the feed-forward approximation. Then the as-
sumption of full factorisability of Q(H|V ) is stronger
than in the standard mean field theory because the
approximate distribution Q(H|V ) is no longer condi-
tioned on the next decision dt

k.

Again as in the feed-forward approximation, we are in-
terested in finding the distribution Q which maximizes
the quantity Lv in expression (2). The decision distri-
bution qt

k(dt
k) maximizes Lv when it has the same de-

pendence on the state vector means µt
k as in the feed-

forward approximation, namely expression (5). How-
ever, as we mentioned above, the feed-forward compu-

1We conducted preliminary experiments with natural
language parsing on very small datasets and even in this
setup the method appeared to be very slow and, surpris-
ingly, not as accurate as the modification considered fur-
ther in this section.

tation does not allow us to compute the optimal values
of state means µt′

i .

Optimally, after each new decision dt
k, we should re-

compute all the means µt′

i for all the state vectors St′ ,
t′ ≤ t. However, this would make the method in-
tractable for tasks with long decision sequences. In-
stead, after making each decision dt

k and adding it
to the set of visible variables V , we recompute only
the means of the current state vector St. This ap-
proach also speeds up computation because, unlike in
the standard mean field theory, there is no need to in-
troduce an additional variational parameter for each
hidden layer variable st

i.

The denominator of the normalized exponential func-
tion in (3) does not allow us to compute Lv exactly.
Instead, we approximate the expectation of its loga-
rithm by substituting st

j with their means µt
j .

2 Unfor-
tunately, even with this assumption there is no ana-
lytic way to maximize Lv with respect to the means
µt

k, so we need to use numerical methods. We can
rewrite the expression (2) as follows, substituting the
true P (H,V ) defined by the graphical model and the
approximate distribution Q(H|V ), omitting parts in-
dependent of µt

k:

Lt,k
v =

∑

i

−µt
i lnµt

i − (1 − µt
i) ln

(

1 − µt
i

)

+ µt
iη

t
i

+
∑

k′<k

∑

j

Wdt

k′
jµ

t
j − ln

(

∑

d

Φh(t,k′)(d)e

∑

j
Wdjµt

j

)

, (7)

here, ηt
i is computed from the previous relevant state

means and decisions as in (4). This expression is con-
cave with respect to the parameters µt

i, so the global
maximum can be found. We use coordinatewise as-
cent, where each µt

i is selected by a line search while
keeping other µt

i′ fixed.

Though we avoided recomputation of means of the pre-
vious states, estimation of the complex decision prob-
ability P (Dt|h(t, k)) will be expensive if the decision
Dt is decomposed in a large number of elementary de-
cisions. As an example, consider a situation in natural
language dependency parsing, where after deciding to
create a link, the parser might need to decide on the
type of the link and, then, predict the part of speech
type of the word and, finally, predict the word itself.
The main reason for this complexity is the presence

2In initial research, we considered the introduction of
additional variational parameters associated with every
possible value of the decision variable in a way similar to
(Saul & Jordan, 1999), but this did not improve the pre-
diction accuracy of the model, and considerably increased
the computational time.



Incremental Bayesian Networks for Structure Prediction

of the summation over k′ in expression (7), which re-
sults in expensive computations during the search for
an optimal value of µt

i. This computation can be sim-
plified by using the means of St computed during the
estimation of P (dt

k−1|h(t, k−1)) as priors for the com-
putation of the same means during the estimation of
P (dt

k|h(t, k)). If we denote the means computed at an

elementary step (t, k) as µ
t,k
i , then for k = 1, mini-

mization of Lt,k
v can be performed analytically, by set-

ting µ
t,1
i to σ(ηt′

i ). For k > 1, expression (7) can be
rewritten as:

Lt,k
v =

∑

i

−µ
t,k
i lnµ

t,k
i − (1 − µ

t,k
i ) ln

(

1 − µ
t,k
i

)

+µ
t,k
i

(

ln(µt,k−1)−ln(1 − µt,k−1)
)

+
∑

j

Wdt
k−1

jµ
t,k
j

− ln





∑

d

Φh(t,k−1)(d) exp(
∑

j

Wdjµ
t,k
j )



. (8)

After computing the last decision k for the state t,
means µt are computed in a similar way. These means
µt are then used in the computation of ηt′

i (4) for the
relevant future states t′, t ∈ R(t′).

5.3. Learning

We train the models described in sections 5.1 and 5.2
to maximize the fit of the approximate models to the
data. We use gradient descent, and a maximum like-
lihood objective function. In order to compute the
derivatives with respect to the model parameters, the
error should be propagated back through the structure
of the graphical model. For the feed-forward approxi-
mation, computation of the derivatives is straightfor-
ward, as in neural networks. But for the mean field ap-
proximation, this requires computation of the deriva-
tives of the means µt

i with respect to the other parame-
ters in expressions (7) and (8). The use of a numerical
search in the mean field approximation makes the an-
alytical computation of these derivatives impossible,
so a different method needs to be used to compute
their values. If minimization of Lt,k

v is done until con-
vergence, then the derivatives of Lt,k

v with respect to
µt

i are close to zero. This gives us a system of linear
equations, which describes interdependencies between
the current means, the means of the related previous
states, and the weights. Then, implicit differentiation
can be used to compute the needed derivatives.

The standard mean field approach considered in (Saul
& Jordan, 1999) maximized Lv during learning, be-
cause Lv was used as an approximation of the log-
likelihood of the training data. Lv is actually the sum
of the log-likelihood and the negated KL divergence

between the approximate distribution Q(H|V ) and the
SBN distribution P (H|V ). Thus, maximizing Lv will
at the same time direct the SBN distribution toward
configurations which have a lower approximation er-
ror. It is important to distinguish this regularization
of the approximate distribution from the usual regular-
ization of the SBN distribution, which can be achieved
by simple weight decay. We believe that these two reg-
ularizations should be complimentary. However, in our
version of the mean field method the approximate dis-
tributions of hidden decision variables qt

k are used to
compute the data likelihood (6) and, thus, maximiz-
ing this target function will not automatically imply
KL divergence minimization. Application of an addi-
tional regularization term corresponding to minimiza-
tion of the KL divergence might be beneficial for our
approach, and it could be a subject of further research.
In our current experiments, we used standard weight
decay, which regularizes the SBN distribution with a
Gaussian prior over weights.

6. Experiments

The goal of the evaluation is to demonstrate that incre-
mental SBNs are an appropriate model for structure
prediction. Also, we would like to show that learning
the mean field approximation derived in section 5.2
(MF method) results in a sufficiently accurate model,
and that this model is more accurate than the feed-
forward neural network approximation (NN method)
of (Henderson, 2003) considered in section 5.1. First,
we start with an artificial experiment where the true
distribution is generated by an SBN, and compare
both of the approximation models learned on this ar-
tificial data. Second, we apply the models to a real
problem, parsing of natural language, where we com-
pare our approximations with state-of-the-art models.

6.1. Artificial Experiment

In order to have an upper bound for our artificial ex-
periments, we do not consider incremental models but
use a dynamic Sigmoid Belief Network, a first order
Markov model, and consider a sequence labeling task.
This simplification allowed us to use Gibbs sampling
from a true model as an upper bound of accuracy.
We generated the training data from random dynamic
SBNs of the following type: first a label Y t is sam-
pled from the distribution P (Y t|St) as in (3), then
an input element Xt is sampled from the distribution
P (Xt|Y t, St). Different weight matrices were used in
the computation of P (Xt|Y t, St) for each value of the
label Y t. The state size was set to 5, the number of
possible labels to 6, and the number of distinct in-
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Table 1. Percentage labeled constituent recall (R), preci-
sion (P), combination of both (F1) on the testing set.

R P F1

Bikel, 2004 87.9 88.8 88.3

Taskar et al., 2004 89.1 89.1 89.1

NN method 89.1 89.2 89.1

Turian and Melamed, 2006 89.3 89.6 89.4

MF method 89.3 90.7 90.0

Charniak, 2000 90.0 90.2 90.1

put elements to 8. We performed 10 experiments.3

For each of the experiments, we trained both MF and
NN approximations on training sequence of 20,000 el-
ements, and tested them on another 10,000 elements.
Weight-decay and learning rate were reduced through
the course of the experiments whenever accuracy on
the development set went down. Beam search with a
beam of 10 was used during testing. The MF methods
achieved average error reduction of 27% with respect
to the NN method, where accuracy of the Gibbs sam-
pler was used as an upper bound (average accuracies
of 80.5%, 81.0%, and 82.3% for the NN, MF, and sam-
pler, respectively).

The MF approximation performed better than the NN
approximation on 9 experiments out of 10 (statisti-
cally significant in 8 cases). These results suggest that
the MF method leads to a much more accurate model
when the true distribution is defined by a dynamic
SBN. In addition, the average relative error reduction
of even the NN approximation over the unigram model
exceeded 60% (the unigram model accuracy was 77.4%
on average), which suggests that both approximations
are sufficiently accurate and learnable.

6.2. Natural Language Parsing

We compare our two approaches on a natural language
problem, the phrase structure parsing task. The out-
put structure is defined as a labeled tree, which spec-
ifies the hierarchical decomposition of a sentence into
phrases. The hypothesis we wish to test here is that
the more accurate approximation of ISBNs will result
in a more accurate model of parsing. If this is true,
then it suggests that ISBNs are a good abstract model
for structure prediction, or at least for problems simi-
lar to natural language parsing.

We used the Penn Treebank Wall Street Journal cor-

3We preselected these 10 models to avoid random dy-
namic SBNs with trivial distributions. We excluded SBNs
for which unigram model accuracy was within 3% of the
Gibbs sampler accuracy, and where accuracy of the Gibbs
sampler did not exceed 70%. All these constants were se-
lected before conducting the experiments.

pus to perform the empirical evaluation of the con-
sidered approaches. It is expensive to train the MF
approximation on the whole WSJ corpus, so instead
we used only sentences of length at most 15, as
in (Taskar et al., 2004) and (Turian et al., 2006).
The standard split of the corpus into training (9,753
sentences, 104,187 words), validation (321 sentences,
3,381 words), and testing (603 sentences, 6,145 words)
was performed. We replicated the same definition of
derivation and the same pattern of interconnection be-
tween states as described in (Henderson, 2003).

During parsing with both the NN method and the MF
method, we used beam search with a post-word beam
of 10. Increasing the beam size beyond this value did
not significantly effect parsing accuracy. For both of
the models, the state vector size of 40 was used. All
the parameters for both the NN and MF models were
tuned on the validation set. A single best model of
each type was then applied to the final testing set.

Table 1 lists the results of the NN approximation and
the MF approximation,4 along with results of different
generative and discriminative parsing methods evalu-
ated in the same experimental setup (Turian et al.,
2006; Charniak, 2000). The MF model improves over
the baseline NN approximation, with a relative error
reduction in F-measure exceeding 8%. This improve-
ment is statically significant. The MF model achieves
results which do not appear to be significantly different
from the results of the best model in the list (Charniak,
2000). It should also be noted that the model of (Char-
niak, 2000) is the most accurate history-based prob-
abilistic model on the standard WSJ parsing bench-
mark, which confirms the viability of our model.

These experimental results suggest that ISBNs are an
appropriate model for structure prediction. Even ap-
proximations such as those tested here, with a very
strong factorisability assumption, allow us to build
quite accurate parsing models.5 We believe this pro-
vides strong justification for work on more accurate
approximations of ISBNs.

7. Related Work

Whereas graphical models are standard models for se-
quence processing, there has not been much previ-

4Approximate training times on a standard desktop PC
for the MF and NN approximations were 140 and 3 hours,
respectively, and parsing times were 3 and 0.05 seconds per
token, respectively. Parsing with the MF method could
be made more efficient, for example by not requiring the
numerical approximations to reach convergence.

5We plan to make our implementation of the parser pub-
licly available soon.
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ous work on graphical models for prediction of struc-
tures more complex than sequences. Latent variable
models, including undirected graphical models, were
successfully applied to the task of structure rerank-
ing, e.g. (Koo & Collins, 2005). Dependency pars-
ing with Dynamic Bayesian Networks was considered
in (Peshkin & Savova, 2005), with limited success.
Roughly, the model considered the whole sentence at a
time, with the DBN being used to decide which words
correspond to leaves of the tree. The chosen words
are then removed from the sentence and the model is
recursively applied to the reduced sentence.

Sigmoid Belief Networks were used originally for char-
acter recognition tasks, but later a Markovian dynamic
extension of this model was applied to the reinforce-
ment learning task (Sallans, 2002). However, their
graphical model, approximation method, and learning
method differ substantially from those of this paper.

8. Conclusions

This paper proposes a new class of model for structure
prediction problems, Incremental Sigmoid Belief Net-
works. These graphical models allow the structure of
the model to be dependent on the output structure,
which allows the induction of latent variables with a
structural locality bias appropriate for the domain.
Exact inference with the proposed class of graphical
models is not tractable, but we derive two tractable ap-
proximations. First, it is shown that the feed-forward
neural network of (Henderson, 2003) can be consid-
ered as a simple approximation to ISBNs. Second, a
more accurate but still tractable approximation based
on mean field theory is proposed.

Both approximation models are empirically evalu-
ated. First, artificial experiments were performed,
where both approximations significantly outperformed
a baseline. The mean field method achieved average
relative error reduction of about 27% over the neu-
ral network approximation, demonstrating that it is
a more accurate approximation. Second, both ap-
proximations are applied to the natural language pars-
ing task, where the mean field method demonstrated
significantly better results. These results are non-
significantly different from the results of the most
accurate history-based probabilistic model of pars-
ing (Charniak, 2000). The fact that a more accurate
approximation leads to a more accurate parser sug-
gests that the ISBNs proposed here are a good ab-
stract model for structure prediction. This empirical
result motivates further research into more accurate
approximations of ISBNs.
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