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Abstract

Publication repositories contain an abun-
dance of information about the evolution of
scientific research areas. We address the
problem of creating a visualization of a re-
search area that describes the flow of topics
between papers, quantifies the impact that
papers have on each other, and helps to iden-
tify key contributions. To this end, we devise
a probabilistic topic model that explains the
generation of documents; the model incorpo-
rates the aspects of topical innovation and
topical inheritance via citations. We evaluate
the model’s ability to predict the strength of
influence of citations against manually rated
citations.

1. Introduction

When reading on a new topic, researchers need to get a
quick overview about a research area. This can be pro-
vided by a meaningful visualization of the citation net-
work that spins around some given publications. For
example, consider researchers who read on a new topic
with some references as starting points. The questions
occur which other papers describe key contributions,
how the various contributions relate to one another,
and how the topic evolved over the past.

Clearly, Google Scholar, CiteSeer and other tools that
allow to navigate in the publication graph provide a
great support and have made this task much easier. In-
spired by the work of Garfield (2004), we would like to
create a bird’s-eye visualization of a research area that
complements in-depth navigation in the publication
graph. But because the publication graph is linked
densely, even a radius of two citations from a pivotal
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paper contains hundreds of publications. When ex-
amining the citations in detail, one finds that not all
cited work has a significant impact on a citing pub-
lication. Papers can be cited as background reading,
for politeness, fear of receiving an adverse review from
an aggrieved reviewer, or as related work that was ar-
gued against. For a detailed list of motivations for
citing publications see Trigg (1983), Sandor et al.
(2006). By contrast, a bird’s-eye visualization should
show papers that significantly impact one another ( as
is depicted in Figure 3). This requires to measure the
strength of a citation’s influence on the citing work.

This paper starts by formalizing the problem setting,
followed by a discussion of related work. Section 4 de-
scribes baseline algorithms based on Latent Dirichlet
Allocation (Blei et al., 2003). In Sections 5 and 6 we
introduce generative models that directly model the
influence of citations in paper collections. We also de-
rive a Gibbs sampler that learns the model from data.
Section 7 empirically evaluates the different models.
The paper concludes with a discussion and outlook.

2. Problem Statement

A universe of publications is given; publications consist
of the full text or abstracts, as well as the citation
graph structure. In the citation graph, vertices are
publications, and a directed edge from node c to node
d indicates that publication d cites publication c. In
the following, L(d) denotes the set of publications cited
by d.

The goal is to find an edge-weight function γ measur-
ing the strength of influence. Weights γd(c) should
correlate to the ground truth impact that c has had
on d as strongly as possible. This ground truth is not
observable. But for purposes of evaluation, we sample
it by referring to the assessment of research scientists.
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3. Related Work

Unsupervised learning from citation graphs has at-
tracted much attention in the past. Bibliometric mea-
sures (Spiegel-Roesing, 1977) such as co-coupling are
used in many digital library projects as a similarity
measure for publications. In addition, graph based
analyses have been introduced such as community de-
tection (Flake et al., 2004), node ranking according to
authorities and hubs (Kleinberg, 1999), and link pre-
diction (Xu et al., 2005). Furthermore, progress has
been made in studying how paper networks evolve over
time (Newman, 2003).

Probabilistic latent variable models have a long tradi-
tion in this application area as well, such as the proba-
bilistic formulation of HITS (Cohn & Chang, 2000), or
stochastic blockmodels (Nowicki & Snijders, 2001) for
the identification of latent communities. Those mod-
els became popular with pLSA and Latent Dirichlet
Allocation (Hofmann, 2001; Blei et al., 2003) which
learn hidden topics from text documents in an unsu-
pervised manner. The topics are captured as latent
variables that have a characteristic word distribution
φt = p(w|t). The topics are inferred from the co-
occurrences and automatically resolve synonyms and
polysems.

The results of a Latent Dirichlet Allocation have been
exploited in Mann et al. (2006) to extend biblio-
metric measures based on citation counts with topical
information. On the downside, this approach is only
feasible for publications which are cited reasonably of-
ten, which is not the case in specialized and evolving
research fields. To address this, we suggest to do a
probabilistic analysis on a fine-grained level (such as
words).

Some efford has been made to include text and struc-
ture into the model on a fine-grained level. A combina-
tion of pHITS and pLSA for community analysis has
been studied in Cohn and Hofmann (2000). Identifying
topics of authors given publications and the author-of
relationship has been evaluated in Rosen-Zvi et al.
(2004), which also reveals the strength of influence for
each author in conjointly written publications. To our
knowledge, no one has included text and links into a
probabilistic model to infer topical influences of cita-
tions.

4. Estimating the Influence of Citations
with LDA

In this section, we derive a baseline model based on
LDA.

Two independence assumptions lead to this model.
The first is the Markovian assumption that publica-
tions with a strong impact are directly cited. In this
case, ancestors to not provide additional information
over the directly linked papers. The LDA model is ad-
ditionally based on the assumption that the topic mix
of each paper is chosen independently of the topic mix
of the papers that it cites. This leads to the Latent
Dirichlet Allocation model depicted in Figure 1a.

Latent Dirichlet Allocation associates each token in a
document with a latent variable that chooses one of the
underlying topics in the corpus. This is achieved by
associating each document d with a multinomial dis-
tribution θd = p(t|d) over latent topic variables t (also
referred to as the topic mixture). Likewise, each topic
variable t is associated with a multinomial distribution
φt = p(w|t) over words w.

In the LDA model, the strength of influence is not an
integral part of the model (owing to the second inde-
pendence assumption), but has to be determined in a
later step using a heuristic measure. One heuristic (re-
ferred to as“LDA-JS”) defines the strength of influence
as the compatibility between the topic mixtures of cit-
ing and cited publication. The compatibility of two
topic mixtures is measured by the Jensen-Shannon-
Divergence. The definition of the weight function is
given in Equation 1. DKL(.||.) is the Kullback-Leibler
divergence.

γd(c) = exp(−DJS(θd‖θc)) , c ∈ L(d) (1)

with DJS(θd‖θc) =

1

2
DKL

(
θd

∥∥∥∥θd + θc
2

∥∥∥∥)
+

1

2
DKL

(
θc

∥∥∥∥θd + θc
2

∥∥∥∥)
A second heuristic (denoted by “LDA-post”) uses the
probability of a citation given the document p(c|d) as
strenght of influence (Equation 2). We refer to p(d|t)
as p(c|t), if c is a cited document, c ∈ L(d). With
Bayes’ rule and assuming a uniform prior p(c) the pos-
terior of a cited document given a topic can be written
as p(c|t) ∝ p(t|c).

γd(c) =p(c|d) =
∑
t

p(t, c|d) =
∑
t

p(t|d) · p(c|t) (2)

5. Copycat Model

The Latent Dirichlet Allocation approach assumes
that citations do not influence the underlying topics.
In contrast to this, the copycat model approximates a
citing document by a “weighted sum” of documents it
cites. The weights of the terms capture the notion of
the influence γ. In order to deal with synonyms and
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Figure 1. Approaches for estimating the influence of citations in plate notation. The citation influence model (c) combines
Latent Dirichlet Allocation (a) and the copycat model (b) via the balancing parameter λ.

Figure 2. Association of words to the topical atmosphere
(dashed circles) of cited publications.

polysems we use latent topic variables t on a word level,
just as in Latent Dirichlet Allocation. Each topic in a
citing document is drawn from one of the topic mix-
tures of cited publications. The distribution of draws
from cited publications is modeled by a multinomial
over citations with parameter γ. The model is de-
picted in plate notation in Figure 1b.

While learning the parameters of the copycat model, a
sampling algorithm associates each word of each citing
publication d with a publication it cites. For example
let there be a cited publication c which is cited by two
publications d1 and d2. The topic mixture θc is not
only about all words in the cited publication c but also
about some words in d1 and d2, which are associated
with c (cf. Figure 2). This way, the topic mixture θc is
influenced by the citing publications, which in turn in-
fluences the association of words in d1 and d2 to c. All
tokens that are associated with a cited publication are
called the topical atmosphere of a cited publication.

5.1. Bipartite Citation Graph

Following the Markov assumption that only the cited
publications influence a citing publication, but not
their ancestors, we transform the citation graph into

a bipartite graph. The bipartite graph consists of two
disjoint node sets D and C, where D contains only
nodes with outgoing citation links (the citing publica-
tions) and C contains nodes with incoming links (the
cited publications). Documents in the original cita-
tion graph with incoming and outgoing links are rep-
resented as two nodes d ∈ D and c ∈ C in the bipartite
citation graph.

5.2. Mutual Influence of Citing Publications

The generative process determines citation influences
independently for each citing document, but during
inference of the model all citing and all cited papers
are considered cojointly. The model accounts for de-
pendencies between cited and citing papers, but also
between co-cited papers (papers cited by the same doc-
ument) and bibliographically coupled papers (papers
citing the same document). Furthermore, the topics
are learned along with the influences.

Because of bidirectional interdependence of links and
topics caused by the topical atmosphere, publications
originated in one research area (such as Gibbs sam-
pling, which originated in physics) will also be associ-
ated with topics they are often cited by (such as ma-
chine learning).

On the downside, if words in a citing publication do
not fit well to the vocabulary introduced by the cited
literature, those words will be associated to one of the
citations randomly. As an implication, this brings new
words and associated topics to the topical atmosphere
of the cited publication, that are not reflected by the
cited text and should be considered as noise. This will
lead to unwanted effects in the prediction of citation
influences. In the following chapter we introduce the
citation influence model, which addresses this issue.
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Table 1. Variable description. Variables in the cited plate
are denoted with prime.

Symbol Description

c′ cited publication

d citing publication

θ topic mixture of the topical atmosphere of a

cited publication

ψ innovation topic mixture of a citing

publication

φ characteristic word distribution for each topic

γ distribution of citation influences

λ parameter of the coin flip, choosing to draw

topics from θ or ψ

w’, w words in cited, citing publications respectively

t’, t topic assignments of tokens in cited, citing

publications respectively

c a cited publication, to which a token in a

citing publication is associated

s indicates whether the topic of a citing

publication is drawn from inheritance or

innovation

α Dirichlet / beta parameters of the

multinomial / Bernoulli distributions

6. Citation Influence Model

If the model enforces each word in a citing publica-
tion to be associated with a cited publication, noise
effects are introduced to the model which may impede
the prediction. In addition, it is not possible to model
innovation (i.e., new or evolving topics) in the copy-
cat model. The citation influence model depicted in
Figure 1c overcomes these limitations. A citing publi-
cation may choose to draw a word’s topic from a topic
mixture of a citing publication θc (the topical atmo-
sphere) or from it’s own topic mixture ψd that models
innovative aspects. The choice is modeled by a flip
of an unfair coin s. The parameter λ of the coin is
learned by the model, given an asymmetric beta prior
~αλ = (αλθ , αλψ ) which prefers the topic mixture θ of
a cited publication.

The parameter λ yields an estimate for how well a
publication fits to all its citations. In combination with
γ, the relative influence of citations, λ · γ is a measure
for the absolute strength of influence. The absolute
measure allows to compare links from different citing
publications. For the visualization, the citation graph
can be thresholded according to the absolute measure.

6.1. Generative Process

Since the publication graph is given, the length of each
document and bibliography is known. The citation in-
fluence model assumes the following generative pro-
cess. In this process the influence of citations is di-
rectly modeled (captured by the model parameter γ).

• for all topics t ∈ [1 : T ] do

• draw the word distribution for each latent
topic φt = p(w|t) ∼ dirichlet(~αφ)

• for all cited documents c′ ∈ C do

• draw a topic mixture θc′ = p(t′|c′) ∼
dirichlet(~αθ)

• for all tokens j do
• draw a topic t′c′,j ∼ θc′ from the topic

mixture
• draw a word wc′,j ∼ φt′

c′,j
from the topic

specific word distribution

• for all citing documents d ∈ D do

• draw a citation mixture γd = p(c|d)|L(d) ∼
dirichlet(~αγ)1 restricted to the publications
c cited by this publication d

• draw an innovation topic mixture ψd =
p(t|d) ∼ dirichlet(~αψ)

• draw the proportion between tokens associ-
ated with citations and those associated with
the innovation topic mixture λd = p(s =
0|d) ∼ beta(αλθ , αλψ )

• for all tokens i do
• toss a coin sd,i ∼ bernoulli(λd)
• if sd,i = 0
• draw a cited document cd,i ∼ multi(γd)
• draw a topic td,i ∼ multi(θcd,i) from

the cited document’s topic mixture
• else (sd,i = 1)
• draw the topic td,i ∼ multi(ψd) from

the innovation topic mixture
• draw a word wd,i ∼ multi(φtd,i) from the

topic specific word distribution

For a description of each variable see Table 1.

6.2. Learning the Model via Gibbs Sampling

Gibbs sampling (Gilks et al., 1996) allows to learn
a model by iteratively updating each latent variable
given fixed remaining variables.

1~αγ is a symmetric prior of length |L(d)|
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Figure 3. The filtered citation graph contains only edges which represent a significant influence.

Table 2. Update equations for the citation influence model.

p(ci|~c¬i, di, si = 0, ti·) (3)

=
Cd,c,s(di, ci, 0) + αγ − 1

Cd,s(di, 0) + L(di)αγ − 1
·
Cc′,t′ (ci, ti) + Cc,t,s(ci, ti, 0) + αθ − 1

Cc′ (ci) + Cc,s(ci, 0) + Tαθ − 1

p(si = 0|~s¬i, di, ci, ti, ·) (4)

=
Cc′,t′ (ci, ti) + Cc,t,s(ci, ti, 0) + αθ − 1

Cc′ (ci) + Cc,s(ci, 0) + Tαθ − 1
·

Cd,s(di, 0) + αλθ
− 1

Cd(di) + αλθ
+ αλψ

− 1

p(si = 1|~s¬i, di, ti·) (5)

=
Cd,t,s(di, ti, 1) + αψ − 1

Cd,s(di, 1) + Tαψ − 1
·

Cd,s(di, 1) + αλψ
− 1

Cd(di) + αλθ
+ αλψ

− 1

p(ti|~t¬i, wi, si = 0, ci·) (6)

=
Cw,t(wi, ti) + Cw′,t′ (wi, ti) + αφ − 1

Ct(ti) + Ct′ (ti) + V αφ − 1

·
Cc′,t′ (ci, ti) + Cc,t,s(ci, ti, 0) + αθ − 1

Cc′ (ci) + Cc,s(ci, 0) + Tαθ − 1

p(ti|~t¬i, wi, di, si = 1, ci·) (7)

=
Cw,t(wi, ti) + Cw′,t′ (wi, ti) + αφ − 1

Ct(ti) + Ct′ (ti) + V αφ − 1
·
Cd,t,s(di, ti, 1) + αψ − 1

Cd,s(di, 1) + Tαψ − 1

The update equations of the citation influence model
can be computed in constant time using count
caches. The cache counts how often a combina-
tion of certain token assignments occurs. For ran-
dom variables ~var1, ~var2, ..., ~varn, the notation
Cvar1,var2,...,varn(val1, val2, ..., valn) = |{∀i : var1,i =
val1 ∧ var2,i = val2 ∧ ... ∧ varn,i = valn}| counts oc-
currences of a configuration val1, val2, ..., valn. For
example, Cd,c,s(1, 2, 0) denotes the number of tokens in
document 1 that are assigned to citation 2, where the
coin result s is 0.

The update equations which are used to learn the cita-
tion influence model are given in Table 2, see Appendix
A for details about the derivation.

After the sampling chain converges (i.e., after the
burn-in phase), parameters that have been integrated
out can be inferred from the count caches by averaging
over the sampling chain after convergence. For exam-
ple, γ is derived in Equation 8 with K denoting the
length of the sampling chain (burn-in omitted).

γd(c) =
1

K

K∑
k=1

Cd,c,s(d, c, 0)(k) + αγ
Cd,s(d, 0)(k) + |L(d)| · αγ

(8)

7. Experiments

The experiments are conducted with a subset of the
CiteSeer data set2, using abstract, title and citation
information. In Section 7.1 we exemplarily analyze the
citational vicinity of one research paper. In Section 7.2
the prediction performance is evaluated on influence
labels provided by domain experts.

7.1. Narrative Evaluation

In order to explore the behavior of the citation influ-
ence model, we analyze the citational vicinity of the
LDA paper (Blei et al., 2003) with the citation influ-
ence model. The input document collection consists
of the paper along with two levels of citations in each
direction. The model is trained with hyper parame-
ters αφ = 0.01, αθ = αψ = 0.1, αλθ = 3.0, αλψ = 0.1,
αγ = 1.0 and 30 topics. The citation graph is fil-
tered to only contain edges with an influence value
γd(c) > 0.05. Figure 3 shows an extract of a visualiza-
tion created by the graphviz tool dot3.

In contrast to an unfiltered graph, the significantly in-
2Available at http://citeseer.ist.psu.edu/oai.html
3Available at http://www.graphviz.org
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Table 3. Words in the abstract of the research paper “La-
tent Dirichlet Allocation” are assigned to citations. The
probabilities in parentheses indicate p(w, c|d, ·).

Cited Title Associated Words γ

Probabilistic

Latent Semantic

Indexing

text(0.04), latent(0.04),

modeling(0.02), model(0.02),

indexing(0.01), semantic(0.01),

document(0.01), collections(0.01)

0.49

Modelling

heterogeneity

with and

without the

Dirichlet process

dirichlet(0.02), mixture(0.02),

allocation(0.01), context(0.01),

variable(0.0135), bayes(0.01),

continuous(0.01), improves(0.01),

model(0.01), proportions(0.01)

0.25

Introduction to

Variational

Methods for

Graphical

Methods

variational(0.01), inference(0.01),

algorithms(0.01), including(0.01),

each(0.01), we(0.01), via(0.01)

0.22

fluencing papers can be identified at the first glance.

The model correctly identifies the influencing work on
Dirichlet processes and variational inference as well as
the relatedness to pLSA, PCA, and variational meth-
ods. It also yields possible application areas such as
querying music and taxonomy learning.

The topic proportions are included in the visualization
via a topic spectrum bar. Each of the 30 topics is
represented by a unique color.

Table 3 lists the three most influential cites and the
words assigned to them4.

7.2. Prediction Performance

For an evaluation against a ground truth we asked au-
thors to manually label the strength of influence of
papers they cited on a Likert scale5.

In our experiments we compare four approaches: The
4The CiteSeer data set only contains four publications

cited in “Latent Dirichlet Allocation”. Missing cited publi-
cations are invisible to the model.

5Likert scale semantics used in the survey:
xx: “this citation influenced the publication in a strong
sense, such as an approach that was build upon and re-
fined”
x: “this citation influenced the publication, such as very
strong related work”
o: “this citation did not have a strong impact on the pub-
lication, such as references basic research, other not espe-
cially related approaches, or other application domains”
oo: “this citation had no impact on the publication at all”
?: “I can not judge the influence”; or: “I have no opinion
about this citation”

Figure 4. Predictive performance of the models. The error
bars indicate the standard error of the AUC values aver-
aged over the citing publications.

citation influence model, the copycat model, LDA-JS,
and LDA-post. The models are trained on a corpus
consisting of the 22 labeled seed publications along
with citations (132 abstracts).

Experiments are conducted for 10, 15, 30, and 50 top-
ics with the following hyper parameters tuned on a
hold-out set.

• Citation influence model: αφ = 0.01, αθ = αψ =
0.1, αλθ = 3.0, αλψ = 0.1, αγ = 1.0

• Copycat model: αφ = 0.01, αθ = 0.1, αγ = 1.0

• LDA-JS: αφ = 0.01, αθ = 0.1

• LDA-post: αφ = 0.01, αθ = 0.1

We also evaluated an approach based on the PageR-
ank of cited nodes (with γd(c) ∝ PageRank(c)) and
an approach based on the cosine similarity of TF-
IDF vectors of citing and cited publications (γd(c) ∝
cos(TF IDF(d),TF IDF(c))).

For each number of topics, we compare the citation
influence and copycat model with the LDA-based ap-
proaches in terms of the ability to predict the influence
of citations. The prediction performance of the γ pa-
rameter according to the manual labels of the authors
on the Likert scale is evaluated in terms of the AUC
(Area Under the ROC Curve) measure. The AUC val-
ues for the decision boundaries “xx vs. x, o, oo”, “xx,
x vs. o, oo”, and“xx, x, o vs. oo” are averaged to yield
a quality measure for each citing publication. Unla-
beled citation links as well as those marked with “?”
are excluded from the evaluation.

The predictive performance of the models is analyzed
by averaging AUC values for the test set of 22 manually
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labeled citing publications. The results are presented
in Figure 4. Error bars indicate the standard error. We
perform paired-t-tests for models with 15 topics with
a significance level α = 5%. This reveals that the cita-
tion influence model is always significantly better than
the LDA-post heuristic (even for 15 topics). In con-
trast to this, the citation influence model is not signifi-
cantly better than the copycat model, and the copycat
model is not significantly better than the LDA-post
heuristic. For 30 and 50 topics, where LDA starts to
degenerate, the copycat model shows a significant im-
provement compared to the LDA-post heuristic. Fur-
thermore, the LDA-JS heuristic is always slightly be-
low the LDA-post heuristic in predicting citation in-
fluences.

The approaches based on TF-IDF (AUC 0.45) and
on PageRank (AUC 0.55) are not able to predict the
strength of influence.

7.3. Duplication of Publications

The citation influence model treats the cited and the
citing version of the same publication as completely in-
dependent from one another. The only coupling factor
is the distribution over topic specific words φ.

We want to know, whether the model assigns simi-
lar topic mixes to the duplicated publications, despite
this independent treatment. For all duplicated pub-
lications, we compare the topic mixtures of both ver-
sions via the Jensen Shannon Divergence. The aver-
age divergence between duplicated publications is 0.07,
which is very low compared to the average divergence
between other topic mixtures of 0.69.

8. Conclusion

We developed the copycat and the citation influence
model; both model the influence of citations in a col-
lection of publications.

The copycat model is derived from two instances of
LDA by adding what we think is the minimum number
of random variables necessary. The topic mix is shared
between citing and cited papers, an influence parame-
ter determines how the cited papers are blended into
the citing document (the value of influence parameter
γ is computed using Gibbs sampling). In the citation
influence model, variables are added to accommodate
two alternative ways in which each word’s topic is gen-
erated. It is either inherited as in the copycat model,
or is one of the paper’s own innovative topics.

We compared the four models against manually anno-
tated citations. Based on the AUC measure, we con-

clude that the citation influence model provides more
accurate rankings than the baseline models.

In the future we want to extend the citation influ-
ence model by learning the number of topics and want
to study the effect on other established topic model
extensions such as time and author aspects. We see
potential, that the strength of influence improves ac-
curacy in methods originally working on unweighted
graphs, such as identification of communities, author-
ities and hubs, or learning of distance metrics.
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A. Appendix Gibbs Sampling
Derivation

We can derive a Rao-Blackwellized6 version of the
model by integrating out the multinomial distributions
θ, ψ, φ, γ, and λ because the model uses only conjugate
priors. For the derivation of Gibbs update equations
we first derive the joint distribution of the remaining
variables in Equation 9 from the generative process.

p(~w, ~w
′
,~t,~t

′
, ~c, ~s|~αφ, ~αθ, ~αψ, ~αγ , ~αλ, ·) (9)

=

∫
p(~w, ~w

′|~t,~t ′, ~φ) · p(~φ|~αφ) d~φ ·
∫
p(~c|~γ, L) · p(~γ|~αγ , L) d~γ

·
∫
p(~t,~t

′|~s,~c, ~θ, ~ψ) · p(~θ|~αθ) · p(~ψ|~αψ) d~θ ~ψ ·
∫
p(~s|~λ) · p(~λ|~αλ) d~λ

In the following, we exemplify the derivation of the
update equation for ci – equations for the other vari-
ables are derived analogously. The conditional of ci is
obtained by dividing the joint distribution of all vari-
ables by the joint with all variables but ci (denoted by
~c¬i) in Equation 10 and canceling factors that do not
depend on ~c¬i.

p(ci|~c¬i, wi, si = 0, ti·)

=
p(~w, ~w′,~t,~t ′, ~c, ~s|~θ, ~ψ, ~λ, ~γ, ·)

p(~w, ~w′,~t,~t ′, ~c¬i, ~s|~θ, ~ψ, ~λ, ~γ, ·)
(10)

=

∫
p(~c|~γ, L) · p(~γ|~αγ , L) d~γ∫
p(~c¬i|~γ, L) · p(~γ|~αγ , L) d~γ

(11)

·
∫
p(~t,~t ′|~s,~c, ~θ, ~ψ) · p(~θ|~αθ) · p(~ψ|~αψ) d~θ ~ψ∫
p(~t,~t ′|~s,~c¬i, ~θ, ~ψ) · p(~θ|~αθ) · p(~ψ|~αψ) d~θ ~ψ

6Rao-Blackwellization (Doucet et al., 2000) is a proce-
dure to reduce redundancy in a graphical model to improve
the performance.

In the following, we derive the first fraction of Equa-
tion 11 (the second fraction is derived analogously).
In Equation 12 we detail the derivation of the nu-
merator; the derivation for the denominator is the
same. If we assume that multinomial γ is given, then
p(~c|~γ, L) =

∏D
n=1

∏
l∈L(n) γn(l)

Cd,c,s(n,l,0). Note, that
ci is void if si = 1. Because we are only using conjugate
priors, the multinomial-Dirichlet integral in Equation
12 has a closed form solution. It is resolved by the
corresponding notation in Equation 13 using the count
caches and pseudo counts αγ . Here we assume that ~αγ
is a symmetric Dirichlet parameter with scalar αγ .

∫
p(~c|~γ, L) · p(~γ|~αγ , L)d~γ

=
D∏
n=1

∫ ∏
l∈L(n)

γn(l)
Cd,c,s(n,l,0) · p(γn|~αγ , L) dγn (12)

=
D∏
n=1

1∏
l∈L(n) Γ(αγ )

Γ(
∑
l∈L(n) αγ )

·

∏
l∈L(n) Γ(Cd,c,s(n, l, 0) + αγ)

Γ(
∑
l∈L(n) Cd,c,s(n, l, 0) + αγ)

(13)

To yield the first fraction of Equation 11 we apply
Equation 13 twice and reach Equation 14. The removal
of the i’th token is expressed by the Kronecker delta
δ(x, y) which is 1 iff x = y, 0 otherwise. In Equation
15 all factors for which δ is 0 are canceled. In Equation
16, we exploit that Γ(n)

Γ(n−1) = n− 1.

p(~c|~γ, L) · p(~γ|~αγ , L)

p(~c¬i|~γ, L) · p(~γ|~αγ , L)

=

∏D
n=1

∏
l∈L(n) Γ(Cd,c,s(n,l,0)+αγ )

Γ(
∑
l∈L(n) Cd,c,s(n,l,0)+αγ )

∏D
n=1

∏
l∈L(n) Γ(Cd,c,s(n,l,0)−δ(n,di)δ(l,ci)δ(0,si)+αγ )

Γ(
∑
l∈L(n) Cd,c,s(n,l,0)−δ(n,di)δ(l,ci)δ(0,si)+αγ )

(14)

=
Γ(Cd,c,s(di, ci, 0) + αγ)

Γ(Cd,c,s(di, ci, 0) + αγ − δ(0, si))
·

1

Γ(Cd,s(di,0)+L(di)αγ )
Γ(Cd,s(di,0)+L(di)αγ−δ(0,si))

(15)

=
Cd,c,s(di, ci, 0) + αγ − δ(0, si)

Cd,s(di, 0) + L(di)αγ − δ(0, si)
(16)

Deriving
∫
p(~t,~t ′|~s,~c,~θ,~ψ)·p(~θ|~αθ)·p(~ψ|~αψ) d~θ ~ψ∫
p(~t,~t ′|~s,~c¬i,~θ,~ψ)·p(~θ|~αθ)·p(~ψ|~αψ) d~θ ~ψ

analogously
and in combination with Equation 16, we are in the
position to simplify the update equation for ci from
Equation 11 to yield the final update in Equation 17.

p(ci|~c¬i, wi, si = 0, ti·)

=
Cd,c,s(di, ci, 0) + αγ − 1

Cd,s(di, 0) + L(di)αγ − 1

·
Cc′,t′ (ci, ti) + Cc,t,s(ci, ti, 0) + αθ − 1

Cc′ (ci) + Cc,s(ci, 0) + Tαθ − 1
(17)


