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Abstract

Shannon’s Noisy-Channel model, which de-
scribes how a corrupted message might be
reconstructed, has been the corner stone for
much work in statistical language and speech
processing. The model factors into two com-
ponents: a language model to characterize
the original message and a channel model
to describe the channel’s corruptive process.
The standard approach for estimating the pa-
rameters of the channel model is unsuper-
vised Maximum-Likelihood of the observa-
tion data, usually approximated using the
Expectation-Maximization (EM) algorithm.
In this paper we show that it is better to max-
imize the joint likelihood of the data at both
ends of the noisy-channel. We derive a cor-
responding bi-directional EM algorithm and
show that it gives better performance than
standard EM on two tasks: (1) translation
using a probabilistic lexicon and (2) adapta-
tion of a part-of-speech tagger between re-
lated languages.

1. Introduction

An influential paradigm in statistical natural language
processing (NLP) is the noisy-channel model (Shan-
non & Weaver, 1949). It describes a communication
process in which a sender emits the intended mes-
sage m through an imperfect communication channel
such that the sequence o observed by the recipient
is a “noisy” version of the original message. To re-
construct m from o, one may postulate a set of hy-
potheses, H(o), and compute the optimal Bayesian
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hypothesis, m* = argmaxmepo)P(m | o) =
arg maXme (o) P(m)P(o | m), where P(m) is called
the language model and P(o | m) the channel model.
Many NLP problems can be framed in terms of the
noisy-channel model. For example, in speech recogni-
tion, o is an acoustic utterance heard by the recipi-
ent and m is the speaker’s intended message; in ma-
chine translation, o is a sentence expressed in a foreign
language, s (source); m is the intended message ex-
pressed in the recipient’s native language, t (target);
and the channel model is a probabilistic translation
lexicon (dictionary).

A major challenge for training the channel model for
an NLP application is that the available data rarely
contains explicit, in-depth mappings between o and
m. For instance, consider the problem of training a
channel model for machine translation. While it may
not be hard to find bilingual texts, the texts themselves
do not specify how individual words in the source lan-
guage are translated into words in the target language.
Thus, the channel model P(o | m) is usually explained
by assuming a distribution over a hidden “translation”
relation, a € mxo, so that P(o|m) =) P(o,a|m)
(Bahl et al., 1990; Brown et al., 1988). The parameters
for the model can be estimated with the Expectation-
Maximization (EM) algorithm (Baum et al., 1970;
Dempster et al., 1977). However, this means that the
parameters are fitted only to data from one side of
the channel: The language model parameters depend
solely on data from the message-side; and the channel
model parameters are chosen to maximize the likeli-
hood of the data from the observable-side of the chan-
nel alone. Because of weak language models, asym-
metric channel models and sparse-data, this approach
leads to different estimates from each direction of the
channel (P(m)P(o|/m) vs. P(0)P(m|o)). Some recent
work (Zens et al., 2004; Liang et al., 2006) suggests
that this could be suboptimal in practice and that the
two directions of the channel should be reconciled.
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In this paper we explore methods of maximizing the
likelihood of both the observable and message sides of
the training data simultaneously. We propose that
the two directions of translation, P(o) >, P(a,m | o)
and P(m) )", P(a,o | m), employ the same set of
joint probabilities P(o,a,m). This allows training
on the joint data of messages and observations under
Maximum-Likelihood. We extend the standard EM al-
gorithm into a Bi-directional EM (Bi-EM) algorithm
for re-estimating channel parameters. Unlike standard
NLP application of the noisy-channel model, our algo-
rithm does not depend on using a parallel corpus of
messages and their corresponding corrupted observa-
tions (m, o) as the training data,; it is sufficient to have
separate corpora of m and o. This is especially ben-
eficial for machine translation between languages for
which bilingual texts are not abundant.

We present experiments comparing Bi-EM with the
uni-directional EM on two tasks (1) translation from
one language to another using a probabilistic transla-
tion lexicon and two monolingual corpora, and (2) au-
tomatic adaptation of a part-of-speech (POS) tagger
from a language for which there exists an annotated
training corpus (written, Modern Standard Arabic)
to a related language (Spoken, Levantine dialect) for
which there is only a small, unannotated corpus of
sentences. On both tasks, and under varying training
conditions, the Bi-EM estimates give better system
performance than standard (unidirectional) EM.

2. Background and Related Work

It is useful to think of the noisy-channel problem as a
translation task: the observation o is the source lan-
guage sentence s and the message m is the target lan-
guage sentence t. While channel models (P(s | t))
can be implemented in many ways, in this paper we
consider only a probabilistic translation lexicon that
bridges the source (observation) and target (message)
texts. This choice does not impact the generality of the
estimation algorithm presented, especially with regard
to applications such as machine translation or speech-
recognition. Much work in Statistical Machine Trans-
lation (SMT) has been devoted to the estimation of
lexicon probabilities. We briefly review the relevant
literature as a background against which we present
our algorithm.

2.1. Translation Probabilities in SMT

For a source sentence s = (s1,...,8,) and a target
sentence t = (t1,...ty), the objective of SMT can be

expressed in the noisy-channel framework as:
arg mftxp(t\s) = arg max p(s|t)p(t).

To learn the translation model, most SMT approaches
require a large parallel corpus (see e.g. (Brown et al.,
1988; Koehn et al., 2003)) in order to induce a hid-
den alignment a between the words of each pair of
sentences s and t:

arg mtaxp(t|s) = arg max Z p(s,alt)p(t).
a

To estimate the word alignment probabilities and the
lexicon probabilities, most work employs some form of
the Expectation-Maximization algorithm.

2.2. Baseline Model

In contrast with work using parallel corpora, in
(Koehn & Knight, 2000) as well as in this paper, only
monolingual corpora (in both source and target lan-
guages) are available. Because the two corpora are
not translations of each other, alignments between the
pairs of sentences by-and-large do not exist. Instead,
we assume that we are provided with an ambiguous
translation lexicon L (which may be obtained from a
bilingual dictionary). For every source word s, L con-
tains a set of translations L(s), and vice versa (for
target word ¢ it contains a set L(t)). The goal is to es-
timate translation probabilities p(s|t), the probability
that a word t translates as word s € L(t), regardless
of context. Let the set L(s) stand for the set of all
possible target sentences t that result from translat-
ing the (ordered) sequence of words in s, one by one!,
using lexicon L. Koehn and Knight derive the follow-
ing model?

arg max p(t|s) =

—(s|t)p(t 1
nax arg max po (s|t)p(t) (1)

teL(s)

argtreng()é)p( )L[l 6 (silt:) (2)

where (5 stands for the translation lexicon probabili-
ties s < t, i.e. p(s|t). This model employs a language
model p(t) over target sentences trained on the tar-
get language monolingual corpus 7, and a “translation
model” with lexicon probabilities <g(slhfl)

Using fixed language model estimates p(t), the lexicon
probabilities are estimated using EM over the source

!Thereby assuming the same word-order and a one-to-
one mapping between words, which also implies that sen-
tence length is unchanged, i.e. m == n.

2The notation ps(.) stands for the probability under
model (parameters) 6.
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—
language corpus S. Assuming an initial estimate 6
— —
for 6, and denote the estimate at iteration r by 6,

E-step,: for every s € S and t € L(s):

altls; 0) = 5= PO [Ty 04 (silti)

— —
M-step,: maximize over 6 to obtain 6,

— — 5
0 41 = argmax » _ q(t]s; 0,)log[p(t)p (s|t)]
té%?s)

— B n =
where Z(s; 0,) = > icp) P(t) [I;=y 6 +(silti). The
maximization at iteration r (M-step,) is calculated by
relative frequency estimates as follows:

> ses altls; 0,) x X2, 8ls;, s]8lt;. 1

?T_H(S\t) _ teL(s) _
> ses q(ts; 0,) x Ej 6[t;,t]
teL(s)
where d[z,y] = 1 iff x ==y, and zero otherwise. The

actual implementation for Hidden Markov Models is
known as the Baum-Welch or Forward-Backward al-
gorithm (Baum et al., 1970).

2.3. Existing Bi-directional Methods

It has been observed in the SMT literature that com-
bining the alignments estimated from the two possible
directions of translation S — 7 and S « 7 improves
the precision of the alignment (Och & Ney, 2003). Rec-
onciling the alignments of the two directions of trans-
lation culminates in the method of (Zens et al., 2004).
This method employs two directional translation mod-
els, each with a hidden directional alignment model
and a word-to-word lexicon. The crucial observation
of Zens et al., shared with our approach, is that the
conditional lexicon probabilities can be computed us-
ing joint estimates (see equations 4) from counts over
the alignments obtained from either translation direc-
tion. Contrary to our approach, however, Zens et al.
employ two separate Uni-EM algorithms to construct
two probabilistic directional alignments. After each
iteration of these Uni-EM algorithms, each of the di-
rectional alignments is used for acquiring estimates of
the joint counts for the lexicon word-pairs. These joint
counts are then interpolated together leading to “sym-
metrized” lexicon probability estimates, which are in
turn fed back into each of the separate Uni-EM algo-
rithms. It is unclear what objective function of the
data this method is optimizing. Furthermore, Zens
et al. make unrealistic and unnecessary assumptions
regarding the unigram counts in the two corpora.

Coming right up to date, (Liang et al., 2006) present
“Alignment by Agreement”: The key idea is to em-
ploy the parallel corpus (S,7) for the estimation of
two alignments 6 and v (the two directions of trans-
lation) under an objective likelihood function of (S, 7)
that measures individual fit to the data as well as mu-
tual “agreement” between these alignments:
— — —

L(S,7; 0)xL(S,7; 0) x L(S,T; Agr( 60, 0))
where L(X;60) = [],c x po(x) stands for the likelihood
of parallel corpus X (sentence pairs) under the model
that employs alignment 6, and Agr(a,b) measures the
agreement between the two alignments a and b given
x € X as the dot product of two probability vectors
that range over all possible alignments between that
pair (also called set of generalized alignments).

While the idea of agreement alignment is appealing, it
is by definition not applicable in the present case as we
start out from a non-parallel corpus. Furthermore, be-
cause the lexicon is large (relative to sentence length),
it is computationally prohibitive to employ the same
measure of agreement (such as dot product) between
the two estimates of probabilities (per direction) over
the subsets of the translation lexicon (the power set of
the lexicon).

3. Noisy-Channel Estimators

We start out from the intuition that the independent
estimation of the lexicon probabilities p+ (s[t) and
P (t[s) yields empirical estimates that do not agree
on the joint probability p(s,t), i.e.

p(t)pg (slt) # p(s)py (t[s)

This inequality is expected due to the asymmetric
statistics in 7 and S, asymmetry in the translation
lexicon and weak language models. We hypothesize
that the notion of “agreement” between the two mod-
els can be implemented by estimation under the con-
straint that consensus is achieved over this joint prob-
ability. A straightforward approach would be to take
the weighted sum of the final EM estimates obtained
over the two translation directions (each conducted on
its own):

p(s,t) = )‘ﬁ‘g(sﬂt) +(1- A)ﬁ?(&t) (3)

where A could be, e.g. the ratio of corpora sizes. This
leads to re-estimates

(s, t)

p (slt) = S 5(5.1) Pls:t)

pg(tls) = =———~ (4)

Zt’ p(s, t,)

While interpolating the estimates could be useful, we
take a novel approach that aims at maximizing the
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Figure 1. The concatentation of complete source and target
corpora results in a single complete corpus.

joint-likelihood of the two corpora under a joint proba-
bility model pg(s, t) = [];—, 6(s;, t;) which coordinates
two internally hidden conditional, directed translation
models that are both employing the same set of trans-
lation parameters 6. Let pi(s) be a language model
estimated from S and analogously pa(t) from 7, we
rewrite the directional translation models in terms of
a single set of lexicon parameters 6:

po(t,s)
argmaxp(slt) = argmaxp1(8)=——7—
S ( | ) S 1( )Zt’ pe(t S)
argmaxp(tls) = argmaxps(t)=————— Po(t;s)
¢ ¢ > Po(t,s’)

Stating the two models in terms of the same set of
joint probabilities of words implies that the source and
target corpora are assumed to have been generated
from a single source: the joint lexicon probabilities.
This allows us to state a new objective function, the
Joint-Likelihood of two monolingual corpora:

nga,X L(T707p1aL) X L(S)07p27L) (5)
L(X;0,p,L) = I D Lxvi0,m)
xeXyeﬁ(x)
X?
L(x,y;0,px) = pr(y) Po(x,y)

Zx’ Po (le Y)

This statement of the objective function optimizes
over 6 the joint-likelihood of two monolingual corpora,
each under its own likelihood function which involves
the other corpus.

Crucially, the joint-likelihood function has the same
form as the usual likelihood function with the mi-
nor difference that the multiplication ranges over two
rather than one corpus (each under its own translation
direction). In light of this observation we can directly
obtain a Bidirectional-EM algorithm that aims at the

joint-likelihood, just in the same fashion the EM is
obtained from standard maximum-likelihood.

Let us define two corpora C(S) and C(7) (see fig-
ure 1): C(S) is the corpus that consists of a pair
(s,t) for every sentence s € S and every hypoth-
esis t € L(s). Corpus C(7) is defined analo-
gously. Figure 2 shows the Bi-EM algorithm,

E-step.,:

V(s,t) € C(T): q'(s,t;0,) == pi(s) [1; 723(?7(7;?)

W(s,t) € C(S): ¢%(s,:0,) == pa(t) [Ty s&5iels

M-step,: maximize over 6 to obtain 6,

A, (s,t;0)
q'(s,t;0,)

Z1(s;6,)
B, (s,t;0)

041 := arg mgxx Z
s,teC(T)

log (s, t; 60, p1)

2(s,t;0,) .
+ Z 22 t 0 ) lo g]L(t,s,H,pg)

O(ziyi)

L(Xa y; eap) - p(X) Hz 1 z 0(xi,y)

Figure 2. Bi-EM algorithm

where Z1(t;0,)
ZtGL(s)

The sum of the two sums in the M-step can be re-
arranged into a single sum if we precompute a sin-
gle (complete) corpus €, that concatenates C(S) with
C(T) and stores the expected frequencies (A, (s, t;6)
or B,(s,t;0)) with each pair as

=D seLt) q'(s,t;0,) and Z2(s;0,) =
q>(s, t;0,) are unigram count estimates.

lOg fteqr(&t; 9) = { BT‘ES7 t, 9)

The M-step becomes the M-step of a standard EM
algorithm:

0,41 1= arg max Z log freq, (s, t; 6)
(s,t)ee,

Hence, the Bi-EM inherits the properties of the com-
mon (Uni-directional/Uni-) EM algorithm, including
convergence and a guarantee of a choice of 6 that will
not decrease the joint-likelihood after each iteration.
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The actual update formula for the Bi-EM is:
1
gy - ] @(s,t560) (s t) € C(T)
als, t:6r) —{ Ps6:0,) (s.t) € CS)
Ory1(s,t) =
Z(s,t)ecr q(s, t;0r) x Zj Slsj, s]o[t;,t]
Z(s,t)GQT q(s, t;6;)

Note that the Bi-EM takes only twice as much training
time as the Uni-EM.

4. Implementation Detail

The core of both the Uni-EM estimation methods
(Koehn & Knight, 2000) and the present Bi-EM es-
timator is the Baum-Welch algorithm (Baum et al.,
1970) for Hidden Markov Models (HMMSs), which
is known to be an EM algorithm (Dempster et al.,
1977). This algorithm in its most general form em-
ploys the Forward-Backward calculations to update
expected counts of transition (language model) and
emission (lexicon) probabilities. In our setting we fix
the language model (transition) estimates and reesti-
mate only the lexicon (emission) probabilities. This
is because language models can be readily constructed
from large monolingual data and there is no reason to
reestimate them.

For the generation of the language models we used
the CMU-Cambridge Toolkit (Clarkson & Rosenfeld,
1997), employing a first order Markov model. For
the Baum-Welch algorithm, we implemented our own
(Java) software package. Our software package® im-
plements both the Uni- and Bi-EM algorithms. For
POS-tagging we employ the TnT tagger (Brants, 2000)
which works with a 2nd-order HMM over POS tags
and individual lexical (word-tag) probabilities.

5. Application I: Translation

Following (Koehn & Knight, 2000), our experiments
are on translating noun sequences extracted from cor-
pus sentences. As an absolute baseline we employ a
translation model that assumes uniform lexicon prob-
abilities (called ‘LM’ method). The actual baseline,
however, is the standard EM (Koehn & Knight, 2000)
(subsequently called Uni-EM — Unidirectional EM).
We compare these baselines to the present Bi-EM al-
gorithm (section 3).

During training, the input to the estimation methods
consists of a non-parallel English-German corpus pair
and an ambiguous lexicon containing up to seven Ger-

Shttp://staff.science.uva.nl/ mmylonak

man translations for every English word.* We initial-
ize the lexicon parameters with a uniform distribution
both for Uni- and Bi-EM.

For evaluation purposes, we embed the lexicon esti-
mates within a simple word-to-word translation sys-
tem (section 2.2), and evaluate the translation result
against the translations available in a given parallel
corpus. As (Koehn & Knight, 2000), we use German-
to-English translation. As a test corpus we use 5106
word translation pairs from 1850 noun sequences ex-
tracted from an equal number of sentences from the
de-news®, which have been aligned down to the word
level. We measure accuracy, the fraction of words
whose translation matches the word used in the bi-
text. In addition, we also provide the BLEU scores
(Papineni et al., 2001) as an additional measure of
translation quality.

5.1. Effect of Domain Mismatch

The different estimators operate under domain-
and/or genre-mismatch between (1) source corpus,
(2) target corpus, (3) lexicon, and (4) test corpus.
We fix the lexicon and the test corpus throughout all
experiments. Because the Bi-EM aims at the joint-
likelihood of two corpora, a question may arise as to
whether weakening the relatedness (in domain and/or
genre) of the two corpora will affect the performance
of Bi-EM relative to Uni-EM.

Highly related The two corpora here consist of
noun sequences from two non-overlapping sections of
the Europarl (Koehn, 2005) parallel corpus (English-
German). The baseline system using the LM method
(uniform lexicon probabilities) achieves an accuracy of
63.11% (BLEU score 0.2372). The following table list
Uni- vs. Bi-EM results:

#sentences Uni-EM Bi-EM
40K 72.01% (0.3896) 76.19% (0.4394)
75K 74.13% (0.4242)  77.34% (0.4660)
100K 74.99% (0.4300) 77.78% (0.4714)

Compared against the baseline (63.11% for the ‘LM’
method) these numbers improve by up to 15% (or
in fact 40% error reduction). Bi-EM clearly outper-
forms the standard Uni-EM. It is evident from the re-
sults that the improved accuracy of the Bi-EM does
not come from utilizing more data. Bi-EM trained
on 40,000 English and the same amount of German

4The lexicon was obtained by automatic word alignment
of the Europarl corpus.

Shttp://www.iccs.inf.ed.ac.uk/ pkoehn/
publications/de-news/
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sentences significantly outperforms Uni-EM trained on
100,000 English sentences (and a German language
model). This is a strong indication that the Joint-
Likelihood is a better objective function than the like-
lihood of a single corpus.

Less related We use as training data newspaper
text from the Gigaword (English) and from the Eu-
ropean Language Newspaper Text (German), utiliz-
ing news stories coming from the same agencies and
published during the same period (Associated Press,
Agence France-Presse, May 1994-December 1995).
Unlike different sections of Europarl, this pair of cor-
pora concerns news texts that originate from non-
parallel sources and are in two different languages.
We estimate translation probabilities using Uni-EM
and Bi-EM, training with 100K sentences per language
used:

Uni-EM
70.29% (0.3610)

Bi-EM
72.80% (0.3809)

F#£sentences
100K

We notice again that the Bi-EM helps produce signifi-
cantly more accurate translations. Interestingly, train-
ing Bi-EM on 100K sentence still gives better results
that Uni-EM trained on 200K sentences (Uni-EM with
200K = 72.08% (0.3737)).

Distantly related We also trained on a pair of dis-
tantly related corpora. These are the newspaper text
from Gigaword (English) and the parliament proceed-
ings from Europarl (German):

Uni-EM
68.90% (0.3110)

Bi-EM
70.98% (0.3303)

F#£sentences
100K

Bi-EM is still able to produce estimates that give more
accurate translations than Uni-EM. Furthermore, Bi-
EM trained on 100K sentences outperforms Uni-EM
trained on 200K sentences (Uni-EM on 200K = 70.23%
(0.3215)).

5.2. Smaller Target Language Data

We employ the corpora of section 5.1, varying this
time the amount of training sentences from the target
language (English), while maintaining a fixed training
corpus of 100K German sentences (source). Figure 3
shows the average accuracies of Bi-EM as function of
target corpus increase. Note that the zero point refers
to the Bi-EM trained on target corpus of size zero,
which is equivalent to the Uni-EM. Interestingly, 81%
of the accuracy increase of Bi-EM relative to Uni-EM is
already obtained by using only 25K sentences, 77.32%
(0.4542). These accuracies are averages over 3 differ-
ent non-overlapping sets of 25K English sentences.

78

775

77 -

76.5 -

76 -

Accuracy %

75.5 |

75

74.5

25 50 75 100
#K english sentences

Figure 3. Bi-EM accuracy as target corpus size increases

6. Application II: Adapting Taggers

Part-of-Speech (POS) tagging is the task of classifying
every word in a text into one POS category (e.g., verb,
noun). Many machine learning techniques have been
applied to POS tagging, including HMMs, Conditional
Random Fields, Support Vector Machines, Memory-
Based Learning, just to name a few (Ratnaparkhi,
1996; Daelemans et al., 1996; Brants, 2000; Lafferty
et al., 2001).

Here we focus on the POS tagging of transcripts of a
spoken Levantine Arabic dialect. Unlike Modern Stan-
dard Arabic (MSA), Arabic dialects are spoken but
rarely ever written, which makes it virtually impossible
to obtain MSA-dialect parallel corpora (see (Rambow
et al., 2005)). Available is a manually tagged MSA
corpus (approx. 564K words) (Maamouri et al., 2004)
and a tiny, manually created translation lexicon © that
maps words between Levantine and MSA. Also avail-
able is a small Levantine corpus (approx. 31K words)
consisting of two splits (18157 and 12238 words resp.).
The task here is to utilize the MSA tagged corpus in
order to automatically POS tag the Levantine side us-
ing only unannotated Levantine sentences for training
and the lexicon for translation.

We embed the MSA POS tagger and MSA-Levantine
lexicon in the noisy-channel approach. Let m =
my...m, be an MSA sentence and 1 =1;...1, be a
Levantine sentence. On the MSA side we have a POS
tag sequence t = t; ...%, associated with m. We have
two directions for the noisy channel:

P(m,t,1) =
P(m,t,1) =

P(m, t)P(1| m,t) (6)
P1)P(m,t | 1), (7)

50riginating from JHU 2005 summer workshop http:
//www.clsp. jhu.edu/ws2005/. The lexicon has 321 en-
tries with on average approx. 1.5 Levantine words per MSA
word; If averaged over ambiguous MSA words only, the am-
biguity rises to 3.
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Table 1. Adapting MSA POS tagger to Levantine

Adaptation Training Data Accuracy
None MSA only 70.48%
Uni-EM MSA-to-Lev 75.93%
Uni-EM Lev-to-MSA 77.88%
Bi-EM MSA-and-Lev 78.25%

where P(m,t) is an MSA POS tagger, P(l) is a Lev-
antine Language Model, and the other two terms are
channel models involving the translation lexicon in the
two directions. The 2"%-order HMM MSA POS tagger
and the Levantine language model are both standard:”.

P(m,t) = Hp(ti|ti—27ti—1)P(mi|ti) (8)
PQI) = Hp(liﬂz;ﬁ (9)

For equation 8, we train an off-the-shelf HMM POS
tagger (Brants, 2000) on the MSA data (accuracy
95.07 over 66K words test-set).

We make two strong assumptions (1) The Levantine
POS tagger differs from the MSA POS tagger only
in the lexical model, and (2) When a Levantine word
translates into an MSA word-tag pair, the POS tag re-
mains the same. The latter means that we extend the
MSA-Levantine lexicon from pairs (m,{) into triples
(m, t,1), where t is any of the POS tags that co-occur
with word m in the tagged MSA corpus. A word found
in both corpora but not in the lexicon is mapped to
itself, and a word found in the Levantine but not in
the MSA corpus nor in the lexicon is mapped to all
open category POS tags.

For the two Uni-EM versions, the channel probabil-
ity employs the probabilistic lexicon in two direc-
tions P(1jm,t) = ], ?(li\mhti) and P(m,t|l) =
T, F(mi, t;|l;). For the Bi-EM we assume one (non-
directional/joint) set of parameters 0(m,t,1) that un-
derlies the two directional/conditional parameters as
done within the translation task (section 5). The es-
timate 6(m,t,1) is converted into a Levantine lexical

O(m,t,l
model: P(I|t) = 7%:”(9(%2”.

used together with the 2"%-order Markov Model over
POS tags (trained on the MSA corpus) as a Levantine
POS tagger.

This lexical model is

Table 1 exhibits the results of the various POS tag-

"For brevity, any symbol x; where j < 0 is assumed to
be the unique start symbol of a sentence.

gers on the Levantine data averaged over two splits
(the two Lev parts). The first row is the original MSA
trained POS tagger (70.48% accuracy = percentage of
correctly tagged test words). The second and third
rows correspond each to an adapted MSA POS tagger
using the Uni-EM estimates from either translation di-
rection. Depending on direction, the Uni-EM achieves
18-25% less errors relative to the unadapted tagger.
The Bi-EM adapted POS tagger (last row) commits 2-
10% less errors than the Uni-EM directions (or about
27.5% less errors than the MSA POS tagger).

Note that we have not included any external knowl-
edge. In (Rambow et al., 2005), manual adaptation
combined with EM leads to 77-78% accuracy on a
modified version® of the Levantine data. On that test-
material, our experiments show that the Bi-EM scores
82.30% accuracy (averaged over two splits).

We think that two factors contribute to the fact that
the Bi-EM improves over Uni-EM: (1) It combines
statistics from the MSA POS tagger (one direction)
with statistics from the Levantine language model (an-
other direction), and (2) Because the lexicon is asym-
metric, Uni-EM updates only those entries used in the
assumed direction, whereas Bi-EM updates the lexicon
entries used in both directions.

7. Conclusions

This paper aims at improved channel estimates from
data at both ends of the noisy-channel. We presented
a Joint Maximum-Likelihood approach and extended
the EM algorithm into a bi-directional EM for un-
supervised estimation. We exemplified the utility of
Bi-EM on two tasks: translation by lexicon probabil-
ity estimates and adaptation of a POS tagger from a
resource-rich to a resource-poor language. Bi-EM de-
livers better results than the standard EM regardless
of mismatch in domain or genre between the source
and target corpora.

In future work we aim at utilizing the Bi-EM for port-
ing more linguistic processing tools from a resource-
rich to a resource-poor language in cases where there
exist no parallel corpora. We also think that the Bi-
EM could be useful in statistical machine translation,
in particular for obtaining improved translation model
estimates. Whenever the channel model (lexicon) is
asymmetric and/or the language models are weak, it
makes more sense to employ Bi-EM than standard
(Uni-directional) EM for noisy-channel applications.

8Clitics are marked with disambiguating symbols.
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