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Abstract

Feature selection aims to reduce dimensional-
ity for building comprehensible learning mod-
els with good generalization performance.
Feature selection algorithms are largely stud-
ied separately according to the type of learn-
ing: supervised or unsupervised. This work
exploits intrinsic properties underlying su-
pervised and unsupervised feature selection
algorithms, and proposes a unified frame-
work for feature selection based on spectral
graph theory. The proposed framework is
able to generate families of algorithms for
both supervised and unsupervised feature se-
lection. And we show that existing power-
ful algorithms such as ReliefF (supervised)
and Laplacian Score (unsupervised) are spe-
cial cases of the proposed framework. To
the best of our knowledge, this work is the
first attempt to unify supervised and unsu-
pervised feature selection, and enable their
joint study under a general framework. FEx-
periments demonstrated the efficacy of the
novel algorithms derived from the framework.

1. Introduction

The high dimensionality of data poses challenges to
learning tasks such as the curse of dimensionality. In
the presence of many irrelevant features, learning mod-
els tend to overfitting and become less comprehensible.
Feature selection is one effective means to identify rel-
evant features for dimension reduction (Guyon & Elis-
seeff, 2003; Liu & Yu, 2005). Various studies show
that features can be removed without performance de-
terioration. The training data can be either labeled
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or unlabeled, leading to the development of super-
vised and unsupervised feature selection algorithms.
To date, researchers have studied the two types of
feature selection algorithms largely separately. Su-
pervised feature selection determines feature relevance
by evaluating feature’s correlation with the class, and
without labels, unsupervised feature selection exploits
data variance and separability to evaluate feature rel-
evance (He et al., 2005; Dy & Brodley, 2004). In this
paper, we endeavor to investigate some intrinsic prop-
erties of supervised and unsupervised feature selection
algorithms, explore their possible connections, and de-
velop a unified framework that will enable us to (1)
jointly study supervised and unsupervised feature se-
lection algorithms, (2) gain a deeper understanding
of some existing successful algorithms, and (3) derive
novel algorithms with better performance. To the best
of our knowledge, this work presents the first attempt
to unify supervised and unsupervised feature selection
by developing a general framework.

The chasm between supervised and unsupervised fea-
ture selection seems difficult to close as one works with
class labels and the other does not. However, if we
change the perspective and put less focus on class in-
formation, both supervised and unsupervised feature
selection can be viewed as an effort to select features
that are consistent with the target concept. In su-
pervised learning the target concept is related to class
affiliation, while in unsupervised learning the target
concept is usually related to the innate structures of
the data. Essentially, in both cases, the target con-
cept is related to dividing instances into well separable
subsets according to different definitions of the sepa-
rability. The challenge now is how to develop a uni-
fied representation based on which different types of
separability can be measured. Pairwise instance simi-
larity is widely used in both supervised and unsuper-
vised learning to describe the relationships among in-
stances. Given a set of pairwise instance similarities
S, the separability of the instances can be studied by
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analyzing the spectrum of the graph induced from S.
For feature selection, therefore, if we can develop the
capability of determining feature relevance using S, we
will be able to build a framework that unifies both su-
pervised and unsupervised feature selection. Based on
spectral graph theory (Chung, 1997), in this work, we
present a unified framework for feature selection using
the spectrum of the graph induced from S. By design-
ing different S’s, the unified framework can produce
families of algorithms for both supervised and unsu-
pervised feature selection. We show that two powerful
feature selection algorithms, ReliefF (Robnik-Sikonja
& Kononenko, 2003) and Laplacian Score (He et al.,
2005) are special cases of the proposed framework. We
begin with the notations used in this study below.

2. Notations

In this work, we use X to denote a data set of
n instances X = (x1,X2,...,X,), X; € R™. We
use I, Fy, ..., F, to denote the m features, and
fi,fa -, f., are the corresponding feature vectors.
For supervised learning, Y = (y1,%2,...,yn) are the
class labels. According to the geometric structure of
the data or the class affiliation, a set of pairwise in-
stance similarity, S (or the corresponding similarity
matrix S), can be constructed to represent the rela-
tionships among instances. For example, without us-
ing the class information, a popular similarity measure
is the RBF kernel function:

_lxg—xp012

Sij =e (262) (1)
Using the class labels, the similarity can be defined by:

Si { (l), otherwise (2)

where n; denotes the number of instances in class [.
Given X, we use G(V,E) to denote the undirected
graph constructed from S, where V is the vertex set,
and F is the edge set. The i-th vertex v; of G corre-
sponds to x; € X and there is an edge between each
vertex pair (v;, v;), where the weight w;; is determined
by S, wi; = 8;;. Given G, its adjacency matriz W
is defined as W(i,j) = w;;. Let d denote the vec-
tor: d = {d1, da,..., dyn}, where d; = >_}_, wi,
the degree matriz D of the graph G is defined by:
D(i,j) = d; if i = j, and 0 otherwise. Here d; can
be interpreted as an estimation of the density around
x;, since the more data points that are close to x;, the
larger the d;. Given the adjacency matrix W and the
degree matrix D of G, the Laplacian matriz L and the
normalized Laplacian matriz £ are defined as:

L=D-W; L=D":LD"? (3)

It is easy to verify that D and L satisfy the following
properties (Chung, 1997).

Theorem 1 Given W, L and D of G, we have:

1. Lete={1,1,...,1}T, Lxe = 0.
2.Vx¢€ Rn, XTLX = %Zvir\a'uj ’U}Z‘J(ﬂ% — Ij)2

3. VXER"WtER,(x—txe)TL(x—txe) =xTLx
Here, e = {1,1,...,1}7.

3. Spectral Feature Selection

Given a set of pairwise instance similarity S, a graph
G can be constructed to represent it. And the tar-
get concept specified in S is usually reflected by the
structure of G (Chapelle et al., 2006). A feature that
is consistent with the graph structure assigns similar
values to instances that are near each other on the
graph. As shown in Figure 1, feature F' assigns val-
ues to instances consistently with the graph structure,
but F’ does not. Thus F is more relevant with the tar-
get concept and can separate the data better (forms
groups with similar instances according to the target
concept). According to graph theory, the structure
information of a graph can be obtained from its spec-
trum. Spectral feature selection studies how to select
features according to the structures of the graph in-
duced from S. In this work we employ the spectrum of
the graph to measure feature relevance and elaborate
how to realize spectral feature selection.

l feature vectorf of feature F l l feature vector f ' of feature F' l
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Figure 1. Consistency comparison of features. The target
concept is represented by the graph structure (clusters in-
dicated by the ellipses). Different shapes denote different
values assigned by a feature.

3.1. Ranking Features on Graph

We formalize the above idea using the concept of nor-
malized cut for graph, derive two improved functions
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from the normalized cut function with the spectrum
of the graph, and extend the three functions to their
more general forms. These pave the way for construct-
ing the unified framework proposed in this paper.

Evaluating Features via Normalized Cut

Given a graph G, the Laplacian matrix of G is a linear
operator on vectors f = (f1, fo, ..., fn)? € R™:

<P Lf =TI =5 Y e ) ()

Vi~V

The equation quantifies how much f varies locally or
how “smooth” it is over G. More specifically, the
smaller the value of < f,Lf >, the smoother the
vector f on G. A smooth vector f assigns similar
values to the instances that are close to each other
on G, thus it is consistent with the graph structure.
This observation motivates us to apply L on a fea-
ture vector to measure its consistency with the graph
structure. Given a feature vector f, and L, two fac-
tors affect the value of < f,,Lf, >: the norms of
f, and L. The two factors need to be removed,
as they do not contain structure information of the
data, but can cause the value of < f;, Lf; > to in-
crease or decrease arbitrarily. The two factors can
be removed via normalization. As < f. Lf, >=
fiLf, = fID3LD3f, = (Daf)"L(D2f,). Let

fi= (D%fi) denote the weighted feature vector of F},

and 3 = 7
tor. The score of F; can be evaluated by the following

function:

the normalized weighted feature vec-

o1(F;) = fiTﬁ fi (5)

Theorem 2 ¢ (F;) measures the value of the normal-
ized cut (Shi & Malik, 1997) by using f; as the soft
cluster indicator to partition the graph G.

PROOF The theorem holds as:
fi'Lf

R T

Ranking Features Using Graph Spectrum

Given the normalized Laplacian matrix £, we calcu-
late its spectral decomposition (A;,§;), where JA; is the
eigenvalue and ¢; is the eigenvector (0 < i < n — 1).
Assuming A\g < A; < ... < \,_1, according to Theo-
rem 1, we have: \g = 0 and &y = Die. (Mo, &o), which
is usually called the trivial eigenpair of the graph. Also
we can show that all the eigenvalues of £ are contained
in [0,2]. Given the spectral decomposition of £, we can
rewrite Equation 5 using the eigensystem of L.

Theorem 3 Let (A;,€;), 0 <j <n—1 be the eigen-
system of L, and a; = cosf; where 0; is the angle
between f; and &;. Equation (5) can be rewritten as:

n—1 n—1
v1(F;) = Z a?)\j, where Zaf =1 (6)
§=0 j=0

PRrROOF: Let ¥ = ])IAG()\()7 Alyevns )\n—l) and U = (fo,

~ ~T
€ obnn) As[Ifil] = g1 =1, we have £ & =
cos ;. We can rewrite f;, L f; as:

~T o~ ~T ~
fi ‘cfi:fi UEUTfi

n—1
= (a()a ey an_1)2(a0, . ,O(n_l)T = Z azz)\l
i=0
AlsoZ;L:—olale, as UUT =T and ||f,]|=1 O

Theorem 3 says that using Equation (5), the score
of F; is calculated by combining the eigenvalues of
L, and cosf,...,cosb,_1 are the combination coef-
ficients, which measures the similarity between the
the feature vector and the eigenvectors. According
to spectral clustering theories (Ng et al., 2001), the
eigenvalues of £ measure the separability of the com-
ponents of the graph' and the eigenvectors are the
corresponding soft cluster indicators (Shi & Malik,
1997). Since Ay = 0, Equation (6) can be rewritten

>T r n—1 9 . .
asf, Lf,= ijl ajAj, meaning the value obtained
from Equation (5) measures the graph separability by
using j?z as the soft cluster indicator, and the sepa-
rability is estimated by measuring the similarities be-
tween f, and those nontrivial eigenvectors of £. Since
Z;:Ol o =1 and ag > 0, we have Z;:ll o <1, and
the bigger the a2, the smaller the Z;:ll a?. The value
of ¢1(F;) can be small, if ﬁ is very similar with &.
However, in this case, a small ¢ (F;) value does not in-
dicate better separability, since the trivial eigenvector
&o only carries density information around instances
and does not determine separability. To handle this
case, we propose to use Z;:ll Z to normalize @1 (F;),
which gives us the following ranking function:

n—1
Z Ck?)\j ~T ~
=1 i
po(F)) = g = T4 (7)
a? 1-f; &
4 J
=1

A small @5 (F;) indicates that fAZ aligns closely to those
nontrivial eigenvectors with small eigenvalues, hence

!The separability is associated with inter-cluster dissim-

ilarity, and the smaller the cut values the better.
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provides good separability. According to spectral clus-
tering theory, the leading k eigenvectors of £ form the
optimal soft cluster indicators that separate G into k
parts. Therefore, if k is known, we can also use the
following function for ranking:

k—1

pa(F) =Y (2= \j)aj (8)

Jj=1

By its definition, 3 assigns bigger scores to features
which offer better separability because achieving a big
score entails that a feature aligns closely to nontrivial
eigenvectors &1, ..., &k—1, with & having the highest
priority. By focusing on only the leading eigenvectors,
3 achieves an effect of reducing noise. Similar mecha-
nism is used in Principle Component Analysis (PCA).

An Extension for Feature Ranking Functions

Laplacian matrix is also used by graph based learning
models for designing regularization functions to pe-
nalize predictors that vary abruptly among adjacent
vertices on graph. Smola and Kondor (2003) relate
the eigenvectors of £ to a Fourier basis and extend the
usage of £ to (L), where v(£) = Z;:Ol vY(A))EET
In the formulation, v()\;) is an increasing function
that penalizes high frequency components?. As shown
in (Zhang & Ando, 2006), v(A;) can be very helpful in
a noisy learning environment. In the same spirit, we
extend our feature ranking functions to the following:

n—1
BE) =F L) Fo=at()  (9)
j=0
n_lafv()\j) fT o F
pa(F) =" =1L T )
a? 1- i 50
j=1
k—1
B3(F) =3 (1(2) = y(\)))a? (11)
j=1

Calculating the spectral decomposition of £ can be
expensive for data with a large number of instances.
However, since v(-) is usually a rational function,
~v(£) can be calculated efficiently by regarding L as
a variable and apply (-) on it. For example, assume
v¥(A) = A2, then (L) = L£2. For @3(-), the k—1 leading
eigenpairs of £ can be obtained efficiently by using fast
eigen-solvers such as the Implicitly Restarted Arnoldi
method (Lehoucq 2001).

2Here A;j is used to estimate frequency, as it measures
how much the corresponding basis &; varies on the graph.

3.2. SPEC- the Framework

The proposed framework is built on spectral graph the-
ory. In the framework, the relevance of a feature is de-
termined by its consistency with the structure of the
graph induced from S. The three feature ranking func-
tions (©1(+), P2(+) and @3(-)) lay the foundation of the
framework and enable us to derive families of super-
vised and unsupervised feature selection in a unified
manner. We realize the unified framework in Algo-
rithm 1. Tt selects features in three steps: (1) building
similarity set S and constructing its graph representa-
tion (Line 1-3); (2) evaluating features using the spec-
trum of the graph (Line 4-6); and (3) ranking features
in descending order in terms of feature relevance® (Line
7-8). We name the framework SPEC, stemming from
the SPECtrum decomposition of L.

Algorithm 1: SPEC
IHPUt: Xv 7()7 ka L)/O\G {3217 @27 9,53}
Output: SFspgc - the ranked feature list
construct S, the similarity set from X (and Y);
construct graph G from §;
build W, D and L from G;
for each feature vector f, do
1
£ D2f; .
2 R
I D= £l

W N =

SFsprc(i) < @(Fi);

@

6 end

7 ranking SFsppc in ascending order for ¢; and
P2, or descending order for Ps;

8 return SFspgrc;

The time complexity of SPEC largely depends on the
cost of building the similarity matrix and the calcu-
lation of v(-). If we use the RBF function to build
the similarity matrix and ~(-) is in the form of £, the
time complexity of SPEC can be obtained as follow.
First, we need O(mn?) operations to build S, W, D, L
and £. And we need O(rn3) operations to calcu-
late v(£). Next, we need O(n?) operations to cal-
culate SFgppc (i) for each feature: transforming f, to
fi requires O(n) operations; calculating using @1, P
and @y need O(n?) operations®. Therefore, we need
O(mn?) operations to calculate scores for m features.
Last, we needs O(mlogm) operations to rank the fea-
tures. Hence, the overall time complexity of SPEC is
O ((rn+m)n?), or O (mn?) if v(-) is not used.

3Features selection is accomplished by choosing the de-
sired number of features from the returned feature list.

4For 33, using Arnoldi method to calculate a few eigen-
pairs of a large sparse matrix needs roughly O(n?) opera-
tions, and calculating @3 itself needs O(k) operations.
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3.3. Spectral Feature Selection via SPEC

The framework SPEC allows for different similarity
matrix measures, y(-), and ranking function @(-). It
can generate a range of spectral feature selection algo-
rithms for both unsupervised and supervised learning.
Hence, SPEC is a general framework for feature se-
lection. To demonstrate the generality and usage of
the framework, we show that (1) some existing pow-
erful feature selection algorithms, such as ReliefF and
Laplacian Score, can be derived from SPEC as spe-
cial cases, and (2) novel spectral feature selection al-
gorithms can be derived from SPEC conveniently.

Connections to Existing Algorithms

The connections of the framework to Laplacian Score
and ReliefF are shown in the following two theorems.

Theorem 4 Unsupervised feature selection algorithm
Laplacian Score (He et al., 2005) is a special case of
SPEC, by setting @(-) = ©2(+), v(L) = L and using
weighted k-nearest neighborhood graph obtained from
RBF kernel function for measuring similarities.

Proor: It suffices to show that the ranking function
used by Laplacian Score is equivalent to ©o(-), with
~v(£) = L. The ranking function of Laplacian score is:

T ~
L ~ Tp
SL:U,wheref:f—f € e.
fTDf eT De
Substituting f in Sy, and applying Theorem 1:
— fTLf
_ (D2f)TL(D? )
- 1 1 2
. ; (Uﬁf)T(Die))
(D2f)T (D3 )=
(D2e)T(D2e)
1 1
_ Die % _ D3f )
As § = [DFel and f = B we have:
Fei
Sr = —7 = 9’52() 0O
1-f &

Theorem 5 Assuming the training data has ¢ classes
with t instances in each class and all features have
been mormalized to have unit norm. Supervised fea-
ture selection algorithm ReliefF (Robnik-Sikonja &
Kononenko, 2003) is a special case of SPEC by set-
ting (-) = ¢1(+), v(£) = L and defining W as:
1 i=7
Wi 5 = % i 7& 73, Y = Y}‘7 T; € KNN(LCZ')
wor F5 YiFY x e KNN(z;)
(12)

Here, x; € KNN(x;) indicates x; is one of the k nearest
neighbors of x;.

PrOOF: Under the assumptions, the feature ranking
function of ReliefF is equivalent to:

n k

)P ADY

i=1 | j=1 CL#y;

k
‘21 (fi = fuerny,)?
=

(c— 1Dk

Here we use Euclidean distance to calculate the differ-
ence between two feature values and use all training
data to train ReliefF. According to the design of W,
it is easy to verify that D = I. Using Theorem 1, we
can show that f7 Lf is equivalent to the above ranking
function up to a constant factor. Since all features are
norm 1 and D = I, we have f = f. O

Note that the similarity matrix defined in Theorem 5
is not positive definite. Therefore the first eigenvalue
of £ is not 0, which may cause P2(-) and @3(-) fail.
Theorems 4 and 5 establish connection between the
two seemingly different feature selection algorithms by
showing that they all try to select features that provide
the best separability for data according to the given
instance similarities.

Deriving Novel Algorithms from SPEC

The framework can also be used to systematically de-
rive novel spectral algorithm by using different S, ~(-)
and ranking functions @(-). For example, given the
options of S, v(-) in Table 1, we can generate families
of new supervised and unsupervised feature selection
algorithms. We will conduct experiments to evaluate
how effective these algorithms are and how they fare
in comparison with the baseline algorithms: Laplacian
Score and ReliefF.

o() | #1(), $2() and @i(-)

YO LAl =ra(r) =r

Su RBF kernel function, Diffusion kernel function
Ss Similarity matrix defined in Equations 2 and 12

Table 1. The components for SPEC tried in this paper. S,
and Ss stand for S used in unsupervised and supervised
feature selection respectively.

4. Empirical Study

We empirically evaluate the performance of SPEC.
In the experiments, we compared the algorithms spec-
ified in Table 1 with Laplacian Score (unsupervised)
and ReliefF (supervised). Laplacian Score and Re-
liefF are both state-of-the-art feature selection algo-
rithms, comparing with them enables us to examine
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the efficacy of the algorithms derived from SPEC. We
implement SPEC with the spider toolbox®.

4.1. Data Sets

Four benchmark data sets are used for experiments:
HockBASE® , RELATHES |, PIE10P” and P1x10p8.

HockBASE & RELATHE are text data sets gener-
ated from the 20-new-group data: BASEBALL wvs.
HockEY (HOCKBASE) and (2) RELIGION vs. ATHE-
1sM (RELATHE). PIE10P & Pi1x10p are face image
data sets containing 10 persons in each. And we sub-
sample the images down to a size of 100 x 100 = 10000.

Data Set Instance Feature Classes
HOCKBASE 1993 8298 2
RELATHE 1427 8298 2
PIe10P 210 10000 10
Pix10p 100 10000 10

Table 2. Summary of four benchmark data sets

4.2. Evaluation of Selected Features

We apply 1-nearest-neighbor (1NN) classifier on data
sets with selected features, and use its accuracy to
measure the quality of the feature set. All results
reported in the paper are obtained by averaging the
accuracy from 10 trials of experiments.

Study of Unsupervised Cases

In the experiment, we use weighted 10-nearest neigh-
borhood graph to represent the similarity among in-
stances. The first two columns of Figure 2 are the
8 plots of accuracy vs. different numbers of selected
features, different ranking functions, different v(-) and
different similarity measures. As shown in the plots,
in most cases, the majority of the algorithms proposed
in Table 1 work better than Laplacian score. Us-
ing the diffusion kernel function (Kondor & Lafferty,
2002), SPEC achieves better accuracy than using RBF
kernel function. Generally, the more features we se-
lect, the better accuracy we can achieve. However, in
many cases, this trend is less pronounced when more
than 40 features are selected. Using @a(-), £ and the
RBF kernel function, SPEC works exactly the same as
Laplacian Score, as expected in our theoretical anal-
ysis. Table 3 shows the accuracy when 100 features
are selected: the differences between Laplacian Score
and the algorithms performing best on each data set

http://www.kyb.tuebingen.mpg.de/bs/people/spider/
Shttp://people.csail.mit.edu/jrennie/20Newsgroups/
"http://www.ri.cmu.edu/projects/project 418.html
Shttp://peipa.essex.ac.uk/ipa,/pix/faces/manchester/

are: 0.17 for HOCKBASE, 0.08 for RELATHE, 0.18 for
P1E10P and 0.06 for P1x10pP. A trend can be observed
in the table is that @;(-) performs well on the two text
data sets, which contain binary classes; @3(-) perfor-
mances well on the two face image data sets, which
contain 10 different classes, while @a(-) works robustly
in both cases. We also observed that comparing with
using £, using £* never downgrades performance sig-
nificantly, while in certain cases, applying it can im-
prove the performance by a big margin. We averaged
the accuracy over different numbers of selected fea-
tures, different data sets, different similarity measures.
Results show that ($2,7%) works best on benchmark
data sets with an averaged accuracy of 0.69 which is
followed by (ps3,7%) with an average accuracy of 0.68.
The averaged accuracy of Laplacian score is 0.62.

HOCKBASE (Laplacian Score = 0.58)
{5177, @177‘4 @%T {5277"4 @377‘ (’537714
RBF 0.61 0.61 0.58 0.58 0.60 0.60
DIF  0.74 0.74 0.75 0.74 0.70 0.70
RELATHE (Laplacian Score = 0.59)

851’7“ @137"4 @277' {52,7‘4 42357" @377'4
RBF 0.63 0.63 0.59 0.59  0.55 0.55
DIF  0.67 0.67 0.67 0.67 0.61 0.61

PIE10P (Laplacian Score = 0.74)
{51,7" @177"4 @277’ {527T4 @377" @377'4
RBF 0.75 0.75 0.74 0.78 0.87 0.86
DIF 0.81 0.81 0.92 0.91 0.91 0.91
PIX10P (Laplacian Score = 0.88)

o1,r  p1,rt Pa,r Po,rt D3, P31t
RBF 0.78 0.78 0.88 0.94 0.93 0.91
DIF 0.79 0.79 0.84 0.85 0.93 0.92

Table 3. Study of unsupervised cases: comparison of accu-
racy with 100 selected features. DIF stands for diffusion
kernel, and bold typeface indicates the best accuracy.

Study of Supervised Cases

Due to the space limit, we skip v(-) = r* for supervised
feature selection®. The last column of Figure 2 shows
the 4 plots for supervised feature selection. Table 4
shows the accuracy with 100 selected features. From
the results we can observe (1) generally supervised fea-
ture selection algorithms perform better than unsuper-
vised feature selection algorithms, as they use label
information; and (2) @2(-) works robustly with both
similarity matrix. We averaged the accuracy over dif-
ferent numbers of selected features and different data
sets. Results show that using @2 and the similarity ma-
trix defined in Equation 2, SPEC performs best with

9Also, the similarity matrix defined in Equation 2 is a
block matrix with rank k. It can be verified that in this
case the first k eigenvalues of £ are 0 and the others are 1.
Hence, varying ~(-) will not affect the values of the three
feature ranking functions.
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averaged accuracy of 0.82, followed by ReliefF whose
accuracy is 0.81.

Based on our experimental results and observations,
we offer the following guidelines for configuring SPEC.
For data with a small number of classes, use ¢1, oth-
erwise use (3, while @9 is robust in both cases. 3 is
suitable for noisy data, and modifying the spectrum
with an increasing function also helps remove noise.

RLF R: @1 R: @2 R: @d C7 (ﬁl Ca {52 C7 @3
0.74 0.74 0.80 0.57 0.69 0.78 0.63
0.73 | 0.73 0.68 0.53 0.65 0.73 0.64

0.97 0.97 0.97 0.99 0.97 0.97 0.98

0.97 | 0.97 0.97 0.82 0.95 0.97 0.97

Table 4. Study of supervised cases: comparison of accu-
racy with 100 selected features. The rows are the results
for HOCKBASE, RELATHE, PIE10P and PIX10P, respec-
tively. RLF stands for ReliefF, C and R stand for the sim-
ilarity matrix defined in Equations 2 and 12 respectively.

5. Discussions and Conclusions

Feature selection algorithms can be either supervised
or unsupervised (Liu & Yu, 2005). Recently, an in-
creasing number of researchers paid attention to de-
veloping unsupervised feature selection. One piece of
work closely related to this work is (Wolf & Shashua,
2005). The authors proposed an unsupervised feature
selection algorithm based on iteratively calculating the
soft cluster indicator matrix and the feature weight
vector. They then extended the algorithm to handling
data with class labels. Since the input of the algorithm
restricts to covariance matrix, it does not handle gen-
eral similarity matrix and cannot be extended as a
general framework for designing new feature selection
algorithms and covering existing algorithms.

In this paper, we propose a general framework of spec-
tral feature selection for both supervised and unsuper-
vised learning, which facilitates the joint study of su-
pervised and unsupervised feature selection. We show
that some powerful existing feature selection algo-
rithms can be derived as special cases from the frame-
work; and families of new effective algorithms can also
be derived. Extensive experiments exhibit the general-
ity and usability of the proposed framework. Our work
is based on general similarity matrix. It is natural to
extend the framework with existing kernel and metric
learning methods (Lanckriet et al., 2004) to a vari-
ety of applications. Another line of our future work is
to study semi-supervise feature selection (Zhao & Liu,
2007) using this framework.
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Figure 2. Accuracy (X axis) vs. different numbers of selected features (Y axis), different feature ranking functions, different
~(+) and different similarity measures. Each row stands for a different data set. The first two columns are for unsupervised
feature selection and the last column is for supervised feature selection. Thick lines in the figures are for the baseline
feature selection algorithms: Laplacian Score and ReliefF. In the legend, F'1, F'2 and F'3 stand for feature ranking
function @1(-), 2(-) and 3(+); C and R stand for the similarity matrix defined in Equations 2 and 12.



