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Abstract

In multi-task learning our goal is to design
regression or classification models for each
of the tasks and appropriately share infor-
mation between tasks. A Dirichlet process
(DP) prior can be used to encourage task
clustering. However, the DP prior does not
allow local clustering of tasks with respect to
a subset of the feature vector without mak-
ing independence assumptions. Motivated
by this problem, we develop a new multi-
task-learning prior, termed the matrix stick-
breaking process (MSBP), which encourages
cross-task sharing of data. However, the
MSBP allows separate clustering and borrow-
ing of information for the different feature
components. This is important when tasks
are more closely related for certain features
than for others. Bayesian inference proceeds
by a Gibbs sampling algorithm and the ap-
proach is illustrated using a simulated exam-
ple and a multi-national application.

1. Introduction

Multi-task learning (MTL) is a problem of increas-
ing interest within the machine-learning community
(Caruana, 1997; Thrun & Pratt, 1998). Hierarchical
Bayesian modeling techniques have proven to be par-
ticularly powerful for this problem, providing a frame-
work wherein an appropriate level of cross-task sharing
is learned based on the data itself. Considering sample
i (i = 1, . . . , nm) from task m (m = 1, . . . , M), sup-
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pose that data consist of a response variable, ymi and a
feature vector, xmi = (xmi1, . . . , xmid)′; for regression
problems ymi is real and for classification problems it
is integer. For concreteness, we focus on the regression
problem in this paper.

A common strategy for analysis is to use a hierarchical
model of the form:

ymi ∼ f(xmi, θm, φ)
θm ∼ G,

where f(x, θ, φ) is the conditional distribution of y
given feature vector x and parameters θ, φ, φ =
(φ1, . . . , φq)′ is a vector of global parameters, θm =
(θm1, . . . , θmd)′ is a vector of task-specific parameters,
and G is the distribution of θm across tasks. Typically,
G is assumed to correspond to a normal distribution.

In multi-task learning we wish to borrow information
across tasks in estimating the task-specific parameters.
A natural choice of prior for G that induces cluster-
ing of tasks having identical coefficients is the Fergu-
son Dirichlet process (DP) (Ferguson, 1973). Refer to
Mukhopadhyay and Gelfand (1997), Yu et al. (2004)
and Xue et al. (2007) for articles on using the DP as a
prior to encourage clustering between multiple tasks.

To illustrate an important drawback of DP, suppose:

θm
iid∼ G, G ∼ DP (αG0), (1)

where α is a precision parameter and G0 is the base
measure of the DP. Following the Pólya urn result of
Blackwell and MacQueen (1973), expression (1) im-
plies that tasks m and m′ are clustered together with
prior probability, Pr(θm = θm′) = 1/(1 + α). Hence,
this formulation clusters the coefficients for all features
in the same manner, and therefore it does not afford
the flexibility to allow feature-dependent task cluster-
ing. This flexibility may be desirable. Take as an
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example the multi-national validation study of the ro-
dent uterotrophic bioassay in Kanno et al. (2001),
which is a system for identifying suspected agonists or
antagonists of estrogen. The primary goal of the study
was to assess heterogeneity across labs in the different
predictor (feature component) effects, while clustering
labs with similar coefficients.

As an alternative approach to (1), we could specify
independent DP priors for the coefficients as follows:

θmj
iid∼ Gj , Gj ∼ DP (αjG0j).

This approach allows differential clustering of the co-
efficients for different feature components, so is more
flexible. However, independence is assumed across
the feature components. This is unappealing, because
θmj = θm′j provides information that tasks m and m′

are similar, which should intuitively increase the prob-
ability that θmj′ = θm′j′ , for j′ 6= j.

Motivated by borrowing of information across related
nonparametric Bayesian models, Müller et al. (2004)
proposed an approach for incorporating dependence in
Gj and Gj′ by using a mixture specification in which
Gj ∼ π0F0 + (1 − π0)Fj , with 0 ≤ π ≤ 1 a mix-
ture probability, F0 ∼ DP (αF ∗0 ) a global distribution,
and Fj ∼ DP (βF ∗j ) a local deviation. A hierarchical
DP (HDP), which also shares atoms across dependent
distributions, was proposed by Teh et al. (2006). An
alternative strategy, which allows the atoms in the dif-
ferent distributions to be dependent but not identical,
was proposed by De Iorio et al. (2004), relying on the
dependent DP (DDP) of MacEachern (1999).

For multi-task learning, these methods are not appro-
priate, because the regression coefficients for the differ-
ent features are on intrinsically different scales. Hence,
it is not reasonable to borrow information by allowing
identical coefficients for different features. Instead, we
propose a novel approach for borrowing of information
across feature components in the clustering process us-
ing a matrix stick-breaking process (MSBP). We follow
recent authors (Griffin & Steel, 2006; Dunson et al.,
2007a) by incorporating dependency through the stick-
breaking weights. However, our approach is funda-
mentally different from these approaches, and has dif-
ferent applications.

2. Matrix Stick-Breaking Process

We first provide a brief review of the stick-breaking for-
mulation of the DP (Sethuraman, 1994), which is use-
ful for inferring properties. Assuming G ∼ DP (αG0),
we have

G =
∞∑

h=1

{
Vh

∏
l<h

V l

}
δΘh

, (2)

Vh
iid∼ beta(1, α), Θh

iid∼ G0,

where V = {Vh, h = 1, . . . ,∞} is an infinite sequence
of stick-breaking random probabilities, V h = 1 − Vh,
and Θ = {Θh, h = 1, . . . ,∞} is an infinite sequence
of random atoms. Because the probability weights,
πh = Vh

∏
l<h V l, are stochastically decreasing in h,

an accurate approximation to (2) can be obtained by
truncating the infinite sum at N terms, with VN = 1
(Ishwaran and James, 2001, and references therein).

We propose a matrix stick-breaking process (MSBP),
which is motivated by the desire to borrow information
across feature components and tasks simultaneously.
We borrow information by incorporating dependence
in the prior distributions for the coefficients {θmj},
recalling that θmj is the coefficient for feature j in
task m. We start by assuming

θmj
ind∼ Gmj , m = 1, . . . ,M, j = 1, . . . , d,

G ∼ P, (3)

where G = {Gmj ,m = 1, . . . , M, j = 1, . . . , d} is a
matrix of random probability measures, and P is a
probability measure on (Ω,F), with Ω the space of
M × d matrices with the (m, j) element a probability
measure on (Xj ,Bj). Here, F is a σ-algebra of subsets
of Ω, θmj ∈ Xj (typically, Xj = <), and Bj is a Borel
σ-algebra of subsets of Xj .

Our focus is on the specification for P. Assuming each
element in G has a stick-breaking representation, we
let:

Gmj =
N∑

h=1

{
Vmjh

∏

l<h

V mjl

}
δΘjh

, Θjh
ind∼ G0j , (4)

where V = {Vmjh,m = 1, . . . , M, j = 1, . . . , d, h =
1, . . . , N} is an array of random stick-breaking weights,
and Θ = {Θjh} is a d × N matrix of random atoms.
The rows (j = 1, . . . , d) of Θ correspond to the dif-
ferent feature components, while the columns (h =
1, . . . , N) correspond to the different clusters. Here,
VmjN = 1, for all m, j, to ensure that the elements of
πmj = {Vmjh

∏
l<h V mjl, h = 1, . . . , N} sum to one,

for each m, j, so that (4) is a valid probability mea-
sure.

Dependence within rows and columns of G will be
incorporated through (i) dependent stick-breaking
weights and (ii) a common parametric prior, G0 =⊗d

j=1 G0j , across the different tasks. Focusing on the
stick-breaking component, we let

Vmjh = UmhWjh,

Umh
iid∼ beta(1, α), Wjh

iid∼ beta(1, β),
(5)
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Figure 1. Graphical representation of the MTL model with prior MSBP(α, β, G0).

so that the probability, Vmjh, is decomposed into the
product of Umh, which measures the tendency to al-
locate task m to cluster h, and Wjh, which measures
the tendency to allocate coefficients for feature com-
ponent j to cluster h. We use MSBPN (α, β, G0) to
denote the choice of P specified in (4) and (5), with
MSBP(α, β, G0) denoting the limiting case as N →∞.
Figure 1 shows the graphical representation of the
multi-task learning model with the MSBP prior. We
introduce a latent indicator R. Let Rmj = h denote
that θmj = Θjh, so that the coefficient j for task m is
allocated to the hth cluster.

To provide an intuitive explanation for the form im-
posed in (5), first consider the sticks Wjh, h =
1, . . . ,∞ . If Wjh is large for a particular index h∗,
then the corresponding parameter Θjh∗ is likely to be
shared among multiple tasks. Specifically, all tasks for
which Umh∗ is large are likely to share the parame-
ter Θjh∗ . Hence, if there is sharing of parameter Θjh∗

among some tasks, it is likely there will be sharing
of this same parameter among other tasks, particu-
larly for a large number of tasks. We also note that
this sharing among tasks is encouraged by large Umh∗ .
Importantly, since Umh∗ may be large for multiple dif-
ferent tasks m, this implies that if parameter sharing
occurs for one predictor among these multiple tasks,
then it is also likely that there will be sharing for other
predictors (those predictors with indices j with large

Wjh∗). We therefore recognize the following key prop-
erties of the MSBP: (i) if a given parameter for pre-
dictor j, Θjh∗ , is shared among some of the tasks, it
is more likely to be shared among other tasks (those
tasks with large Umh∗), and (ii) if sharing occurs be-
tween multiple predictors for a subset of tasks, then
it is more encouraged that sharing will occur between
other predictors within these tasks. These two prop-
erties motivate the form of the MSBP, and are demon-
strated explicitly through subsequent analysis below.

To further motivate this choice, it is useful to consider
some special cases. First, note that in the limit as
α → 0, Umh → 1 a.s. and Vmjh = Wjh. Then, we
have

Gmj =
N∑

h=1

{
Wjh

∏

l<h

W jl

}
δΘjh

= Gj ,

where Θjh
ind∼ G0j and Wjh

iid∼ beta(1, β). Note that
this is the truncation approximation to a Dirichlet pro-
cess prior, as described by Ishwaran and James (2001),
and in the limit as N → ∞, Gj ∼ DP (βG0j). This
special case corresponds to choosing independent DP
priors for the distribution of the regression coefficients
for the different feature components. Hence, there is
no borrowing of information across the feature com-
ponents, only within a particular feature component
across the tasks. In the further special case in which
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α → 0 and β →∞, we instead have θmj ∼ G0j , which
corresponds to a parametric hierarchical model. In ad-
dition, when α → 0 and β → 0, we instead have that
θmj = θj , so that the coefficients for the different tasks
are identical and the data are pooled.

Borrowing of information across feature components
occurs for α > 0, with the random variables Um =
{Umh, h = 1, . . . , N} controlling the tendency of coef-
ficients for task m to be allocated to particular clusters
with high probability. The dependence structure and
other properties are described in detail in the next sub-
section focusing on the case in which N → ∞. Refer
to Dunson et al. (2007b) for proofs of the theorems.

2.1. Basic Properties

Letting πmjh = Vmjh

∏
l<h V mjl, for m =

1, . . . ,M, j = 1, . . . , d, h = 1, . . . ,∞, Gmj is a well
defined probability measure if and only if the random
weights πmj = {πmjh, h = 1, . . . ,∞} sum to one al-
most surely.

Lemma 1. For G = {Gmj ,m = 1, . . . , M, j =
1, . . . , d}, with the elements defined in (4) and (5) for
N →∞, we have

∑∞
h=1 πmjh = 1 a.s. for all m, j.

Theorem 1 provides the prior mean and variance of
the random measure Gmj .

Theorem 1. Letting Gmj denote the random measure
defined in (4) and (5), for N → ∞, and A ∈ Bj , we
have

E
{
Gmj(A)

}
= G0j(A),

V
{
Gmj(A)

}
= 2

(α+2)(β+2)−2
G0j(A)

˘
1−G0j(A)

¯
.

Note that the prior for Gmj is centered on G0j , which
corresponds to a probability measure obeying a para-
metric law. For example, a convenient choice is
G0j(A) =

∫
A
(2πψ−1

j )−1/2 exp
{ − ψj/2(z − µj)2

}
dz.

In this case, the prior is centered on a normal hierar-
chical model having θmj ∼ N(µj , ψ

−1
j ). Confidence in

this normal model is controlled by the precision pa-
rameters α and β, with V{Gmj(A)} → 0 in the limit
as either α or β →∞.

Theorem 2 characterizes the correlation between the
random measures, Gmj and Gm′j , corresponding to
the priors on the jth coefficient for tasks m and m′.

Theorem 2. Letting G denote the array of random
measures defined in (4) and (5), for N → ∞, and
A ∈ Bj , we have

ρ = corr
{
Gmj(A), Gm′j(A)

}
=

α + β + αβ/2 + 1
2α + β + αβ + 1

.

The expression in Theorem 2 is particularly useful

in being free from the set A, so that it can be used
as a general summary of correlation in the random
measures. Focusing on limiting cases, we obtain (i)
limα→0 ρ = 1, (ii) limβ→0 ρ = (1 + α)/(1 + 2α), (iii)
limα→∞ ρ = 1/2, and (iv) limβ→∞ ρ = 1+α/2

1+α . In gen-
eral, 0 ≤ ρ ≤ 1, with the correlation coefficient in-
creasing as α decreases.

2.2. Truncation Approximations

The N →∞ formulation of the MSBP is appealing in
avoiding the need to choose a bound N on the number
of components. However, in practice, computation for
the infinite-dimensional specification is infeasible and
it is useful to consider finite N approximations. In this
subsection, we assess the approximation error using an
approach related to Ishwaran and James (2001).

Theorem 3. Let πmj = {πmjh, h = 1, . . . ,∞} denote
the random weights within the measure Gmj , where
G ∼ MSBP(α, β,G0). For any N, r ≥ 1, let

Γmj(N, r) =
( ∞∑

h=N

πmjh

)r

, Υmj(N, r) =
∞∑

h=N

(πmjh)r.

Then

E
{
Γmj(N, r)

}
=


rP
k=0

Ck
r (−1)r−kµr−k(α)µr−k(β)

ffN−1

,

E
{
Υmj(N, r)

}
=

µr(α)µr(β)E
{

Γmj(N,r)
}

1−
rP

k=0
Ck

r (−1)r−kµr−k(α)µr−k(β)
,

where Ck
r = r!

(r−k)!k! and µr(λ) =
∏r

l=1
l

l+λ is the rth
non-central moment of beta(1, λ), with µ0(a, b) ≡ 1.

Note that the expressions for E
{
Γmj(N, r)

}
and

E
{
Υmj(N, r)

}
are free of m, j, so the subscripts can

be excluded in discussing these expectations. An
accurate truncation approximation can be produced
when E

{
Γ(N, r)

} ≈ 0 and E
{
Υ(N, r)

} ≈ 0 for all
r. In general, these quantities decay to 0 exponen-
tially fast with increasing N , with the rate of de-
cay increasing as α and β decrease. For example,

E
{
Γ(N, 1)

}
=

{
1 −

(
1

1+α

)(
1

1+β

)}N−1

. Values of

α and β less than one are typically recommended in
applications, as discussed in the following sections. A
reasonable strategy for choosing N is to plug in an
upper bound on α and β, and then choose N so that
E

{
Γ(N, 1)

}
= ε, for some arbitrarily small positive

constant ε.

2.3. Clustering Properties

As discussed before, a primary motivation for the
MSBP over the DP is that the event, θmj = θm′j ,
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provides information that tasks m and m′ are similar,
which should lead to an increased prior probability of
θmj′ = θm′j′ , for any j′ 6= j. This property is apparent
from Theorem 4, which also provides closed form ex-
pressions for marginal and conditional prior clustering
probabilities in terms of the precision parameters, α
and β.

Theorem 4. Under the G ∼ MSBP(α, β,G0) prior,
the probability that tasks m and m′ have identical
coefficients for feature j is

Pr(θmj = θm′j) =
1

(α + 1)(β + 2)− 1
,

while the corresponding conditional probability given
θmj′ = θm′j′ is

Pr(θmj = θm′j | θmj′ = θm′j′)

= 2β1(α
2
2β2 − 4)

2α2β2(α1β1 + α)(α1β1 + β)− (α2β2 − 2)(α2β2 − 4)

,

where α1 = α+1, α2 = α+2, β1 = β+1 and β2 = β+2.

In addition, we have Pr(θmj = θm′j) < Pr(θmj =
θm′j | θmj′ = θm′j′).

From the simple expression for Pr(θmj = θm′j), it is
clear that the clustering probability ranges between 0
and 1 depending on the values of α and β, converging
to 1 in the limit as α, β → 0 and to 0 as either α or
β →∞. As expected,

lim
α→0

Pr(θmj = θm′j | θmj′ = θm′j′) =
1

β + 1
,

which corresponds to the clustering probability in the
special case of θmj

iid∼ Gj , for m = 1, . . . , M , with Gj ∼
DP (βG0j), independently for j = 1, . . . , d. If α → ∞
or β → ∞, Pr(θmj = θm′j |θmj′ = θm′j′) = Pr(θmj =
θm′j) = 0, and none of the tasks are clustered together,
so that borrowing of information relies entirely on the
base parametric model.

3. Posterior Computation

For posterior computation, we propose a modification
of the blocked Gibbs sampling algorithm of Ishwaran
and James (2001), relying on an MSBPN (α, β, G0)
prior and using a data augmentation scheme to fa-
cilitate efficient updating. As defined in Section 2,
Rmj = h indicates that the coefficient j for task m is
allocated to the hth cluster. Here we introduce two
additional latent indicator vectors. Under expressions
(3) - (5), Rmj can be expressed as Rmj = min{l :

Smjl = Tmjl = 1}, with Smjl
iid∼ Bernoulli(Umh) and

Tmjl
iid∼ Bernoulli(Wjh), for l = 1, . . . , N − 1, and

SmjN = TmjN = 1. After augmenting the data in
this manner, it is straightforward to update each of
the unknowns based on their full conditional posterior
distributions. Due to space limitation we give only the
conditional posterior distributions for S, T , U and W .

The conditional distribution for (Smjh, Tmjh), for h =
1, . . . , Rmj , sets Smjh = Tmjh = 1, for h = Rmj ,
and otherwise samples with probabilities: κst =
Pr(Smjh = s, Tmjh = t), where

κ00 =
(1− Umh)(1−Wjh)

1− UmhWjh
,

κ10 =
Umh(1−Wjh)
1− UmhWjh

, κ01 =
(1− Umh)Wjh

1− UmhWjh
.

The conditional distributions for Umh, m =
1, . . . ,M, h = 1, . . . , N − 1, and Wjh,j = 1, . . . , d, h =
1, . . . , N − 1, have the simple forms:

(Umh|S, α)

∼ beta

„
1 +

P
j:Rmj≥h

Smjh, α +
P

j:Rmj≥h

(1− Smjh)

«
,

(Wjh|T, β)

∼ beta

„
1 +

P
m:Rmj≥h

Tmjh, β +
P

m:Rmj≥h

(1− Tmjh)

«
.

We also note that the regression model which has been
the principal focus of this paper can easily be adapted
to the classification problem using the method of Al-
bert and Chib (1993).

4. Simulation Example

We first considered a simple simulation example
to illustrate the approach. We assumed ymi ∼
N(x′miθm, φ−1), with d = 5, nm = 15, M = 8, φ = 16,
and

θ1 = ( 1 1 1 1 1)′

θ2 = ( 1 1 1 1 −1)′

θ3 = ( 1 1 −1 −1 2)′

θ4 = ( 1 1 −1 −1 −2)′

θ5 = (−1 −1 2 2 3)′

θ6 = (−1 −1 2 2 −3)′

θ7 = (−1 −1 −2 −2 4)′

θ8 = (−1 −1 −2 −2 −4)′

(6)

The MSBPN (α, β, G0) model is implemented for this
synthetic data set, with N = 20. The base distribution
is specified as G0j ∼ N(µj , ψ

−1
j ), where µj ∼ N(0, 1)

and ψj ∼ Ga(1, 1) for all j. We place a Gamma prior
Ga(0.1, 0.1) on φ. As noted in Section 2.3, the preci-
sion parameters, α and β, control the prior distribu-
tion on the number of clusters. In order for the data
to inform more strongly about the clustering, we chose
Ga(1, 1) hyperpriors on α and β. The hyperparameter
values were chosen to favor few clusters.
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Figure 2. Pairwise posterior probabilities of two tasks being assigned to the same cluster for the simulation example
analyzed using the MSBP model.
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Figure 3. Posterior means and 95% credible intervals for
the study-specific coefficients from the simulation example.
The black solid bar indicates the true value, the red shows
the estimates for the MSBP model, and the green shows
the estimates based on the normal hierarchical base model.

The Gibbs sampling algorithm is used to obtain sam-
ples of the posteriors under the MSBP. The results
shown below are based on 100, 000 samples obtained
by thinning the MCMC chain by a factor of 20, after a
burn-in period of 5, 000 iterations. Rapid convergence
has been observed in the diagnostic tests as described
in Geweke (1992) and Raftery and Lewis (1992). In
addition, mixing was good.

Figure 2 plots the posterior probability of two tasks
being assigned to the same cluster separately for each
of the five feature components. The size of the shaded
box is proportional to the posterior probability of pair-
wise clustering. It is apparent that the true clustering
structure is well represented, with tasks having the
same coefficient for a feature component clustered to-
gether with high probability. Figure 3 shows the task-
specific posterior means and 95% credible intervals for
one of the five coefficients in red, along with the true
values (black) and results for a normal hierarchical
analysis (green). The normal analysis corresponded
to letting α → 0 and β → ∞, as described in Section
2.

It is clear that the posterior densities are concentrated
around the true values. In addition, the 95% credi-
ble intervals from the MSBP analysis are narrower in
each case, with the difference considerable when uncer-
tainty in the parameters is high for the base parametric
model.

5. Multi-national Bioassay Application

We illustrate the methodology using an uterotrophic
bioassay study (Kanno et al., 2001), for which data
were collected for 2681 female rats from studies con-
ducted in 19 laboratories from 8 nations. There were
four protocols (A/B/C/C’), with two relying on an
immature female rat model and two using an adult
ovariectomized rat model. Under each protocol, there
were 11 treatment groups, with 6 animals per group
and the groups including an untreated control, a vehi-
cle control, and seven dose levels of EE, with the final
two groups having both EE and ZM exposure. Refer
to Kanno et al. (2001) for more details.

The outcomes of the bioassay were wet and blotted
rat uterus weights. To reduce measurement error, we
focus here on the blotted uterus weights. The bioas-
say data can be modeled using ymi ∼ N(x′miθm, φ−1),
where ymi is the log-transformed blotted uterus weight
for rat i in lab m and xmi = (xmi1, . . . , xmi6)′, with
xmi1 = 1, xmi2, xmi3, xmi4 0/1 indicators of protocol
B, C, and C’, respectively, xmi5 dose of EE, and xmi6

dose of ZM.

The primary focus of the study is on assessing hetero-
geneity among the labs in the effects of the different
feature components, with a particular emphasis on as-
sessing variability in the slopes, θm5 and θm6. With
this goal in mind, we repeated the analysis conducted
in Section 4 for the simulation example, using the same
priors and computational implementation.

For sake of brevity, we focus our discussion on the
results for the intercept (θm1) and two dose effects
(θm5, θm6). Figure 4 presents pairwise posterior prob-
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Figure 4. Pairwise posterior probabilities of two laboratories being assigned to the same cluster within the rat uterotrophic
bioassay application based on the MSBP analysis. Results shown are for the intercept and slopes for EE and ZM.

abilities of labs being clustered together for these coef-
ficients. Note that two labs being assigned to the same
cluster implies an identical value for the regression co-
efficient, though this soft probabilistic clustering leads
to posterior mean estimates that are different for the
different labs. The labs are denoted as follows: F1 and
F2 for two labs in France; K1 and K2 for two labs in
Korea; G1, G2 and G3 for three labs in Germany; J1,
. . ., J6 for six labs in Japan; N1 and N2 for two labs in
Netherlands; B1 and B2 for two labs in the UK; and
U1 and U2 for two labs in the USA.

From Fig. 4, it is apparent that there is substantial
evidence of heterogeneity among the labs in the inter-
cept, as the posterior probabilities of certain labs being
clustered together is small. For example, the cluster-
ing probability is close to zero for labs U1 and G2.
However, there is a large group of labs, which all have
a moderate to high probability of being clustered to-
gether. These results are consistent with exploratory
plots of the data and with our prior knowledge that ro-
dent body weights can vary across labs. Such variabil-
ity is a well known problem in carcinogenicity studies,
as body weight is an important feature of tumor re-
sponse. However, in the current study, we are more
interested in assessing heterogeneity in the estimated
dose response across labs.

It is clear from Fig. 4 that the EE slope is consistent
across labs, as each of the labs has a moderate to high
posterior probability of being clustered together with
any of the other labs. These results are reassuring
that different labs should obtain consistent results in
future uterotrophic bioassay studies seeking to identify
chemicals having estrogen agonist effects. The results
for the estrogen antagonist, ZM, are somewhat less
consistent. Although most pairs of labs having a high

posterior probability of being clustered together for
the ZM coefficient, there are a couple of labs that have
slight divergent results.

Figure 4 only provides pairwise probabilities of being
clustered together. If two labs have a low probability
of being clustered together that does not necessarily
imply that the coefficients for those labs have a biolog-
ically significant difference. To assess the magnitude of
the difference, we plot the lab-specific coefficients and
95% credible intervals in Fig. 5. The red lines are the
results for the MSBP, while the green lines provide the
results under the base parametric normal model. As
in the simulation study, the normal model results tend
to have wider credible intervals. From this figure, we
can see that there are considerable differences in the
intercepts, with labs F2 and G2 having control ani-
mals with low uterus weighs, and labs F1, K1 and U1
having unusually high uterus weights. However, the
variability across labs in the EM and ZM coefficients
is not biologically significant, taking into account the
level of uncertainty in the lab-specific coefficients.

6. Conclusions

Motivated by the problem of flexible borrowing of in-
formation across feature components and tasks, this
paper has proposed a new class of priors for a matrix
of random probability measures. The proposed matrix
stick-breaking process is a natural generalization of
stick-breaking representations of the Dirichlet process.
The MSBP should be broadly useful for borrowing in-
formation across related semiparametric models. The
proposed computational implementation is efficient in
cases we have considered and is no more difficult to
implement than Gibbs samplers used for DP mixture
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Figure 5. Posterior means and 95% credible intervals for
the lab-specific coefficients in the rat uterotrophic bioassay
application. The red lines show the results for the MSBP
analysis, while the green lines show the results based on
the base normal hierarchical model.

models (Ishwaran & James, 2001).
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