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Abstract

A geometric and non parametric procedure
for testing if two finite set of points are lin-
early separable is proposed. The Linear Sep-
arability Test is equivalent to a test that de-
termines if a strictly positive point h > 0 ex-
ists in the range of a matrix A (related to the
points in the two finite sets). The algorithm
proposed in the paper iteratively checks if
a strictly positive point exists in a subspace
by projecting a strictly positive vector with
equal co-ordinates (p), on the subspace. At
the end of each iteration, the subspace is re-
duced to a lower dimensional subspace. The
test is completed within r < min(n,d + 1)
steps, for both linearly separable and non
separable problems (r is the rank of A, n
is the number of points and d is the di-
mension of the space containing the points).
The worst case time complexity of the al-
gorithm is O(nr®) and space complexity of
the algorithm is O(nd). A small review of
some of the prominent algorithms and their
time complexities is included. The worst case
computational complexity of our algorithm
is lower than the worst case computational
complexity of Simplex, Perceptron, Support
Vector Machine and Convex Hull Algorithms,
if d <ni.

Appearing in Proceedings of the 24" International Confer-
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1. Introduction

The Linear separability test determines if a hyper-

plane separates two sets P and Q C R? A hy-
perplane H = {v|w'v +b = 0,v € RLw €
RYb € R,w,b are fixed} separates the two sets if
wly +b >0VyeP
wly +b <0Vyeq
or wt(—y) +b(-1) >0VyeQ
Let P ={vijvje R4 i=1,...,N;}
Q :{U“U;ERle,Z‘:l,...,Nz}
n = Nl + N2
r = [wi,wa,...,we, b
[ v Vig  -e- V] 4 17
Vh Vyy .. V4 1
and A = Uﬁ\,fl’l v;\,’172 U}\,fl’d 1
—Uy 1 —Uy o —Uy 4 -1
_Ulz,l _“'2,2 _Ulz,d -1
L _U3V2,1 _“IN272 _U§V2,d -1 ]

The linear separability test is equivalent to verifying
if B = {z|Az > 0} is non-empty. Many algorithms
have been proposed for the test and a comprehensive
discussion of the algorithms can be found in (Elizondo,
2006) and Ch. 5 in (Duda et al., 2000).

1.1. Algorithms

A general discussion of Linear Programming,
Quadratic Programming, Convex Hull and the
Perceptron Algorithms to solve the linear separa-
bility problem is included in this subsection. The
time complexities of the algorithms are discussed
subsequently.
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1.1.1. LINEAR PROGRAMMING

Let p = [1,1,...,1] € R",7 € R. The linear pro-
gramming formulation for solving the problem is

min T
z,T
subject to Az +71p>1
T>0

B#0 < optimalT=7*=0

The linear programming problem is solved either by
Simplex or Interior Point methods. A feasible solution
to the above problem is easy to determine. Simplex
solves the optimization problem iteratively by moving
on the boundary of the convex polyhedral region de-
fined by the constraints. The Interior Point algorithms
can move through the interior of the convex region.

1.1.2. QUADRATIC PROGRAMMING

Let £ € R™¥1. Let © = [wy,wy, ..., wg, b]' as defined
previously. Let C' > 0 be an arbitrarily large constant.

min sllwll® + Cllel?
sub: Az >1-¢
£>0

B#0 < |€]|? = ||€*]]* = 0 in the optimal solution

The feasible region determined by the constraints is
convex and polyhedral. An incremental algorithm
finds a separating hyperplane for pairs of points in P
and @, and refines a common separating hyperplane
between all pairs of points. If the problem is linearly
separable, the common separator can be written as
a linear combination of very few pairs of boundary
points in P and @, called support vectors (Cristianini
& Taylor, 2000). SVM finds a hyperplane which has
large margin (perpendicular distance of the points in P
and @ closest to the hyperplane). Given that most real
life data sets are linearly non separable (Wasserman,
1989, Linear Separability : Ch. 2), SVM identifies an
unique hyperplane which has less misclassifications ir-
respective of the distributions from which sets P and
() are drawn, if feature vectors in P and () are drawn
independently and identically from fixed distributions
and n is large (Cristianini & Taylor, 2000, Ch. 4). The
number of iterations that the SVM requires to find a
separator for the linearly separable problems is inde-
pendent of the proximity of P and @ (Tsang et al.,
2005).

1.1.3. CoNVEX HULL SEPARATION

The convex hull of a set of points is the smallest convex
region that encloses the points of the set. Let C,(P)

be the convex hull of P. Let C,(Q) be the convex hull
of Q. B is nonempty if and only if C,,(P)NC,(Q) = 0.
There are many algorithms to compute the Convex
hull of a finite set of points. Quick Hull is a fast incre-
mental algorithm for finding the convex hull (Barber
et al., 1996). Given an initial convex hull (a simplex
of d+1 points in R?), each unprocessed point is either
inside or outside the current convex hull. If the point
is within the convex hull, it is discarded, otherwise a
convex hull is constructed with the new point as one
of the vertices.

1.1.4. PERCEPTRON

Perceptron is an iterative procedure to find the sepa-
rating hyperplane between sets P and (). The algo-
rithm terminates only if the two sets are separable.
It has been proved that the algorithm converges in fi-
nite number of iterations when there is a separating
hyperplane (Duda et al., 2000). In every iteration, x
is changed to increase the sum of the non-positive co-
ordinates of the vector Az (misclassified examples in
Pand Q). Let A; € R*>(4+D 4 =1,... n be the rows
of matrix A. Let n > 0 be a fixed small value. Algo-
rithm 1 is the Batch Perceptron algorithm for verifying
B #0.

Algorithm 1 B = {z|Az > 0,4 € R (d+1) g ¢
R} Test if B # ()

Input: n x d+ 1 matrix A
L+« 0 //L=1if Bis non-empty
r + random vector
a(z) «+ Az
if a(z) > 0 then
L+ 1
end if
while L == 0 do
T T+ nzai(w)go Alz‘/
a(z) + Az
if a(z) > 0 then
L+1
end if
end while
return L

1.2. Complexity

A few algorithms converge in finite number of iter-
ations, if and only if B # (). Perceptron algorithm
and Ho-Kashyap Procedure belong to this category.
Upper Bounds on the number of iterations for conver-
gence of the algorithms on linearly separable problems
can be found in (Duda et al., 2000), (Elizondo, 2006).
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The bounds are dependent on the proximity of the
two sets P, and the number of points in the two
sets. The Perceptron algorithm has time complexity
of O(n?) in the number of points. Examples of algo-
rithms which converge in finite number of iterations for
both linearly separable and non separable problems are
Linear Programming Algorithms, Convex Hull proce-
dure and Quadratic Programming Algorithms. Con-
vex Hull procedure provides a direct solution to the
minimum number of misclassifications of any hyper-
plane, subsequent to identifying the intersection re-
gion of the convex hulls of the two sets P and ). The
worst case time complexity of Linear Programming Al-
gorithms (LP solution by Simplex) and Convex Hull
procedure is exponential in dimension (Elizondo, 2006)
though on most problems Simplex has low computa-
tional complexity of O(n). Interior point algorithms
for solving LP have worst case complexity of O(n®L),
where L is a measure of the machine precision (Gon-
zaga, 1988). The worst case computational complexity
of Quadratic Programming Algorithm is O(n®). The
algorithm presented (Subspace Projection - SP) in this
paper is a method to verify if a strictly positive vector
exists in a subspace. It avoids computation of a hyper-
plane which misclassifies the least number of points.

2. Iterative Reduction of Subspaces

In this section, a verification scheme for existence of
x € R such that Az > 0 (A is an x (d+ 1) matrix)
is described. Consider an orthonormal basis of range
of A. Let U = {uy,us,...,u, € R"} be the basis. Let
the subspace spanned by U be W,.. Let a positive point
pin R™ be projected on the subspace W,.. Let the pro-
jected point be z(p) = (21(p), 22(p), - .., 2zn(p))t € W,.
In brief, the following results are proved in this sec-
tion. If z(p) is a strictly positive point, then z ex-
ists. If 2(p) > 0 and I, = {i|z;(p) = 0} is non-empty,
a strictly positive point exists in W, if and only if
a vector v of the form v; > 0 Vi € I, exists in
W,.. If p > 0 has equal co-ordinates and z(p) = 0,
then a strictly positive vector does not exist in W,.. If
zi(p) < 0 for some i, a subspace of r — 1 (W,_1) vec-
tors of W, not including z, intersects with an unique
n — 1 dimensional subspace in R". W,._; is the in-
tersection of W, and H,_; = {v € R"|v'e; = 0,j =
argmin, . p)<o #ii(p)}' A strictly positive vector ex-
ists in W, if and only if a positive vector exists in W,._;.
A simple method to compute an upper bound on the
number of misclassifications is proved in the last the-
orem.

The algorithm performs the test by projecting
points with positive co-ordinates on W,. Either

the projected point z(p) has strictly positive co-
ordinates or some negative co-ordinates, or some zero
co-ordinates. If z(p) has strictly positive co-ordinates,
then the sets P and @ are linearly separable. If
z(p) > O the test is performed on linear combina-
tions of rows with indices I, of matrix A. If z(p) has
some negative co-ordinates, the test is performed on
a lower dimensional subspace W,_; C W, which ex-
cludes z(p). At each step, the dimensionality of the
subspace reduces and a test in one dimensional sub-
space is needed in the final step. It is easy to verify
whether an one dimensional subspace is a scaling of a
strictly positive point. Hence, the maximum number
of steps needed for the completion of the test is equal
to the dimension of the range of A.

If a vector with strictly positive co-ordinates h >
0 exists in the range of A matrix, then a separating
hyperplane exists. The following theorem proves the
same result when h = z(p) > 0.

Theorem 2.1 If z(p) > 0, then 3 x such that Az >
0.

Proof z(p) € W,. W, is the range of A. Hence
3z such that Az = z(p) > 0. ||

If z(p) is not a strictly positive vector, either z(p) >
0 or z(p) < O for some i. Let z(p) > 0. Let I,
be the co-ordinate indices corresponding to z;(p) = 0.
The following two theorems prove that h > 0 exists
in the range of A if and only if a vector with positive
values in co-ordinate indices I, exists in the range of
A. Consequently, to verify if h > 0 exists in W,., it is
sufficient to test if A’ > 0 exists in a subspace of RI/:!.
The subspace W (1, ) is the set of linear combinations of
vj = (Ar.)g AL - ALy g), i =1,...,d+1,
where A, ; is the element in i** row and j** column of

A.

Theorem 2.2 If a strictly positive vector exists in W,
and z(p) > 0, a vector with positive values in co-
ordinates I, exists in W,.

Proof Let h > 0 € W,.. h has positive values in the
co-ordinates I,). [l

Theorem 2.3 If a vector with positive values in co-
ordinates I,y exists in W, and if z(p) > 0, then a
strictly positive vector exists in W,.
Proof Let v € W, with v; > 0 Vi € I,,. Then
az(p) +v >0 for a > max;gr, ., —Zj(”;). |
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If |I.| = n, the subspace W(I,) is the same as W,.
The following theorem proves that h > 0 does not
exist in W, if |I,| = n (i.e. z(p) = 0), provided the

positive vector p has equal co-ordinates.

Theorem 2.4 If p is the unit vector with all compo-
nents equal, and z(p) = 0 then W, does not contain a
strictly positive vector.

Proof Every vector ¢ € R™ of the form 0 < z; <
ﬁ,w is at a distance less than or equal to 1 from p.
Every point of W, — {0} is at a distance greater than
1 from p, because 0 is the unique closest point in W,
to p. 0 is at distance 1 from p. Hence, other than 0,
no vector of W, is in the set {z = (z1,22,...,2,) €
R”|0§a:,_f,2€1 .,n}. Hence h = az,a > 0
does not exists in W,.. Hence h > 0 does not exist in
W.. B

It is easy to see that, if z(p) = 0, then az(p) = z(ap) =
0,a € R.

Let p = [1,1,...,1]! be projected on W,.. Let the
projection be z(p). Let z;(p) < 0 for some i. The
following two theorems prove that a vector h > 0 exists
in W, if and only if a vector b’ > 0 exists in a subspace
with lesser dimension W,_;. W,_; does not include
z(p) and one of the co-ordinates of vectors v in W,_;
is zero (z;(p) < 0 and v; = 0). If more than one
co-ordinate of z(p) is less than zero, the co-ordinate
with index 4 = argmin; z;(p) is set to zero. Hence the
linear separability test can be performed in a lower
dimensional subspace.

Theorem 2.5 If a strictly positive vector exists in W,
and z;(p) < 0 for some i, there exists a positive vector
n Wr—l .

Proof Let h > 0 € W,. Let a non negative point [
closest to z(p) on the line joining z(p) and p be consid-
ered (Figure 1). I; = 0 for some j such that zj( ) < 0.
z(l) = z(p). Let 2(I) =1 = X, Biw;t (wi are or-
thonormal to W, and belong to the complementary
subspace). Let a point ¢ be projected on W,.. Let the
projected point be z(q). Let z(q) —q = >, aywi-. If
(@ =0D"() =1 <0, 3,(8i —@i)B; <0, 3,57 <

i < \Y;ar > B Hence Y, 57 < . ai.
The least distance of ¢ from W, is greater than or
equal to the least distance of [ from W,..

Let Si(z) {i]lz(l) < 0,l; = 0}, ¢ = | +
Siesiio e > 0 (@0 -1) = 3, vz (1) < 0.
Hence q is at a distance greater than [ from W,. If
every positive point in the set T = {v|v € R", v #
0,v; =0V j € S;(2)} has a projection z(v) € W, such

that z;(v) < 0,5 € Si(2), then every point ¢ > 0 is
at a distance greater than 0 from the subspace W,.
Contradiction (h > 0 € W, exists; geometrically, all
points of T' cannot be above W,.).

Hence a point t € T exists either on or below
(zj(t) > 0 for some j € Si(z)) the subspace W,. The
signed distance of points of T from W, is a contin-
uous function. Hence the distance between z(v) and
v € T takes all values between d(t, 2(t)) and d(I, z(1)).
Therefore a point ' € T exists at a distance 0 from
W,. T =H,_1 ={v € R"| vle; =0,j € Si(2),j =
argmin ., () <o m} Let W,._1 be the intersection
of H, 1 and W,. It is easy to prove that the intersec-
tion of H,,_; and W, is at most r — 1 dimensional
(vectors of W,._1 = W, N H are linearly independent
of z(p), as z;(p) < 0and v; =0V v € W,_1). Hence, if
h > 0 exists in W,., a point ¢’ > 0 exists in W,_1. |}

The existence of a positive point ¢ > 0 can
be verified by projecting a positive point p' >
0 € H, 1 on W, ;. Hence the test is recur-
sive. The recursion has a maximum depth of r,
because testing whether an one dimensional sub-
space has a strictly positive point, is trivial. Let
R = H, H,H,,....Hy_1p,...Hy_r+1 and
W Wiy, .oo, Wy, ..., Wi form a decreasing sequence
of subspaces.

p>0
> ¢
7, 120
r' 2 e.e,lt'eH,
h>0 ;>0 z2p)
€ rew  H(p)<0 h,z(p).t'e W,

Figure 1. Projection of p > 0 on subspace W,

Theorem 2.6 If z;(p) < 0 for somei andv > O exists
in Wy such that v; > 0V i € G,y = {i|z:(p) > 0},
then W, contains a strictly positive vector.

Proof h = —z(p) + av > 0 exists in W,, for a >
zi(p) [

Vi

maXier(p)

Let the standard ordered basis of R"™ be B, =
{e1,ea,...,en}. Let the basis vectors of H, ,;1 be
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By ={ei;,€i,-.-€5 }. Let p1 = €5, +€5, +...+ €5 €
H,_,.1. Let z(p1) be the projection of p; on Wj.
Let z(py) be the projection of py € H,—ptp on Wi.
The following theorem proves that the number of non
positive co-ordinates of some vector v € W, is equal
to the number of non positive co-ordinates of z(p;)
(excluding the co-ordinates of B, — By), assuming
Ziy (pT’) < 07 Zis (prfl) < 07 sy By (pl) < 0 for some
indices 41,142,-..,4,. Equivalently, there exists a vec-
tor v in W,, such that the number of strictly positive
co-ordinates of v is equal to the number of strictly pos-
itive co-ordinates of z(p;) plus n — k. The minimum
number of misclassifications of the points in P and )
is bounded by the number of non positive co-ordinates
of a vector in v € W,..

Theorem 2.7 The minimum number of misclassifica-
tions of any hyperplane M is bounded by the cardinal-
ity of Np)(Wh) = {ilzi(p1) < 0,2(p1) € Wi,p1; >
0,p1 € Hy yy1,p1 = [1,1,...,0,1,...,1]'}, for a lin-
early non separable problem.

Proof Let pr be a vector with equal co-ordinates in
standard order basis of H,,_,;, and the rest of the
co-ordinates set to 0. Let z(pg) be the projection of
pr on Wi,k < r. Let r = 1. 3 x such that Az =
2(p1). Hence, M < [N, (W1)]. Let r > 1, v =

az(pr) — z2(p2),a > 1+ max., ()0 ?83 Hence,

v; > 0 Vi € {jlz;(p1) > 0V (zi(p1) = 0,2i(p2) < 0)}.
v € Wy contains N, (W1) + [{i|p2,; = 0} number
of co-ordinates less than or equal to zero. Similarly,
let v3 = a'v — z(p3), @’ > max,, > ZE}—”) The number
of co-ordinates less than or equal to 0 is N (pyy (W1) +
[{ilps; = 0}|. By induction vy = awvi_1 — 2p, has
N.(p,y(W1) + {ilpk,; = 0}| co-ordinates less than or
equal to zero. |{ilpr; = 0} = 0, (pr > 0 is a vec-
tor with all co-ordinates equal in R™). Hence v, has

N (p,)(W1) co-ordinates less than or equal to zero. [

Further, it follows that the minimum number of mis-
classifications Up is bounded by the minimum of
[N (py) (W) and [N_ () (W1)]-

2.1. Examples
2.1.1. XOR PROBLEM

Let P = {(0,1),(1,0)}, @ = {(0,0),(1,1)}. A =
1 0 1
0 1 1
0 0 -1
-1 -1 -1

. An orthonormal basis of the range

of Ais U = The projection

of p = 1(1,1,1,1)
t

I L T

&‘H (e O&"—‘
|
ST

o

3 on the range of A is U(U?p) =
(0,0,0,0). Hence no strictly positive point exists in
Wy. Hence P and @ are linearly non separable.

2.1.2. AND PROBLEM

Let P = {(1,1)}, @ = {(0,0),(0,1),(1,0)}.
1 1 1

A =

0 0 -1 "
0 -1 -1 |" The projection of %(1,1,1,1)t on
-1 0 -1

the range of A is (0.25,0.75,0.25,0.25)¢. A strictly pos-
itive point exists in Wj. Hence P and @) are linearly
separable.

2.2. Algorithm

In Algorithm 2 an iterative procedure to verify if a
strictly positive point exists in a subspace W, (range
of A) is presented. It repeatedly projects a point p > 0
on progressively smaller subspaces. In the algorithm,
projection of p on W, is performed by first orthonor-
malizing the vectors which span W,.. This can be re-
placed by a function to solve the least squares problem
arg min, ||Az — p||?. For simplicity of presentation, the
recursion is described as an iterative procedure.

3. Experiments

Subspace Projection algorithm, Linear Programming
Procedure, Perceptron algorithm and Support Vector
Machines (SVM'®" (Joachims, 1999)) give identical
results on a representative set of benchmark datasets
in UCI Machine Learning Repository (Newman et al.,
1998). The SVM algorithm is trained with large value
of C. C is set to 10'%. Experiments were performed on
3.2GHz Pentium4 machine with 512MB RAM. In Ta-
ble 1, the execution time of SVM'™" (implemented
in C++) and Subspace Projection (implemented in
C++) are compared (processing time includes file
read). The execution time of linear programming pro-
cedure (LP - implemented as an optimized MATLAB®
function linprog), Perceptron Algorithm (PR imple-
mented in MATLAB®) and Subspace Projection (SP
- implemented in MATLAB®) are compared in Table
2 (processing time excludes file read). The last column
describes whether the data sets are Linearly Separable
(LS) or not. The Perceptron algorithm does not con-
verge on linearly non separable problems. Hence the
execution time of Perceptron algorithm on linearly non
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Algorithm 2 B = {z|4z > 0,4 € Rrx(d+) 4 ¢
R} Test if B # ()

Input: n x d+ 1 matrix A
L+ 0 //L=1if Bis non-empty
A < orthonormal basis of the range of A
r < rank(A)
N<+r
z+0eR"
while (N #Z0)A(L==0)A(A#0)) do
p«[L,1,...,1]' € R?
z « A(Alp)
if 2 > 0 then
L+ 1 //by Theorem 2.1
else if z == 0 then
N «+1 //by Theorem 2.4
else if z > 0 then
I, < {i|]z; = 0} //by Theorem 2.2 and Theo-
rem 2.3
i’ <0
for i =1ton do
if i € I, then
i +1
Ai’Jc <_Ai,k Vk= 1,...,T
end if
end for
n < |I;]
else
J ¢ argmin; ., (p)<o mfﬁ / /by Theorem 2.5
and Theorem 2.6
for k=1tor do
a < A /2(p)
Ai,k <~ AiJc — OéZi(p), Viel,...,n
end for
E, + {Z|Zl(p) < O,Ai’k =0Vk= 1,...,7‘}
i <0
for:=1ton do
if i ¢ E, then
i—i'+1
Ai’Jc <_Ai,k Vk= 1,...,7‘
end if
end for
n<<n-—|E,]
end if
A « orthonormal basis of the range of A
r + rank(A)
N+ N-1
end while
Up < min(|{ilz; < 0,i =1,...,n}|,{ilzs > 0,i =
1,...,n}|) //Up is the upper bound on the min-
imum number of misclassifications by any hyper-
plane, by Theorem 2.7
return L,Up

separable problems is not included in Table 2.

3.1. Description of Datasets

In Iris1 dataset, Iris-setosa examples are considered to
be set P, Iris-versicolor and Iris-virginica examples are
considered to be set ). In Iris2 dataset, Iris-virginica
examples are considered to be set P, Iris-setosa ex-
amples and Iris-versicolor examples are considered to
be set (). The Breast Cancer dataset has attributes
with values in a specified range (e.g. 0-4). Such at-
tributes are split into two derived attributes (e.g. 0
and 4). Nominal attributes are converted into dis-
crete values. Examples with missing values are re-
moved from the dataset. In the Glassl dataset, class 1
(building_windows_float_processed) feature vectors are
considered to be set P and the rest of the 6 classes are
considered to be set ). Similarly, in Glass2 dataset
class 2 (building_windows_non_float_processed) feature
vectors are considered to be set P and the rest of the
6 classes are considered to be set ). A small sample
of the Spam dataset (Spaml) is used for testing the
algorithm, because small samples of spam dataset are
linearly separable. The Ionosphere dataset(Ion) is a
binary classification problem of radar signals. The col-
umn containing indicies of training sample is ignored
in all the datasets. Eg is the number of misclassified
points of the hyperplane found by SVM, Ug is the
upper bound on the misclassifications, as computed
by our algorithm. Table 3 is a comparison of Ey and
Up. The test results suggest that subspace projection
(SP) has much lower time complexity than LP, PR and
SVM. The time complexity of SP is less than O(nr?)
due to compiler optimizations. On the spam dataset,
Perceptron converges fast only if the initial value of
the vector x is chosen close to the optimal vector x*
satisfying Az* > 0.

Table 1. Computation Time SVM, and SP in seconds

DATA n d T SVM SP LS
IrIS1 150 4 5 0.03 YES
IR1S2 150 4 5 17.1 NO
IoN 351 33 34 22.8 NO

GLassl 214 9 10 46.8
GLAss2 214 9 10 46.8

0.03

0.05

0.14
Breast 277 12 10 16.7 0.05 NO

0.03

0.03
Spam1 359 57 58 307 0.33

3.2. Scalability

The algorithm checks linear separability in linear time,
if the dimension is fixed. A randomly labeled data set
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Table 2. Computation Time LP, PR and SP in seconds

Dara n d r LP PR SP LS
Iris1 150 4 5 0.26 .002 .003 YES
Ir1s2 150 4 5 0.46 X .008 NO
IoN 351 33 34 3.95 X 0.45 NO
Breast 277 12 10 10.89 X 0.02 NO
Grassl 214 9 10 4.33 X 0.02 NO
Grass2 214 9 10 5.2 X 0.02 NO
Spam1 3569 57 58 397 141 1.20 YES

Table 3. Number of misclassifications by SVM (E;) and
Subspace Projection (Ug)

DATA n d Es UB
IrIs1 150 4 0 0
IR1S2 150 4 2 4
IoNOsSPHERE 351 33 102 126
BREAST 277 12 174 133
Grassl 214 9 98 92
GLASS2 214 9 98 105
Sram1 359 b7 0 0

with large number of points is used to verify this result.
It is a collection of linearly non separable data sets
with points in 153 dimensions. Number of points n is
varied between 500 and 1500 in steps of 100. The plot
of CPU time in seconds of our algorithm for various
values of n is presented in Figure 2. From the plot
it appears that the number of computations increases
almost linearly with number of points.

3.3. Conclusions

SP is a simple non-parametric algorithm. FExperi-
mental results and complexity estimates suggest SP
is faster than Linear Programming, Perceptron and
SVM. It has lower worst case time complexity than
Convex Hull Algorithm. On linearly non-separable
problems, SVM takes considerably more time than our
algorithm to find a hyperplane with less error. Hence
SP can be used to quickly identify an initial hyperplane
with few misclassifications. Subsequently the hyper-
plane with least misclassifications can be obtained by
training a SVM, hence reducing training time of SVM.
On linearly separable problems, SP finds a separating
hyperplane very fast compared to SVM if the points
in the two classes are close. Identifying the maximum
margin hyperplane given a separating hyperplane is
geometrically not a difficult one. Hence SP can be
used as a method for seeding a primal space SVM al-

opu time in sec

400 600 800 1000 1200 1400 1600 1800

number of points n

Figure 2. Computational Complexity of SP on a randomly
labeled dataset

gorithm. However, our algorithm is not incremental.
SP can be made incremental if incremental projection
can be achieved. Another interesting problem which
can be explored is a procedure to find a point in the
range of A with few negative co-ordinates, by taking
projections of the convex region v > 0,v € R™ on the
range of A.

3.3.1. ConvEX HULLS

SP can be used to test if a separating hyperplane exists
between a finite set of points P and a single point
set @ = {v € R?}. Hence SP can be used to test if
a point v is inside or outside the convex hull of the
set P in linear time. Consequently, an incremental
procedure to identify the vertices of the convex hull,
without constructing the faces of the convex hull can
be developed from our algorithm.

Acknowledgments

We want to thank the reviewers for their valuable com-
ments that significantly improved the presentation.

References

Barber, C. B., Dobkin, D. P., & Huhdanpaa, H.
(1996). The quickhull algorithm for convex hulls.
ACM Transactions on Mathematical Software, 22,
469-483.

Cristianini, N., & Taylor, J. S. (2000). An introduction
to support vector machines. Cambridge: Cambridge
University Press.

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pat-



A Fast Linear Separability Test

tern classification. New York: Wiley-Interscience.

Elizondo, D. (2006). The linear separability problem:
Some testing methods. IEEE Transactions on Neu-
ral Networks, 17, 330-344.

Gonzaga, C. C. (1988). An algorithm for solving lin-
ear programming problems in O(n3L) operations.
In N. Megiddo (Ed.), Progress in mathematical pro-
grammang, 1-28. Springer-Verlag.

Joachims, T. (1999). Making large-Scale SVM learning
practical. In B. Schlkopf, C. Burges and A. Smola
(Eds.), Advances in Kernel Methods - Support Vec-
tor Learning. MIT-Press.

Newman, D., Hettich, S., Blake, C., & Merz, C. (1998).
UCI repository of machine learning databases.

Tsang, I. W., Kwok, J. T., & Cheung, P.-M. (2005).
Core vector machines: Fast SVM Training on Very
Large Data Sets. Journal of Machine Learning Re-
search, 6, 363-392.

Wasserman, P. (1989). Neural computing theory and
practice. Van Nostrand Reinhold.



