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Abstract

We address feature selection problems for
classification of small samples and high
dimensionality. A practical example is
microarray-based cancer classification problems,
where sample size is typically less than 100 and
number of features is several thousands or
higher. One of the commonly used methods in
addressing this problem is recursive feature
elimination (RFE) method, which utilizes the
generalization capability embedded in support
vector machines and is thus suitable for small
samples problems. We propose a novel method
using minimum reference set (MRS) generated
by the nearest neighbor rule. MRS is the set of
minimum number of samples that correctly
classify all the training samples. It is related to
structural risk minimization principle and thus
leads to good generalization. The proposed MRS
based method is compared to RFE method with
several real datasets, and experimental results
show that the MRS method produces better
classification performance.

dimensionality poses a significant challenge to mze
learning society, for example, computational comitye
(the computational demands for searching in high
dimensional spaces grow exponentially with data
dimension) and overfitting (models obtained frongthi
dimensional data fit the training data very welljtb
perform poorly on previously unseen data).

Developing classification methods to overcome thero
fitting problems has already attracted significamérest
from machine learning community (Bradley and
Mangasarian 1998; Fung et al.,, 2002; Vapnik and
Chapelle 2000; Guyon et al., 2002; Reunanen, 2003;
Weston et al., 2003). As one of the most commoskdu
learning methods, support vector machine (SVM) has
shown excellent performance in handling large featu
space and overfitting problems (Chapelle et alQ220
Guyon et al., 2002; Vapnik 1998; Haykin 1999; Weasto
et al., 2000). A SVM yields its decision functioarived
from the structural risk minimization (SRM) printgp
Unlike the empirical risk minimization, which minieres

the errors on training data and consequently ld¢ads
overfitting, the SRM principle suggests that we wdto
minimize an upper bound on the expected risk by

controlling both the number of training errors afte
capacity of the set of candidate functions meashyetthe
so-called Vapnik-Chervonenkis dimension (Vapnik,
1998).

High dimensional data analysis is an extremely iatuc ) o
Another approach for counteracting the overfitting

task in various applications, such as multi’/hypecsal i ) !
data-based target detection and classificationgizer ~ Problems and for reducing the computational comiplex
the analysis of small samples with high

and Moura, 2000), and microarray data-based cancefor € naly ) _
classification (Xiong and Chen, 2006). On one hahd, dimensionality is featl_Jre selection. Feature sidacts
high dimensionality provides rich information abdhe  the process of searching for a subset of releweattifes
data and offers the potential to distinguish betwee from a larger set of original ones in terms of sopne-
different classes. On the other hand, in most jmaict defined criteria, such as classification perfornearo
cases, the number of labeled training data is gemgll  class separability. In fact, feature selection mdghplay
compared to the number of features available. For& significant role for solving small sample claissifion
example, in microarray data-based cancer clastidita Problems where the number of features is much targe
problems, typical number of samples for each dimss  than the number of training samples. It has be@wsh
than 100 and the dimensionality is several thousanrd ~ that feature selection can also improve the perémca

tens of thousands. Learning from small samples igh ~ °f SVMs for small sample classification problems.
Enlightened to the fact that SVM generalizes w@llyon

et al. (2002) recently developed a feature selectio
method, called recursive feature elimination (RFBY,
small sample classification problems. The RFE metko
originally applied to microarray-based cancer
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classification where the number of training samgkes 2. Method

less than 100 and the number of features is several

thousands, and has become an effective approach iB1 Recursive Feature Elimination

small-sample feature selection problems. Basedhen t

idea of Optimal Brain Damage theory (Le Cun et al, For a linearly separable problem, SVMs find a
1990), RFE seeks to improve generalization perfoc®a s riminant function g(x.)=WX +b, where b is a
by removing the least important features whosetideie oA ! '

will have the least effect on training errors. The pias term, X; 00" are samples, andy, are

importance of a feature is evaluated in terms @itarion .
derived from SVMs. corresponding class labeys ={+1}, i =1,...,m. The

selection problems, the RFE method tends to remove

redundant and weak features and retains independent g(xi) >0, if A =1
features. As pointed out by Guyon and ElisseefD®0 ) ()
(1) presumably redundant features may provide bette g(xi) <0, if y,=-1

class separation, and (2) two weak features that ar

useless by themselves can provide a significantq; jinearly non-separable cases, one can introglack
performance improvement when used together. Thus,

simply removing redundant or weak features mayvariablesfi and accordingly, the discriminant function is
degrade classification performance. This is paldity defined by:

true when few features are retained as we obsénvedr
experiments. Another potential issue is that theimal
margin decision boundary derived from SVMs exists i
nonlinear feature space, not necessary in observati
space (Karacal and Krim 2002).

y(wkx +b)=1-&, &=0 2

q‘i measure the deviation of a data point from optimal
It is generally accepted that the generalizationpyperplane (Vapnik, 1998). SVMs are designed by
performance is closely related to the trade-offneen inimizing
the number of training samples used and the mode[n
capacity (Bottou and Vapnik, 1992). As pointed bwt 1 N
Vapnik (Bishop, 1998), “the function that descriluzta _ 2
well and belongs to a set of functions with low acipy d(w,$) _EHW” +CZ£i
will generalize well regardless of the dimensiotyabf ] =
the input space.” As a local algorithm, one nearest Subject to: y, (WX +b)=1-¢&, ¢ =20
neighbor (1-NN) classifier has a very low capacity.
Karacal and Krim (2002) recently showed that the
complexity of a 1-NN classifier is directly relatéal the
reference set derived from the training set. Anarfee " 1
set is a subset of training set that can corrextdgsify all _
training samples through the 1-NN rule. Thus, adbet W(o) _zai __z YiY;aiq; (Xi D(i)
generalization can be achieved by replacing thaitg
set with a small reference set. In this paper, wp@se a Siject to: 1) 0< a, < C,i=1..m (4)
minimum reference set (MRS) based feature selection
method. The MRS method evaluates feature setsrimste 2) ia y =0
71
=1

3)

The optimization problem is solved in a dual protle

i=1 ij=1

of the size of MRS in observation space. We argja¢ t
for two feature subsets that classify all the frajn
samples correctly through 1-NN rule, the one with
smaller MRS is expected to generalize well. We camap
MRS and RFE methods on various practical datasets a where @, are the Lagrange coefficients.
show that the MRS method significantly improves

Lo The linear SVMs can be readily extended to nonlinea
generalization accuracy.

SVMs where more sophisticated decision boundaries a
The remainder of this paper is organized as follows needed. This is done by applying the kernel triok,
Section 2 first introduces the RFE method. We thensimply replacing every dot produdtX; [X) in linear
describe the proposed MRS method. Section 3 presentSVMs by a nonlinear kernel functid(X; [X), which
the experimental results of six datasets with simpl satisfies Mercer's Theorem (Vapnik, 1998).

samples. Finally, Section 4 presents our conclgsion The RFE method is based on the concept in Optimal

Brain Damage (Le Cun et al., 1990) and SVMs. lksee



Minimized Reference Set Based Feature Selection for Small Sample Classifications

to improve generalization capability and speed of From Theorem 2, we conclude that the generalization
learning by recursively removing features with the ability of the indicator function constructed oretbasis

smallest weight values; calculated from SVM training. ~ ©f the MRS depends on the size of the MRS. Miningzi
At each step, the vectaw is calculated by training a the size of the MRS on the basis of empirical desals

SVM using the remaining features. RFE simply rensove to minimizing the structure risR(f). For two feature sets

2 weak feature measured by its weiaht vakuelt does with the same size, we can create two minimum eeies
. y €19 sets for zero training errors. The feature set wiimaller
not consider the effect of removing a feature oa th

: MRS is expected to have better generalizationtgpéis
performance of SVMs. However, a weak feature midly st fewer training samples are used for constructing th
be an Important feature when used with other festur classifier. Thus, the proposed MRS method seekthor
together. Thus, simply removing redundant or weakfeature subset that needs smallest MRS for claasifin.

features may degrade classification performance. We first describe the procedures to find a MRSItBig
2.2 Minimum Reference Set with an empty set, we update a reference set bingdd

. ] ) the closest samples between classes until allitigain
In this section, we describe the proposed MRS featu samples are correctly classified through 1-NN d&ss
selection methOd, which uses reference set sizes t%pparenﬂy, this a|gorithm a|WayS converges. In waerst
evaluate the importance of a set of features. case, all training samples are included into tHereace
A minimum reference set is the smallest subset ofS€t (Karacal and Krim 2002). For calculating dises
training set that can correctly classify all tragisamples ~ °€tween samples on different classes, the Euclidean
through the 1-NN rule. Since the complexity of &lll- distanced (x;,X; ) , is used.
classifier is directly related to the number ofirnag
samples involved, the size of a MRS is closely t@the
structural _risk minimization (SRM), and thus the MRS_ID: MRS Identifier Algorithm
generalization ability.

The SRM principle for learning from samples of smal
size is to find the decision function that mininszthe
guaranteed risk on test data (Vapnik, 1998). Thkis i
achieved by controlling model capacity. llébe a set of samples in.

indicator functions defined on the training set ¢1), ---, d: ranked distances calculated from samples of twe
(Xm Ym), and letR(f) denote the risk for an indicator classes.

function f O 0. The guaranteed risk can be derived ¢ - k" element ird

through the bounds on the actual risk (Vapnik, 2998 k

| = set of selected samples .
err(l) : classification error using 1-NN and training

. Stepl; calculate all pairwise distancel(X.,X.) for
Theorem 1 (Luntz and Brailovsky).The leave-one-out ® P (% ')

estimator is almost unbiased. samples from two classes, i.g,=1andy,; = -1

Theorem 2. Let E[R(f)] be the expectation of the Step2: sort the distance from the smallest to the largest
probability of error taken over both training and test data and store the ranked distancalirSet k = 1.
for an optimal indicator function f constructed on Step3:repeat

training samples of size m and 1-NN. Let N,, denote the Findi andj which is related tad (X;,X;)=d,
size of the MRS formed on the basis of training samples if {i, j} U1 _
of size m. Then the following inequality holds true, updatel — | O{i, j}
end if
E(Nm) k=k+1
BRI == ®) uni er(l)=o0
return (1)

. - The final set is the MRS.

To prove this theorem, we follow the similar steps

Vapnik (1998). Apparently, the removal of a samplél Next, assume that the number of features to betselés

MRS from the training set will not change the MRS. k. the MRS method randomly chooses a sek fefatures

Thus, in the leave-one-out method, sample§l MRS and swaps one feature at a time between the sglecte

will be correctly classified. Therefore, the numbefr  feature setSF and the remaining feature poBF. For

errors by the leave-one-out method does not extieed e€ach feature combination, MRS Identify algorithm is

size of the MRS, that is, the largest error ratetfaining executed to obtain a MRS. If the size of the MRStfie

data using the leave-one-out methot\is/m. According new feature seBF (after swapping) is smaller than that

to Theorem 1, Eg. (5) is true. before swapping, the swapping is accepted; otherwis
the feature set remains the same. We repeat thcegs

O for all the features inSF. The feature set with the
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smallest number of a reference set is considerettheas

best feature set.

MRS Feature Selection Algorithm

k = the number of selected features

n = original number of features

N(F) = the size of reference set with featurerset
S= the size of MRS

F = final feature set

SF = set of selected features

RF = set of remaining features

Stepl: Randomly seledt features,
s={f, f, f,..f}
RF = { fk+l’ fk+2’ R fn}

Step2: Search possiblefeatures with smallest MRS.
perform MRS_ID for samples with feature St
F=SF S=NS).
for i = 1tok

for j=k+1ton
swap f; inSFand f; inRF
perform MRS _ID for samples with feature Set

S = N(SF).
If S <S5
acceptthe swag€ S, F=5F).
end if
end j
end i
return (F)

The best feature set with smallest MRS is savdd in

Computationally, the MRS feature selection method For

Two major differences between MRS method and RFE
method are: (1) MRS evaluates the importance abap

of features, while RFE evaluates the importance of
individual features, one at a time; and (2) MRSleat®s
feature sets using reference set sizes which aeetlyi
tied to the structural risk minimization principd@d thus
good generalization, while RFE evaluates individual
features in terms of their weights calculated frBvM
training. Next, we apply the MSR method to six data,
each with a small number of training samples.

3. Experimental Results

3.1 Datasets Description

Six datasets, all with small number of training péems,

are used to compare RFE and MRS. The first dataset
(sonar) is downloaded from UCI machine learning
repository (http://www.ics.uci.edu/~mlearn) and ttber

five sets are microarray datasets, as summarized in
Tablel. For all the microarray data sets, sincdahgest
number of samples for each class is less than 6Qse
bootstrapping method for evaluating the proposethate
Specifically, for each dataset, we randomly gemerat
(sampling with replacement) 70% training sampled an
30% test samples. This is done 15 times. Thuse#gh
dataset, we now have 15 sub-groups of a trainihgrsz

a test set, and test results are averaged overl%he
randomly generated sub-groups of test sets.

3.2 Resaults

To evaluate the MRS feature selection method, walec
features are compared with those selected by RFE
method. Since MRS and RFE features are selected
through 1-NN and SVMs, respectively, we compare
classification performance with both 1-NN and SVéts
classifiers. We use linear SVMs in all cases.

Figures 1 to 6 show the classification accuracgwgithe
number of selected features. Lines with cross mmarke
represent results for MRS features (solid line$witoss
markers for a SVM classifier (MRS-SVM) and dashed
lines with cross markers for an 1-NN classifier (SR
NN)). Lines without cross markers are for RFE feasu
(solid lines for a SVM classifier (RFE-SVM) and ted
lines for an 1-NN classifier (RFE-NN)).

sonar data (Figurel), MRS features clearly

executes MRS _IDk x (n — k) times. Each time, one outperform RFE features, either with the 1-NN oe th
feature inSF will be replaced by a different feature. The SVM classifier. For ALL/AML data (Fig. 2) and COLON

new feature set is then evaluated as a whole,adsbé

data (Fig. 5), when the number of features is latgan

evaluating one feature at a time as in the RFE odeth 30, both_ methods are comparable. When the number of
For better results, the search process can be tegpea feature is less than 30, MRS features produce rbette

several times with random restart (step 1). Altevedy,

classification accuracy. For CNS data (Fig. 3)hwitore

one can run the algorithm just once by using athan 15 features, results for MRS and RFE methoes a

deterministic starting feature subset created bythem
feature selection algorithm (e.g., RFE). The lattese is

employed in our study.

comparable. With less than 15 features to use, RFE
features with a SVM classifier yields highest aecyr
Finally, for BREAST data (Fig. 4) and LYMPH datadF
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6), MRS features clearly produce better classificat the problem of extension of the MRS method to multi
accuracy than RFE methods. It is interesting te nbat  class feature selection problems. Unlike RFE method
for BREAST data and LYMPH data, regardless of the which is based on SVMs, MRS method is based on 1-NN
classifiers to use, MSR methods perform better RRBE method. Consequently, we expect that the MRS method
methods in most cases (Figs. 4 and 6). In conalusio can be readily applied to feature selection forthulhss
MRS methods outperform RFE methods most of the,timeclassification problems.

especially when the number of features is smalteNtaat

in practice, small number of features is preferted

overcome overfitting problems for small sample o

classification problems. Thus, the MRS method is of Table 1 Data description

practical use and interest.

To visualize the features selected by MRS and RFESONAR: This data set consists of 208 instances and 60

methods, we plot both training and test data of ; ; ;
o attributes (Gorman and Sejnowski 1988). The task
ALL/AML with the best two features. We randomly is to classify sonar signals that bounce off a meta

select a training data set and a test set genetated cylinder or a roughly cylindrical rock. The dataar
bootstrapping and run MRS and RFI_E feature selection divided equally into two sets: 104 instances are
methods to select two best features. Figures Basitbw used for training and rests are used as test.

the training and test data with the top two feature
selected by the MRS method, respectively. Figuras®  ALL/AML: ALL-AML Leukemia Data (Golub et al.,

10 show the training and test data with the top two 1999). This data set contains 72 samples of human
features selected by the RFE method, respectively. acute leukemia. 47 samples belong to acute
Apparently, two classes in MRS features are better lymphoblastic leukemia(ALL), and the other acute
separated than in RFE features. myeloid leukemia(AML). Each sample presents the

Figure 11 shows the average percentage of training expression levels of 7129 genes.

samples in minimum reference set (the ratio ofnirg CNS: Embryonal Tumors of Central Nervous System

samples in reference set to the number of origraaiing Data (Pomeroy et al., 2002). This data set contains
samples) versus number of features with COLON data. 60 patient samples, 21 are survivors of a treatment
As expected, for different number of features t@,us and 39 are failures. There are 7129 genes in the
number of samples in MRS differs. data set.

BREAST: Breast Cancer Data (West et al., 2001). This
4. Conclusion data contains 7129 genes in 49 breast tumor

samples. There are two classes: 25 samples are

Classification problems with small sample sizes asiy estrogen receptor positive (ER+), whereas the
high dimensionality have drawn increasing attention remaining 24 samples are estrogen receptor
machine learning community. An essential step ifmlsm negative (ER-).

sample classification is feature selection. In théper, _ .
we propose and apply a minimum reference set base§@OLON : Colon Tumor Data (Alon et al., 1999). This

method to feature selection and compare it to the data set contains 62 samples collected from colon-
commonly used RFE method. In a RFE method, a featur cancer patients. Among them, 40 samples are from
is removed if it is weak at a particular step. Tveakness tumors and 22 biopsies are from healthy parts of
is evaluated in terms of its weight value in consting a the colons of the same patients. 2000 genes are
SVM decision hyperplane. A weak feature, however, selected to measure their expression levels.

might be important when combined with other feaure | y\PH: Lymphoma Data (Shipp et al., 2002). This data
Our proposed method assesses features as a grsegh ba set contains 77 tissue samples, 58 are diffuse larg
on the minimum reference set derived from a 1-NN B-cell lymphomas (DLBCL) and remaining 19
classifier. MRS methods implement structural risk samples are follicular lymphomas (FL). Each
minimization principle and guarantee to generalizs|. sample is represented by the expression levels of

We compare the proposed MRS method to RFE method 7129 genes.
on six datasets, each with small training samplése
MRS method makes significantly improvement over the
RFE method, especially for small humber of features
which are of practical use. Our future work willdadss
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