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Abstract

Reinforcement learning algorithms can be-
come unstable when combined with linear
function approximation. Algorithms that
minimize the mean-square Bellman error are
guaranteed to converge, but often do so
slowly or are computationally expensive. In
this paper, we propose to improve the conver-
gence speed of piecewise linear function ap-
proximation by tracking the dynamics of the
value function with the Kalman filter using a
random-walk model. We cast this as a gen-
eral framework in which we implement the
TD, Q-Learning and MAXQ algorithms for
different domains, and report empirical re-
sults demonstrating improved learning speed
over previous methods.

1. Introduction

Function approximation methods are commonly used
in reinforcement learning (RL) for representing the
value function in a compact form. Linear methods
are particularly attractive due to their simplicity, but
can be computationally inefficient when a sparse high-
dimensional feature representation is used. Piecewise
linear function approximation (PLFA), on the other
hand, offers a potential advantage over traditional lin-
ear function approximation in terms of scalability. In
the piecewise linear case, the value function is parti-
tioned into a number of components, and updates need
only consider a single component at any given time.
The advantage of PLFA is that the computation time
to do an update scales with the size of the feature
vector in a partition, and not with the size of the fea-
ture vector over the entire space (as it does commonly
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in linear function approximation methods). This time
complexity advantage should help PLFA apply to large
problems.

However, one well-known issue with PLFA and func-
tion approximation methods in general is convergence.
Algorithms that minimize the mean-square Bellman
error, such as the residual gradient method (Baird,
1995), are guaranteed to converge but can suffer from
poor performance. Other work has addressed this is-
sue by employing methods, such as least squares or
instrumental variables (Soderstrom and Stoica, 2002),
that use second-order statistics to improve convergence
time (Bradtke and Barto, 1996; Lagoudakis and Parr,
2003; Boyan, 2002; Xu, He, and Hu, 2002). Since
these methods make more efficient use of samples, they
promise to be effective. Unfortunately, they also rely
on the assumption that the underlying process is sta-
tionary, and this assumption is easily violated in prac-
tice in at least three common cases: bootstrapping,
change in the Markov Decision Process (MDP), and
change in policy (Sutton and Barto, 1998). The result
is that convergence again becomes slow. This slow-
down is further compounded in PLFA because a shift
in the value of one partition might result in a shift in
the target value of a second partition.

We are interested in developing a fast algorithmic ap-
proach for RL with PLFA that will converge in all
cases. We propose to handle the problem of non-
stationarity by tracking the dynamics of the value
function with techniques from linear system tracking.
Modeling the nonstationarity as a random-walk, we
show that the Kalman filter (Kalman, 1960) can be
used to incrementally track changes in the value func-
tion. Since we assume a piecewise linear form, we can
apply a separate Kalman filter to each component of
the partitioned function. Although the Kalman filter
is used for our examples, other methods from the linear
system tracking literature could be used. While one of
our assumptions is that the partitioning is supplied,
we could also use variable resolution methods (Munos
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and Moore, 2002; Potts and Sammut, 2005) to build a
partitioning on the fly.

We cast our proposed technique as a general frame-
work for RL methods that learn value functions, and
show how popular algorithms such as TD, Q-Learning,
MAXQ (Dietterich, 2000), and Sarsa fit in this frame-
work. Although we do not provide a formal conver-
gence proof here, our technique is a form of the resid-
ual gradient method and therefore should have similar
convergence guarantees. We implemented the TD, Q-
Learning and MAXQ algorithms in different domains
and compared the performance of different linear func-
tion approximation methods. Our results suggest that
tracking the dynamics of the value function can vastly
improve convergence speed.

The paper is organized as follows. In Section 2, we re-
view background material on linear function approxi-
mation and linear system tracking. We discuss related
work in PLFA and present our general framework for
RL with PLFA in Section 3. In Section 4, we define
our dynamical model for RL with PLFA. We describe
our experiments and report results in Section 5, and
discuss conclusion and future work in Section 6.

2. Background

The problem of linear function approximation is a spe-
cial case of linear system tracking. In linear system
tracking, the goal is to generate an estimate ŵ(t) ∈ <n
of an unknown vector w(t) ∈ <n through observations
{y(1), . . . , y(t)}. The dynamics of the system are mod-
eled by the following equations:

w(t) = F (t− 1)w(t− 1) + µ(t− 1)
y(t) = xT (t)w(t) + ν(t)

where F (t) ∈ <n×n is the transition matrix, x(t) ∈ <n
is the input vector, µ(t) ∈ <n is the process noise,
and ν(t) ∈ < is the observation noise. It is commonly
assumed that the noise processes {µ(t)} and {ν(t)} are
uncorrelated, white, and zero mean with covariances
Σ(t) ∈ <n×n and σ2(t) ∈ < respectively.

2.1. Linear Function Approximation

In linear function approximation, w is assumed to
be stationary, that is ∀t : F (t) = I and Σ(t) = 0.
We begin with the least-mean-square (LMS) algo-
rithm (Widrow and Hoff, 1960), which generates ŵ
by minimizing

J(t) = E
[∥∥y(t)− xT (t)ŵ(t)

∥∥2
]

with respect to ŵ using gradient descent. Assuming
∂y(t)
∂ŵ = 0, the instantaneous error gradient is

∂J(t)
∂ŵ

= 2(
∂y(t)
∂ŵ

− ∂(xT (t)ŵ(t))
∂ŵ

)(y(t)− xT (t)ŵ(t))

= −2x(t)(y(t)− xT (t)ŵ(t)). (1)

This gives the LMS update equation

ŵ(t+ 1) = ŵ(t) + αx(t)(y(t)− xT (t)ŵ(t)) (2)

where α ∈ (0, 1] is the learning rate. While the LMS
algorithm is robust to uncertainties in the model, that
is ∃t : F (t) 6= I and Σ(t) 6= 0, it is often slow to
converge (Haykin, 2001).

The least squares (LS) method generates ŵ by solv-
ing the equation ŵ(t) = P (t)

[
1
t

∑t
s=1

x(s)y(s)
σ2(s)

]
where

P (t) =
[

1
t

∑t
s=1

x(s)xT (s)
σ2(s)

]−1

. A forgetting factor
λLS ∈ (0, 1] can be introduced to decay the importance
of older samples if there are uncertainties in the model.
The recursive LS (RLS) algorithm computes ŵ(t) and
P (t) recursively using the following equations:

ŵ−(t) = F (t− 1)ŵ+(t− 1) (3)
P−(t) = F (t− 1)P+(t− 1)FT (t− 1) + Σ(t− 1)(4)

k(t) = P−(t)x(t)(xT (t)P−(t)x(t) + σ2(t))−1 (5)
ŵ+(t) = ŵ−(t) + k(t)(y(t)− xT (t)ŵ−(t)) (6)
P+(t) = (I − k(t)xT (t))P−(t) (7)

where b−(t) and b+(t) are the a priori and a poste-
riori estimate of the variable b(t) respectively, k(t) is
the gain vector, and ∀t : F (t) = I and Σ(t) = 0.
Although the LS method converges faster than the
LMS algorithm, it is less robust to uncertainties in
the model (Haykin, 2001).

If x(t) and ν(t) are correlated, the estimate ŵ(t) gen-
erated using the LS method will be biased. The in-
strumental variables (IV) method (Soderstrom and
Stoica, 2002) is a generalization of the LS method
that overcomes this by using an (user-defined) IV
z(t) ∈ <n that is correlated with x(t) but uncorre-
lated with ν(t). The IV method generates ŵ(t) by
solving the equation ŵ(t) = P (t)

[
1
t

∑t
s=1

z(s)y(s)
σ2(s)

]
where P (t) =

[
1
t

∑t
s=1

z(s)xT (s)
σ2(s)

]−1

. As with the LS
method, a forgetting factor λIV ∈ (0, 1] can be intro-
duced to decay the importance of older samples if there
are uncertainties in the model. The update equations
for recursive computation of ŵ(t) and P (t) using the
IV method are similar to that of RLS differing only
in equation (5), which is replaced with the following
equation:

k(t) = P−(t)z(t)(xT (t)P−(t)z(t) + σ2(t))−1. (8)
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Due to its close relation with the RLS algorithm, we
will refer to this as the RLS-IV algorithm.

2.2. Linear System Tracking

For the general case where w is nonstationary, that is
∃t : F (t) 6= I or Σ(t) 6= 0, the Kalman filter is the
optimal linear mean-square estimator (Simon, 2006).
Its update equations are those of the RLS algorithm,
equations (3) to (7), except that no conditions are
placed on F (t) or Σ(t).

Other linear system tracking algorithms include the
H∞ filter and the particle filter. See Simon’s (2006)
book for an extended discussion of these algorithms.

3. Reinforcement Learning with Piece-
wise Linear Function Approximation

An RL problem is commonly formalized as an MDP.
An MDP is a four-tuple (S,A, T at

st,st+1
, Rat

st,st+1
) where

S is the set of states, A is the set of actions, T at
st,st+1

is the state transition probability of reaching st+1 ∈ S
after executing at ∈ A in st ∈ S, and rt = Rat

st,st+1
is

the reward received for reaching st+1 ∈ S after exe-
cuting at ∈ A in st ∈ S.

The goal of RL is to find some policy π : S → A that
maximizes E [

∑∞
t=0 γ

trt], where γ ∈ (0, 1] is the dis-
count factor. This is commonly achieved indirectly
by learning either the state value function V (s) =
E [

∑∞
t=0 γ

trt | s0 = s] or the state action value func-
tion Q(s, a) = E [

∑∞
t=0 γ

trt | s0 = s, a0 = a]. Defining
x 7→ y as the updating of x towards y and using the
substitutions in Table 1, value function learning al-
gorithms such as TD, Sarsa, and Q-Learning can be
generalized as

f(ωt) 7→ rt + γf(ω′t) (9)

where f : Ω → < is the target value function, ωt ∈ Ω
is the update point, and ω′t ∈ Ω is the target point. If
the target value function is V then Ω = S, and if the
target function is Q then Ω = S ×A.

Table 1. Relationships between value function learning al-
gorithms and the generalized update equation.

Algorithm f ωt ω′
t

TD V st st+1

Sarsa Q (st, at) (st+1, at+1)

Q-Learning Q (st, at)
`
st+1,

argmax
a′∈A Q(st+1, a

′)
´

With equation (9), our general framework for RL with
PLFA is constructed as follows. We begin by par-
titioning Ω into m partitions Ω1, . . .Ωm such that
Ω =

⋃m
i=1 Ωi and ∀i, j : i 6= j → Ωi ∩Ωj = ∅. Next we

define a function ψ : Ω → {1, . . . ,m} that maps ω ∈ Ω
to the index of the partition to which it belongs. We
also define for each partition Ωi a parameter vector
ŵi ∈ <n, and a function φi : Ωi → <n that maps
ω ∈ Ωi to a feature vector. Then we approximate f
as a linear function of the feature vector and the pa-
rameter vector, that is f(ω) ≈ xTω ŵω where we write
ŵω = ŵψ(ω) and xω = φψ(ω)(ω) for brevity. Hence in
this framework, the state value function V (s) ≈ xTs ŵs,
and the state action value function Q(s, a) ≈ xTs,aŵs,a.

3.1. Previous Work in RL with PLFA

Using the framework for RL with PLFA, equation (9)
can now be written as

xTωt
ŵωt

7→ rt + γxTω′
t
ŵω′

t
.

This update rule can be derived by minimizing

Jd(t) = E
[∥∥∥(rt + γxTω′

t
ŵω′

t
(t))− xTωt

ŵωt(t)
∥∥∥2

]
(10)

using the LMS algorithm (Section 2.1). Substituting
ŵ(t) = ŵωt

(t), x(t) = xωt
, and y(t) = rt+γxTω′

t
ŵω′

t
(t)

into equation (2), we get the standard update equation
(Perkins and Precup, 2002; Sutton and Barto, 1998;
Tsitsiklis and Van Roy, 1997) for RL with PLFA,

ŵωt(t+ 1) = ŵωt(t) + αxωt(rt+

γxTω′
t
ŵω′

t
(t)− xTωt

ŵωt(t)). (11)

Note that if m = |Ω| and ∀i : φi(ω) = 1, we get the
standard update equation for tabular form RL (Sutton
and Barto, 1998). As with LMS, equation (11) is often
slow to converge; this can be improved by using the
same set of substitutions in the LS method (Choi and
Van Roy, 2006).

While the convergence of equation (11) in the tabular
case, that ism = |Ω|, is well known, convergence in the
general case, that is m 6= |Ω|, has been in doubt since
Baird’s (1995) work. The reason is the assumption
∂y(t)
∂ŵ = 0 made in the derivation of LMS (equation (1))

is no longer true if ψ(ωt) = ψ(ω′t) = i since

∂y(t)
∂ŵ

=
∂(rt + γxTω′

t
ŵω′

t
(t))

∂ŵωt

= γxω′
t

Hence if ψ(ωt) = ψ(ω′t) = i, the correct update equa-
tion should be:

ŵi(t+ 1) = ŵi(t) + α(xωt − γxω′
t
)(rt+

γxTω′
t
ŵi(t)− xTωt

ŵi(t)). (12)
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As noted by Baird (1995), equation (12) converges
slower than equation (11) in some circumstances. To
overcome this, he proposed a method of combining the
two update equations parametrically.

We can also arrive at equation (12) by minimizing the
equivalent of equation (10),

Jrg(t) = E
[∥∥rt − (xωt − γxω′

t
)T ŵi(t)

∥∥2
]

using LMS with substitutions ŵ(t) = ŵi(t), x(t) =
(xωt − γxω′

t
), and y(t) = rt. Using these substitu-

tions, Bradtke and Barto (1996) and Lagoudakis and
Parr (2003) used the IV method, with xωt

as the IV, to
improve the speed of convergence for the case where
m = 1. Boyan (2002) and Xu, He, and Hu (2002)
extended their work by using

∑t
i=0 λ

t−i
RLxωi

as the IV
where λRL ∈ [0, 1] is the eligibility factor. However,
these algorithms can be computationally inefficient if
for any ω ∈ Ω, only a small number of entries in xω
are non-zero. Geramifard, Bowling, and Sutton (2006)
proposed an approximation algorithm that improves
the computational efficiency in this case.

4. Dynamical Model for RL with PLFA

From the linear system tracking perspective (Sec-
tion 2), the goal of RL with PLFA is to compute for
each partition i, i = 1, . . . ,m, an estimate ŵi ∈ <n
of the unknown vector wi ∈ <n through observa-
tions {yi(1) . . . yi(t)}. The dynamics of the systems
are modeled by the following equations:

wi(t) = Fi(t− 1)wi(t− 1) + µi(t− 1) (13)
yi(t) = xTi (t)wi(t) + νi(t) (14)

where Fi(t) ∈ <n×n is the transition matrix, xi(t) ∈
<n is the input vector, µi(t) ∈ <n is the process noise,
and νi(t) ∈ < is the observation noise. It will be as-
sumed that the noise processes {µi(t)} and {νi(t)} are
uncorrelated, white, and zero mean with covariances
Σi(t) ∈ <n×n and σ2

i (t) ∈ < respectively.

In RL with PLFA, νi(t) models (i) the approxima-
tion error, that is the difference between the function
and the linear model used, and (ii) the uncertainty in
the value as a result of the state transition probabil-
ity function T at

st,st+1
. Because of these νi(t) might be

correlated with xi(t).

When the update point ωt is not in partition i, that
is ψ(ωt) 6= i, there are no inputs to and observations
from system i. This is modeled by setting xi(t) and
yi(t) to zero, that is xi(t) = 0 and yi(t) = 0, whenever
ψ(ωt) 6= i. This will also force νi(t) to be 0.

An interesting issue arises when ψ(ωt) = ψ(ω′t) = i,
xωt − γxω′

t
= 0, and rt 6= 0. From equation (14) and

the substitutions used in the previous section where
ψ(ωt) = ψ(ω′t) = i, that is xi(t) = 0 and yi(t) = rt,
we get rt = νi(t). But this situation is also possible
in cases where there are no approximation errors and
the transition is deterministic, that is νi(t) = 0. This
is inconsistent as rt 6= 0. An example of this situation
occurring is a self-transition as a result of a collision
with an obstacle in a navigation problem when γ = 1.
To avoid this, we will learn the value of ωt instead
of the reward of the transition from ωt to ω′t, that is
we will revert to the substitutions used when ψ(ωt) 6=
ψ(ω′t) if ψ(ωt) = ψ(ω′t) = i, xωt−γxω′

t
= 0, and rt 6= 0.

With these and the substitutions used in the preceding
section, xi(t), yi(t), and νi(t) are defined by equations
(15) to (17) respectively.

Recall that for the LMS, LS and IV algorithms, wi is
assumed to be stationary, that is ∀t : Fi(t) = I and
Σi(t) = 0. However it is known (Sutton and Barto,
1998) that this assumption can be violated by either
(i) the use of bootstrapping methods, (ii) a change
in policy, or (iii) a change in the MDP. It is triv-
ial to construct an example with deterministic tran-
sition and no approximation error, that is νi(t) = 0,
for each case where ∃j, k : ωj = ωk, i = ψ(ωj), and
yi(j) 6= yi(k). We can conclude in such an example
that wi(j) 6= wi(k), hence ∃l between j and k such
that Fi(l) 6= I or Σi(l) 6= 0.

While LMS is robust to uncertainties in Fi(t) and
Σi(t), it is slow to converge. The LS and IV meth-
ods on the other hand converge faster than LMS but
are less robust in tracking the changes in wi due to
a mismatch in the model. We will attempt to reduce
this mismatch through the use of the Kalman filter.

Our first task in applying the Kalman filter is to find
values for Fi(t) and Σi(t). It is difficult or impossi-
ble to determine the true values of Fi(t) and Σi(t),
since, among other things, knowledge of (i) the form
of the approximated value function, (ii) the trajectory
of ωt, (iii) the policy used, and (iv) the underlying
MDP will be required. As there is no reason to believe
that wi will travel in any particular direction, we will
model the transition of wi as a random walk, that is
∀t : Fi(t) = I, where the value of Σi(t) is domain-
dependent and nonstationary in general.

Finally, we note that from equation (13), the value of
wi(t) can change even though the update point ωt is
not in partition i, as it is dependent only on the val-
ues of Fi(t) and µi(t). To reduce the computation ef-
fort required, we let µi(t) be defined by equation (18)
where Σi(t) is now the covariance of the transition
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Table 2. Dynamical Model for RL with PLFA.

wi(t) = wi(t− 1) + µi(t− 1)

xi(t) =

8>><>>:
0 if i 6= ψ(ωt)
xωt − γxω′

t
if i = ψ(ωt) = ψ(ω′

t) and
(xωt − γxω′

t
6= 0 or rt = 0)

xωt otherwise

(15)

yi(t) = xT
i (t)wi(t) + νi(t)

=

8>><>>:
0 if i 6= ψ(ωt)
rt if i = ψ(ωt) = ψ(ω′

t) and
(xωt − γxω′

t
6= 0 or rt = 0)

rt + γxT
ω′

t
ŵω′

t
(t) otherwise

(16)

νi(t) =


0 if i 6= ψ(ωt)
X ∼ N(0, σ2

i (t)) otherwise
(17)

µi(t) =


0 if i 6= ψ(ωt)
X ∼ N(0,Σi(t)) otherwise

(18)

from wi(t) to wi(t′), and t′ is the next time of visit to
partition i, that is t′ = argminj>i(i = ψ(ωj)). With
this, the Kalman filter (equations (3) to (7)) can now
be used to incrementally track the m systems mod-
eled by the equations in Table 2 and update ŵi(t) for
partition i only when i = ψ(ωt).

5. Experimental Results

In this section, we present experimental results in three
domains: the hop world domain, the mountain car do-
main and the continuous grid world domain. Using the
model described in the previous section, we compare
and analyze the performance of four linear approxi-
mation algorithms in these domains. Because we are
interested specifically in problems that would require a
prohibitively large feature vector, we chose to consider
only piecewise linear value function representations as
opposed to the original linear representations used in
the competing algorithms.

The first linear approximation algorithm we consider
is the LMS algorithm. To avoid further slowdown in
the learning speed, we ignore the case where ψ(ωt) =
ψ(ω′t) and only use equation (11). As with Baird
(1995), we will refer to this as the direct algorithm.
The learning rate α for this algorithm will be 0.1. This
value and the values for other parameters in the exper-
iments are commonly used values for their respective
algorithms.

The second is the RLS-IV algorithm. As with Bradtke
and Barto (1996), we will use xωt as the IV, and refer
to this as the LSTD algorithm. We will also use λIV =
0.995 as the forgetting factor.

The third is the RLS algorithm. A forgetting factor
λLS = 0.995 will also be used for this algorithm.

The last is the Kalman filter. Although the noise
covariances σ2

i (t) = 1 and Σi(t) = βI are domain-
dependent and nonstationary in general, we will make
a simplifying assumption in our experiments that they
are constant, that is we will set ∀t : σ2

i (t) = 1 and
Σi(t) = βI. Unless otherwise stated, β = 0.05. As
with Haykin (2001), we will refer to this as the ex-
tended RLS algorithm (ERLS).

In the experiments, the discount factor γ is set to 1.
The ε-greedy action selection strategy, where ε = 0.1,
is used when learning, and the greedy action selection
policy will be used otherwise.

All results presented are the average of 100 trials. The
results from the first experiment were collected at ev-
ery episode while learning. The results from the other
two experiments were collected at every sixth episode
with learning disabled.

5.1. Boyan’s Hop World

The first experiment is Boyan’s (2002) hop world do-
main. This is a 13-state Markov chain where state
s0 is an absorbing state, state s1 transits to state s0

with probability 1 and a reward of -2, and state si,
2 ≤ i ≤ 12, transits to either si−1 or si−2, each with a
probability of 0.5 and a reward of -3.

In this experiment, the TD algorithm will be used to
learn the state value function V . With Ω = S and
m = 1, the feature vectors for states s12, s8, s4, s0 are
[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1] respec-
tively. The feature vectors for other states are ob-
tained by linearly interpolating between these.

To simulate a change in the MDP, and hence in w,
the sign of the rewards will be inverted from the 150th

episode onwards. Hence the true value of state si is
−2i before the inversion and 2i after that.

Figure 1 shows the root-mean-square error (RMSE)
between the learned values of the states and their true
values for all four algorithms. As seen in the figure, the
direct and LSTD algorithms converge to values close
to the true values of the states, while the RLS and
ERLS algorithms converge to a biased result. This is
to be expected since νi(t) is correlated with xi(t) due
to the uncertainty in the values as a result of the state
transition probability function T at

st,st+1
.
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Figure 1. Root-mean-square error (RMSE) between the
learned values of the states and their true values in Boyan’s
Hop World domain.

Also seen in Figure 1, the LSTD algorithm converges
much faster than the direct algorithm initially, but af-
ter the switch in the sign of the reward in the 150th

episode, the LSTD algorithm converges slower than
the direct algorithm. Its performance after the inver-
sion is comparable to that of the RLS algorithm. On
the other hand, both instances of the ERLS algorithm,
where β = 0.05 for one and β = 0.5 for the other, con-
verges much faster than the direct algorithm before
and after the inversion. This is due to the incorrect
assumption that the unknown vector w is stationary,
made by both the IV and LS methods.

As a larger β value results in faster convergence speed,
β can be viewed as the equivalent of the learning rate
α in LMS algorithms.

5.2. Mountain Car

The second experiment is Sutton and Barto’s (1998)
mountain car domain. In this domain, the state space
S = {(u, u̇) | u ∈ (−1.2, 0.5), u̇ ∈ (−0.7, 0.7)}, the
action space A = {−1, 0, 1}, and ∀t the reward rt =
−1. The next state (ut+1, u̇t+1) ∈ S after executing
at ∈ A in (ut, u̇t) ∈ S is determined by the following
equations:

ut+1 = bound[ut + ut+1]
u̇t+1 = bound[u̇t + 0.001at − 0.0025 cos(3ut)]

where the bound operation enforces the constraints on
S. If the left bound of u is reached, u̇ will be set to zero.
Each episode begins in (−π

6 , 0) ∈ S and terminates
after 2500 steps. The goal in this domain is to reach
the right bound of u, at which time the episode will
also be terminated.

In this experiment, the Q-Learning algorithm is used
to learn the state action value function, hence Ω =
S×A. To represent (s, a) ∈ S×A as a feature vector,
S is first divided up by a 16× 16 grid. Then for each
block in the grid, a partition is created for each action,
thus giving m = 16×16×3 partitions. Letting bL and
bS be, respectively, the left bound and the size of the
dimension for variable b in the block s = (u, u̇) ∈ S is
in, the feature vector xs,a = (1, u−u

L

uS , u̇−u̇
L

u̇S ).

Figure 2 shows the number of steps taken to reach the
goal for all four algorithms. As expected, the ERLS
algorithm converges faster than the direct algorithm,
which in turn converges faster than the RLS and LSTD
algorithms. Curiously though, the RLS algorithm per-
forms significantly better than the LSTD algorithm.
One possible reason for this could be that the IV be-
ing used is inappropriate.
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Figure 2. Number of steps taken to reach the goal in the
mountain car domain.

As with the previous experiment, the poor perfor-
mance by the RLS and LSTD algorithms is due to the
stationary assumption made by both the IV and LS
methods. Unlike the previous experiment, the result-
ing slowdown in learning speed is further compounded
by the fact that a shift in wi of partition i might result
in a shift in wj of any partition j where ∃t : ωt ∈ Ωj
and ω′t ∈ Ωi. While it is possible that the RLS and
LSTD algorithms could have a better performance if
a similar single partition representation is used, that
is n = 16 × 16 × 3 × 3 and m = 1, the computational
cost of such representation would be prohibitive.

From Figure 2, one can also see that results for the
ERLS algorithm have a noisy tail. This issue could be
resolved with an appropriate annealing schedule for β.
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5.3. Continuous Grid World

The last experiment is a continuous version of the
grid world domain. In this domain, the state space
S = {(u, v, θ) | u, v ∈ (0, 2), θ ∈ [0◦, 360◦)}, the action
space A = {(−1, 0), (1, 0), (0,−1), (0, 1)}, and ∀t the
reward rt = −1. The next state (ut+1, vt+1, θt+1) ∈ S
after executing (bt, ct) ∈ A in (ut, vt, θt) ∈ S is deter-
mined by the following equations:

ut+1 = bound[ut + 0.05bt cos(θt)]
vt+1 = bound[vt + 0.05bt sin(θt)]
θt+1 = (θt + 5ct) mod 360.

Each episode begins in (0, 0, 0) ∈ S and terminates
either after 5000 steps or when the goal is reached.
The goal in this domain is to reach a region bounded
by 1.6 < u < 1.7 and 1.4 < v < 1.5.

In this experiment, we use Dietterich’s (2000) MAXQ
algorithm to learn the value function. The relation-
ship of MAXQ’s update equation to the generalized
update equation (equation (9)) is similar to that of
the other value function learning algorithms. A two-
level task hierarchy (Figure 3) with four navigation
subtasks and a root subtask is used. A navigation sub-
task navi, i = 0, . . . , 3, has Snavi

= {θ | θ ∈ [0◦, 360◦)}
and A as its state space and action space respec-
tively, and terminates if (0, 1) ∈ A is executed in
θ ∈ Snavi

and i × 90◦ − 2.5 < θ < i × 90◦ + 2.5. The
root subtask has Sroot = {(u, v) | u, v ∈ (0, 2)} and
Aroot = {navi | i = 0, . . . , 3} as its state space and ac-
tion space respectively, and terminates whenever the
goal region of the domain is reached.

Figure 3. Task hierarchy for continuous grid world domain.

The feature vector used in this experiment is similar
to that used in the previous one. A 16 × 16 grid is
used to partition Sroot, and each Snavi

is divided into
16 equal-length nonintersecting segments. Then for
each block in the grid of each subtask, a partition
is created for each action in that subtask, thus giv-
ing m = 16 × 16 × 4 + 16 × 4 × 4 partitions. Using
the definitions in the previous experiment, the fea-
ture vector xroot,s,a for (s, a) ∈ Sroot × Aroot in the

root subtask is (1, u−u
L

uS , v−v
L

vS ), and the feature vec-
tor xnavi,s,a for (s, a) ∈ Snavi × A in the navigation
subtask is (1, θ−θ

L

θS ).

Figure 4 shows the number of steps taken to reach the
goal for the direct and ERLS algorithms. The results
of the RLS and LSTD algorithms are omitted because
both fail to reach the goal most of the time. As seen in
the figure, the ERLS algorithm outperforms the direct
algorithm once again.
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Figure 4. Number of steps taken to reach the goal in the
continuous grid world domain.

6. Conclusion and Future Work

The advantages of piecewise linear over linear func-
tion approximation lie in problems where a sparse
high-dimensional feature vector is used, since compu-
tational requirements are proportional to the number
of features in a partition. In PLFA, as we have noted,
a change in the value of an arbitrary partition induced
by (i) the use of bootstrapping methods, (ii) a change
in policy, or (iii) a change in the MDP, can result
in a change in the value of a second arbitrary par-
tition. Our empirical results support our claim that
modeling the value function dynamics as a random-
walk and then tracking the value function using the
Kalman filter can improve convergence speed signifi-
cantly. Speedup is more evident when more partitions
are used, as seen in the continuous grid world experi-
ment.

One drawback of our method reflected in the exper-
imental results is that our approximation is biased.
While the IV method can remove this bias, the use of
an inappropriate IV, as seen in our results, can sub-
stantially impair its performance. The search for an
appropriate IV is thus an issue for further research.
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Another important idea to explore is variable resolu-
tion representation (Munos and Moore, 2002; Potts
and Sammut, 2005). Given an initial partitioning, we
can refine one partition without recomputing the value
estimates of other partitions from scratch. We could
then eliminate dependence on a good initial partition-
ing and increase the applicability of our method in
complex domains.

With the link between RL with PLFA and linear sys-
tem tracking established, the extensive linear system
tracking literature can be further exploited. We ex-
pect that other ideas and algorithms from this body
of work can be fruitfully adapted for use in RL with
PLFA.
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