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Abstract

Distance metric learning and nonlinear di-
mensionality reduction are two interesting
and active topics in recent years. However,
the connection between them is not thor-
oughly studied yet. In this paper, a trans-
ductive framework of distance metric learn-
ing is proposed and its close connection with
many nonlinear spectral dimensionality re-
duction methods is elaborated. Furthermore,
we prove a representer theorem for our frame-
work, linking it with function estimation in
an RKHS, and making it possible for general-
ization to unseen test samples. In our frame-
work, it suffices to solve a sparse eigenvalue
problem, thus datasets with 10° samples can
be handled. Finally, experiment results on
synthetic data, several UCI databases and
the MNIST handwritten digit database are
shown.

1. Introduction

The problem of distance metric learning has gained
considerable interest in recent years (Xing et al., 2003;
Zhang, 2003; Kwok & Tsang, 2003; Wu et al., 2005;
Weinberger et al., 2006; Zhang et al., 2006; Hoi et al.,
2006; Bach & Jordan, 2006; Lebanon, 2006). Distance
metric learning seeks to improve an apriori metric (of-
ten the Euclidean metric) by adapting it to fit a certain
training set. In this way, it is possible to discriminate
relevant and irrelevant features and the performance of
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distance-based methods, such as k-nearest-neighbors
(kNN) or spectral clustering, can be improved.

The problem of blending apriori knowledge and knowl-
edge from training data has been haunting pattern
recognition for many years and the paradigm of dis-
tance metric learning provides a potential way to solve
it. In this paradigm, a new metric is learned from
the prior metric and standard methods can be applied
easily on the learned metric. This learned metric may
again be used as a prior metric and the learning pro-
cess would continue endlessly. This prospect urges us
to study this problem in depth.

Many current distance metric learning methods seek to
learn a Mahalanobis metric in the input space (Xing
et al., 2003) or the feature space (Kwok & Tsang, 2003;
Wu et al., 2005; Hoi et al., 2006). However, to get
a Mahalanobis metric is equivalent to linearly trans-
form the input data and take the Euclidean metric
in the transformed space. This draws our interest in
comparing them with dimensionality reduction meth-
ods. Dimensionality reduction methods do a linear or
nonlinear transformation on the input to get a low-
dimensional representation of the data. A distance
metric in the transformed space can readily be seen
as a metric learned by the dimensionality reduction
algorithm. In fact, one dimensionality reduction algo-
rithm, Laplacian Eigenmaps (Belkin & Niyogi, 2003),
solved an optimization problem with a goal very sim-
ilar to distance metric learning.

However, many dimensionality reduction methods
were unsupervised, which means they did not take the
label information of the training data into account.
Can distance metric learning be seen as a supervised
or semi-supervised improvement of these unsupervised
methods? This is what we try to answer in our work.
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In this paper, we propose a transductive framework of
distance metric learning. Under certain assumptions,
it can be directly connected with many spectral di-
mensionality reduction methods, such as kernel PCA,
MDS, ISOMAP (Tenenbaum et al., 2000) and Lapla-
cian Eigenmaps. Our method only need to solve a
sparse eigenvalue problem, thus it scales much better
than many current distance metric learning and semi-
supervised learning methods.

Furthermore, we proved a representer theorem for our
framework, thus connecting it to function estimation
in a reproducing kernel Hilbert space (RKHS). An in-
teresting point is that the loss function in our repre-
senter theorem is a squared loss penalizing pairwise
differences, which is different from almost all previous
regularization methods.

We will present our framework and show these con-
nections in Section 2. In Section 3 we will discuss the
design of cost and penalty functions in the framework.
Related works will be summarized in Section 4, and
experiments will be shown in Section 5. Discussions
and concluding remarks will be given in Section 6.

2. A Transductive Framework of
Distance Metric Learning

We first introduce some notation conventions. Matri-
ces and functions are represented by upper case letters,
column vectors by lower case letters. The vector of all
ones, the identity matrix, and the matrix of all ones
are denoted by e, I and FE respectively. A1 denotes
the Moore-Penrose pseudo-inverse of a matrix A. And
diag(x) is a diagonal matrix whose diagonal is x.

2.1. The Framework

Given n labeled samples {(z1,¥1),- .., (Zn,¥yn)} and m
unlabeled samples z,41,...,Zn+m, we can formulate
the transductive distance metric learning problem as
an optimization problem:

1 n
in — D, zi,y;) + \(D), 1
i - 32 CDaiw) + XUD) (1)

where C(D,x;,y;) is an arbitrary cost function con-
cerning D and labeled item (z;,y;), Q(-) is a penalty
function based on apriori knowledge of the metric,
and A is a parameter controlling the strength of the
penalty. Intuitively, we try to balance prior knowl-
edge and knowledge from item labels, by which wrong
prior beliefs can be corrected by reliable observations.

Since there are only n + m samples on which we can
measure the cost and penalty functions, the target dis-

tance metric D can be reduced to an (n+m) x (n+m)
distance matrix with entries d;; = d*(x;,z;). We de-
note this matrix as D too.

In this work we use a special squared cost function
by letting C(D,x;,y;) and Q(D) linear with d?. Set-
ting C(D,z,4i) = 351 2pey Cijudje and QD) =
Dy 2?21 pijdi;, we can collect coefficients ¢; ;5 and
pij into symmetric matrices C; and P, and rewrite the
optimization problem (1) in matrix form:

S R
min Tr(~ > CiD+APD). (2)

i=1

The details of the cost and penalty functions used in
this paper are deferred to section 3 since they do not
have much to do with the framework.

To solve the problem efficiently, we have to impose
some structures on D. The assumption in this paper is
the Euclidean assumption, which says that the matrix
D must be Euclidean, defined as follows:

Definition 1 (Gower & Legendre, 1986; Zhang,
2003) An n x n matriz D is Euclidean if there are
n points x;(i = 1,--- ,n) which can be embedded in a
Euclidean space where the squared Euclidean distance
between x; and x; is d;;.

The distance matrix of any finite set of points in
a Euclidean space is Euclidean. Recall that every
Euclidean distance metric can be induced by an in-
ner product. That is, d?(x,y) = (z — y,x —y) =
(x,2)+(y,y)—2(z, y) for some real inner product (-, -).
Similarly, every Euclidean distance matrix can be in-
duced by a Gram matrix G, with ¢;; = (z;,z;), as the
following proposition shows:

Proposition 2 (Gower & Legendre, 1986; Zhang,
2003) A matriz D is Fuclidean if and only if its as-
sociated Gram matriz G = —5(I — LE)D(I — LE) is
positive semi-definite.

The proof of this proposition involves only simple al-
gebra to verify that D is indeed the distance matrix
induced by G. Namely, d;; = (g + ¢;;) — 29;;. In this
way, learning an Euclidean distance metric is linked
to the well-studied problem of learning a kernel from
data (e.g., (Lanckriet et al., 2004)). However, the cost
function and penalty terms are different from previous
works that tried to learn an optimal kernel for SVM.

By Proposition 2, we can turn (2) into an optimiza-
tion problem on the Gram matrix G. That is to
say, we need to find matrices C; and P’ that satis-
fies Tr(C!G) = Tr(C; D) and Tr(P'G) = Tr(PD). The
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rule of constructing C/ and P’ is given by the following
proposition:

Proposition 3 For symmetric matric A, Euclidean
matriz D and its corresponding Gram matriz G, we
have Tr(AD) = Tr(A'G) if A’ = 2(diag(Ae) — A).

Proof It is easy to see that A’E = 0 since A’ has zero
row sums. Therefore

Tr(f%A'(I - %E)D(I - %E))

= Tr(f%(l - %E)A/(I - %E)D)

= Tr((A — diag(Ae))D) = Tr(AD).

r(A'G) =

The last equation follows from the fact that the diag-
onal of D is zero since it corresponds to the distance
from an item to itself. O

After constructing C} and P’, we can rewrite (2) into
an optimization problem on the Gram matrix G. Since
G is positive semi-definite, it has an orthogonal decom-
position G = X X7, with the additional normalization
constraint Tr(G) = Tr(XTX) = 1, we get the follow-
ing eigenvalue problem:

min  Tr(X7T(S7, Cf +AP')X)

s.t. XTEX =0
TH(XTX) = 1. (3)

The optimal solution of X is then given by the eigen-
vectors corresponding to the smallest eigenvalues of
o, Cl+ AP’ In fact, the i-th row of X corresponds
to the projection of x; into a low-dimensional Eu-
clidean space and the learned distance metric is simply
the Euclidean metric in this transformed space. The
method is thus linked with spectral dimensionality re-
duction methods. This connection will be investigated
further in the following subsections.

We summarize our framework in Algorithm 1. Dif-
ferent from many kernel methods, the smallest eigen-
values in our framework can be positive or negative
without affecting the solution. In this case the correct
implementation is to discard the all-one eigenvector
corresponding to eigenvalue 0 and take other eigen-
vectors.

2.2. Relations with other Spectral Methods

The link of our framework to Laplacian Eigenmaps is
the most obvious one. One only need to set C} = 0 and
P’ = L, the graph Laplacian, to get exactly the Lapla-
cian Eigenmap method. Since Laplacian Eigenmaps
can be considered as Kernel PCA ((Ham et al., 2004;

Algorithm 1 The Framework

1: Design the cost matrices C; and penalty matrix P.

2: Construct C/ and P’ by Proposition 3.

3: Computer the eigenvectors of Y | C/ + A\P" and
take d eigenvectors corresponding to the smallest
eigenvalues of the matrix, excluding the all-one
eigenvector corresponding to eigenvalue 0. Denote
the matrix with each column an eigenvector by X.

4: The i-th row of X are the coordinates in a d-
dimensional Euclidean space of the i-th item.

Bengio et al., 2004)) with L™ as the kernel, the rela-
tionship of our framework and Kernel PCA becomes
clear: set C/ =0, P' = Kt and we get Kernel PCA on
centralized kernel K. In a similar way, other spectral
dimensionality reduction methods such as ISOMAP
and LLE can be brought into our framework.

Note that the penalty matrix P’ can often be con-
siderably sparser than the kernel matrix. Hence it is
much easier to compute eigenvectors of it. By using
Krylov space methods, our framework is able to han-
dle datasets with 10° samples, thus making it much
more scalable than almost all semi-supervised learn-
ing methods.

2.3. A Representer Theorem

Suppose that H and H are RKHSs with inner products
(.1 and () = ()% + S()TMS(-), where S :
H — R™™ is the evaluation map on the labeled and
unlabeled dataa S(f) = (f(xl)a f(x2)7 RS f(xn+m))7
and M a positive semi-definite penalty matrix. Let
k(-,-) be the representer of H and K be the (n+m) x
(n 4+ m) Gram matrix, k;; = k(x;, x;).

To optimize a cost function based on pairwise distances
for one-dimensional embeddings, we can have the fol-
lowing regularization problem:

?éiHI} Dot wig (f (@) — £(25))” + AlFIE

st S()TS(f) =1 (4)

where w;; are weights generated from label informa-
tion controlling the cost on z; and ;. The next theo-
rem is the main theoretical result of this paper.

Theorem 4 Suppose that the Gram matriz K of rank
n+m—1 satisfies Ke = 0. Let the penalty matriz and
cost matrices in (3) satisfy P’ = K™+ (I — 2 E)M(I —
SE) and 31U, Cp = Y0 wi(si — s5)(si — s5)7
where s; 1s a vector with 1 in the i-th position and
0 in other positions. If the one-dimensional optimal
solution of (3) is x* and the optimal solution of (4) is
f*, then we have z* = S(f*).
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The proof of the theorem is given in the appendix.

This theorem relates our framework with function es-
timation in an RKHS. From this theorem, it is possible
to give a natural out-of-sample extension of our algo-
rithm by RKHS techniques (See Lemma 5 and Lemma
6 in the Appendix). Note that the case of multi-
dimensional embeddings can follow from the represen-
ter theorem for vector-valued functions in (Micchelli
& Pontil, 2005).

A significant difference from previous regularization
methods is that we do not try to specify the loss of
f(x) to some classification or regularization goal y.
Instead, we penalize pairwise differences. In multiclass
classification, one cannot reasonably specify a y € R,
therefore the regularization problem (4) seems more
sensible than previous approaches (e.g., (Zhou et al.,
2004)).

3. Design of the Cost and Penalty
Functions

3.1. The Cost Function

Intuitively, for distance-based methods, distances be-
tween items of the same class should be smaller than
distances between items of different classes. This also
resembles the idea in discriminant analysis.

Consider labeled data {(x;,y;)}i=1,...n. Following the
intuition, we define a cost function C between two dis-
tances d;; and d;j, as

. s oand v
Clag = { 151 ML
Note that C(d;;,d;x) can be negative. This problem
can be resolved by specifying a minimum and a maxi-
mum value of each d;; and adding corresponding con-
stants to the cost function. However we have not done
this to simplify notations.

To preserve intra-class structures, we only evaluate the
cost function between neighboring items. For each
item (x;,y;), we take k intra-class neighbors and k
inter-class neighbors of it. By averaging (5) over these
neighbors, we get the cost function

1
doody—p D da,

1

C(Dvx’myz) = 7
k

:CJG./\/}@'"(QL,L) ijN,:“'t(;Ei)

where N/™(x;) is the set of k intra-class neighbors of
x; and N2" (z;) is the set of k inter-class neighbors of
X;.

To simplify notations, we put the matrix ) ., C; into

a single symmetric matrix C' with entries

B Lla; e Nin(ay)
Cij = { —%,xjj c ./\/th(xi). (6)

It can be verified that Tr(CD) = Y, C(D, x;) and
the cost matrix also satisfies the corresponding condi-
tions in Theorem 4.

If there are very few labeled items in the training set,
one may not be able to find k intra-class or inter-class
neighbors for some z; and k. In this case, (5) is av-
eraged only on the available neighbors and the entries
in the cost matrix C' should be changed respectively.

3.2. The Penalty Function

From Theorem 4, we know that the penalty matrix
should adopt the form P = K+ +(I-1E)M(I-1E),
for some positive semi-definite matrix M and Gram
matrix K. The simplest choice would be setting K+ =
M = L, the Laplacian matrix. However, that would
make it hard for the algorithm to generalize to new test
points. Alternatively, one can use a general kernel such
as the Gaussian kernel to compute K and its pseudo-
inverse K+. However for datasets with 10* samples
or more, the computation of K would be prohibitive
on current PC due to memory constraints. We face a
dilemma here: either to get the ability to generalize to
new test points, or to get the ability to handle large
scale datasets. We choose the latter here and used
P = L as the penalty matrix!.

Using L as the penalty matrix has an intuitive mean-
ing, as pointed out by Belkin and Niyogi (2003). That
is to punish large distances between points that should
be nearby due to apriori knowledge. This procedure
can be seen as some sort of geometric structure we
want to preserve. Thus the framework can be seen
intuitively as the trade-off between a prior geometric
structure and a structure which comes from the train-
ing labels.

4. Related Works

The idea of balancing prior metric and label infor-
mation is not new in distance metric learning(Zhang,
2003; Kwok & Tsang, 2003; Wu et al., 2005; Wein-
berger et al., 2006). The criterion used in our frame-
work is very similar to those in (Zhang, 2003), (Kwok
& Tsang, 2003) and (Wu et al., 2005). However their
algorithms were slower and more sophiscated. Zhang

(2003) used a metric MDS, while Kwok and Tsang

If one want to use a general kernel, then the equivalent
eigenvalue problem (7) in the Appendix might be a better
choice since it involves fewer computation.
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(2003) and Wu et al. (2005) used quadratic program-
ming. Weinberger et al. (2006) proposed a hinge loss
function and used semi-definite programming. How-
ever, these methods were all inductive methods that
did not take advantage of unlabeled data.

Zhang et al. (2006) proposed two algorithms, GWPC
and KTDA, that took the transductive setting. In
GWPC, a Wishart process prior was assumed and pa-
rameters were estimated by an EM algorithm. The
KTDA algorithm used similar assumptions and EM
algorithm but had a different goal. Our criterion is
similar to the one used in KTDA, but the assumptions
and optimization method are different.

Besides that, Hoi et al. (2006) proposed Discrimina-
tive Component Analysis to learn a Mahalanobis ma-
trix in the feature space and solved a generalized eigen-
value problem similar with kernel discriminant analy-
sis. Our approach is different from theirs since we only
solve a regular eigenvalue problem.

Our framework can also be seen as learning an opti-
mal kernel from label information, which has been a
popular topic in recent years. However, most meth-
ods seek to learn a kernel to optimize the performance
of SVM, such as (Lanckriet et al., 2004). The kernel-
target alignment method in (Cristianini et al., 2002)
was the first to came up with the idea of "aligning” be-
tween the prior kernel and an ideal kernel that is given
by label information. Bousquet and Hermann (2003)
discussed the asymptotic behavior of learning kernel
matrices, some of the bounds there are also applicable
to our method.

5. Experiments

In this section, we will conduct experiments on syn-
thetic and real data to test our algorithm, which we
denote as TDL for Transductive Distance Learning.
In the experiments, the regularization parameter \ is
determined by grid search, while other parameters are
hand-set.

5.1. Synthetic Data

We use a variant of the now famous two moons dataset
(Zhou et al., 2004) to test our method and Laplacian
FEigenmaps. The original two moons are very easy for
nonlinear spectral methods such as Laplacian Eigen-
maps, so we use a harder version (Figure 1). The two
moons are pushed nearer to each other so it is much
more difficult to discriminant between them.

In our experiment, Laplacian Eigenmaps and TDL
are tested on a two moons dataset with 200 samples.

The normalized Laplacian of an adjacency graph is

used for penalty, which is built with a Gaussian kernel

12
pij = exp(f%) on Euclidean distances. The pa-

rameter A in TDL is set to 16. We projected the data
to one dimension for classification, however we draw
both dimensions for the ease of visualization.

Embeddings Given by

Initial Dataset .. Laplacian Eigenmaps

Embeddings Given by TDL
0.15

0.05 & 0.05 oo
B FON
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: . %
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i
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Classification by

True Classification Laplacian Eigenmaps
15

Figure 1. Experiment results on two moons. The classi-
fication is given by 1-NN on the first feature (horizontal
axis).

From Figure 1, we can see that Laplacian Eigenmaps
totally failed to discriminate the moons while TDL
successfully discriminated them. An interesting point
is that labeled samples were pushed far away from the
unlabeled samples in TDL. This might be counterin-
tuitive at first glance, but in fact it reflected a com-
mon sense in regularization that labeled data from dif-
ferent classes should be separated by large margins.
Since the cost functions in TDL are only measured
on the labeled samples, the unsmooth projection that
pushed the labeled data away is inevitable. However,
the result is good enough for classification, since the
labeled data ”pulled” the nearby unlabeled samples
toward them by regularization, which actually sepa-
rated the two classes. A more robust algorithm would
need changing the cost function and will be pursued
in future works.

5.2. UCI Databases

We experimented TDL and Laplacian Eigenmaps
on four UCI databases: Wisconsin breast cancer,
Tonosphere, Sonar and Wine. The input features are
renormalized to range [0, 1]. Results are averaged over
100 random splits of the data with 10% for training
and 90% for testing. The classification in the algo-
rithms is given by a 1-NN rule. The construction of the
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Table 1. Test set accuracies on UCI databases, the highest accuracies are shown in boldface.

METHOD BREAST CANCER IONOSPHERE SONAR WINE

TDL 94.74(£1.73) 89.37(+5.32) 63.65(+5.68)  93.09(£4.00)
LAPLACIAN EIGENMAPS 94.80(+1.61) 85.01(+4.02) 62.88(+4.91)  93.48(+£2.81)
GWPC 94.58(+1.42) 85.58(+5.63) 70.45(+4.73)  93.79(£2.14)
KTDA 94.47(£1.47) 87.56(£5.73) 70.22(+4.59)  94.59(+£2.00)
KFDA 93.30(+1.82) 77.06(£10.12) 67.07(£5.55)  85.37(£7.83)
SVM 93.35(£2.05) 77.37(£10.00) 67.07(£5.50)  92.59(+£3.29)
KNM 90.89(%+1.51) 76.99(£7.78) 65.63(+5.81)  87.22(+£5.32)
1-NN 92.94(%£1.59) 81.14(4.27) 69.18(+4.60)  91.71(£3.00)

cost and penalty matrices is the same as the synthetic
data. The regularization parameter A is set to 1024
on all four datasets. For all datasets except Breast
cancer, we take 10 eigenvectors. Breast cancer has
only 9 features so we take 5 eigenvectors on it.

The results are shown in Table 1. The results for
GWPC, KTDA, KFDA, SVM, KNM and 1-NN are
taken from (Zhang et al., 2006). In which, GWPC
and KTDA are the two algorithms proposed in (Zhang
et al., 2006), KFDA is Kernel discriminant analysis,
and KNM is kernel nearest mean classifier.

It can be seen that the results of TDL outperforms
Laplacian Eigenmaps in some cases and are compa-
rable with GWPC and KTDA. These results vali-
dated that in our method, information from labeled
data are used properly to improve the distance metric.
Moreover, TDL scales better than GWPC and KTDA.
The result may get even better when more advanced
distance-based methods, such as spectral clustering,
are applied on the learned metric.

5.3. Incorporating Prior Knowledge

As we have discussed in the introduction, it is very
important in distance metric learning to incorporate
prior knowledge. However, a simple Euclidean metric
is unsuitable to be the prior metric in many cases, and
metrics that were designed from apriori knowledge of
the underlying problems are more preferable. An ex-
cellent example of these metrics is Tangent Distance,
which was designed for handwritten digit recognition
(Simard et al., 1998). In that task there are many
transformations that are irrelevant to the classifica-
tion of digits, such as translation, scaling, rotation and
thickening. In tangent distance, these transformations
were approximated by tangent vectors of a parameter-
ized manifold, and the metric were made invariant to
them. Albeit its simplicity, tangent distance held the
record on handwritten digit databases for many years.

Table 2. Test set accuracies on the MNIST database. The
two columns show the results with Euclidean distance and
Tangent distance as apriori information.

METHOD EUCLIDEAN TANGENT

TDL
LAPLACIAN EIGENMAPS

96.13(+0.07)
95.91(+0.07)

97.49(£0.04)
97.41(+0.03)

The tangent distance is a metric for unsupervised data,
which made it ideal to serve as prior knowledge in our
algorithm. In this subsection, we do experiments on
the MNIST database trying to improve tangent dis-
tance using our framework. The MNIST database (Le-
Cun et al., 1998) consists 60000 training samples and
10000 test samples. In our experiments we use all the
70000 samples and take a random 5% as labeled. The
results are averaged over 10 random splits.

We use the cost matrix (6) with & = 20. The penalty
function is the Laplacian constructed from 20 nearest-
neighbors. 60 eigenvectors are taken with A = 128.
The classification is given by a 10-NN rule. For com-
puting the tangent distance, the hierarchical method
(Simard et al., 1998) is used to speed-up the compu-
tation.

Since the size of the MNIST database is very large, few
semi-supervised methods can be ran on it. We com-
pare TDL with Laplacian Eigenmaps, which is known
to have an excellent semi-supervised performance on
this database (Belkin & Niyogi, 2003). The results are
shown in Table 2, it can be seen that TDL showed
a little improvement over Laplacian Eigenmaps. The
improvement is smaller when tangent distance is used,
since the distance metric already discriminated the
samples very well. Furthermore, the time used in the
computation is acceptable. Given the Laplacian ma-
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trix as input, the computation time is about 8 minutes
for a single run on a 2.8 GHz Pentium IV PC.

6. Discussion and Conclusion

In this paper, we elaborated on the connection between
distance metric learning and spectral dimensionality
reduction. We showed that under the Euclidean as-
sumption the problem of distance metric learning can
be solved by spectral dimensionality reduction meth-
ods with label information injected. This opens up
possibilities in both directions: One can now consider
the case where the Euclidean assumption is not satis-
fied in distance metric learning, and in dimensionality
reduction it is possible to design new algorithms with
the distance metric learning goal in mind.

Furthermore, we proved a representer theorem for our
framework and the loss function used in the regulariza-
tion problem is new. It penalizes pairwise differences
instead of trying to fit a certain y. This is different
from previous regularization methods and might be
suitable in problems such as multiclass classification.

The squared loss function used in our framework might
not be optimal for distance metric learning. However,
with the distance metric learning problem transferred
to function estimation in an RKHS, one can easily
switch to other loss functions and design new algo-
rithms. Better loss functions and a way to automati-
cally determine the parameter settings will be experi-
mented in our future works.
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Appendix
Proof of Theorem 4

Firstly, we state a lemma which was a partial result of
(Sindhwani et al., 2005) and prove two other lemmas.

Lemma 5 (Sindhwani et al., 2005) The represen-
ter k(xzi,-) of H can be written as k(z;,-) =

ST Bik(a, ).

Lemma 6 The solution of the optimization problem
(4) has a representation f(z) = S ik(wi, ).

Furthermore, a can be determined by solving the fol-
lowing eigenvalue problem:

min aT(Z?jzl wij(Ki — Kj)(K; — Kj)"

+AK + KMK))o
s.t. aTK?a =1 (7)

where K; is the i-th column of the Gram matriz K.

Proof By standard representer theorems (Kimeldorf
& Wahba, 1971; Scholképf et al., 2001), it is easy to see
that the minimizer of the optimization problem (4) has
a representation f(z) = Y7, ik(z;, ). By Lemma
5, we can rewrite f(z) as f(z) = " aik(xs, x).
Hence ||, — /2 + |SFI} = aTka + aT KM Ka.
We can get (7) by substituting the expressions of f(x)
and ||f\|3% into (4). O

Lemma 7 For a symmetric n X n matriz A with rank
n—1 and Ae =0, we haveAA"‘:A"‘A:I—%E.

Proof Suppose that A has an eigenvalue decomposi-
tion A = UDUT, then its Moore-Penrose pseudo in-
verse can be given by AT = UDTUT. Since A has rank
n —1 and Ae = 0, we can partition the decomposition
matrices as:

1 Dy 0] [ Uf
et 3 918
where D; = diag(dy,...,d,—1) is the diagonal ma-
trix of the non-zero eigenvalues of A. Therefore,
AAT = ATA = U,UL. The lemma then follows
from the property of orthogonal matrices: UUT
U U + Lee” = 1.

o

Proof of Theorem 4 From Lemma 6 we have S(f) =
Ka, so we can get « = K+S(f). Substituting into (7),
we have

min - S(f)TKH (2 wig (K — K;) (K = K;)"
+AK + KMEK)K*S(f).

By Lemma 7, we can get

min ST wis(si —s5) (s — 5)T + MET + N)S(f),
i,j=1

where N = (I—LE)M(I—1E) and s; is a vector with

1 in the ¢-th position and 0 in other positions.

Note that S(f)TES(f) = aT’KTee’ Ka = 0. And
when X is one-dimensional, T K2a = S(f)TS(f) =1
is equivalent to Tr(X7 X) = 1. Hence the optimal so-
lutions of (4) and (3) have the correlation z* = S(f*).
(]
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