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Abstract

In this paper we present a novel algorithm,
CarpeDiem. It significantly improves on the
time complexity of Viterbi algorithm, pre-
serving the optimality of the result. This
fact has consequences on Machine Learn-
ing systems that use Viterbi algorithm dur-
ing learning or classification. We show how
the algorithm applies to the Supervised Se-
quential Learning task and, in particular, to
the HMPerceptron algorithm. We illustrate
CarpeDiem in full details, and provide experi-
mental results that support the proposed ap-
proach.

1. Introduction

Within the broader field of learning systems for se-
quential data, let us consider the Supervised Sequen-
tial Learning (SSL) task: in this particular problem,
each observation in the sequence is associated with an
individual label. The goal of SSL systems is to learn
how to best predict the sequence of labels given the
sequence of observations. More formally, the SSL task
can be specified as follows (Dietterich, 2002):

Given: A set L of training examples of the form
(Xm, Ym), where each Xm = (xm,1, . . . , xm,Tm)
is a sequence of Tm feature vectors and each
Ym = (ym,1, . . . , ym,Tm) is a corresponding se-
quence of class labels, y ∈ {1, ...,K}.

Find: A classifier H that, given a new sequence X
of feature vectors, predicts the corresponding se-
quence of class labels Y = H(X) accurately.

The SSL problem has been approached with many
different techniques. Among others, we recall Slid-
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ing Windows (Dietterich, 2002), Hidden Markov Mod-
els (Rabiner, 1989), Maximum Entropy Markov Mod-
els (McCallum et al., 2000), Conditional Random
Fields (Lafferty & Pereira, 2001), and the HMPercep-
tron algorithm (Collins, 2002).

In general, the labeling of an entire sequence X may
show dependences among labels which extend for the
whole labeling. In this case the labeling task must take
into account every possible sequence of labels, result-
ing in a Θ(KT ) complexity. In practice, it is possible
to evaluate H in polinomial time by making some sim-
plifying assumption. In particular, assuming a first or-
der Markov property (or the like, in non-probabilistic
frameworks) allows evaluating H in quadratic time by
means of the Viterbi algorithm (Viterbi, 1967). In
point of fact, most state-of-the-art methods for deal-
ing with the SSL task rely on the Viterbi algorithm for
classifying and/or learning purposes.

In this work we introduce CarpeDiem, a novel algo-
rithm designed for speeding up Viterbi “decoding”.
Provided that CarpeDiem has a plethora of possible
applications, we show how it applies to a particular
SSL system embedding the HMPerceptron learning al-
gorithm. The HMPerceptron exploits the Viterbi algo-
rithm at both learning and classification time; hence,
it lends itself to clearly point out the advantages of
CarpeDiem.

The paper is structured as follows: we briefly recall
Viterbi and HMPerceptron algorithms. Then we illus-
trate CarpeDiem in full details. A complete example of
its execution over a toy problem is then given and, in
the end, we report the results obtained in experiments
made on a real SSL task (the tonal harmony analysis
problem). Finally, we discuss the results and compare
with related works.

2. Background and Overview

Let us introduce few facts about the Viterbi and the
HMPerceptron algorithms.
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A) Background on Viterbi Algorithm. Given a
layered and weighted graph with T layers and K nodes
per layer, the algorithm evaluates the best path from
the leftmost to the rightmost layer in Θ(TK2) time.
For each node of each layer, the algorithm stores the
reward (the accumulated metric)1 of the best path to
that node. The reward for reaching a node y in the fol-
lowing layer is evaluated as the maximal reward that
can be obtained by stepping from any node in the cur-
rent layer to y. Since this is to be done for each node
of the following layer, this step implies the quadratic
dependence on the number of nodes per layer.

In other fields (e.g., telecommunications) there exist
ad hoc solutions that allow one to tame the complexity
by means of hardware implementations (Austin et al.,
1990) and/or methods for approximating the optimum
path (Fano, 1963). In learning systems, however, hard-
ware implementations are seldom seen in practice, and
suboptimal solutions are less interesting. As a conse-
quence, the quadratic dependence on the number of
labels is often a high burden.

B) HMPerceptron Algorithm and the Boolean
Features Framework. The HMPerceptron uses
Viterbi algorithm to find the optimum path in a graph
where each node in a layer represents a possible label,
and each layer represents a time point in the sequence
being labelled.

The HMPerceptron has been defined in the boolean fea-
tures framework (McCallum et al., 2000): the learnt
classifier is built in terms of a linear combination of
boolean features. Each feature reports about a salient
aspect of the sequence to be labelled in a given time
instant. More formally, given a time point t, a boolean
feature is a 1/0-valued function of the whole sequence
of feature vectors X, and of a restricted neighborhood
of yt. The function is meant to return 1 if the charac-
teristics of the sequence X around time step t support
the classifications given at and around yt. The hy-
pothesis has then the form

H(X) = arg max
Y ′

T∑
t=1

∑
s

wsφs(X, y′t, y
′
t−1, t)

In this formulation, the features may take into consid-
eration arbitrarily large neighborhoods of xt to report
about whether the labels yt and yt−1 are likely to be
correct.

From facts A) and B) it follows that, in the given appli-

1In shortest path search algorithms, it is customary to
use the term cost to refer the accumulated metric of the
node. We use the term reward to stress the connection
with the maximization problem.

cation, Viterbi spends most computational resources
to evaluate the formula:

max
yt,yt−1

[
ωyt−1 +

∑
s

wsφs(X, yt, yt−1, t)

]
(1)

where ωyt−1 denotes the weight of the best path to
label yt−1.

In the present paper we describe an algorithm that
both surmounts the mentioned complexity and elimi-
nates the need for any graph pruning, thereby preserv-
ing the optimality of results. Under mild assumptions
(see below) CarpeDiem approaches a Θ(TK log(K))
time complexity. Also, it smoothly fits to the problem
at hand, so that the algorithm regresses to a Θ(TK2)
worst case complexity only when the problem at hand
requires to inspect each and every transition edge to
make a decision.

3. The CarpeDiem algorithm

The main idea we introduce in this paper stems from
noting that in many application domains not all fea-
tures really depend on both yt, yt−1. On the con-
trary, very often the characteristics of the example
are, by themselves, very relevant for predicting yt.
Then, we identify two kind of features: the vertical
features that do not require to know the previously
predicted label –and work, thus, under a zero-order
Markov assumption–, and the horizontal features that
do need it –thereby working under a first-order Markov
assumption. In the setting of an optimal path finding
algorithm over a directed and weighted graph, one can
think of vertical features as those allowing to assign a
score to the nodes, whereas horizontal features allow
assigning a score to transitions.

We will assume as given a finite set {φ1, φ2, . . . , φp} of
features suitable for the problem at hand, and parti-
tion the set {1, 2, . . . p} of all feature indexes into the
two sets Φ0 and Φ1 corresponding to indexes of ver-
tical and horizontal features respectively. Now, For-
mula 1 can be rewritten as shown by Equation 2 in
Fig. 1. Equation 3 (see Fig. 1) is equivalent to Equa-
tion 2 and, in addition, it emphasizes how features in
Φ0 need to be evaluated only once per yt label (i.e.,
not once for each yt,yt−1 pair). It is then obvious (and
in accord with the intuition) that whenever Φ1 = ∅
the cost of the Viterbi algorithm can be reduced to be
linear in the number of labels.

Following this intuition, we propose an algorithm that
exploits vertical information as much as possible, re-
sorting to the use of horizontal features only in case
this is really necessary to the classification purposes.
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max
yt,yt−1

[
ωyt−1 +

∑
s∈Φ0

wsφs(X, yt, t) +
∑
s∈Φ1

wsφs(X, yt, yt−1, t)

]
(2)

max
yt

[ ∑
s∈Φ0

wsφs(X, yt, t) + max
yt−1

[
ωyt−1 +

∑
s∈Φ1

wsφs(X, yt, yt−1, t)

]]
(3)

Figure 1.

The algorithm can be best described as a twofold
search strategy. The main forward search strategy
scans the layers in the graph from left to right. For
each layer it finds the node with the best possible re-
ward and stops as soon as this node can be determined.
In so doing, it possibly leaves a layer without having
evaluated the exact reward for reaching all nodes of
that layer. We will call open the nodes yt for which
the true reward z(yt) has been computed, and closed
those ones for which a complete search has not been
done and, thus, only the vertical weight is known.

The backward strategy is called only when necessary.
Its purpose is precisely to open nodes (i.e., it evaluates
z(yt) for a given yt) opening the least possible number
of previous nodes. Opening a node may imply the
need to go back to nodes in previous layer(s) to gather
information left unspecified during the forward step.

In the best case, the algorithm scans only the most
promising node for each layer and never calls the back-
ward strategy. In such a case, the cost of the algorithm
would be Θ(K log(K)T ), where the factor K log(K) is
due to the time spent for sorting the nodes in each
layer (more about this later on)2. In the worst case
(no vertical features), the algorithm has a complexity
of K2T , i.e., in any case the algorithm is not asymp-
totically worse than Viterbi algorithm.

3.1. Algorithm details

Let us consider Equation 3 and denote with Σ0
yt

the
summation over all features in Φ0, and with Σ1

yt,yt−1

the summation over Φ1, i.e.:

Σ0
yt

=
∑
s∈Φ0

wsφs(X, yt, t)

Σ1
yt,yt−1

=
∑
s∈Φ1

wsφs(X, yt, yt−1, t)

2In cases where the vertical rewards range over a limited
interval, one could reduce the K log(K) factor to K by
using standard techniques (Cormen et al., 1990, Chap. 9).
However, in the present application, this amounts to trade
space for speed.

In summary, the algorithm efficiently implements the
search for:

max
yt

[
Σ0

yt
+ max

yt−1

[
ωyt−1 + Σ1

yt,yt−1

]]

3.1.1. Forward search strategy.

The forward search strategy consists in i) sorting the
nodes in the current layer according to the values of
Σ0

yt
, and ii) exploiting a bound βt on (ωyt−1 +Σ1

yt,yt−1
)

in order to avoid evaluating the inner maximization
whenever possible.

Let us define
βt = ω∗

t−1 + Σ1∗,

where ω∗
t−1 is the reward of the best path to any node

in layer t−1 (including the vertical weight of the ending
node), and Σ1∗ is the sum of the weights of horizontal
features associated to positive weights:

Σ1∗ =
∑

s∈Φ1:ws>0

ws

Let also wt be a total ordering of nodes –based on
vertical weights– at layer t, defined as

wt≡ {(yt, y
′
t)|if Σ0

yt
> Σ0

y′t
}.

At any time t, we say that node yt is more promising
than node y′t iff yt wt y′t.

The main routine of CarpeDiem (not reported here due
to space reasons) simply calls the forward search strat-
egy at each time point t. The forward strategy finds
the best node for layer t stopping as soon as this node
can be determined without doubts. The forward strat-
egy is detailed in Algorithm 1.

At the beginning of the analysis of each layer all nodes
are closed. As asserted by the while-loop condition,
the algorithm stops as soon as the vertical weight of
the following node in the w ordering plus βt is lower
than the current estimated best reward. Being βt an
upper-bound on the reward that can be obtained for
reaching a node at layer t, exiting the while-loop en-
sures that y′t cannot improve the reward obtained by
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begin
y∗t ← most promising node;
y′t ← next node in the wt ordering;
Open node y∗t {call the backward strategy};
while z(y∗t ) < βt + Σ0

y′t
do

Open node y′t {call the backward strategy};
y∗t ← arg maxy′′∈{y∗t ,y′t} [z(y′′)];
y′t ← next node in the wt ordering;

end
return y∗t ;

end

Algorithm 1: Forward search strategy

y∗t . Moreover, since nodes are considered in the order
given by wt, none of the following nodes can improve
y∗t .

Informally stated, the algorithm significantly reduces
the search effort when: i) vertical features are suffi-
cient to discriminate well among labels (i.e., few dis-
tinguished labels have very high rewards) and/or, ii)
horizontal features do not provide significant cues (i.e.,
most transition weights are close to Σ1∗). For instance,
if all horizontal features are zero, (Σ1∗ = 0), then all
nodes of layer t share the same ancestor: the node with
weight ω∗

t−1. Then, z(y∗t ) = ω∗
t−1 + Σ0

y∗t
, and the test

for continuing the loop can be rewritten as

ω∗
t−1 + Σ0

y∗t
< ω∗

t−1 + 0 + Σ0
y′t
⇔ Σ0

y∗t
< Σ0

y′t

Since y∗t is initially set to the most promising node, we
have that the requirement Σ0

y∗t
< Σ0

y′t
is never met: the

loop is exited immediately (yielding a Θ(TK log(K))
time complexity).

On the other hand, the algorithm may not be as use-
ful when, for instance, all Σ0

yt
= τ (τ being a con-

stant). For the sake of simplicity, let us assume that
Σ1N, the weight of the best edge in the graph, is
strictly lower than Σ1∗, i.e., no edge yields an hori-
zontal weight equal to Σ1∗. Since z(y∗t ) is at most
ω∗

t−1 + Σ1N + τ and βt + Σ0
y′t

= ω∗
t−1 + Σ1∗ + τ , it

follows that z(y∗t ) < βt + Σ0
y′t

is always met: the algo-
rithm will open each and every node. In such a situa-
tion, the algorithm inspects each edge in the graph and
the time complexity degrades to Viterbi’s Θ(TK2),
i.e., the CarpeDiem is never asymptotically worse than
Viterbi.

3.1.2. Backward search strategy

The backward search strategy opens a node yt find-
ing its best ancestor and setting z(yt) to the weight of

the best path to the node. In much the same spirit of
the forward strategy, the algorithm saves some com-
putation i) by exploiting wt−1 in order to inspect first
the most promising nodes, and ii) by taking again ad-
vantage of βt−1 in order to stop the search as soon as
possible. The exact strategy is implemented by Algo-
rithm 2.

Data: A node yt to be opened
begin

y∗t−1 ← most promising node;
y′t−1 ← next node in the wt−1 ordering;
while y′t−1 is open do

y∗t−1← arg maxy′′∈{y′t−1,y∗t−1}
[
z(y′′) + Σ1

yt,y′′

]
;

y′t−1← next node in the wt−1 ordering;

end
while

(
z(y∗t−1) + Σ1

yt,y∗t−1
< βt−1 + Σ0

y′t−1
+ Σ1∗

)
do

Open y′t−1 {call the backward strategy};
y∗t−1← arg maxy′′∈{y′t−1,y∗t−1}

[
z(y′′) + Σ1

yt,y′′

]
;

y′t−1← next node in the wt−1 ordering;

end
z(yt)← z(y∗t−1) + Σ1

yt,y∗t−1
+ Σ0

yt
;

end

Algorithm 2: Backward search strategy to open yt.

The first loop of the algorithm finds the best ancestor
among the open nodes in layer t − 1. No shortcuts
can be taken at this point, since i) the open nodes
are still sorted according to wt−1, which is only mildly
related to nodes actual weight; ii) in any case, in order
to make a decision, the transition to the node being
opened must be taken into account3.

The second loop in the algorithm exploits a bound
based on βt−1 in order to stop the search for the op-
timal ancestor as soon as possible. This amounts to
exiting the loop if the estimated reward for the node
currently inspected

βt−1 + Σ0
y′t−1

+ Σ1∗

is lower than the true reward of the current best an-
cestor,

z(y∗t−1) + Σ1
yt,y∗t−1

3Actually, we could sort the open nodes in the layer ac-
cording to their weight z(·) and use Σ1∗ to cut the search.
However, this would be really rewarding only in case there
are many open nodes in the layer (otherwise the linear
search does not cost that much). By converse, a simi-
lar setting would suggest that the vertical weights are not
much discriminating, thus making unlikely that using Σ1∗

to cut the search provides significant improvements.
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In this case, also the estimated rewards for following
nodes cannot be higher.

When the loop condition is met, the procedure calls
itself recursively to open the currently inspected node:
its actual weight is evaluated and, if it improves y∗t−1,
it is set to be the best ancestor.

As our strategy cuts the search only when βt + Σ0
y′t

is
not larger of the weight of the current best note (see
Alg.1), it becomes important to be confident that the
estimate βt + Σ0

y′t
cannot be lower than ωy′t

, the true
weight of y′t. This is indeed the case. In fact, ωy′t

is the
sum of the true reward to its best ancestor (y′′t−1), the
vertical weight of y′t (Σ0

y′t
), and the horizontal weight

for the transition y′′t−1 → y′t, (Σ1
y′t,y

′′
t−1

). That is:

ωy′t
= ωy′′t

+ Σ0
y′t

+ Σ1
y′t,y

′′
t−1

.

By definition: ω∗
t−1 ≥ ωy′′t−1

. Moreover, since Σ1∗ is
the sum of all positive scores of horizontal features, it
follows that Σ1∗ ≥ Σ1

y′t,y
′′
t−1

. This suffices to see that
our bound meets the requirement, since:

βt+Σ0
y′t

= ω∗
t−1+Σ0

y′t
+Σ1∗ ≥ ωyt−1+Σ0

y′t
+Σ1

y′t,y
′′
t−1

= ωy′t

3.2. Example

In the following we provide a description of the algo-
rithm functioning over a toy problem.

The problem consists in labeling a sequence contain-
ing four events and two labels (named i and j). The
example is reported in Fig. 2. The weight shown on
the edge between labels yt−1 and yt corresponds to
Σ1

yt,yt−1
. The bound Σ1∗ on the maximum horizontal

reward is 60. Two further quantities are reported in
the figure and shown graphically by means of boxes
placed on nodes: within rectangular boxes, we report
the vertical weight of the node; within rounded boxes,
we report, depending on whether the node is open or
closed, the true weight (for open ones), or the quantity
βt + Σ0

yt
(for closed ones).

step (a) At the beginning of the execution, all nodes
are closed. The first step of the algorithm consists
in opening all nodes in layer 1. Clearly, there
is no reward for arriving at nodes in layer zero
and no incoming transitions to take into account.
The best node so far is thus the node having the
maximum vertical weight. The weight of this node
is the weight of the best path to layer 1, i.e., ω∗

1 =
100.
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Figure 2. CarpeDiem in action on a toy problem.

step (b) The analysis of layer 2 starts by considering
(i.e., opening) the most promising node in that
layer (node j). Since all nodes at layer 1 are open,
the backward strategy simply picks the node on
the best path to node j. Once the true weight
of node j is known, the algorithm compares it
with the bound on the weight of the best path to
node i. Since the bound Σ0

i2
+ β2 = 165 cannot

outperform the weight z(j2) = 220, there is no
need to open node i2.

step (c) To open node i in layer 3, the backward
strategy goes back to layer 2 and searches for the
best path to that node. Again, node i2 can be left
closed since there is no chance that the best path
to i3 traverses it. In fact,

β2 + Σ0
i2 + Σ1∗ = (100 + 60) + 5 + 60 = 225

cannot outperform the reward

z(j2) + Σ1
i3,j2 = 220 + 15 = 235

obtained for taking the path through node j2. The
true weight of the path to i3 is, thus, 235+100 =



CarpeDiem: an Algorithm for the Fast Evaluation of SSL Classifiers

i

j

i

j

i

j

i

j

100

50

5 100 80

100 70 130

20

40

15

15

100

50

165

220

335

350

0

0

ω∗
1 = 100 ω∗

2 = 220

Figure 3. The graph shows only the edges that have been
actually inspected at step (c) of example in Fig. 2.

335. Unfortunately, this does not allow to make a
definitive decision about whether this is the best
node of layer 3, since β3 +Σ0

j3
is (220+60)+70 =

350. Next step will thereby settle the question by
opening node j3.

step (d) The goal is, at this point, to find the best
path to node j3. Even though j2 has a clear ad-
vantage over i2, this does not suffice for excluding
that the latter is on the optimal path to node j3
(since z(j2) + Σ1

j3,j2
6< β2 + Σ0

i2
+ Σ1∗): the back-

ward strategy is then forced to recursively call it-
self to open node i2.

step (e) By opening i2, the algorithm discovers that
the true reward to reach this node is 125 (through
the path i1 → i2), thus ruling it out as a candidate
for being on the optimal path to node j3.

step (f) In returning to consider the problem of eval-
uating the best node in layer 3, we are back to
the first hypothesis, path i1 → j2 → i3. To open
nodes i2 and j3 has been wasteful, though un-
avoidable.

step (g) j4 is the first node to be opened in its layer.
Interestingly, the best path to j4 is not through
the best node in layer 3. In fact, while the highest
reward for a three steps walk is on node i3, it is
more convenient to go through node j3 to reach
node j4.

step (h) Since the estimated reward associated to i4
is smaller than the true weight of j4, we can end
the algorithm leaving node i4 closed.

In this artificial example, the algorithm does not save
much computation: at the end of the execution a single
node remain unopened. However, if we consider Fig. 3
(that reports only the edges evaluated at the end of
step (c)), we note how CarpeDiem inspected only a re-
duced set of the edges of the graph. By continuing
the execution, however, the advantage decreases since
the example has been designed to clarify the strategy
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Figure 4. The tonal harmony analysis problem consists of
indicating for each vertical which chord is currently sound-
ing.

followed by the algorithm rather than showing a case
where a significant time-saving is obtained. In the fol-
lowing Section a more realistic setting is considered,
and a much larger optimization obtained.

4. Experiments

The running time of an execution of CarpeDiem heav-
ily depends on how the weights of vertical and horizon-
tal features compare. Then, we believe mandatory to
present a situation in which weights are representative
of real world classifiers. In the following, we focus on
the particular application of “tonal harmony analysis”:
the problem of identifying the chord sounding at each
time point of a music excerpt. Please refer to (Radi-
cioni & Esposito, 2006) for a detailed description of a
similar system.

4.1. Harmony Analysis

Harmony analysis is arguably one of the most sophisti-
cated tasks that musicians deal with, and a formidable
challenge for Sequential Learning, in that: i) it can be
naturally cast to a sequential problem; ii) an intu-
itively neat separation between horizontal (that refers
to the musical flow) and vertical (that pertains simul-
taneous sounds) features exists; iii) K (the number
of labels) is over one hundred, thereby pointing out a
typical case where Viterbi algorithm shows bad time
performance.

Analyzing music harmony consists in associating a
label to each vertical (that is, set of simultaneous
notes) (Pardo & Birmingham, 2002). Such labels ex-
plain which harmony is sounding, by indicating a chord
name through a fundamental note (root) and a mode,
such as C minor. Given a score in MIDI format,
we individuate sets of simultaneous notes (verticals
or events), and associate a label 〈fundamental note,
mode〉 to each vertical (Fig. 4).

Music analysis task can be naturally represented as a
Machine Learning classification problem, suitable to
be solved by SSL techniques. In fact, by considering
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only the “vertical” aspects of musical structure, one
would hardly produce reasonable analyses. Experi-
mental evidences about human cognition reveal that
in order to disambiguate unclear cases, composers and
listeners refer to “horizontal” features of music as well:
in these cases, context plays a fundamental role, and
contextual cues can be useful to the analysis system.
Moreover, harmony changes are well known to follow
patterns where analysis must take into consideration
the succession of chords (e.g., the case of cadence).

Let us go back to the SSL definition: in the case of
music analysis, each Xm corresponds to a particular
piece of music; xm,t is the information associated to
the event at time t; and ym,t corresponds to the chord
label (i.e., the chord root and mode) associated to the
event sounding at time t. The problem is, thus, to
learn how to predict accurately the chord labels given
the information about musical events.

By definition, a feature φs(X, yt, yt−1) is a boolean
function of the entire sequence and of labels yt and
yt−1. Usually, it analyzes a small neighborhood of
the current event, and return 1 if there is evidence
that the currently predicted label is correct. For the
present application, the features have been engineered
so that they take into account the prescriptions from
Music Harmony Theory, a field where vertical and hor-
izontal features naturally arise. Vertical features re-
port about simultaneous sounds and their correlation
with the currently predicted chord. Horizontal fea-
tures capture metric patterns and chordal successions.

Goal of the present experimentation is to discover
whether CarpeDiem obtains significant running time
improvements w.r.t. Viterbi. To this aim, we em-
bedded it in a SSL system implementing the HM-
Perceptron learning algorithm (Collins, 2002). The
learning system has been trained on a data set com-
posed of 30 chorales by J.S. Bach (1675-1750). The
learnt weights have been then used to build two clas-
sifiers: one based on standard Viterbi, the other one
based on CarpeDiem. The two classifiers have been fed
with 42 testing sequences, their running time has been
recorded and reported in the following.

4.2. Results

Needless to say, being equal their results, both algo-
rithms provided the same accuracy results (on average,
79% accuracy rate).

The Viterbi-based HMPerceptron took 62,333 seconds
of CPU time in order to complete learning, on the
same task the CarpeDiem-based HMPerceptron took
only 10,866 seconds, with a net saving of 82.56%.
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Figure 5. Times spent by Viterbi and CarpeDiem in ana-
lyzing the test set.

Fig. 5 reports the time spent by both algorithms to
analyze each sequence of the test set. On average,
79% of the testing time has been saved. In the best
case CarpeDiem ran in 7 seconds instead of 77, thus
saving 90% of the time. In the worst case it ran in
37 seconds instead of 118, thus saving 68.64% of the
time. Also, the magnitude of the improvement does
not show large variations depending on the sequences,
thus encouraging the generalization of these results to
new musical pieces.

5. Discussion

The algorithm performs surprisingly well on this task:
clearly, in this domain, much information is retrieved
based on vertical features. Nonetheless, horizontal
features are necessary for obtaining “good” classifi-
cations: we observed that the classification accuracy
substantially drops if horizontal features are removed.

About the running behavior of the algorithm, it is
interesting that there are places in the music where
harmony is explicitly stated (thus being easier to an-
alyze), and other places where it is not. In the former
places, the algorithm skims through the score placing
the labels confidently, meanwhile requiring few com-
putational resources. Somewhere, however, the algo-
rithm slows down requiring more analysis in order to
pronounce. This observation is interesting from the
computational point of view: it shows that the algo-
rithm adapts to the problem at hand; it is also relevant
from a cognitive perspective: it suggests that difficult
sections of the excerpts can be automatically identi-
fied, thus providing a sort of complexity measure for
excerpts of the piece being analyzed.

As earlier mentioned, most of Viterbi algorithm vari-
ants rely on hardware implementations or renounce
to optimality. Recent works proposed algorithms that
improve the running time with respect to Viterbi, by
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assuming that the HMM transition matrix obeys cer-
tain constraints (Siddiqi & Moore, 2005; Felzenszwalb
et al., 2003). In Siddiqi and Moore (2005) the authors
assume that few transition weights are of interest, and
that the other ones can be approximated by a con-
stant. Then they use this fact to reduce the search to
few nodes per layer. This approach works well in many
conditions, but it has the downside of giving up opti-
mality in case the transition matrix does not naturally
fits this form. In Felzenszwalb et al. (2003) the au-
thors assume that nearby labels have “similar” weights
and use this structural information to improve the
search for the highest ranking node. On our side, we
assume that the vertical information suffices to avoid
the inspection of most of the horizontal features. The
success of both approaches, the one by Felzenszwalb
et al. and ours, depends on how well the real world
conditions match the respective assumptions.

In the previous Section we showed that the Musical
Analysis task naturally fits the assumptions underly-
ing CarpeDiem; we now spend some concluding re-
marks arguing about why these assumptions should
generalize to other domains. Let us consider how ver-
tical and horizontal features come into play in tradi-
tional sequential tasks, such as speech recognition and
the OCR task. In speech recognition the phoneme
sounding at a given instant provides much information
about the classification. That is, the phoneme /d/ is
likely to be confused with /t/, but most probably not
with /tS/. In the OCR task, the features describing
the current letter may be uncertain among few char-
acters, but it is seldom the case that this uncertainty
concerns all the letters of the alphabet.

6. Conclusion

In this paper we introduced CarpeDiem, a novel al-
gorithm that improves on Viterbi time complexity.
CarpeDiem employs a bound to use contextual infor-
mation only when necessary. We provided the new al-
gorithm with full details, experimentally verified that
it brings significant time savings, and advocated that
it can be generalized to further applicative domains.
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