
Magnitude-Preserving Ranking Algorithms

Corinna Cortes corinna@google.com

Google Research, 76 Ninth Avenue, New York, NY 10011.

Mehryar Mohri mohri@cs.nyu.edu

Courant Institute of Mathematical Sciences and Google Research, 251 Mercer Street, New York, NY 10012.

Ashish Rastogi rastogi@cs.nyu.edu

Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012.

Abstract

This paper studies the learning problem of
ranking when one wishes not just to ac-
curately predict pairwise ordering but also
preserve the magnitude of the preferences
or the difference between ratings, a prob-
lem motivated by its key importance in
the design of search engines, movie recom-
mendation, and other similar ranking sys-
tems. We describe and analyze several al-
gorithms for this problem and give stabil-
ity bounds for their generalization error, ex-
tending previously known stability results
to non-bipartite ranking and magnitude of
preference-preserving algorithms. We also re-
port the results of experiments comparing
these algorithms on several datasets and com-
pare these results with those obtained using
an algorithm minimizing the pairwise mis-
ranking error and standard regression.

1. Motivation

The learning problem of ranking has gained much at-
tention in recent years, in part motivated by the devel-
opment of new search engines and movie recommen-
dation systems (Freund et al., 1998; Herbrich et al.,
2000; Crammer & Singer, 2002; Joachims, 2002; Rudin
et al., 2005; Agarwal & Niyogi, 2005). The ordering of
the list of documents returned by a search engine or
an information extraction system, or that of the list of
movies supplied by a movie recommendation system is
a key aspect of their quality.

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

In most previous studies, the problem of ranking is
formulated as that of learning a scoring function with
small pairwise misranking error from a labeled sample
of pairwise preferences (Freund et al., 1998; Crammer
& Singer, 2002; Joachims, 2002; Shashua & Levin,
2003; Rudin et al., 2005; Agarwal & Niyogi, 2005).
But, this formulation of the problem and thus the scor-
ing function learned ignore the magnitude of the pref-
erences. In many applications, it is not sufficient to
determine if one example is preferred to another. One
may further request an assessment of how large that
preference is. Taking this magnitude of preference into
consideration is critical for example in the design of
search engines, which originally motivated our study,
but also in other recommendation systems. For a rec-
ommendation system, one may choose to truncate the
ordered list returned where a large gap in predicted
preference is found. For a search engine, a large gap
may trigger a search in parallel corpora to display more
relevant results.

This motivates our study of the problem of ranking
while preserving the magnitude of preferences, which
we will refer to by magnitude-preserving ranking. This
problem bears some resemblance with that of ordi-
nal regression (McCullagh, 1980; McCullagh & Nelder,
1983; Shashua & Levin, 2003; Chu & Keerthi, 2005).
It is however distinct from ordinal regression since in
ordinal regression the magnitude of the difference in
target values is not taken into consideration in the
formulation of the problem or the solutions proposed.
The algorithm of Chu and Keerthi (2005) does take
into account the ordering of the classes by imposing
that the thresholds be monotonically increasing, but
this still ignores the difference in target values and thus
does not follow the same objective. Cossock and Zhang
(2006) motivate an alternative approach to ranking
based on standard regression, in the context of subset

Magnitude-Preserving Ranking Algorithms

ranking where the criterion used is the Discounted Cu-
mulated Gain. The objective of this approach does not
coincide with that of preserving magnitudes of pref-
erences. However, since the approach is natural, we
provide an empirical comparison of the ranking qual-
ity of our magnitude-preserving algorithms and that
of kernel ridge regression, and contrast these results
with those obtained using RankBoost (Freund et al.,
1998; Rudin et al., 2005), an algorithm minimizing the
pairwise misranking error.

We describe and analyze several algorithms for
magnitude-preserving ranking and give stability
bounds for their generalization error, extending pre-
viously known stability results. In particular, our
bounds extend the framework of (Bousquet & Elis-
seeff, 2000; Bousquet & Elisseeff, 2002) to the case of
cost functions over pairs of examples, and extend the
bounds of Agarwal and Niyogi (2005) beyond the bi-
partite ranking problem. Our bounds also apply to
algorithms optimizing the so-called hinge rank loss.

The remainder of the paper is organized as fol-
lows. Section 2 presents stability-based generaliza-
tion bounds for a family of magnitude-preserving al-
gorithms. Section 3 describes and analyzes these al-
gorithms in detail, and Section 4 presents the results
of our experiments with these algorithms on several
datasets.

2. Stability Bounds

In (Bousquet & Elisseeff, 2000; Bousquet & Elisseeff,
2002) stability bounds were given for several regres-
sion and classification algorithms. This section shows
similar stability bounds for ranking and magnitude-
preserving ranking algorithms. This also generalizes
the results of Agarwal and Niyogi (2005) which were
given in the specific case of bi-partite ranking.

Let S be a sample of m labeled examples drawn i.i.d.
from a set X according to some distribution D:

(x1, y1), . . . , (xm, ym) ∈ X × R. (1)

For any i ∈ [1,m], we denote by S−i the sample de-
rived from S by omitting example (xi, yi), and by
Si the sample derived from S by replacing example
(xi, yi) with an other example (x′i, y

′
i) drawn i.i.d. from

X according to D. For convenience, we will sometimes
denote by yx = yi the label of a point x = xi ∈ X.

The quality of the ranking algorithms we consider is
measured with respect to pairs of examples. Thus, a
cost functions c takes as arguments two sample points.
For a fixed cost function c, the empirical error R̂(h, S)
of a hypothesis h : X 7→ R on a sample S is defined

by:

R̂(h, S) =
1

m2

m∑
i=1

m∑
j=1

c(h, xi, xj). (2)

The true error R(h) is defined by

R(h) = Ex,x′∼D[c(h, x, x′)]. (3)

The following definitions are natural extensions of
those given by Bousquet and Elisseeff (2002) to the
case of cost functions over pairs.
Definition 1. A learning algorithm L is said to be
uniformly β-stable with respect to the sample S of size
m and cost function c if there exists β ≥ 0 such that
for all S ∈ (X × R)m and i ∈ [1,m],

∀x, x′ ∈ X, |c(hS , x, x′)− c(hS−i , x, x′)| ≤ β. (4)

The following is a technical definition similar to the
Lipschitz condition needed for the proof of our stability
bounds.
Definition 2. A cost function c is σ-admissible with
respect to a hypothesis set H if there exists σ ≥ 0 such
that for all h, h′ ∈ H, and for all x, x′ ∈ X,

|c(h, x, x′)− c(h′, x, x′)| ≤ σ(|∆h(x′)|+ |∆h(x)|), (5)

with ∆h = h′ − h.

2.1. Cost Functions

We introduce several cost functions related to
magnitude-preserving ranking. The first one is the so-
called hinge rank loss which is a natural extension of
the pairwise misranking loss. It penalizes a pairwise
misranking by the magnitude of preference predicted
or the nth power of that magnitude (n = 1 or n = 2):

cn
HR(h, x, x′) ={

0, if (h(x′)− h(x))(yx′ − yx) ≥ 0∣∣(h(x′)− h(x))
∣∣n, otherwise.

(6)

cn
HR does not take into consideration the true magni-

tude of preference yx′−yx for each pair (x, x′) however.
The following cost does so and penalizes deviations of
the predicted magnitude with respect to that. Thus, it
matches our objective of magnitude-preserving rank-
ing (n = 1, 2):

cn
MP(h, x, x′) =

∣∣(h(x′)− h(x))− (yx′ − yx)
∣∣n. (7)

A one-sided version penalizing only misranked pairs is
given by (n = 1, 2):

cn
HMP(h, x, x′) ={

0, if (h(x′)− h(x))(yx′ − yx) ≥ 0∣∣(h(x′)− h(x))− (yx′ − yx)
∣∣n, otherwise.

(8)

Magnitude-Preserving Ranking Algorithms

Finally, we will consider the following cost function de-
rived from the ε-insensitive cost function used in SVM
regression (SVR) (Vapnik, 1998) (n = 1, 2):

cn
SVR(h, x, x′) ={

0, if |
[
(h(x′)− h(x))− (yx′ − yx)

]
| ≤ ε∣∣|(h(x′)− h(x))− (yx′ − yx)| − ε

∣∣n, otherwise.
(9)

Note that all of these cost functions are convex func-
tions of h(x) and h(x′).

2.2. Magnitude-Preserving Regularization
Algorithms

For a cost function c as just defined and a regulariza-
tion function N , a regularization-based algorithm can
be defined as one minimizing the following objective
function:

F (h, S) = N(h) + C
1

m2

m∑
i=1

m∑
j=1

c(h, xi, xj), (10)

where C ≥ 0 is a constant determining the trade-
off between the emphasis on the regularization term
and the error term. In much of what follows, we
will consider the case where the hypothesis set H
is a reproducing Hilbert space and where N is the
squared norm in a that space, N(h) = ‖h‖2K for a
kernel K, though some of our results can straightfor-
wardly be generalized to the case of an arbitrary con-
vex N . By the reproducing property, for any h ∈ H,
∀x ∈ X, h(x) = 〈h, K(x, .)〉 and by Cauchy-Schwarz’s
inequality,

∀x ∈ X, |h(x)| ≤ ‖h‖K

√
K(x, x). (11)

Assuming that for all x ∈ X, K(x, x) ≤ κ2 for
some constant κ ≥ 0, the inequality becomes: ∀x ∈
X, |h(x)| ≤ κ‖h‖K . With the cost functions previously
discussed, the objective function F is then strictly con-
vex and the optimization problem admits a unique so-
lution. In what follows, we will refer to the algorithms
minimizing the objective function F as magnitude-
preserving regularization algorithms.
Lemma 1. Assume that the hypothesis in H are
bounded, that is for all h ∈ H and x ∈ S, |h(x)−yx| ≤
M . Then, the cost functions cn

HR, cn
MP, cn

HMP, and
cn
SVR are all σn-admissible with σ1 = 1, σ2 = 4M .

Proof. We give the proof in the case of cn
MP, n = 1, 2.

The other cases can be treated similarly.

By definition of c1
MP, for all x, x′ ∈ X,

|c1
MP(h′, x, x′)− c1

MP(h, x, x′)| =∣∣|(h′(x′)− h′(x))− (yx′ − yx)| − |(h(x′)− h(x))−
(yx′ − yx)|

∣∣.
(12)

Using the identity
∣∣|X ′ − Y | − |X − Y |

∣∣ ≤ |X ′ − X|,
valid for all X, X ′, Y ∈ R, this shows that

|c1
MP(h′, x, x′)− c1

MP(h, x, x′)|≤ |∆h(x′)−∆h(x)|
≤ |∆h(x′)|+ |∆h(x)|,

(13)
which shows the σ-admissibility of c1

MP with σ = 1.
For c2

MP, for all x, x′ ∈ X,

|c2
MP(h′, x, x′)− c2

MP(h, x, x′)| =
||(h′(x′)− h′(x))− (yx′ − yx)|2
−|(h(x′)− h(x))− (yx′ − yx)|2|
≤ |∆h(x′)−∆h(x)|(|h′(x′)− yx′ |+
|h(x′)− yx′ |+ |h′(x)− yx|+ |h(x)− yx|)
≤ 4M(|∆h(x′)|+ |∆h(x)|),

(14)

which shows the σ-admissibility of c2
MP with σ = 4M .

Proposition 1. Assume that the hypotheses in H are
bounded, that is for all h ∈ H and x ∈ S, |h(x) −
yx| ≤ M . Then, a magnitude-preserving regularization
algorithm as defined above is β-stable with β = 4Cσ2

nκ2

m .

Proof. Fix the cost function to be c, one of the σn-
admissible cost function previously discussed. Let hS

denote the function minimizing F (h, S) and hS−k the
one minimizing F (h, S−k). We denote by ∆hS =
hS−k − hS .

Since the cost function c is convex with respect to h(x)
and h(x′), R̂(h, S) is also convex with respect to h and
for t ∈ [0, 1],

R̂(hS + t∆hS , S−k)− R̂(hS , S−k) ≤
t
[
R̂(hS−k , S−k)− R̂(hS , S−k)

]
.

(15)

Similarly,

R̂(hS−k − t∆hS , S−k)− R̂(hS−k , S−k) ≤
t
[
R̂(hS , S−k)− R̂(hS−k , S−k)

]
.

(16)

Summing these inequalities yields

R̂(hS + t∆hS , S−k)− R̂(hS , S−k)+
R̂(hS−k − t∆hS , S−k)− R̂(hS−k , S−k) ≤ 0.

(17)

By definition of hS and hS−k as functions minimizing
the objective functions, for all t ∈ [0, 1],

F (hS , S)− F (hS + t∆hS , S) ≤ 0
F (hS−k , S−k)− F (hS−k − t∆hS , S−k) ≤ 0.

(18)

Multiplying Inequality 17 by C and summing it with
the two Inequalities 18 lead to

A + ‖hS‖2K − ‖hS + t∆hS‖2K + ‖hS−k‖2K
−‖hS−k − t∆hS‖2K ≤ 0,

(19)

Magnitude-Preserving Ranking Algorithms

with A = C
(
R̂(hS , S)− R̂(hS , S−k)+

R̂(hS + t∆hS , S−k)− R̂(hS + t∆hS , S)
)
. Since

A = C
m2

[∑
i 6=k c(hS , xi, xk)− c(hS + t∆hS , xi, xk)+∑

i 6=k c(hS , xk, xi)− c(hS + t∆hS , xk, xi)
]
,

(20)
by the σn-admissibility of c,

|A| ≤ 2Ctσn

m2

∑
i 6=k(|∆hS(xk)|+ |∆hS(xi)|)

≤ 4Ctσnκ
m ‖∆hS‖K .

Using the fact that ‖h‖2K = 〈h, h〉 for any h, it is not
hard to show that

‖hS‖2K − ‖hS + t∆hS‖2K + ‖hS−k‖2K−
‖hS−k − t∆hS‖2K = 2t(1− t)‖∆hS‖2K .

In view of this and the inequality for |A|, Inequality 19
implies 2t(1 − t)‖∆hS‖2K ≤ 4Ctσnκ

m ‖∆hS‖K , that is
after dividing by t and taking t → 0,

‖∆hS‖K ≤ 2Cσnκ

m
. (21)

By the σn-admissibility of c, for all x, x′ ∈ X,

|c(hS , x, x′)− c(hS−k , x, x′)|
≤ σn(|∆hS(x′)|+ |∆hS(x)|)
≤ 2σnκ‖∆hS‖K

≤ 4Cσ2
nκ2

m .

This shows the β-stability of the algorithm with β =
4Cσ2

nκ2

m .

To shorten the notation, in the absence of ambigu-
ity, we will in the following write R̂(hS) instead of
R̂(hS , S).
Theorem 1. Let c be any of the cost functions defined
in Section 2.1. Let L be a uniformly β-stable algorithm
with respect to the sample S and cost function c and
let hS be the hypothesis returned by L. Assume that
the hypotheses in H are bounded, that is for all h ∈ H,
sample S, and x ∈ S, |h(x)− yx| ≤ M . Then, for any
ε > 0,

Pr
S∼D

[
|R(hS)− R̂(hS)| > ε + 2β

]
≤ 2e

− mε2

2(βm+(2M)n)2 .

Proof. We apply McDiarmid’s inequality (McDiarmid,
1998) to Φ(S) = R(hS) − R̂(hS). We will first give a
bound on E[Φ(S)] and then show that Φ(S) satisfies
the conditions of McDiarmid’s inequality.

We will denote by Si,j the sample derived from S by
replacing xi with x′i and xj with x′j , with x′i and x′j
sampled i.i.d. according to D.

Since the sample points in S are drawn in an i.i.d.
fashion, for all i, j ∈ [1,m],

ES [R̂(hS)]= 1
m2

∑m
i=1

∑m
j=1 E[c(hS , xi, xj)]

= ES∼D[c(hS , xi, xj)]
= ESi,j∼D[c(hSi,j , x′i, x

′
j)]

= ES,x′i,x
′
j∼D[c(hSi,j , x′i, x

′
j)].

(22)

Note that by definition of R(hS), ES [R(hS)] =
ES,x′i,x

′
j∼D[c(hS , x′i, x

′
j)]. Thus, ES [Φ(S)] =

ES,x,x′ [c(hS , x′i, x
′
j) − c(hSi,j , x′i, x

′
j)], and by β-

stability (Proposition 1)

|ES [Φ(S)]| ≤ ES,x,x′ [|c(hS , x′i, x
′
j)− c(hSi , x′i, x

′
j)|]+

ES,x,x′ [|c(hSi , x′i, x
′
j)− c(hSi,j , x′i, x

′
j)|] ≤ 2β.

Now,

|R(hS)−R(hSk)|= |ES [c(hS , x, x′)− c(hSk , x, x′)]|
≤ ES [|c(hS , x, x′)− c(hSk , x, x′)|]
≤ β.

For any x, x′ ∈ X, |c(hS , xk, xj) − c(hSk , xi, x
′
k)| <

ES [|c(hSk , x, x′)−c(hSk , x, x′)|] ≤ (2M)n, where n = 1
or n = 2. Thus, we have

|R̂(hS)− R̂(hk
S)| ≤

1
m2

∑
i 6=k

∑
j 6=k |c(hS , xi, xj)− c(hSk , xi, xj)|+

1
m2

∑m
j=1 |c(hS , xk, xj)− c(hSk , x′k, xj)|+

1
m2

∑m
i=1 |c(hS , xk, xj)− c(hSk , xi, x

′
k)|

≤ 1
m2 (m2β) + m

m2 2(2M)n = β + 2(2M)n/m.

Thus,

|Φ(S)− Φ(Sk)| ≤ 2(β + (2M)n/m), (23)

and Φ(S) satisfies the hypotheses of McDiarmid’s in-
equality.

The following Corollary gives stability bounds for the
generalization error of magnitude-preserving regular-
ization algorithms.

Corollary 1. Let L be a magnitude-preserving regu-
larization algorithm and let c be the corresponding cost
function and assume that for all x ∈ X, K(x, x) ≤ κ2.
Assume that the hypothesis set H is bounded, that is
for all h ∈ H, sample S, and x ∈ S, |h(x)− yx| ≤ M .
Then, with probability at least 1− δ,

for n = 1,

R(hS) ≤ bR(hS) +
8κ2C

m
+ 2(2κ2C + M)

r
2

m
log

2

δ
;

for n = 2,

R(hS) ≤ bR(hS)+
128κ2CM2

m
+4M2(16κ2C+1)

r
2

m
log

2

δ
.

Magnitude-Preserving Ranking Algorithms

Proof. By Proposition 1, these algorithms are β-stable
with β = 4Cσ2

nκ2

m .

These bounds are of the form R(hS) ≤ R̂(hS)+O(C√
m

)
and are thus effective for values of C �

√
m.

In the next sections, we will examine some of these
magnitude preserving algorithms in more detail.

3. Algorithms

The regularization algorithms based on the cost func-
tions cn

MP and cn
SVR correspond closely to the idea of

preserving the magnitude of preferences since these
cost functions penalize deviations of a predicted dif-
ference of score from the target preferences. We will
refer by MPRank to the algorithm minimizing the
regularization-based objective function based on cn

MP:

F (h, S) = ‖h‖2K + C
1

m2

m∑
i=1

m∑
j=1

cn
MP(h, xi, xj), (24)

and by SVRank to the one based on the cost function
cn
SVR:

F (h, S) = ‖h‖2K + C
1

m2

m∑
i=1

m∑
j=1

cn
SVR(h, xi, xj). (25)

For a fixed n, n = 1, 2, the same stability bounds hold
for both algorithms as seen in the previous section.
However, their running-time complexity is significantly
different.

3.1. MPRank

We will examine the algorithm in the case n = 2. Let
Φ : X 7→ F be the mapping from X to the repro-
ducing Hilbert space. The hypothesis set H that we
are considering is that of linear functions h, that is
∀x ∈ X, h(x) = w · Φ(x). The objective function can
be expressed as follows

F (h, S) = ‖w‖2 + C
1

m2

m∑
i=1

m∑
j=1

[
(w · Φ(xj)−

w · Φ(xi))− (yj − yi)
]2

= ‖w‖2 +
2C

m

m∑
i=1

‖w · Φ(xi)− yi‖2−

2C‖w · Φ̄− ȳ‖2,

where Φ̄ = 1
m

∑m
i=1 Φ(xi) and ȳ = 1

m

∑m
i=1 yi. The

objective function can thus be written with a single
sum over the training examples, which translates in a
more efficient computation of the solution.

Let N be the dimension of the feature space F . For
i = 1, . . . ,m, let Mxi

∈ RN×1 denote the column ma-
trix representing Φ(xi), MΦ̄ ∈ RN×1 a column matrix
representing Φ̄, W ∈ RN×1 a column matrix repre-
senting the vector w, MY ∈ Rm×1 a column matrix
whose ith component is yi, and MȲ ∈ Rm×1 a col-
umn matrix with all its components equal to ȳ. Let
MX ,MX̄ ∈ RN×m be the matrices defined by:

MX = [Mx1 . . . Mxm
] MX = [MΦ̄ . . . MΦ̄]. (26)

Then, the expression giving F can be rewritten as

F = ‖W‖2+2C

m
‖M>

XW−MY ‖2−
2C

m
‖M>

X̄W−MȲ ‖2.

The gradient of F is then given by: ∇F = 2W +
4C
m MX(M>

XW−MY)− 4C
m MX̄(M>

X̄
W−MȲ). Set-

ting ∇F = 0 yields the unique closed form solution of
the convex optimization problem:

W = C ′(I + C ′(MX −MX̄)(MX −MX̄)>
)−1

(MX −MX̄)(MY −MȲ),
(27)

where C ′ = 2C
m . Here, we are using the identity

MXM>
X − MX̄M>

X̄
= (MX − MX̄)(MX − MX̄)>,

which is not hard to verify. This provides the solution
of the primal problem. Using the fact the matrices
(I+ C ′(MX −MX̄)(MX −MX̄)>

)−1 and MX −MX̄

commute leads to:

W = C ′(MX −MX̄)
(
I + C ′(MX −MX̄)

(MX −MX̄)>
)−1(MY −MȲ).

(28)

This helps derive the solution of the dual problem. For
any x′ ∈ X,

h(x′) = C ′K′(I + K̄)−1(MY −MȲ), (29)

where K′ ∈ R1×m is the row matrix whose ith com-
ponent is K(x′, xi) − 1

m

∑m
j=1 K(x′, xj) and K̄ is the

kernel matrix defined by

1
C′ (K̄)ij=K(xi, xj)−

1

m

mX
k=1

(K(xi, xk) + K(xj , xk))

+
1

m2

mX
k=1

mX
l=1

K(xk, xl),

for all i, j ∈ [1,m]. The solution of the optimiza-
tion problem for MPRank is close to that of a ker-
nel ridge regression problem, but the presence of ad-
ditional terms makes it distinct, a fact that can also
be confirmed experimentally. However, remarkably, it
has the same computational complexity, due to the
fact that the optimization problem can be written in
terms of a single sum, as already pointed out above.

Magnitude-Preserving Ranking Algorithms

The main computational cost of the algorithm is that
of the matrix inversion, which can be computed in time
O(N3) in the primal, and O(m3) in the dual case, or
O(N2+α) and O(m2+α), with α ≈ .376, using faster
matrix inversion methods such as that of Coppersmith
and Winograd.

3.2. SVRank

We will examine the algorithm in the case n = 1.
As with MPRank, the hypothesis set H that we are
considering here is that of linear functions h, that is
∀x ∈ X, h(x) = w · Φ(x). The constraint optimization
problem associated with SVRank can thus be rewrit-
ten as

minimize F (h, S) = ‖w‖2 + C
1

m2

m∑
i=1

m∑
j=1

(ξij + ξ∗ij)

subject to

w · (Φ(xj)− Φ(xi))− (yj − yi) ≤ ε + ξij

(yj − yi)− w · (Φ(xj)− Φ(xi)) ≤ ε + ξ∗ij
ξij , ξ

∗
ij ≥ 0,

for all i, j ∈ [1,m]. Note, that the number of con-
straints is quadratic in the number of examples. Thus,
in general, this results in a problem that is more costly
to solve than that of MPRank.

Introducing Lagrange multipliers αij , α
∗
ij ≥ 0, cor-

responding to the first two sets of constraints and
βij , β

∗
ij ≥ 0 for the remaining constraints leads to the

following Lagrange function

L = ‖w‖2 + C 1
m2

m∑
i=1

m∑
j=1

(ξij + ξ∗ij)+

m∑
i=1

m∑
j=1

αij(w · (Φ(xj)− Φ(xi))− (yj − yi)− ε + ξij)+

m∑
i=1

m∑
j=1

α∗ij(−w · (Φ(xj)− Φ(xi)) + (yj − yi)− ε + ξ∗ij)

+
m∑

i=1

m∑
j=1

(βijξij + β∗ijξ
∗
ij).

Taking the gradients, setting them to zero, and ap-
plying the Karush-Kuhn-Tucker conditions lead to the
following dual maximization problem

maximize
1
2

m∑
i,j=1

m∑
k,l=1

(α∗ij − αij)(α∗kl − αkl)Kij,kl−

ε

m∑
i,j=1

(α∗ij − αij) +
m∑

i,j=1

(α∗ij − αij)(yj − yi)

subject to 0 ≤ αij , α
∗
ij ≤ C,∀i, j ∈ [1,m],

where Kij,kl = K(xi, xk) + K(xj , xl) − K(xi, xl) −
K(xj , xk). This quadratic optimization problem can

be solved in a way similar to SVM regression (SVR)
(Vapnik, 1998) by defining a kernel K ′ over pairs
with K ′((xi, xj), (xk, xl)) = Kij,kl, for all i, j, k, l ∈
[1,m], and associating the target value yi − yj to the
pair (xi, xj). The computational complexity of the
quadratic programming with respect to pairs makes
this algorithm less attractive for large samples.

4. Experiments

In this section, we report the results of experiments
with two of our magnitude-preserving algorithms,
MPRank and SVRank.

The algorithms were tested on three publicly avail-
able datasets commonly used for collaborative filter-
ing: MovieLens, Book-Crossings, and Jester Joke.
All datasets are available from the following URL:
http://www.grouplens.org/taxonomy/term/14.

4.1. MovieLens Dataset

The MovieLens dataset consists of approximately 1M
ratings by 6,040 users for 3,900 movies. Ratings are in-
tegers from 1 to 5. For each user, a different predictive
model is derived. The ratings of that user on the 3,900
movies (not all movies will be rated) form the target
values yi. The other users’ ratings of the ith movie
form the ith input vector xi. Missing review values
in the input features are populated with the median
review score of the given reference reviewer.

We followed exactly the experimental set-up of Freund
et al. (1998) and grouped the reviewers according to
the number of movies they have reviewed. The group-
ings were 20− 40 movies, 40− 60 movies, and 60− 80
movies.

Test reviewers were selected among users who had re-
viewed between 50 and 300 movies. For a given test
reviewer, 300 reference reviewers were chosen at ran-
dom from one of the three groups and their rating were
used to form the input vectors. Training was carried
out on half of the test reviewer’s movie ratings and
testing was performed on the other half. The experi-
ment was done for 300 different test reviewers and the
average performance recorded. The whole process was
then repeated ten times with a different set of 300 re-
viewers selected at random. We report mean values
and standard deviations for these ten repeated exper-
iments for each of the three groups.

4.2. Jester Joke Dataset

The Jester Joke Recommender System dataset con-
tains 4.1M continuous ratings in the range from -10.00

Magnitude-Preserving Ranking Algorithms

Table 1. Comparison of MPRank, RankBoost, and Kernel
Ridge Regression for pairwise misrankings, mean and stan-
dard deviation.

Dataset Pairwise Misrankings

MPRank Regression RBoost

MovieLens 47.1% 51.1% 47.6%
40-60 ± 0.5% ± 1.1% ± 0.7%

MovieLens 44.2% 48.4% 46.3%

60-80 ± 0.5% ± 1.3% ± 1.1%

Jester 41.0% 42.9% 47.9%

20-40 ± 0.6% ± 0.7% ± 0.8%

Jester 40.8% 42.0% 43.2%

40-60 ± 0.6% ± 0.6% ± 0.5%

Jester 37.1% 38.5% 41.7%

60-80 ± 0.6% ± 0.6% ± 0.8%

to +10.00 of 100 jokes from 73,496 users. The exper-
iments were set-up in the same way as for the Movie-
Lens dataset.

4.3. Book-Crossing Dataset

The book-crossing dataset contains 278,858 users and
1,149,780 ratings for 271,379 books. The low density
of ratings makes predictions very noisy. Thus, we re-
quired users to have reviewed at least 200 books, and
then only kept books with at least 10 reviews. This
left us with a dataset of 89 books and 131 reviewers.
For this dataset, each of the 131 reviewers was in turn
selected as a test reviewer, and the other 130 review-
ers served as input features. The results reported are
mean values and standard deviations over these 131
leave-one-out experiments.

4.4. Performance Measures and Results

We conducted a number of experiments to compare
the performance of our algorithms with that of Rank-
Boost, an algorithm designed to minimize the pairwise
misranking error (Freund et al., 1998; Rudin et al.,
2005), and kernel ridge regression. The comparison
with regression is motivated by the recent work of Cos-
sock and Zhang (2006) which recommends regression
as a well-founded solution to the traditional ranking
problem in the subset ranking scenario.

The results for MPRank and kernel ridge regression are
obtained using Gaussian kernels. For each dataset, the
width of the kernel and the other cost function param-
eters were first optimized on a held-out sample. The
performance on their respective cost functions was op-

timized and the parameters fixed at these values. For
RankBoost, we used as weak rankers threshold func-
tions over other reviewers’ ratings. The only parame-
ter of RankBoost, the number of boosting rounds re-
quired to minimize the pairwise misranking error, was
also determined on a held-out sample and then fixed
at this value.

Table 1 reports the results of this comparison. It re-
ports the percentage of pairwise misrankings in the
test set of size m′ for all three algorithms, using the
experimental set-up already described:∑m′

i,j=1 1yi>yj∧h(xi)≤h(xj)∑m′

i,j=1 1yi>yj

. (30)

The results suggest that the magnitude-preserving al-
gorithm MPRank has additional benefits over regres-
sion in these tasks. They also show that the pair-
wise misranking error of MPRank is superior to that
of RankBoost in some of the tasks. This further justi-
fies the use of MPRank as a ranking algorithm.

However, our main interest is to test our algorithms
with respect to the magnitude-preserving objective.
The performance measures we report correspond to
the problem we are solving. The cost function of
MPRank is designed to minimize the squared differ-
ence of values for all pairs, hence we report the mean
squared difference (MSD) over all pairs in the test set
of size m′ of a hypothesis h:

1
m′2

m′∑
i=1

m′∑
j=1

((h(xj)− h(xi))− (yj − yi))
2
. (31)

The cost function of SVRank minimizes the absolute
value of the difference for all pairs, hence we report
the average of the 1-norm difference (M1D):

1
m′2

m′∑
i=1

m′∑
j=1

|(h(xj)− h(xi))− (yj − yi)| . (32)

The results are reported in Table 2. They demon-
strate that both the magnitude-preserving algorithms
are successful at minimizing their respective objective.
MPRank obtains the best MSD values and the two al-
gorithms obtain comparable M1D values. However,
overall, in view of these results and the superior com-
putational efficiency of MPRank already pointed out,
we consider MPRank the best performing algorithm
for such tasks.

5. Conclusion

We presented several algorithms for magnitude-
preserving ranking problems and provided stability

Magnitude-Preserving Ranking Algorithms

Table 2. Performance results for MPRank and SVRank,
mean and standard deviation.

Dataset MSD M1D

MPRank SVRank MPRank SVRank

MovieLens 2.01 2.43 1.04 1.17
20-40 ± 0.02 ± 0.13 ± 0.05 ± 0.03

MovieLens 2.02 2.36 1.04 1.15
40-60 ± 0.06 ± 0.16 ± 0.02 ± 0.07

MovieLens 2.07 2.66 1.06 1.24
60-80 ± 0.05 ± 0.09 ± 0.01 ± 0.02

Jester 51.34 55.00 5.08 5.40
20-40 ± 2.90 ± 5.14 ± 0.15 ± 0.20

Jester 46.77 57.75 4.98 5.27
40-60 ± 2.03 ± 5.14 ± 0.13 ± 0.20

Jester 49.33 56.06 4.88 5.25
60-80 ± 3.11 ± 4.26 ± 0.14 ± 0.19

Books 4.00 3.64 1.38 1.32
± 3.12 ± 3.04 ± 0.60 ± 0.56

bounds for their generalization error. We also re-
ported the results of several experiments on public
datasets comparing these algorithms. We view ac-
curate magnitude-preserving ranking as an important
problem for improving the quality of modern recom-
mendation and rating systems. An alternative for in-
corporating the magnitude of preferences in cost func-
tions is to use a weighted misranking error, or weighted
AUC, where the weights reflect the magnitude of pref-
erences and extend existing algorithms. This, how-
ever, does not exactly coincide with the objective of
preserving the magnitude of preferences.

Acknowledgments

The research of Mehryar Mohri and Ashish Rastogi
was partially supported by the New York State Office
of Science Technology and Academic Research (NYS-
TAR). This project was also sponsored in part by the
Department of the Army Award Number W81XWH-
04-1-0307.

References

Agarwal, S., & Niyogi, P. (2005). Stability and general-
ization of bipartite ranking algorithms. Proceedings
of the Conference on Learning Theory (COLT 2005)
(pp. 32–47). Springer, Heidelberg.

Bousquet, O., & Elisseeff, A. (2000). Algorithmic
stability and generalization performance. Advances
in Neural Information Processing Systems (NIPS

1999) (pp. 196–202).

Bousquet, O., & Elisseeff, A. (2002). Stability and gen-
eralization. Journal of Machine Learning Research,
2, 499–526.

Chu, W., & Keerthi, S. S. (2005). New approaches to
support vector ordinal regression. Proceedings of In-
ternational Conference on Machine Learning (ICML
2005) (pp. 145–152).

Cossock, D., & Zhang, T. (2006). Subset ranking using
regression. Proceedings of the Conference on Learn-
ing Theory (COLT 2006) (pp. 605–619). Springer,
Heidelberg.

Crammer, K., & Singer, Y. (2002). Pranking with
ranking. Advances in Neural Information Processing
Systems (NIPS 2001) (pp. 641–647).

Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y.
(1998). An efficient boosting algorithm for combin-
ing preferences. Proceedings of International Con-
ference on Machine Learning (ICML 1998) (pp.
170–178).

Herbrich, R., Graepel, T., & Obermayer, K. (2000).
Large margin rank boundaries for ordinal regres-
sion. In Advances in large margin classifiers, 115–
132. MIT Press, Cambridge, MA.

Joachims, T. (2002). Evaluating retrieval performance
using clickthrough data. Proceedings of the SIGIR
Workshop on Mathematical/Formal Methods in In-
formation 2002.

McCullagh, P. (1980). Regression models for ordinal
data. Journal of the Royal Statistical Society, B, 42.

McCullagh, P., & Nelder, J. A. (1983). Generalized
linear models. Chapman & Hall, London.

McDiarmid, C. (1998). Concentration. Probabilistic
Methods for Algorithmic Discrete Mathematics (pp.
195–248).

Rudin, C., Cortes, C., Mohri, M., & Schapire, R. E.
(2005). Margin-based ranking meets boosting in the
middle. Proceedings of the Conference on Learning
Theory (COLT 2005) (pp. 63–78). Springer, Heidel-
berg.

Shashua, A., & Levin, A. (2003). Ranking with
large margin principle: Two approaches. Advances
in Neural Information Processing Systems (NIPS
2002) (pp. 937–944).

Vapnik, V. N. (1998). Statistical learning theory. New
York: Wiley-Interscience.

