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Abstract

We address classification problems for which
the training instances are governed by a dis-
tribution that is allowed to differ arbitrar-
ily from the test distribution—problems also
referred to as classification under covariate
shift. We derive a solution that is purely dis-
criminative: neither training nor test distri-
bution are modeled explicitly. We formulate
the general problem of learning under covari-
ate shift as an integrated optimization prob-
lem. We derive a kernel logistic regression
classifier for differing training and test distri-
butions.

1. Introduction

Most machine learning algorithms are constructed un-
der the assumption that the training data is governed
by the exact same distribution which the model will
later be exposed to. In practice, control over the data
generation process is often less perfect. Training data
may be obtained under laboratory conditions that can-
not be expected after deployment of a system; spam
filters may be used by individuals whose distribution of
inbound emails diverges from the distribution reflected
in public training corpora (e.g., the TREC spam cor-
pus); image processing systems may be deployed to
foreign countries where vegetation and lighting condi-
tions result in a distinct distribution of input patterns.

The case of distinct training and test distributions in
a learning problem has been referred to as covariate
shift and sample selection bias—albeit the term sam-
ple selection bias actually refers to a case in which each
training instance is originally drawn from the test dis-
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tribution, but is then selected into the training sample
with some probability, or discarded otherwise. The
covariate shift model and the missing at random case
in the sample selection bias model allow for differences
between the training and test distribution of instances;
the conditional distribution of the class variable given
the instance is constant over training and test set.

In discriminative learning tasks such as classification,
the classifier’s goal is to produce the correct output
given the input. It is widely accepted that this is
best performed by discriminative learners that directly
maximize a quality measure of the produced output.
Model-based optimization criteria such as the joint
likelihood of input and output, by contrast, addition-
ally assess how well the classifier models the distribu-
tion of input values. This amounts to adding a term
to the criterion that is irrelevant for the task at hand.

We contribute a discriminative model for learning un-
der arbitrarily different training and test distributions.
The model directly characterizes the divergence be-
tween training and test distribution, without the inter-
mediate — intrinsically model-based — step of estimat-
ing training and test distribution. We formulate the
search for all model parameters as an integrated opti-
mization problem. This complements the predominant
heuristic of first estimating the bias of the training
sample, and then learning the classifier on a weighted
version of the training sample. We study the convexity
of the integrated optimization problem. We derive a
Newton gradient descent procedure, leading to a ker-
nel logistic regression classifier for covariate shift.

After formalizing the problem setting in Section 2, we
review models for differing training and test distribu-
tions in Section 3. Section 4 introduces our discrimina-
tive model and the joint optimization problem. We de-
rive the logistic regression classifier for differing train-
ing and test distributions in Section 5 and report on
experimental results in Section 6. Section 7 concludes.
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Figure 1. Learning with differing training and test distribution. Left: Learning under covariate shift by estimating training
and test densities separately. Center: Generative model of sample selection bias. Right: Kernel mean matching.

2. Problem Setting

In the covariate shift problem setting, a labeled train-
ing sample L = ((x1,¥1),---, (Xm,Ym)) is available.
This training sample is governed by an unknown dis-
tribution p(x|A), labels are drawn according to an un-
known target concept p(y|x). In addition, an unla-
beled test set T = (X;41,-- -5 Xmin) becomes avail-
able. The test set is governed by a different unknown
distribution, p(x|§). Training and test distribution
may differ arbitrarily, but there is only one unknown
target conditional class distribution p(y|x).

The goal is to find a classifier f : x — y and to pre-
dict the missing labels ¥, +1, - - -y Ym4n for the test in-
stances. From a purely transductive perspective, the
classifier can even be seen as an auxiliary step and may
be discarded after the labels ., 41, - - -, Ym+n have been
conceived. The classifier should in any case perform
well on the test data; that is, it should minimize some
loss function E(x ,)g[€(f(x),y)] that is defined with
respect to the unknown test distribution p(x|).

Note that directly training f on the training data L
would minimize the loss with respect to p(x|\). The
minimum of this optimization problem will not gener-
ally coincide with the minimal loss on p(x|0).

3. Prior Work

If training and test distributions were known, then the
loss on the test distribution could be minimized by
weighting the loss on the training distribution with an

instance-specific factor. Shimodaira (2000) illustrates
p(x|)
p(x[A)°

that the scaling factor has to be

Proposition 1 The expected loss with respect to
p(x,y|0) = p(x,y|\) gg)’:‘li; equals the expected loss with
respect to p(x,y|0), when the target distribution p(y|x)

is the same under training and test distribution.

The joint distribution p(x,y|A) is decomposed into
p(x|A)p(ylx,A). Since p(y|x, A) = p(ylx) = p(y|x,0)
is the global conditional distribution of the class vari-
able given the instance, Proposition 1 follows.

Both, p(x|6) and p(x|\) are unknown, but p(x|8) is re-
flected in T', as is p(x|A) in L. Shimodaira (2000) and
Sugiyama and Miiller (2005) propose that estimates
p(x]0) and p(x|A) be obtained from the test and train-
ing data, respectively, using kernel density estimation.
In a second step, the estimated density ratio is used
to resample the training instances, or to train with
weighted examples (Figure 1, left hand side).

This method decouples the problem. First, it esti-
mates training and test distributions. This step is in-
trinsically model-based and only loosely related to the
ultimate goal of accurate classification. In a subse-
quent step, the classifier is derived given fixed weights.

This approach can handle gaps in either distribution.

When a gap occurs in the test distribution, the weight-
B(x|0)
: L PO
in the training distribution, this would lead to a zero

denominator—but the ratio is only evaluated for the
instances that actually occur in L. Clearly, these in-
stances have a positive p(x|\).

ing factor is simply = 0. When a gap occurs

A line of work on learning under sample selection bias
has meandered from the statistics and econometrics
community into machine learning (Heckman, 1979;
Zadrozny, 2004). These results do not require the
training and test distributions to be estimated. Sam-
ple selection bias relies on a model of the data gen-
eration process, illustrated in Figure 1, center. Test
instances are drawn under p(x|#). Training instances
are drawn by first sampling x from the test distribu-
tion p(x|6). A selector variable s then decides whether
x is moved into the training set (s = 1) or is discarded
(s = 0). The distribution of the selector variable maps
the test onto the training distribution:

p(x[A) o p(x[0)p(s = 1]x, 6, A). (1)
Proposition 2 (Zadrozny, 2004; Bickel & Scheffer,
2007) says that minimizing the loss on instances

weighted by p($|x,9,)\)_1 in fact minimizes the ex-
pected loss with respect to 6.

Proposition 2 The expected loss on p(x,yld) o
p(x,y|)\)m equals the expected loss on
p(x,y|0), when p(s|x,0,\) satisfies Equation 1.
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By intuition, the case of a gap in the test distribu-
tion (p(x|¢) = 0) for an instance with positive train-
ing density p(x|A) > 0 should not inflict any damage.
Training instances that have no likelihood under the
test distribution should simply be weighted with a fac-
tor of zero. The sample selection bias model, however,
cannot handle this case because the training distribu-
tion is assumed to be sampled from the test distribu-
tion. Hence, p(s = 1|x,0,\) % = %. In
practice, this problem can be worked-around. But it
indicates that the sample selection bias model is inad-

equate when gaps can occur in the test data.

When the model is implemented, p(s = 1]x,6, ) is
learned from the training and test data. The training
data serve as examples that have been selected into the
training sample (s = 1). But no discarded instances
(s = 0) are available. The test instances have been
drawn directly from p(x|6), selector s has not been in-
stantiated. In practice (Bickel & Scheffer, 2007), an
estimate of p(s = 1|x,6,\) is determined by discrim-
inating the training data (s = 1) from the test data
(unknown s, treated as s = 0).

Maximum entropy density estimation under sample se-
lection bias has been studied by Dudik et al. (2005).
Bickel and Scheffer (2007) impose a Dirichlet process
prior on several learning problems with related sample
selection bias. Elkan (2001); Japkowicz and Stephen
(2002) investigate the case of training data that is only
biased with respect to the class ratio.

Huang et al. (2007) devise the nonparametric ker-
nel mean matching method for learning from differ-
ing training and test distributions. It finds weights
for the training instances such that the first momen-
tum of training and test sets — i.e., their mean value
— matches. ®(-) is a mapping into a feature space and
B is a regularization parameter. Huang et al. derive a
quadratic program from Equation 2 that can be solved
with standard optimization tools.

2
min g H% Zi:l Bi®(x;) — %L Zi:tn-&-l P(x;) ’ (2)
subject to 3; € [0, B] and |% S B — 1| <e

Figure 1 summarizes different existing approaches for
learning with differing training and test distributions.

4. Discriminative Learning for Differing
Distributions

In this section, we derive a purely discriminative model
that directly estimates weights for the training in-
stances. No distributions over instances are modeled
explicitly. Figure 2 illustrates the model. For each ele-

ment x of the training set, selector variable o = 1 indi-
cates that it has been drawn into L. For each x in the
test data, o = 0 indicates that it has been drawn into
the test set. The probability p(c = 1|x,6,\) has the
following intuitive meaning: Given that an instance
x has been drawn at random from the bag L UT of
training and test set; the probability that x originates
from L is p(c = 1|x,0,)\). Hence, the value of o is
observable for all training (o = 1) and test (o = 0) in-
stances. The dependency between the instances and o
is undirected; neither training nor test set are assumed
to be generated from the other sample.

Figure 2. Discriminative model for learning with differing
training and test distributions.

In the following equations we will derive an expression
ﬁ ((::‘li; using the selector variable o. In Equation 3
two prior probabilities are introduced that cancel each
other out. The prior probabilities reflect the ratio of
the number of labeled to unlabeled examples. Equa-
tions 4 to 6 follow from arithmetics. In order to un-
derstand the equality of 6 and 7, observe that Bayes’
rule, applied to the term p(c = 1|x,6,A) found in 7,
yields p(o = 1|x,0,\) «x p(o = 1|0, \)p(z|o = 1,6, A).

for

Training instances (o = 1) are governed by \; they
are conditionally independent of # given A. Hence,
p(z|lo = 1,0,)) = p(x|\). For test instances (¢ = 0),
equality p(x|c = 0,0,)\) = p(x|f) holds accordingly.
The conditional p(o = 1|x, 6, A) discriminates training
(o0 = 1) against test instances (o = 0).

p(x[0) _ plo =10,)) p(o = 0[6, A) p(x|0) (3)
p(x[\)  p(o =00, ) p(c = 1|6, ) p(x|\)
p(o =1|0,)) ( p(o = 0]6, \)p(x|9) )
2o =060 \' T plo =116, Np(xI) ®
o=1on 1
_ —1 (5)
p(o =00, )‘)\ PIC=LE DY
p(o=1[0,X\)p(x[X)
plo = 110,0) ! 1) ©
- C=NBYICTY
p(o = 010, )\ Ble it s
_plo =180 1 . o
p(oc =016, )\ p(o = 1[x,6, \)

The above model leaves us with the problem of learn-
ing a model p(o = 1|x, v) of p(c = 1]x, 6, \); according
to Equation 7, this will then provide us with a weight
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for each example. Finally, a classifier has to be learned
from the weighted data. An obvious approach is to
exercise these steps sequentially; all existing work on
learning from biased samples has followed this idea of
solving two optimization problems sequentially.

It should be noted that solving two subsequent opti-
mization problems is an ad-hoc approach to the ac-
tual problem at hand. The integrated learning prob-
lem is to find parameters v for a model p(o = 1|x,V)
of p(c = 1]x,0,\) and parameters for f(x;w), the
final classifier. We will therefore solve the prob-
lem of finding the entire vector of MAP parameters:
[w,v]i;ap = argmax,, , p(w,v|L,T). Equation 8 ap-
plies the chain rule, 9 exploits that the classifier w is
independent of the test data T, given L and the co-
variate shift v. Equation 10 applies Bayes rule twice
and exploits that w is independent of v.

Equation 10 shows that the posterior can be factor-
ized into the likelihood of the training data given the
model parameters P(L|w, V), the likelihood of the ob-
served selection variables o — written P(L,T|v) —, and
the priors on the model parameters. Since the goal is
discriminative training, the likelihood of the training
data P(L|w,v) is resolved as just the conditional like-
lihood of the class values y; over the training instances
in Equation 11—this is standard in logistic regression
and SVMs. We now use the weighted likelihood ex-

pression of Manski and Lerman (1977). Intuitively,
p(:m dictates how many times, on average, x should

occur in L if L was governed by the test distribution

0. When the individual conditional likelihood of x is

p(y|x, w), then the likelihood of 5 Ez‘li; occurrences of
(x[6)

x is p(y|x, w) BxIn) |

Resolving g ‘Iig according to Equation 7 leads to the

first factor of Equation 11. In Equation 12, constants
p(oc=1]v) and p(c =0|v) are drawn out of the product.

p(W,V|L,T) = p(W|V,L,T)p(V‘L,T) (8)
= p(wl|v, L)p(v|L,T) 9)
o< P(L|w,v)P(L,Tv)p(w)p(v) (10)
- ﬁp(yi|xi;w)5§533§(p<oi1xi;v>‘1)>

p(o=1|v)
p(c=0[v)

HP(yxi;wwméw‘l) (12)

m m—+n

P(o; = 1x;;v) [ [ P(o:

1=m-+1

@
I
—

@
Il
-

; = 0]x;; v)) p(w)p(v)

Term P(L,T|v) is the likelihood of the selector vari-
ables o;, given parameter v of the bias model. It is
a product over all training and test instances (Equa-
tion 11) and can be spelled out as in Equation 12.
Equation 12 gives the joint optimization criterion that
has to be maximized in order to find MAP parameters
[v,w]T. The first factor corresponds to the likelihood
of the classifier’s parameters w, the second term to the
model of the discrepancy between training and test dis-
tribution. The factors interact by means of v which
occurs in both terms. First modeling the discrepancy
between training and test distribution (i.e., choosing
v to maximize the second factor) and then training the
classifier (choosing w to maximize the first factor for
fixed v) is a plausible heuristic, but it is not generally
optimal.

Out of curiosity, let us briefly consider the extreme
case of disjoint training and test distributions; i.e.,

p(x]0)p(x|A) = 0 for all x. In this case, the second fac-

tor is maximized by a v that assigns p(o = 1|x;v) =1
for all elements of L (subject to a possible regulariza-
tion imposed by p(v)). Hence, the likelihood of the
training data p(y|x,w)T~! equals 1 for all possible
classifiers w. The choice of the classifier w is thus
determined solely by the inductive bias p(w). This re-
sult makes perfect sense because the training sample
contains no information about the test distribution.

5. Kernel Logistic Regression Classifier

We will now use the logistic function as a model of
both the likelihood of y given x, and of the value of
the selector variable o given x:

1
1+ exp(—wTx) (13)

ply=1x;w) =

In addition, we impose the usual exponential prior on
the parameters:

_WTW _VTV
)i w57 05)

By maximizing the joint posterior (Equation 12) over
the parameter vector [w,v]T, we will arrive at a logistic
regression classifier for covariate shift.

p(w) o exp (

Optimization Problem 1 Owver all w, and v, maz-
imize p(w,v|L,T) (as given in Equation 12), where

p(y = 1|x,w) and p(c = 1|x,Vv) are specified in Equa-

tions 18 and 14 and p(w) and p(v) in Equation 15.
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5.1. Primal Logistic Regression

We derive a Newton gradient method that directly
maximizes Optimization Problem 1 in the attribute
space. To this end, we need to derive the gradi-
ent W and 2WVILT) o1 the Hessian —
the second derivatives of p(w,v|L,T). It consists of
9?p(w.v|L.T) 9?p(w.v|L.T) 9p(w,v|L.T)

2w ) owov 2v :

, and

The update rule assumes the form of a set of linear
equations that have to be solved for the update vec-
tor [Aw, Ay]T. It depends on the current parameters
[w,v]T, all combinations of training and test data, and
resulting coefficients. In order to express the update
rule as a single equation in matrix form, we define

LT o
X=|0 LT|,
o TT

where L and T are the matrices of training vectors,
and test vectors respectively.

Theorem 1 The update step for the Newton gradi-
ent descent maximization of Optimization Problem 1
is [w,v/]T — [w,v]T + [Aw, Ay]T with

(XTAX +8) ﬁ“”} =X"e—S m . (16)
The definitions of coefficients A, e, and S — and the
proof of the theorem — can be found in Appendiz A.

Given the parameter w, a test instance x is classified
as f(x;w) = argmax,p(y|x; w) (Equation 13).

5.2. Kernel Logistic Regression

We derive a kernelized version of the logistic regression
classifier for differing training and test distributions. A
transformation ® maps instances into a target space
in which kernel function k(x;,x;) calculates the inner
product ®(x;)T®(x;).

The update rule (Equation 16) thus becomes

(@(X)TAD(X) + S) ﬁﬂ — p(X)Te—8 m (17)

According to the Representer Theorem, the optimal
separator is a linear combination of examples. Pa-
rameter vectors w and v in the dual space weight the
influence of all examples:

o]

Equation 17 can therefore be rewritten as Equation
18. We now multiply ®(X) from the left to both sides

in Equation 19. We replace all resulting occurrences

of ®(X)®(X)T by the kernel matrix K and arrive at
Equation 20; the details of the coefficients S’ can be
found in Appendix A. Equation 20 is satisfied when
Equation 21 is satisfied. Equation 21 is the update
rule for the dual Newton gradient descent.

(@(X)TAD(X) + 8)D(X)" [ﬁ“’}

= ®(X)Te—SHX)T m (18)

(X)(®(X)TAG(X) + S)B(X)T EW]

(KAK + KS') [ﬁﬂ -

(AK + 8 [i“} = e-¢ m (21)
Given the parameters, test instance x is classified by
F(x;w) = argmax, p(ylx; w):

1
1+ exp (= 20770 wiki(x, x7))

ply=1xw) = - (22)

5.3. Solving the Optimization Problems

The optimization problems for the regular and kernel
logistic regression classifiers are convex and therefore
the Newton gradient descent algorithm is not only effi-
cient, but will also find the global maximum with cer-
tainty. The question arises whether the same is true
for the logistic regression with differing training and
test distributions. Alas, this is not generally the case.

Theorem 2 Optimization Problem 1 is not generally
convez. It contains local pockets of convexity.

It is generally a good choice to select the parameters
of a regular, iid logistic regression classifier as starting
point for the Newton gradient search. Thereby, the
search converges to a local optimum that is at least as
good as the iid classifier. Since did logistic regression
has a convex optimization criterion, this starting point
is easily found.

Corollary 1 The set of all vectors w that separate
the training instances is a convex set. Within this set,
Optimization Problem 1 is also convex. That is, if the
global mazimum of Optimization Problem 1 separates
the training data, then it can be found from any start-
ing point that also separates the training data.

The proofs of Theorem 2 and Corollary 1 can be found
in Appendix B.
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Figure 3. Average reduction of 1-AUC risk over nine users for spam filtering (left) and Cora Machine Learning/Networking
classification before and after 1995 (center) and average increase of AUC for landmine detection over 812 pairs of mine

fields (right) depending on the number of test examples.

6. Empirical Results

We study the benefit of logistic regression for covari-
ate shift (“LR for covariate shift”) and other reference
methods on spam filtering, text classification and land-
mine detection problems. The first baseline is a classi-
fier trained under iid assumption. All other reference
methods consist of a two-stage procedure: first, the
difference between training and test distribution is es-
timated, the classifier is trained on weighted data in a
second step. The baselines differ in the first stage, the
second stage is based on a logistic regression classifier
with weighted examples in any case.

The first reference method is two-stage logistic regres-
sion (“two-stage LR”). The example weights are com-
puted according to Equation 7, p(c = 1|x,Vv) is esti-
mated by training a logistic regression that discrimi-
nates training from test examples. The second method
is the two-stage procedure for learning under sample
selection bias (Zadrozny, 2004; Bickel & Scheffer, 2007)
(“two-stage LR for SSB”). It estimates p(s = 1|x,v)
like the previous method, the training examples are
reweighted by p(s = 1|x,v)~! and the weights are nor-
malized. The third method is kernel mean matching
(Huang et al., 2007). In the fourth method, separate
density estimates for p(x|A) and p(x|0) are obtained
using kernel density estimation (Shimodaira, 2000),
the bandwidth of the kernel is chosen according to the
rule-of-thumb of Silverman (1986). We tune the reg-
ularization parameters of the logistic regression meth-
ods, the B parameter of kernel mean matching, and
the variance parameter of the RBF kernels on a sepa-
rate tuning set.

For the spam filtering experiments we use the prepro-
cessed data sets of Bickel and Scheffer (2007). There
are nine different inboxes with test emails (5270-10964

emails, depending on inbox) and one set of training
emails from different sources. We use a fixed set of
1000 emails as training data. We randomly select 32-
2048 emails from one of the original inboxes. We re-
peat this process ten times. The performance measure
is the rate by which the 1-AUC risk is reduced (Bickel
& Scheffer, 2007) over the #id baseline; it is computed
as 1— %. We use linear kernels for all methods.
Figure 3 (left) shows the result for various numbers of
test examples. The results for a specific number of
test examples are averaged over 10 random test sam-
ples and averaged over all nine inboxes. Averaged over
all users and inbox sizes the absolute AUC of the #id
classifier is 0.992. Error bars indicate standard errors
of the 1-AUC risk.

The integrated logistic regression classifier for covari-
ate shift outperforms all reference methods, the differ-
ences are highly significant. For 2048 examples the
1-AUC risk is even reduced by an average of 50%)!
For this problem, kernel mean matching fails to beat
the baseline on average. We believe that kernel mean
matching does not harmonize well with linear kernels.

We now study text classification using computer sci-
ence papers from the Cora data set. The task is to dis-
criminate Machine Learning from Networking papers.
We select 1219 papers written before 1995 from both
classes as training examples and 1820 papers written
after 1995 as test examples. Title and abstract are
transformed into term frequency vectors, the number
of distinct words is 40,000. We again use linear kernels
and average the results over 10 random test samples for
different sizes of test sets. The resulting 1-AUC risk
is shown in Figure 3 (center). The average absolute
AUC of the iid classifier is 0.979. The logistic regres-
sion for covariate shift outperforms all other methods,
for 1024 examples it reduces the 1-AUC risk by 18%.
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In a third set of experiments we study landmine de-
tection using the data set of Xue et al. (2007). The
collection contains data of 29 mine fields in different
regions. Binary labels (landmine or safe ground) and
nine dimensional feature vectors extracted from radar
images are provided. There are about 500 examples
for each mine field. Each of the fields has a distinct
distribution of input patterns, varying from highly fo-
liated to desert areas.

We enumerate all pairs of mine fields, using one field
as training, and the other as test data; results are in-
creases over the #id baseline, averaged over all 29 x 28
combinations. We use RBF kernels for all methods.
The results are displayed in Figure 3 (right). The av-
erage absolute AUC of the #id baseline is 0.64 with a
standard deviation of 0.07. For this problem, logistic
regression for covariate shift and kernel mean match-
ing outperform all other methods on average. There is
no significant difference between kernel mean match-
ing and the integrated logistic regression classifier, but
all other reference methods perform worse.

7. Conclusion

Equation 12 states the criterion to be maximized for
learning a MAP classifier under covariate shift. Pro-
cedures that deviate from directly maximizing Equa-
tion 12, for instance by first only tuning parameters v
of the example-specific weights and then learning the
classifier w for fixed weights, only approximate the
MAP classifier. Optimization Problem 1 is the special
case of Equation 12 for the kernel logistic regression
classifier. We derived a Newton gradient descent pro-
cedure. For spam and classification of scientific papers
with linear kernels, the logistic regression classifier for
covariate shift outperforms all references; for landmine
detection with RBF kernels, both kernel mean match-
ing and the logistic regression classifier perform well.
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A. Newton Gradient Descent

In this Appendix, we derive the Newton gradient de-
scent method for the logistic regression classifier for
differing training and test distributions.

Equations 13 and 14 detail the conditional distribu-
tions of the class and selector variables. We abbreviate

pi =p(y =1xi;w); ¢ =p(o; =1]x4;V)

and thus rephrase Optimization Problem 1 (Equation
12) with logistic conditionals, exponential prior, and
binary labels y; € {0,1} as

p(w,v|L,T)

plo=1]v)

> (ﬁ (ri* (1 *m)l‘“)q%iv S (23)

i=1

v n, T T

e Ti(] _ g\l —-W' W —v'v
(q;* (1 —qq) exp 5— | exp

= 2s2, 2s2
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The maximum likelihood estimate of p(oc = 1|v)/
p(o = 0]v) is ; a symmetric beta prior with parame-
ter a may be contamed in p(v) which leads to a MAP
estimate of Z’i{j‘ We omit « for notational brevity.

The log-posterior is

log p(w,v|L,T)
m Z (o =1) Getompi+ (1w tos1 =) (20)
m+n

+ Z (0ilogqi + (1 — o) log(l — qi))—
i=1

WTW VTV

252, B 252 +C

We compute the gradient with respect to w and v.

dlog p(w, v|L, T)

25

ow, (25)
m o 1 1

= =3 (* - 1) (yi —pi)xij — 5 w; (26)
n qi Sw

i=1
dlogp(w,v|L,T)
Ov;

= *Z (*—1) —yilogpi — (1 —yi)log (1 — ps))xi;
m+n 1
+ 3 (os — @) miy — 2V (27)
i=1 v

The Hessian is the matrix of second derivatives.

8% logp(w,v|L,T)

B’Ll)jawk
1
= —-— Z (* - 1) pi (1 —pi) TijTip — o2 0ik (28)
w
8% log L, T
ogp(w,v|L,T) (29)
avj(”)wk

T Z <* - 1) (yi — pi)TijTik (30)

3% logp(w,v|L,T)
Ov;0vy

= —— Z (* — 1) (—yilogpi — (1 — y;)log (1 — pi))zijxin
min

- Z qi (1 — q,)z” ik — *%k (31)

i=1

We define the following abbreviations.

a; = %(%_1>(yi_pi) (32)
b= 2 o1) Cutonm - -y loe (1 - p) (39
6 = %(i—l)pium) (31)

We can rewrite gradient and Hessian.

Olog L

OlogLviw)  _ o 2y (35)
ow

dlog L(v,

Mo LVW) 1 diag (bs +1 — qi)1 +
8v i=1..m

T diag (—q@m+4)1 — 5‘72v (36)

i=1l..n

8% log L

O"logLv,w) _ —Ldiag(e)L” — 32T (37)
oOwow

8% log L(v,

OlogLlviw) 4 ig(a)L” (38)
owov

8% log L(v,

Flsllviw) _ g diag (b +q: (1~ 4) LT (39)
ovov i=1

—-T dzag (gm+i (1 — gm+i)) TT*SJQI

i=

Now we define S;; = sw2 for ¢ = 1..dim(L) and

Sdim(L)+j,diIn(L)+j = 8;2 for j = 1d1m(T) and set

LT 0
X_|:0 LT:|, e diag (b; +1 qi)1

i=1..m
0 T" diag (—gm4i)1
i=l..n
diag(c) diag(a) 0
A= diag(a) _gilag (bs +q: (1 —q4)) 0
0 0 diag (gm+i (1 — gm+i))
i=1..n

The Newton update rule for w and v can now be
expressed as

[ y,/ ] = [ v } +(XTAX+S)_1(XTe—S[ v D .
For the kernelized update rule S is replaced by S’ such
that ®(X)SP(X)T = d(X)B(X)TS, ie., S = 532
for i = 1.m and Sp4jmtj = sy° for j = l.m +n,
and ®(X) is defined by

®LT) o0
PX)=| 0 LT
0  &(TT)

B. Proof of Theorem 2 and Corollary 1

The optimization criterion is convex if the (negative)
Hessian is positive semi-definite, which means A is pos-
itive semi-definite. This, in turn, is the case if and
only if the Cholesky decomposition of A exists; i.e.,
if there is a G such that GTG = A. According to
the Cholesky-Crout algorithm the diagonal olomcnts of

the second block of G are \/b +¢; (1 —¢) — -+ Hence,
the Cholesky decomposition exists if and only if for all

2
training instances x;: b; + ¢; (1 —¢;) — = > 0. Re-

cq
solving a;, b;, and ¢;, this is equivalent to

(. n2> _Di
Vi,y; =0: g7 > . —In —pi (40)
Vi =1: 2 > 1= _In L

Equation 40 characterizes the local pockets of convex-
ity of the optimization criterion. For all linear clas-
sifiers, the version space is well known to be a con-
vex set; the corner points are those separators w that
touch one of the training examples. Within this set,
w can be chosen with a sufficiently large norm to sat-
isfy Equation 40. Hence, Optimization Problem 1 is
convex within this set which proves Corollary 1.

Equation 40 also indicates that the larger the number
of test examples n, the more likely the condition holds
and the global optimum can be found by the algorithm.



