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Abstract

We provide a framework to exploit dependen-
cies among arms in multi-armed bandit prob-
lems, when the dependencies are in the form
of a generative model on clusters of arms.
We find an optimal MDP-based policy for
the discounted reward case, and also give an
approximation of it with formal error guaran-
tee. We discuss lower bounds on regret in the
undiscounted reward scenario, and propose
a general two-level bandit policy for it. We
propose three different instantiations of our
general policy and provide theoretical justifi-
cations of how the regret of the instantiated
policies depend on the characteristics of the
clusters. Finally, we empirically demonstrate
the efficacy of our policies on large-scale real-
world and synthetic data, and show that they
significantly outperform classical policies de-
signed for bandits with independent arms.

1. INTRODUCTION

Multi-armed bandit problems have been an active area
of research since the 1950s. The problem can be stated
as follows (J.C.Gittins, 1979): there are N arms, each
having an unknown success probability of emitting a
unit reward. The success probabilities of the arms are
assumed to be independent of each other. The ob-
jective is to pull arms sequentially so as to maximize
the total reward. Many policies have been proposed
for this problem under the independent-arm assump-
tion (Lai & Robbins, 1985; P.Auer et al., 2002). In
this paper we drop this assumption and focus on the
bandit problem where the arms are dependent. For ex-
ample, consider a simple bandit instance which has 3
arms, with success probabilities θ1, θ2 and θ3, where
one also has a-priori knowledge that |θ1 − θ2| < .001.
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This constraint induces dependence between arms 1
and 2. Is it possible to construct policies that perform
better than those for independent bandits by exploit-
ing the similarity of the first two arms?

This question is not merely of theoretical interest. For
instance, the lucrative Internet advertising business is
based on selecting ads to display on webpages. This
ad-selection problem can be cast as a bandit problem
where each ad corresponds to an arm, displaying an
ad corresponds to an arm pull, and user clicks are the
reward. Ads with similar text, “bidding phrase,” and
advertiser information are likely to have similar click
probabilities, and this creates dependencies between
the arms of the bandit.

We formalize this problem in the paper. In particular,
we propose a new variant of the multi-armed bandit
problem where the arms have been grouped into clus-
ters. For the toy example discussed previously, one
can consider arms 1 and 2 together as a cluster, arm
3 as another cluster, and “reduce” the 3-arm problem
to a 2-cluster problem. The latter may be more ef-
ficient to solve due to fewer number of clusters. We
show that this intuition is indeed justified, and design
policies that exploit such dependencies.

Our contributions: We formalize and study multi-
armed bandits with dependent arms (henceforth, de-
pendent bandits) for both the discounted and undis-
counted reward scenarios. For the discounted reward
objective, we find the optimal MDP-based solution for
dependent bandits. At each timestep, this policy com-
putes an (index, arm) pair for each cluster, then picks
the cluster with the highest index and pulls the corre-
sponding arm. However, as with independent bandits,
computing the optimal is often infeasible and approx-
imations are necessary. We provide error bounds on a
simple approximation to the optimal policy.

For the undiscounted reward scenario, we first discuss
an upper bound on the performance of any bandit pol-
icy. We then present a general and computationally
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feasible two-stage policy that pulls an arm by first
choosing a cluster, and then choosing an arm within
that selected cluster. We give three intuitive instanti-
ations of this general policy. We explore their proper-
ties and the effects of cluster characteristics on their
performance. We also empirically demonstrate, over
simulated as well as real-world data, the significant
performance boost they provide over traditional poli-
cies for independent bandits.

The rest of the paper is organized as follows. We
discuss related work in Section 2, and formalize our
problem in Section 3. We then discuss the discounted
and undiscounted reward scenarios in Sections 4 and 5.
Section 6 details empirical results on both real-world
and simulated data. Finally, we conclude in Section 7.

2. RELATED WORK

The multi-armed bandit problem has a rich litera-
ture. J.C.Gittins (1979) showed the optimal solution
to the k-armed problem that maximizes the expected
total discounted reward is obtained by decoupling and
solving k independent one-armed problems, dramati-
cally reducing the dimension of the state space (see
also (Frostig & Weiss, 1999)). For the finite horizon
undiscounted reward scenario, the asymptotic lower
bound on regret has been shown to be Ω(log T ) while
the average Bayes risk is bounded below by Ω((log T )2)
for a large class of priors, where T is the total num-
ber of arm pulls (Lai & Robbins, 1985; Lai, 1987).
Policies to achieve the lower bound have also been de-
veloped (Lai & Robbins, 1985; Agrawal, 1995; P.Auer
et al., 2002; Kocsis & Szepesvári, 2006). In particular,
the UCB1 scheme (P.Auer et al., 2002) achieves the
O(log T ) bound on regret uniformly instead of asymp-
totically.

The dependent bandit problem is also related to bandit
problems with side observations (Wang et al., 2005).
However, the latter assumes a separate process {Xt}
that provide additional information about the reward
process at each time point; no such separate informa-
tion about the reward process is present in the depen-
dent bandit.

Another related area is active learning, where the goal
is typically to build a classifier over the entire input
space by sequentially choosing new examples to get
labeled from portions of the space where the classifier
confidence is low (MacKay, 1992; Schneider & Moore,
2002). The number of examples needed to achieve
a given prediction accuracy has been studied thor-
oughly (Dasgupta, 2005). However, dependent arms
have not been studied in this context.
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Figure 1. State evolution in the dependent bandit: Solid cir-
cles represent the states of all arms at any time, and dashed
ellipses the clusters of arms. On pulling arm 1, state x1(x2)
changes to x′

1(x
′
2) or x”1(x”2), but x3 does not change.

3. PROBLEM FORMULATION

Formally, the dependent bandit problem is defined as
follows. There is a slot machine with N arms that
are grouped into K known clusters. Each arm i has a
fixed but unknown success probability θi. Let [i] denote
the cluster of arm i. Let C[i] be the set of all arms in
cluster [i] (including i itself), and let C

(−i)
[i] = C[i]\{i}.

In this paper, we assume that the dependencies among
arms in a cluster can be described by a generative
model. The form of the generative model is known
but its parameters are unknown. In particular, let
si(t) be the number of times arm i generated a unit
reward when pulled (“successes”), and fi(t) the num-
ber of “failures.” Then, we assume that

si(t) | θi ∼ Bin(si(t) + fi(t), θi) (1)
θi ∼ η(π[i]) (2)

where η(.) is a probability distribution and π[i] is the
parameter set for cluster [i]. Intuitively, πC abstracts
out the dependence of arms in cluster C on each other;
given πC , each arm is independent of all other arms.

In each timestep t, one arm i must be chosen
(“pulled”), and it emits a reward R(t) which is 1 with
probability θi, and 0 otherwise. The objective is to
pull arms so as to maximize the expected discounted
reward

E[Rewarddisc] =
∞∑

t=0

αtE [R(t)] (3)

where 0 < α < 1 is a discounting factor. Alternatively,
we could maximize the expected undiscounted finite-
time reward E[Rewardfin(T )] =

∑T
t=0 E [R(t)] for a

given time horizon T . Maximizing the objective func-
tion is equivalent to minimizing the expected regret
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In each timestep t

• Policy step: A bandit policy is applied to
choose the next arm to pull.

• Update step: The result of the arm pull (i.e.,
reward) is used to update the parameters of
the policy.

Figure 2. Framework for bandit algorithms

E[Reg(T )] until time T , where the regret of a policy
measures the loss it incurs compared to a policy that
always pulls the optimal arm, i.e., the arm with the
highest θi.

Next, we give an equivalent formulation of our depen-
dent bandit problem (Puterman, 2005), which is later
used in deriving the optimal solution.

Equivalent State-space formulation: Associated
with each arm i at time t is a state xi(t) con-
taining sufficient statistics for the posterior distribu-
tion of θi given all observations until t: xi(t) =
(si(t), fi(t), π[i](t)), where π[i](t) is the maximum like-
lihood estimate of π[i] at time t.

If arm i is pulled at time t, it can transition to a “suc-
cess” state with probability pi(xi(t)) and emit unit
reward, or to a “failure” state and emit zero reward.
Here, pi(xi(t)) is the MAP estimate of θi. This new ob-
servation (success or failure) changes π[i](t), which si-
multaneously changes the states for each arm j ∈ C[i].
For arms not in C[i], the state at t + 1 is identical
to that at t. For example, in Figure 1, pulling arm 1
changes both states x1 and x2 (due the the dependency
between the two arms), while leaving x3 intact.

Note the difference from the independent bandit prob-
lem: once an arm i is pulled, the state changes for
not only i but also all arms in C

(−i)
[i] . Intuitively, the

dependencies among arms in a cluster imply that the
feedback R(t) for one arm i also provides information
about all arms in C

(−i)
[i] , thus changing their states.

Bandit algorithms: Typically, algorithms for ban-
dit problems iterate over two steps, as shown in Fig-
ure 2. For the independent bandit, the update step
needs to look only at the pulls and rewards of each
arm in isolation. For the dependent bandit, the up-
date step involves computing π[i](t) given data on all
prior arm pulls and corresponding rewards from each
cluster; but this is typically a well understood statis-
tical procedure. However, incorporating dependence
information in the policy step is non-trivial and not
well studied in the literature, and we discuss it in the
following two sections.

4. POLICY FOR DISCOUNTED
REWARD

We first discuss the optimal policy for dependent ban-
dits with discounted reward (Equation (3)). Every
timestep, it computes an (index, arm) pair for each
cluster, and then picks the cluster with the highest in-
dex and pulls the corresponding arm. However, com-
puting the index exactly is infeasible. We prove er-
ror bounds for a policy that approximates the optimal
policy, and show that it gets arbitrarily close to the
optimal policy with increasing computing power.

4.1. OPTIMAL POLICY

Consider the following MDP M. Every state i is a
vector of the number of successes and failures of all
arms. When an arm is pulled, the corresponding state
changes to one of two possible states depending on
whether the reward was zero or one, as discussed in
the equivalent state-space formulation of Section 3.
Note that the prior πC(t) can be computed from the
state vector itself, and the transition probabilities us-
ing πC(t). By the theory of dynamic programming,
there is a value function V (i) for every state i:

V (i) = (4)

max
1≤a≤N

 ∑
j∈S(i,a)

p(i, j) · (R(i, j) + αV (j))

 ,

where α is the discounting factor, a represents any arm
that can be pulled, S(i, a) the set of possible states
this pull can lead to (i.e., the “success” and “failure”
states), and R(i, j) is one when j is reached by a suc-
cess from i and zero otherwise. The optimal policy
for M picks the action (i.e., pulls the arm) that max-
imizes V (i), and this is clearly the optimal policy for
our bandit problem.

We show now that it is not necessary to solve the full
MDP described above. Instead, we can solve slightly
modified MDPs that are restricted to the individual
clusters, and combine those results to achieve the same
optimal policy. In particular, in the restricted MDP
for cluster c, we allow each state to have a “retirement
option,” which is a transition to a final rest state with
a one-time reward of M , as in (Whittle, 1980).

Define Vc(ic,M) to be the value function for the re-
stricted MDP for cluster c:

Vc(ic,M) = (5)

max

M, max
a∈Cc

∑
jc∈S(ic,a)

p(ic, jc) · (R(ic, jc) + αVc(jc,M))
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where ic contains only the entries of i belonging to
cluster c. Let a(ic,M) be the action (possibly retire-
ment) that maximizes Vc(ic,M), but with ties broken
in favor of arm pulls. Define the cluster index γc as

γc = inf {M | Vc(ic,M) = M} (6)

Let the largest cluster index belong to cluster c∗.
Theorem 1. The optimal policy at state i for the de-
pendent bandit is to choose action a(ic∗ , γc∗).

The proof is similar to that of the optimality of Whit-
tle’s policy (Whittle, 1980) as shown by by Frostig and
Weiss (1999).

Note that the optimal action a(ic∗ , γc∗) cannot be the
retirement option (which does not exist in the depen-
dent bandit) otherwise we could reduce M further in
Eq. (6), and γc would not be the infimum.

The key point is that the optimal policy can be com-
puted by considering each cluster in isolation, instead
of all N arms together. Thus, the size of the state
space that we must work with is reduced from RN to
RN∗

, where N∗ is the size of the largest cluster. This
can be a huge advantage when N is in the millions.
Also note that this policy can be expressed in terms
of an index γc on each cluster c, paralleling Gittins’
Dynamic Allocation Indices for each arm of an inde-
pendent bandit (J.C.Gittins, 1979).

If Vc(ic,M) could be computed exactly, a binary search
on M would give the value of the index γc. However,
the unbounded size of the state space renders exact
computation infeasible. In the following paragraphs,
we look at an approximation to the optimal policy.

4.2. MDP-BASED APPROXIMATION
POLICY

We first show that an approximate V̂c(ic,M) still gives
bounds on the index. Let γ̂c denotes the approximate
value of index γc computed using V̂c(ic,M), i.e., γ̂c =
inf

{
M | V̂c(ic,M) = M

}
.

Lemma 1. If Vc(ic,M) ∈ [V̂c(ic,M), V̂c(ic,M) + δ],
then γc ∈ [γ̂c, γ̂c + δ].

Proof.

γc = inf
M
{Vc(ic,M) = M}

= inf
M
{V̂c(ic,M) + φ = M} {for some 0 ≤ φ ≤ δ}

≤ inf
M
{V̂c(ic,M − φ) = M − φ}

{since V̂c(ic,M − φ) ≤ V̂c(ic,M),∀φ ≥ 0}
= γ̂c + φ

≤ γ̂c + δ

Also, since V̂c(i, γc) ≤ Vc(i, γc) = γc, we know that
γ̂c ≤ γ. Hence, γc ∈ [γ̂c, γ̂c + δ].

A common method to approximate policies for large
MDPs is to estimate the value function Vc(ic,M) by
a k-step lookahead: given the current state ic, it ex-
pands the MDP out to a depth of k, assigns to each
state jc on the frontier any value V̂c(jc,M) between M
and max{M, 1/(1−α)}, and then computes V̂c(ic,M)
exactly for this finite MDP. The maximum possible
reward from any state onwards, without taking the
retirement option, is

∑∞
k=0 1 · αk = 1/(1 − α), so

Vc(jc,M) ≤ max{M, 1/(1−α)}. Also, Vc(jc,M) ≥ M
since the retirement option immediately gives that re-
ward. Thus, |V̂c(jc,M)− Vc(jc,M)| ≤ max{M, 1/(1−
α)} − M , which translates to a maximum error of
δ = αk · (max{M, 1/(1− α)} −M) in V̂c(ic,M). Note
that even though errors may be made on an exponen-
tial number of states, their effect on δ is not cumula-
tive; this is because only one best action is chosen for
each state (due to the “max” in Eqs. 4,5) instead of,
say, a weighted sum of these actions. From Lemma 1,
the value of δ also bounds the error of the computed
index γ̂c from the optimal.

While Lemma 1 does bound the error, this bound may
not be tight enough in practice. For example, an appli-
cation that chooses ads to display on webpages from a
database of N ∼ 106 ads may be expected to converge
to the best ad in (say) 107 displays. Equating this with
the “effective time horizon” 1/(1−α) yields a discount
factor of α = 0.9999999, for which the bounds on δ for
reasonable values of the lookahead k are useless. Such
problems are not just specific to our MDP-based pol-
icy; even the best known approximations for Gittins’
index policy under the independence assumption break
down when observations are few and α > 0.95 (Chang
& Lai, 1987). Such long time horizons are better han-
dled under the undiscounted reward scenario; indeed,
several policies for undiscounted reward actually ap-
proximate the Gittins’ index for discounted reward, in
the limit of α → 1 (Chang & Lai, 1987). Hence, we
next discuss the undiscounted reward case, and pro-
pose our Two-Level Policy for it.

5. POLICIES FOR UNDISCOUNTED
REWARD

We first discuss lower bounds on the expected regret
for the undiscounted reward objective, the conditions
under which such results hold, and the constraints they
place on the generative model of the dependent bandit.
Then, we describe our proposed Two-Level Policy, and
investigate how its performance depends on the char-
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Policy step for timestep t

1. For each cluster i calculate a reward estimate
(r̂i(t)) and variance estimate (σ̂i(t)).

2. Call POL(r̂1(t), σ̂1(t), . . . , r̂K(t), σ̂K(t)) to se-
lect a cluster, say c(t).

3. Call POL(E[θ1], V ar(θ1), . . .) on the arms in
cluster c(t).

Figure 3. Two-level Policy (TLP): This is used as the policy
step in the bandit algorithm framework of Figure 2.

acteristics of the clusters.

5.1. PERFORMANCE BOUNDS

A lower bound on the expected regret E[Reg(T )] after
T pulls is known for independent bandits.

Theorem 2 ((Lai & Robbins, 1985)). Under mild
conditions on the success probabilities of the arms, for
any policy with sub-polynomial regret (i.e., o(T a) for
any a > 0), each suboptimal arm is pulled at least
O(log T ) times asymptotically and hence the expected
regret E[Reg(T )] is O(log T ) as T →∞.

Under mild conditions on the generative model (iden-
tifiability and the prior putting all mass on an open
set), the theorem applies to dependent bandits as well,
showing that asymptotically, the O(log T ) growth rate
for regret cannot be improved even if we exploit the
additional information available from the clustering.
However, it is worth noting that the constants involved
in O(log T ) can significantly affect performance both
asymptotically and for a finite time horizon.

5.2. TWO-LEVEL POLICY

The generative model for dependence (Eqs. 1-2) draws
the success probabilities θi of all arms in a cluster from
the same distribution η(.), and if this distribution is
tightly centered around its mean, the θi values will all
be similar. Thus, we could combine the observations
from all arms of a cluster as if they had come from one
hypothetical arm representing the entire cluster. This
is the intuition behind the two-level policy (TLP): it
uses as a subroutine any policy for independent ban-
dits (say, POL), first running POL over the hypothet-
ical “cluster-arms” to pick a cluster, and then inside
that cluster to pick an arm. Figure 3 gives the details.

At the beginning of every timestep, the algorithm com-
putes two numbers for every cluster: (1) its reward es-
timate r̂i(t), corresponding to the success probability
of the hypothetical cluster-arm, and (2) the estimated

variance σ̂i(t) of the reward estimate. We describe
how these cluster reward and variance estimates are
computed in more detail later. Based on these esti-
mates, TLP chooses a cluster c(t) by running POL on
the cluster-arms. Then, it chooses an arm from within
cluster c(t) using POL again, using the mean and vari-
ance of the success probability θi of each arm i as its
reward and variance estimate.

TLP incorporates intra-cluster dependence in two
ways. First, by operating on the cluster-arms, it im-
plicitly clubs all arms of a cluster together. Second,
the estimates r̂i(t) and σ̂i(t) are computed based on
the observed data and the generative model η(.), if
available. Note, however, that even if the form of η(.)
is unknown, TLP still uses the fact that the arms are
partitioned into clusters, and performs well as a result.

We note that one specific instance of TLP was pro-
posed in (Kocsis & Szepesvári, 2006; Pandey et al.,
2007) but our work is significantly different: (1) our
TLP formulation is more general, (2) we propose other
instantiations of the general TLP, and (3) we investi-
gate the performance of this model in terms of the
clustering quality.

In this paper, we set the policy POL to be UCT (Koc-
sis & Szepesvári, 2006), an extension of UCB1 (P.Auer
et al., 2002) that has O(log T ) regret. At each
timestep, UCT assigns to each arm i a priority pr(i) =
si/(si +fi)+Cp ·

√
(log T )/Ti, where Cp is a constant,

Ti is the number of arm pulls for i, and T =
∑

i Ti.
The arm with the highest priority is pulled at each
timestep. UCT reduces to UCB1 when Cp =

√
2.

TLP allows for several possible forms of r̂i and σ̂i. We
discuss three intuitive versions, which cover the spec-
trum from simple to complex. Then, we discuss how
the various cluster characteristics affect performance.

Cluster Reward and Variance Estimates: Intu-
itively, to minimize regret, we must quickly find the
best arm, and hence the cluster containing that arm.
The cluster reward estimate r̂i should tell us the ex-
pected maximum success probability of all arms in the
cluster, so that the best cluster is chosen in step 2
of TLP as often as possible. A good reward estimate
must be accurate and converge quickly (i.e., σ̂i → 0
quickly). We propose three such strategies below.

The MEAN strategy is the simplest: it sets r̂i to the
average success rate of arms in the cluster, i.e., r̂i =∑

j sj/(
∑

j sj + fj) for all arms j ∈ Ci, and σ̂i =
(
∑

j sj +fj) · r̂i · (1− r̂i) is the corresponding Binomial
variance. The values of successes sj and failures fj in
the above formulas are the posterior values obtained
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after taking the previous observations into account.
For example, if the generative model η is estimated to
be Beta(a, b), then the above formulas use s′j = sj + a
and f ′j = fj +b. Note that in the MEAN strategy, the
r̂i of the cluster with the best arm is dragged down by
its suboptimal siblings; the more arms in the cluster,
the slower the convergence.

The MAX strategy picks from cluster i the arm j ∈ Ci

with the highest expected success probability E[θj ],
and sets r̂i and σ̂i to E[θj ] and V ar(θj) respectively.
Thus, each cluster is represented by the arm that is
currently the best in it. Intuitively, this value should
be closer, as compared to MEAN, to the maximum
success probability of cluster i. Also, r̂i is not dragged
down by the suboptimal arms of cluster i, reducing
the adverse effects of large cluster sizes. However, it
neglects all observations from the other arms in the
cluster.

Our final strategy, called PMAX, achieves this by com-
puting the posterior distribution of the maximum suc-
cess probability among all the arms in Ci, given all ob-
servations from the cluster. Where analytic formulas
for the posterior are not available, Monte Carlo sam-
pling is used. These three strategies cover the spec-
trum of possibilities, from a simple but biased MEAN,
to the computationally slow PMAX that gives the
most unbiased estimate of the maximum success prob-
ability in the cluster.

Next we discuss how does the performance depend on
the quality of the clustering, such as the “cohesiveness”
of the clusters, the separation between clusters, and
the sizes of the clusters.

5.3. EFFECTS OF CLUSTER
CHARACTERISTICS

Let the best arm be i∗ from cluster opt. Intuitively,
for TLP to find the best arm, two things must hap-
pen: cluster opt must become the top ranked cluster
among all clusters, and arm i∗ must be differentiated
from its siblings in opt. Until the first is accomplished,
cluster opt will receive only O(log T ) pulls in step 2 of
TLP and little progress can be made on the second.
Thus, the effectiveness of TLP depends critically on
the “crossover time” Tc for opt to finally achieve the
highest reward estimate r̂opt(Tc) among all clusters,
and become the top ranked cluster. Below, we ana-
lyze Tc for MEAN. Doing this analysis for MAX and
PMAX is more difficult and we leave it as future work.

Under the MEAN strategy, the expected reward es-
timate for each cluster i is given by E[r̂i(Ti)] = µi −
Reg(Ti)/Ti, where µi is the success probability of the

best arm in cluster i, and Reg(Ti) is the expected re-
gret of POL in Ti pulls. For POL = UCT , Reg(Ti)
is O(log Ti). Thus, E[r̂i(Ti)] grows monotonically to-
wards µi for increasing Ti. Let the best arm i∗ have
success probability µopt. Among all arms not in opt
cluster, let the best arm be in cluster s, with success
probability µs. Define ∆ = µopt − µs to be the sep-
aration between these top two clusters. Now, Tc is
no more than the total pulls it takes to ensure that
r̂opt(Topt) ≥ µs, since that is the highest possible ex-
pected reward estimate for any other cluster.

Tc ≤ min
T
{r̂opt(Topt(T )) ≥ µs}

≤ min
T

{(
µopt −

Reg(Topt(T ))
Topt(T )

)
≥ µs

}
≤ min

T

{
∆ ≥ Reg(Topt(T ))

Topt(T )

}
(7)

where Topt(T ) is used to remind the reader that Topt

is a function of the total number of pulls T .

For POL = UCT , assuming that the known lower
bounds on its regret (Kocsis & Szepesvári, 2006;
P.Auer et al., 2002) are relatively tight,

Reg(Ti) ∼ min{Ti · δavg
i , c ·Ai · (log Ti)/δmin

i } (8)

where δavg
i and δmin

i are the average and minimum
differences in success probability between the best
arm in cluster i and its sibling arms, Ai the num-
ber of arms in cluster i (its size), and c is a con-
stant. Thus, Reg(Ti)/Ti ∼ δavg

i for small Ti and
then it decays slowly until the functional form becomes
Reg(Ti)/Ti ∼ cAi/δmin

i ·(log Ti)/Ti for large Ti. Using
this in Equation (7), we can see the effect of the cluster
properties on Tc.

(a) Cluster separation (∆): As the best cluster be-
comes more separated from the rest, ∆ increases and
hence Tc decreases.

(b) Cluster size (Aopt): As the cluster size Aopt in-
creases, Tc increases.

(c) Cohesiveness (1 − δavg
opt ): Equation 8 shows that

high cohesiveness (i.e., small δavg
opt ) leads to smaller Tc.

In fact, when (1 − 1/Aopt) · δavg
opt < ∆, cluster opt has

the highest reward estimate from the start and Tc = 0,
which is the best case for MEAN.

The worst case occurs when the clustering is not good:
∆ is very small and δavg

opt is large, implying a large Tc.
Since Reg(Topt)/Topt decays as (log Topt)/(Toptδ

min
opt )

for large Tc, having a larger δmin
opt could reduce

Tc marginally in this setting.
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Figure 4. Performance over real-world data

6. EXPERIMENTS

We first report performance results on a large real-
world dataset, showing more than threefold improve-
ment in revenue over an independent bandit policy for
the same number of arm pulls. Then, we empirically
confirm our theoretical analysis of TLP and its ver-
sions, including its dependence on cluster character-
istics; these are performed on synthetic datasets de-
signed to demonstrate the desired effects. The time
horizon (∼ 104) is too large for the discounted reward
scenario to be applicable, as described in Section 4. All
experiments were repeated 200 times, and the average
performance is reported in all the results.

6.1. PERFORMANCE IMPROVEMENT
USING TLP

The real-world dataset was collected from a week’s
worth of data in a large-scale ad-matching application.
It has 10 clusters with 11.3 arms/cluster on average.
The optimal cluster (i.e., cluster with the optimal arm)
has 31 arms, a cohesiveness of 1− δavg

opt = 0.75, and is
separated from the next best cluster by ∆ = 0.08.

Figure 4 compares the reward of the MEAN and
MAX versions of TLP against the UCB1 policy for in-
dependent bandits (P.Auer et al., 2002). The rewards
are scaled from 0 to 1 for reasons of confidentiality.

We observe that both the MEAN and MAX ver-
sions of TLP perform much better than UCB1. This
shows the importance of taking dependencies into ac-
count in the bandit policy. Also, MAX is better than
MEAN; as shown in the following section, this effect is
because the relatively large size of the optimal cluster
compared to the others.

6.2. EMPIRICAL ANALYSIS OF TLP

We start with a base dataset that has 10 clusters of
10 arms each, with a Beta distribution modeling the
intra-cluster dependence. The optimal cluster has a

cohesiveness of δavg
opt = 0.30 and with a maximum suc-

cess probability of µopt = 0.63. All suboptimal clusters
are identical, with a cohesiveness of δavg

i = 0.10 and
maximum success probability of µs = 0.50. Hence,
∆ = µopt − µs = 0.13. Next, we study the effects of
cluster characteristics by varying each parameter (i.e.,
∆, δavg

opt , and number of arms) one at a time. While
performance depends on the cluster characteristics of
all clusters, we vary only the optimal cluster for sim-
plicity. This is enough to show all the desired effects.

Figure 5(a) shows the effect of the cluster separation
∆ on the total reward after 12, 000 pulls. All arms of
the optimal cluster are translated by the same value
to vary ∆. Both MAX and MEAN benefit with in-
creasing ∆, as expected.

Figure 5(b) shows the effect of the number of arms Aopt

in the optimal cluster. The performance of MEAN de-
creases significantly with increasing Aopt, since Tc in-
creases linearly with increasing regret (Equation (7)),
and the regret itself grows linearly with Aopt (Equa-
tions (8)). MAX is more robust to changes in Aopt

since its reward estimate (and hence its Tc) depends
only on the estimated success probability of one arm,
unlike MEAN which depends on all.

Figure 5(c) shows the effect of cohesiveness of the op-
timal cluster. As expected, higher cohesiveness (i.e.,
smaller δavg

opt leads to better performance for MEAN,
while MAX is not significantly affected.

UCB1 is mostly unaffected by all these variations since
the changes occur only for the 10 arms of the optimal
cluster, and these changes are diluted when all 100
arms are considered together, as UCB1 does.

All of these results can be understood in terms of the
bias-variance tradeoff. MEAN has low variance, since
all observations Ti from a cluster i count towards the
mean, but has high bias from the maximum success
probability in the cluster. MAX has slightly higher
variance, since only Ti −O(log Ti) observations count,
but the bias is much lower than MEAN. In partic-
ular, the reward estimate under MEAN for the opt
cluster is dragged down by all the suboptimal arms in
opt, and as the number of arms increases, the bias of
MEAN decreases more slowly and it performs worse.
The PMAX version has the least bias, but its variance
is too large for it to be effective; its performance was
always dominated by MEAN or MAX, so we do not
report it here.

7. CONCLUSIONS

We provide a framework to exploit dependencies
among arms in high dimensional multi-armed bandit
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Figure 5. Effects of cluster characteristics. Only the optimal cluster is varied. Both MEAN and MAX are helped by
increasing cluster separation, but MEAN is hurt far more than MAX with increasing number of arms.

problems, when the dependencies are modeled using a
generative model on the success probabilities.

We propose allocation rules that are both theoretically
sound and computationally feasible for the discounted
and finite horizon reward scenarios. For discounted
reward, we generalize the well known Gittins theorem
and show that optimal allocation rules are obtained
by decoupling the problem in terms of clusters instead
of individual arms. For finite horizon reward, we pro-
vide a general two-stage allocation policy that selects
a cluster followed by an arm in the selected cluster.
We provide several instances of our general policy and
also provide theoretical justifications on how the regret
depends on the characteristics of the clusters. Empiri-
cally, we demonstrate the efficacy of our methods and
show that they significantly outperform classical ban-
dit solutions using real-world and synthetic data.
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