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Abstract
This paper suggests a method for multiclass
learning with many classes by simultaneously
learning shared characteristics common to the
classes, and predictors for the classes in terms of
these characteristics. We cast this as a convex op-
timization problem, usingtrace-norm regulariza-
tion and study gradient-based optimization both
for the linear case and the kernelized setting.

1. Introduction

In this paper we address the question of how to utilize hid-
den structure in order to improve multiclass classification
accuracy. Our goal is to provide a mechanism for learn-
ing the underlying characteristics that are shared between
the target classes. We demonstrate the benefit of extracting
common characteristics within the powerful notion of large
margin multiclass linear classifiers.

The challenge of accurate classification of an instance into
one of a large number of target classes surfaces in many do-
mains, such as object recognition, face identification, tex-
tual topic classification, and phoneme recognition. In many
of these domains it is natural to assume that even though
there are a large number of classes (e.g. different people
in a face recognition task), classes are related and build
on some underlying common characteristics. For exam-
ple, many different mammals share characteristics such as
a striped texture or an elongated snout, and people’s faces
can be identified based on underlying characteristics such
as gender, being Caucasian, or having red hair. Recover-
ing the true underlying characteristics of a domain can sig-
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nificantly reduce the effective complexity of the multiclass
problem, therefore transferring knowledge between related
classes.

The obvious question that arises is how to select the fea-
ture mapping appropriate for a given task. One method to
resolve this need is by manually designing a domain spe-
cific kernel. When the route of manual kernel design is
not feasible one can attempt to learn a data specific feature
mapping (Crammer et al., 2002). In practice, researchers
often simply test several of the standard kernels in order to
assess which attains better performance on a validation set.
However, these approaches fail to provide a clear mech-
anism for utilizing existing underlying structures between
the target classes. We would therefore like to find an effi-
cient way to learn feature mappings that capture those un-
derlying structures that characterize a given set of classes.

The observation that learning a hidden representation of
some shared characteristics can facilitate learning has a
long history in multiclass learning (e.g. Dekel et al.
(2004)). This notion is often termed learning-to-learn or in-
terclass transfer (Thrun, 1996). While some approaches as-
sume some information on the shared characteristics is pro-
vided to the learner in advance (e.g (Fink et al., 2006)), oth-
ers rely on various heuristics in order to extract the shared
features (e.g. (Torralba et al., 2004)).

Simultaneously learning the underlying structure between
the classes and the class models is a challenging optimiza-
tion task. Many of the heuristic approaches explored in the
past aim at extracting powerful non-linear hidden charac-
teristics. However, this goal often entails non-convex opti-
mization tasks, prone to local minima problems. In con-
trast, we will focus on modeling the shared characteris-
tics, as linear transformations of the input space. Thus, our
model will postulate a linear mapping of shared features,
followed by a multiclass linear classifier. We will show
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that such models can be efficiently learned in a convex opti-
mization scheme, and albeit restricted to simple linear map-
pings, they can still significantly improve the accuracy of
multiclass linear classifiers.

2. Formulation

The goal of multiclass classification is to learn a mapping
H : X → Y from instances inX to labels inY =
{1, ..., k}. We consider linear classifiers overX = R

n,
parametrized by a weight vectorWy ∈ R

n for each class
y ∈ Y, and which take the form:

HW (x) = argmax
y∈Y

W t
y · x . (1)

We wish to learn the weights from a set ofm labeled train-
ing examples(xi, yi) ∈ X × Y, which we summarize in
a matrix X ∈ R

n×m whose columns are given byxi.
Inspired by the large margin approach for classification,
Crammer and Singer (2001) suggest learning the weights
by minimizing a trade-off between an average empirical
loss (to be discussed shortly) and a regularizer of the form:

∑

y

‖Wy‖2 = ‖W‖2
F (2)

where‖W‖F is the Frobenius norm of the matrixW whose
columns are the vectorsWy. The loss function suggested
by Crammeret al is the maximal hinge loss over all com-
parisons between the correct class and an incorrect class:

ℓ (W ; (x, y)) = max
y′ 6=y

[

1 + W t
y′ · x − W t

y · x
]

+
(3)

where[z]+ = max(0, z). For a trade-off parameterC, the
weights are then given by the following learning rule:

min
W

1

2
‖W‖2

F + C

m
∑

i=1

ℓ (W ; (xi, yi)) . (4)

For a binary classification problem,Y = {1, 2}, this for-
mulation reduces to the familiar Support Vector Machine
(SVM) formulation (with W1 = −W2 = 1

2wsvm at the
optimum, andC appropriately scaled). For a larger num-
ber of classes, the formulation generalizes SVMs by requir-
ing a margin between every pair of classes, and penalizing,
for each training example, the amount by which the mar-
gin constraint it violated. Similarly to SVMs the optimiza-
tion problem Eq. (4) is convex, and by introducing a “slack
variable” for each example, it can be written as quadratic
programming. It should be noted that while we choose to
focus on the loss function of Crammer and Singer (2001),
the methods we propose can be directly applied to other
multiclass losses.

Recall that our goal is to attain a classifierW with im-
proved generalization by extracting characteristics thatare

shared among multiple classes. We restrict ourselves to
modelling each common characteristicr as a linear func-
tionF t

rx of the input vectorsx. The activation of each class
y is then taken to be a linear functionGt

y(F t
x) of the vector

F t
x of common characteristics, instead of a linear func-

tion of the input vectors. Formally our model substitutes
the weight matrixW ∈ R

n×k with the productW = FG

of a weight matrixF ∈ R
n×p, whose columns define the

p common characteristics, andG ∈ R
p×k, whose columns

predict the classes based on the common characteristics:

HG,F (x) = argmax
y∈Y

Gt
y · (F tx) = argmax

y∈Y

(FG)t
y · x ,

(5)

It should be emphasized that ifF andG are not constrained
in any way, the hypothesis space defined by Eq. (1) and
by Eq. (5) is identical, since any linear transformations in-
duced by applyingF and thenG, can always be attained by
a single linear transformationW . We aim to show that nev-
ertheless, regularizing the decompositionFG, as we dis-
cuss shortly, instead of the Frobenius norm of the weight
matrixW , can yield a significant generalization advantage.

When the common characteristicsF are known, we can
replace the input instancesxi with the vectorsF t

xi and
revert back to our original formulation Eq. (4), with the
matrix G taking the role of the weight matrix. Each char-
acteristicr is now a feature (F t

xi)r in this transformed
problem. The challenge we address in this paper is of si-
multaneously learning the common characteristics (or la-
tent features)F and the class weightsG.

Increasing the norm‖Fr‖ allows smaller values ofGyr to
yield the same prediction. Therefore, in order for the reg-
ularizer‖G‖F to be meaningful, we must also control the
magnitude ofF . We thus suggest to regularize, in addition
to ‖G‖F, also

∑

r‖F‖2 = ‖F‖2
F. This leads to the follow-

ing learning rule:

min
F,G

1

2
‖F‖2

F +
1

2
‖G‖2

F + C

m
∑

i=1

ℓ (FG; (xi, yi)) . (6)

As we are accustomed to in large-margin methods, we do
not have to limit the number of characteristicsp. We can
consider the rule Eq. (6) where the minimization is over
matricesF,G of arbitrary inner dimensionality. We are re-
lying here on thenorm of F andG for regularization, rather
than theirdimensionality.

The optimization objective of Eq. (6) is non-convex, and
involves matrices of unbounded dimensionality. However,
instead of explicitly learningF,G, the optimization prob-
lem Eq. (6) can also be written directly as a convex learning
rule forW . Following Srebro et al. (2005), we consider the
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trace-norm of a matrixW :

‖W‖Σ = min
FG=W

1

2
(‖F‖2

F + ‖G‖2
F) (7)

The trace-norm is a convex function ofW , and can be char-
acterized as the sum of its singular values (Boyd & Vanden-
berghe, 2004).

‖W‖Σ =
∑

i

|γi| , (8)

Using Eq. (7), we can rewrite Eq. (6) as:

min
W

‖W‖Σ + C

m
∑

i=1

ℓ (W ; (xi, yi)) . (9)

Furthermore, following Fazel et al. (2001) and Srebro et al.
(2005), the optimization problem Eq. (9) can be formulated
as a semi-definite program (SDP).

To summarize, we saw how learning to classify based on
shared characteristics yields a learning rule in which the
Frobenius-norm regularization is replaced with a trace-
norm regularization.

3. Dualization and Kernelization

So far, we assumed we have direct access to the feature
representationx. However, much of the success of large-
margin methods stems form the fact that one does not need
access to the feature representation itself, but only to the
inner product between feature vectors, specified by akernel
function k(x,x′). In order to obtain a kernelized form of
trace-norm regularized multiclass learning, we first briefly
describe the dual of Eq. (9), and how the optimumW can
be obtained from the dual optimum.

By applying standard Lagrange duality we deduce the dual
of Eq. (9) is given by the following optimization problem,
which can also be written as a semi-definite program:

max
∑

i

(−Qiyi
) s.t.

∀i,j 6=yi
Qij ≥ 0

∀i (−Qiyi
) =

∑

j 6=yi

Qij ≤ c

‖XQ‖2 ≤ 1

where Q ∈ R
m×k denotes the dual Lagrange variable

and ‖XQ‖2 is the spectral norm ofXQ (i.e. the maxi-
mal singular value of this matrix). The spectral norm con-
straint can be equivalently specified as‖(XQ)t(XQ)‖2 =
‖Qt(XtX)Q‖2 ≤ 1. This form is particularly interesting,
since it allows us to write the dual in terms of the Gram
matrix K = XtX instead of the feature representationX

explicitly:

max
∑

i

(−Qiyi
) s.t.

∀i,j 6=yi
Qij ≥ 0

∀i (−Qiyi
) =

∑

j 6=yi

Qij ≤ c

‖QtKQ‖2 ≤ 1
(10)

Eq. (10) is a convex problem onQ that involves a semi-
definite constraint (the spectral-norm constraint) on the ma-
trix QtKQ whose size is independent of the size of the
training set, and only depends on the number of classesk

(the size ofQ and the number of quadratic interactions in
QtKQ do grow with the training set size, as in a standard
SVM).

The following Representer Theorem describes the opti-
mum weight matrixW in terms of the dual optimumQ,
and allows the use of the kernel mechanism for prediction.

Theorem 1 Let Q be the optimum of Eq. (10) and V be the
matrix of eignevectors of Q′KQ, then for some diagonal
D ∈ R

k×k, the matrix W = X (QV tDV ) is an optimum
of Eq. (9), with ‖W‖Σ =

∑

r|Drr|.

Proof Using complementary slackness and following ar-
guments similar to those of Srebro et al. (2005), it can be
shown thatXQ and the optimumW of Eq. (9) share the
same singular vectors. That is, ifXQ = USV is the sin-
gular value decomposition ofXQ, thenW = UDV for
some diagonal matrixD. FurthermoreDrr = 0 whenever
Srr 6= 1, i.e. SD = D. Note also that the right singular
vectorsV of XQ = USV are precisely the eigenvectors of
(XQ)t(XQ) = QtXtXQ = QtKQ. We can now express
W as follows. First note thatW = UDV . SinceD = SD

we may expressW asUSDV . SinceV V t = I we may
further expand this expression toUSV V tDV . Finally, re-
placingUSV with XQ we obtainW = X (QV tDV ).

Corollary 1 There exists α ∈ R
m×k s.t. W = Xα is an

optimum of Eq. (9)

The situation is perhaps not as pleasing as for standard
SVMs where the weight vector can be explicitly repre-
sented in terms of the dual optimum solution. Here, even
after obtaining the dual optimumQ, we still need to re-
cover the diagonal matrixD. However, substitutingW =
XQV tDV into Eq. (9), the first term becomes

∑

r|Drr|,
while the second is piecewise linear inKQV tDV . We
therefore obtain a linear program (LP) in thek unknown
entries on the diagonal ofD, which can be easily solved to
recoverD, and henceW . It is important to stress that the
number of variables of this LP depends only on the number
of classes, and not on the size of the data set, and that the
entire procedure (solving Eq. (10), extractingV and recov-
eringD) uses only the Gram matrixK and does not require
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direct access to the explicit feature vectorsX.

Even if the dual is not directly tackled, the representation
of the optimumW guaranteed by Thm. 1 can be used to
solve the primal Eq. (9) using the Gram matrixK instead
of the feature vectorsX, as we discuss in Section 5.

4. Learning a Latent Feature Representation

As alluded to above, learningF can be thought of as learn-
ing a latent feature spaceF tX, which is useful for pre-
diction. SinceF is learned jointly over all classes, it ef-
fectively transfers knowledge between the classes. Low-
norm decompositions were previously discussed in these
terms by Srebro et al. (2005). More recently, Argyriou
et al. (2007) studied a formulation equivalent to using the
trace-norm explicitly for transfer learning between multi-
ple tasks. Considerk binary classification tasks, and use
Wj as a linear predictor for thej’th task. Using an SVM to
learn each class independently corresponds to the learning
rule:

min
W

∑

j

(
1

2
‖Wi‖2+Cℓj(Wj)) = min

W

1

2
‖W‖2

F+C
∑

j

ℓj(Wj)

whereℓj(Wj) is the total (hinge) loss ofWj on the training
examples for taskj. Replacing the Frobenius norm with
the trace norm:

min
W

‖W‖Σ + C
∑

j

ℓj(Wj) (11)

corresponds to learning a feature representationφ(x) =
F t

x that allows good, low-norm prediction for allk tasks,
where the linear predictor for taskj, in this feature space, is
given byGj . After such a feature representation is learned,
a new task can be learned directly using the feature vec-
torsF t

x using standard SVM machinery, taking advantage
of the transfered knowledge from the other, previously-
learned, tasks.

In the multiclass setting, the predictorsWy are never inde-
pendent, as even in the standard Frobenius norm formula-
tion Eq. (4), the loss couples together the predictors for the
different classes. However, the between-class transfer af-
forded by implicitly learning shared characteristics is much
stronger. As will be demonstrated later, such transfer is par-
ticularly important if only a few number of examples are
available from some class of interest.

Although this paper studies multiclass learning, the tech-
nical contributions, including the optimization approach,
study of the dual problem, and kernelization, apply equally
well also to the multi-task formulation Eq. (11).

It is interesting to note that we can learn a feature represen-
tationφ(x) = F t

x even when we are not given the feature

representationX explicitly, but only a kernelk from which
we can obtain the Gram matrixK = XtX. In this sit-
uation we do not have access toX, nor can we obtainF
explicitly. As discussed above, what wecan obtain is a
matrix α such thatW = Xα is an optimum of Eq. (9).
Let W = UDV be the singular value decomposition of
W (which we cannot calculate, since we do not have ac-
cess toX). We have thatF = U

√
D is an optimum of

Eq. (6). What wecan calculate is the singular value de-
composition ofαtKα = αtXtXα = W tW = V tD2V ,
and thus obtainD and V (but not U ). Now, note that
D−1/2V αtK = D−1/2V (αtXt)X = D−1/2V W tX =
D−1/2V V tDU tX = D1/2U tX = F tX, providing us
with an explicit representation of the learned feature space
that we can calculate fromK andα alone.

In either case, we should note the optimum of Eq. (6) is not
unique, and so also the learned feature space is not unique:
if F,G is an optimum of Eq. (6), then(FR), (RtG) is
also an optimum, for any unitary matrixRRt = I. In-
stead of learning the explicit feature representationφ(x) =
F t

x, we can therefore think of trace-norm regularization
as learning the implied kernelkφ(x′,x) = 〈F t

x
′, F t

x〉.
Even whenF is rotated (and reflected) byR, the learned
kernelkφ is unaffected.

5. Optimization

The optimization problem Eq. (9) can be formulated as a
semi-definite program (SDP) and off-the-shelf SDP solvers
can be used to recover the optimalW . However, such
solvers based on interior point methods scale poorly with
the size of the problem and typically cannot handle prob-
lems with more than several hundred dimensions, classes
and training points (104 variables). Hence, we choose to
optimize Eq. (9) using simple, but powerful gradient-based
methods.

5.1. Gradient Based Optimization

The optimization problem Eq. (9) is non-differentiable and
so not immediately amenable to gradient-based optimiza-
tion. In order to perform the optimization, we consider a
smoothed approximation to Eq. (9).

We begin by replacing the trace-norm with a smooth proxy.
Eq. (8) characterizes the trace-norm as the sum of the sin-
gular values ofW . Although the singular values are non-
negative, the absolute value in Eq. (8) emphasizes the rea-
son the trace-norm is non-differentiable. In order to obtain
a smooth approximation to the trace-norm, we replace the
non-smooth absolute value with a smooth functiong de-
fined as,

g(γ) =

{

γ2

2r + r
2 γ ≤ r

|γ| otherwise
.
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Wherer is some predefined cutoff point. Fig. 1 illustrates
the functiong and the effect of the parameterr. We can
easily see thatg is continuously differentiable, and that∀x :
∣

∣g(x) − |x|
∣

∣ ≤ r
2 . Our smoothed proxy for the trace norm

thus replaces Eq. (8) with

‖W‖S =
∑

i

g(γi) , (12)

whereγi are the singular values ofW . Using the chain
rule, we can calculate its gradient as,

∂‖W‖S

∂W
= Ug′(D)V (13)

whereW = UDV is the SVD ofW and g′(D) is an
element-wise computation of the derivativeg′ of g on the
diagonal ofD.

We now turn our attention on the non-differentiable multi-
class hinge-loss of Eq. (3). Since neither the hinge[]+ nor
the max operators are differentiable we employ an adap-
tation of the log-loss for the multiclass setting, with a pa-
rameterγ controlling its sharpness (Zhang & Oles, 2001;
Dekel et al., 2003),

ℓS (W ; (xi, yi)) =
1

λ
log



1 +
∑

r 6=yi

eλ·(1+Wr·xi−Wyi
·xi)



 .

This is a convex and continuously differentiable function of
W which approaches the multiclass hinge-loss asλ → ∞
(Fig. 1). In summary, instead of Eq. (9) we consider the
following optimization problem:

min
W

‖W‖S + C

m
∑

i=1

ℓS (W ; (xi, yi)) (14)

which is a convex and continuously differentiable function.

Fig. 2-left shows how optimization of the smoothed ob-
jective Eq. (14) approximately optimizes Eq. (9). We
generated 160 training instances with 16 classes and 16-
dimensional feature vectors using a random16×16 weight
matrix. For each value ofγ, and a fixedr = 0.01 we
compared the weight matrixW recovered using conjugate
gradient descent on Eq. (14) to the optimizer of Eq. (9)
found using an interior point SDP solver (we used SDP3
which outperformed other solvers such as SeDuMi and
SDPAM). The figure plots the value of the original (non-
smooth) objective of both solutions. For large values ofγ,
the smoothed optimization solves the original problem with
very good accuracy.

Fig. 2-right describes the gained performance using the gra-
dient based smooth objective Eq. (14) while gradually in-
creasing the number of instances from 80 to 1000. It is
apparent that even for relatively small number of instances,
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Figure 1.Left: The smoothed absolute value functiong. Smaller
values ofr translate to a sharper function and a better estimate
of the absolute values. Right: The binary version of the log-loss
in comparison with the binary hinge-loss. Larger values ofλ in-
crease the accuracy of the log-loss approximation.
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Figure 2.Left: The values of the original (non-smooth) opti-
mization objective Eq. (9) for minima of the smoothed objective
Eq. (14) as a function of the smoothing parameterλ (solid) com-
pared to the true optimum of Eq. (9) (dotted). Right. Running
times of SDP solver for Eq. (9) (dotted) vs the gradiend based
method for solving Eq. (14) (withλ = 20) as a function of the
number of training instances.

the SDP optimization becomes unreasonably slow. In con-
trast, the gradient based optimization easily scales to fairly
large training sets.

5.2. Kernelized Gradient Optimization

We now turn to devising a gradient-based optimization ap-
proach appropriate when only the Gram matrixK = XtX

is available, but not the feature vectorsX themselves.
Corollary 1 assures us that the optimum of Eq. (9) is of the
form Xα, and so we can substituteW = Xα into Eq. (14)
and minimize overα. To do so using gradient methods, we
need to be able to compute both the smoothed objective and
its derivative fromK andα alone, without reference toX
explicitly.

We first tackle the smoothed trace norm ofXα: Let Xα =
UDV denote the SVD ofXα then the SVD ofαtKα is
given byV tD2V . We can thus recoverD from the SVD of
αtKα, and use Eq. (12) to calculate‖Xα‖S .

In order to compute the gradient of‖Xα‖S with respect to
α, we calculate:

∂‖Xα‖S

∂α
= Xt ∂‖Xα‖S

∂Xα
= XtUg′(D)V
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insertingD(V V t)D−1 = DID−1 = I:

= XtU(DV V tD−1)g′(D)V

= Xt(UDV )V tD−1g′(D)V

and sinceXα = UDV :

= Xt(Xα)V tD−1g′(D)V = KαV tD−1g′(D)V (15)

Recall that bothV andD can be obtained from the SVD of
αtKα, and so Eq. (15) provides a calculation of the gradi-
ent in terms ofK andα. Thus, we can efficiently apply our
gradient based optimizations to a kernelk(x,x′).

6. Spectral Properties of Trace Norm
Regularization

One way to appreciate the difference between the Frobe-
nius norm and the trace norm of a matrixW is by observ-
ing that the squared Frobenius norm equals the sum of the
squared singular values,

∑

i γ2
i , while the trace norm is the

sum of the singular values themselves,
∑

i γi. Thus, choos-
ing to minimize‖F‖2

F + ‖G‖2
F rather than‖W‖2

F, imposes
a regularization preference for anL1 norm on the spec-
trum of W (rather than anL2 norm). When the various
target classes share common characteristics we expect the
spectrum ofW to be non-uniform, since a large portion of
the spectrum must be concentrated on few eigenvalues. In
these cases theL2 spectrum regularization imposed by the
Frobenius norm will tend to attenuate the spectrum. In con-
trast, theL1 spectrum regularization imposed by the trace
norm does not share this tendency, and is thus better suited
to preserve underlying structures of characteristics thatare
shared between the target classes.

In order to illustrate this effect we generated 100 classes
over R120 and randomly sampled 4500 training instances
from a 120-dimensional normal distribution. A120 × 100
matrixW ∗ was then used to label the data, by choosing for
each instancex the labely = argmax

r∈Y

W ∗
r · x. The matrix

W ∗ was selected to have a sigmoidal pattern of singular
values, depicted in the dashed spectrum on Fig. 3. We then
recovered two matricesWF andWΣ using the Frobenius
norm optimization from Eq. (4) and the trace norm opti-
mization from Eq. (9). The generalization error over 500
new test instances, was significantly higher forWF (47%)
than forWΣ (31%). The spectrum of the two learned mod-
els is depicted in Fig. 3. It could be observed that Frobe-
nius based regularization leads to the attenuated spectrum
of WF .

A question may arise whether it was possible to encour-
age the underlying common structure between the classes
by applying a dimensionality reduction procedure to the
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Figure 3.Spectra of learned matrices in the synthetic (left) and
real (right) experiments. The weight matrix resulting from trace
regularization (solid), and the weight matrix resulting from Frobe-
nius regularization (dotted). The weight matrix that generated the
dataW ∗ (dashed) in the synthetic experiment only.

weight matrix. In order to show this is not necessarily the
case, we repeated the experiment described above, butW ∗

was selected to have the singular values form a harmonic
series (11 , 1

2 , . . . , 1
100 ). We similarly recovered two matri-

cesWF and WΣ using the Frobenius norm optimization
and the trace norm optimization . It was observed that the
generalization error over 500 new test instances, was sig-
nificantly higher forWF (26%) than forWΣ (17%).

Next, a singular value decomposition was performed on
WΣ and WF followed by reconstructing these matrices
using thep leading singular values and vectors (p =
1, 2, . . . , 100). Performance of the reconstructed weight
matrices was evaluated on the test set. It was observed
that any SVD dimensionality reduction deteriorated the test
performance. Moreover, the generalization error for the re-
ducedWF was consistently worse than the performance of
the reducedWΣ. It could therefore be concluded that post-
hoc dimensionality reduction could not attenuate the im-
portance of finding the underlying structure as an integral
part of the learning procedure.

7. Experiments

7.1. Experiment I: Letter Recognition

By analyzing over 100 writing systems, Changizi and Shi-
mojo (2005) have demonstrated the fact that each writing
system can be characterized by a set of underlying strokes.
Therefore, our first experiment focuses on recognition of
the 26 characters made available in the UCIletter dataset.
The data was composed of 2000 instances, roughly dis-
tributed over the 26 classes. The data was partitioned to
three sets: 1000 were used as a training set, 500 were held
out and used to select the optimal value ofC and 500 were
used as a test set. Data was represented using a Gaussian
kernel withσ = 0.07.

We then recovered two matricesWF (Frobenius norm reg-
ularization) from Eq. (4) andWΣ (trace norm regulariza-
tion) from Eq. (9). The trade-off parameterC was deter-
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Addax Caribou Deer

African+Wild+Dog
Dingo

Hyena

Cheetah Bobcat
Serval

Black+Rat
Deer+Mouse

Flying+Squirrel

Figure 4.Representative images of Deer (Addax, Caribou, Com-
mon Deer), Canines (African Wild Dog, Dingo, Hyena), Felines
(Cheetah, Bobcat, Serval), and Rodents (Black Rat, Deer Mouse,
Flying Squirrel).

mined exhaustively by searching over15 values between
2−9 and25. The value was later fine tuned by searching
within a smaller window withinC · 2−1.5 andC · 21.5. All
values were tested on the fixed holdout set. Performance
was evaluated over 500 new test instances, and the general-
ization error was significantly higher forWF (10.1%) than
for WΣ (8.7%).

7.2. Experiment II: Mammal Recognition Dataset

Our second experiment focused on the challenging task of
classifying mammal images. We chose the 72 mammals
that have at least 12 profile instances in the mammal bench-
mark made available by Fink and Ullman (2007). Of these,
approximately 1,000 images were used for training and a
similar number were used for testing. The test set was fur-
ther partitioned, where half was held out and used to se-
lect C and the rest where used for testing. The number
of instances of each class varied significantly from 6 to 30
training examples. It should be noted that the 72 target
classes are expected to share many common characteristics
due to genetic resemblance and evolutionary convergence.
Four genetically related families (Deer, Canines, Felines
and Rodents), are depicted in Fig. 4.

We build upon the comparison performed in Zhang et al.
(2006) in selecting an image representation suitable for the
high degree of intraclass variability present in the mammal
dataset. This representation is based on extracting a visual
signature from the images. The visual signatures include
40 clusters of local descriptors, extracted from interest re-
gions of the image. The resulting signatures are compared
using an Earth Moving Distance (EMD) Kernel. The EMD
distance between signature-A and signature-B is found by
solving the transportation problem, namely, by finding the
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Figure 5.The gain in performance entailed by choosing trace
norm regularization over Frobenius norm regularization, as a
function of the number of training instances available in each
mammal class.

minimal Euclidean distance necessary for converting the
descriptors in signature-A to be identical to the descriptors
of signature-B (for details see Zhang et al. (2006) and the
references within).

Using the above representation we learned the two matrices
WF (Frobenius norm regularization) andWΣ (trace norm
regularization). The trade-off parameterC was determined
using the same procedure used in Experiment 7.1. The ac-
curacy of the multiclass SVM based on trace norm regu-
larization (33%) is observed to be higher than that attained
using the Frobenius norm regularization (29%).

In the previous sections it was suggested that learningF

can be thought of as learning a latent feature spaceF tX,
which is useful for prediction. SinceF is learned jointly
over all classes, it can be thought of as transferring knowl-
edge between the classes. Under these conditions a new
class can be acquired from fairly few training examples.
We therefore predict that classes with few training exam-
ples will, on average, gain more from applying trace norm
regularization. This effect is depicted in Fig. 5. Specifi-
cally, it could be observed that of the few classes that gain
from Frobenius regularization, four are of the top six most
frequent mammals.

In order to verify this phenomenon we selected one of the
most frequent classes (Wombats), which contains 30 train-
ing examples and repeatedly relearnedWF andWΣ while
reducing the number of wombat examples to 24, 18, and
12. Under these conditions the accuracy of correct clas-
sification of wombats naturally deteriorated, but the effect
was noticeably less severe for the trace norm regularization.
While the Frobenius norm regularization performed better
when all 30 instances where available during learning (by
2.2%), when 24 instances where available the gap had nar-
rowed to 1.2%. When even fewer examples where available
the leads where reversed and the trace norm outperformed
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the Frobenius norm by 1.4% for 18 instances and 3.7% for
12 instances. It should be noted that the false alarm rate
over the remaining classes remained fairly constant. These
results suggest that the learned common characteristics can
indeed facilitate the acquisition of a novel class when only
few examples are available for training.

Finally, the spectrum of the two learned models (Fig. 3),
depicts the fact that Frobenius based regularization leads
to the attenuated spectrum ofWF . It might be suggested
that this effect manifests the advantage of trace norm reg-
ularization in preserving underlying structure between the
mammal classes.

8. Discussion

We studied a learning rule for multiclass learning in which
the magnitude of the factorization of the weight matrix is
regularized, rather then the magnitude of the weights them-
selves. This is equivalent to regularizing the trace-norm
of the weight matrix, instead of its Frobenius norm. We
showed how this formulation can be kernelized, and solved
efficiently either with direct access to the feature vectorsor
in a kernelized setting. We demonstrated the effectiveness
of the formulation, particularly for classes with only a few
available training examples.

The multiclass formulation we study is a special case of
a general family of trace-norm regularized learning rules,
where some general loss associated with the activation ma-
trix W tX replaces our multiclass loss,

min
W

‖W‖Σ + C ·loss(W tX). (16)

Maximum Margin Matrix Factorization (Srebro et al.,
2005) can be seen as a degenerate case of Eq. (16) where
X = I and the loss function decomposes over the entries of
W . More recently, Argyriou et al. (2007) studied a multi-
task learning rule which can be shown to be equivalent to
Eq. (16) (again with a decomposable loss function, as ap-
propriate for the multi-task setting). Argyriouet al reach a
different, but equivalent, formulation of the problem, rely-
ing on explicit access to the feature vectorsX, and suggest
an optimization approach which requires iteratively solv-
ing multiple SVM problems. We believe the formulation
Eq. (16) is more direct and lends itself better to gradient-
base optimization, which can be applied also for the multi-
task setting. Our results on dualization, kernelization and
representation of the learned latent feature space apply also
to the multi-task setting studied by Argyriouet al , as well
as to the general family of Eq. (16).

Another related learning rule using trace-norm regulariza-
tion was studied by Abernethy et al. (2006). In their work,
feature vectors are available as both “column” features (the
matrix X) and “row” features (the matrixZ). The predic-

tion matrix is thusZW tX, rather thanW tX in Eq. (16).
However, the trace-norm regularization is applied to the
prediction matrixZW tX, rather than to the weight matrix.

In this paper we suggested an efficient method to extract
the underlying structures that characterize a set of target
classes. We believe that this approach is part of a trend
that emphasizes the importance of sharing representational
knowledge in order to enable large scale classification.
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