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Abstract

High dimensionality of POMDP’s belief state
space is one major cause that makes the
underlying optimal policy computation in-
tractable. Belief compression refers to the
methodology that projects the belief state
space to a low-dimensional one to alleviate
the problem. In this paper, we propose a
novel orthogonal non-negative matrix factor-
ization (O-NMF) for the projection. The
proposed O-NMF not only factors the be-
lief state space by minimizing the reconstruc-
tion error, but also allows the compressed
POMDP formulation to be efficiently com-
puted (due to its orthogonality) in a value-
directed manner so that the value function
will take same values for corresponding belief
states in the original and compressed state
spaces. We have tested the proposed ap-
proach using a number of benchmark prob-
lems and the empirical results confirms its
effectiveness in achieving substantial compu-
tational cost saving in policy computation.

1. Introduction

Partially Observable Markov Decision Process
(POMDP) models how an agent acts in a stochastic
environment given partial observations and feedback
from the environment for a better average reward in
the long run. Due to the partial observability, it is
common to represent the belief state of a POMDP
as a probability mass function defined over the true
states. Upon each action-taking and then observation
arrival, the belief state is re-estimated using Bayesian
updating. The complete set of belief states spans
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a |S| — 1 dimensional continuous hypercube (also
called belief space). Solving a POMDP is equivalent
to computing its optimal policy (a mapping between
belief states and actions) which is known to be
computationally challenging. = Even though there
exist related computational shortcuts, the complexity
bound for obtaining the optimal one with ¢ steps
ahead considered has been shown to be O( Ell)
(Cassandra, 1998) where Z is the set of possible
observations and (; is the space complexity of the
value function at the i*" iteration. So, the higher the
dimension of the belief space, the larger will be the
value of (; and thus the overall complexity.

Belief compression refers to the methodology which
projects the high-dimensional belief space to a low-
dimensional one for approximation in order to cut
down the policy computation cost. In the literature,
two main approaches have been proposed. One ex-
plores the belief space’s sparsity by analyzing belief
samples (N. Roy and G. Gordon & Thrun, 2005), and
another derives the POMDP formulation in the com-
pressed space in a valued-directed manner so that the
value function will take same values for correspond-
ing belief states in the original and compressed spaces
(Poupart & Boutilier, 2003).

In this paper, we propose to combine the strengths
of the two approaches via a novel orthogonal non-
negative matrix factorization (O-NMF). The proposed
belief compression approach has a number of advan-
tages, including: (1) O-NMF guarantees all the ele-
ments of the low-dimensional belief states to be non-
negative, which is important as belief states are by
themselves probability distributions; (2) O-NMF ex-
plores sparsity in belief space; (3) The value-directed
property can be maintained as far as possible; (4)
The overhead computation needed for getting the
compressed POMDP formulation is carefully designed
to avoid solving LP problems; and (5) The high-
dimensional « vectors (characterizing the value func-
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tion) can be recovered from their low-dimensional
counterparts in a well-posed manner. We have demon-
strated the effectiveness of the proposed compression
by applying it to a number of benchmark problems’.

2. POMDPs and Belief Compression
2.1. POMDP Basics

A POMDP model can be mathematically defined as
a tuple < S, A, Z,T,0,R > which contains a finite
set of true states S, a finite set of possible actions A,
the state transition probabilities T : & x A — TI(S),
a reward function depending on the state and the ac-
tion just performed R : § x A — R, a finite set of
observations Z and a set of corresponding observa-
tion probabilities O : S x A — II(Z). A belief state
is defined as the probability mass function over the
current state, denoted as b = (b(s1),b(s2),...b(s|5))),
wheres,ESb( i) > 0,and 3 5b(s;)) =1. A new
belief state is re-estimated as b**t! = SE(b?, a, z) which
is further defined in Egs.(1) and (2), given as

O(Sja a, Z) Zsies T(Sia a, Sj)bt(si)

t+H1ig ) —
b ( J) (Z|(L,bt) (1)
(zla,b') = > O(sj,a,2) Y T(si,a,5;)b'(si). (2)
s;€S $; €S

The reward function for action a performed at
the belief state b is computed as p(b,a) =

> s,esb(si)R(si,a). The belief data transition func-
tion becomes 7(b,a,b’) = >, p(V'|b,a,z)P(z]b,a)
where p(b'|b,a,z) = 1if ' = SE(b,a,z), and 0 other-
wise. To compute the optimal policy 7 : RISl — A, a
value iteration function is typically involved, given as

V(t) = maxfo(b.a) + 7 Y r(b.a, )V (3)
b

where « is a discounting factor for the past history.
In practice, it is common to have the optimal policy
represented by a set of linear functions (so called «
vectors) over the belief space, with the maximum “en-
velop” of the intersected a vectors forming the value
function (Cassandra, 1998).

2.2. Sample-driven vs Value-directed Belief
Compression

In the literature, there exist two main approaches for
belief compression, namely sample-driven and value-
directed.

The sample-driven approach (N. Roy and G. Gordon &
Thrun, 2005) addresses POMDPs’ curse of dimension-

! All the POMDP benchmark problems can be found in
http://www.pomdp.org/pomdp/examples/index.shtml

ality problem by applying dimension reduction tech-
niques like exponential principal component analysis
(EPCA) so that the high-dimensional belief space can
be characterized by a compact set of belief state ba-
sis vectors. While this approach has been shown to
be effective in making POMDPs with sparse belief
space more tractable, the non-linear projection makes
the value function of the projected belief state space
no longer piecewise-linear. Efficient algorithms which
take advantage of the value function’s PWLC prop-
erty become inapplicable. While the policy can still
be computed via a grid-based approximation (N. Roy
and G. Gordon & Thrun, 2005), the implementation of
the approximation is not straight-forward and yet in-
troduces to it additional inaccuracy. Also, the sample-
driven approach takes no consideration regarding how
the value function in the compressed belief space is
different from that in the original space.

The value-directed approach (Poupart & Boutilier,
2003) computes the minimal Krylov subspaces and
thus the corresponding reward and state transition
functions so that the value function will take same val-
ues for corresponding belief states in the original and
compressed spaces. As the projection is linear, the
value function after the projection is PWLC, and thus
most of the existing algorithms for policy computation
can be adopted. Computing the Krylov sub-space is
however time-consuming as a large number of linear
programming problems are to be solved and yet a high
compression ratio cannot be guaranteed. A truncated
Krylov iteration algorithm has also been introduced
(Poupart & Boutilier, 2003) for obtaining a forcibly
compressed POMDP by quickly stopping the Krylov
iterations instead of deriving the complete set of belief
basis vectors. This approach falls short as it provides
no mechanism for exploring belief state samples at all.

3. A Value-directed Formulation with
NMF Integrated

In this section, we review one of our recently proposed
methodologies (Li et al., 2005a) which adopts non-
negative matrix factorization (NMF) for the projection
and integrates NMF into a value-directed framework.

3.1. Non-negative Matrix Factorization

With the objective to preserve the value function’s
PWLC property, we adopted non-negative matrix fac-
torization (NMF) (Lee & Seung, 1999) for belief com-
pression. NMF is a linear factorization technique
which can guarantee all the data representations in
the factored space and their reconstructed versions in
the original data space to be non-negative. Given V
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to be an m X n matrix with its columns being the ob-
servation vectors, one can approximate V using NMF
so that V =~ WH where W is an m x p matrix with
its columns forming a set of p (normally < m) non-
negative basis components and the matrix H are the
corresponding coefficients. In other words, V is ap-
proximately represented by a weighted sum (H) of the
basis components (W). W and H can be derived using
multiplicative updating rules, given as

4 - (VHT )y
W; — ik (WHHT)Z]C (4)
(WTV)r;
B = oy, )

Egs.(5) and (4) alternate until W and H converge. It
has been shown that the updating rules are in effect
minimizing a Euclidean distance between V and W H.
The computational complexity of NMF per iteration
can easily be shown to be O(nmp).

3.2. Proposed Formulation

Let B be a n x | S| matrix [by|bo|...|b,] " representing
the belief sample (obtained via simulation) where n is
the size of the belief sample and b; corresponds to a
particular belief sample point. Also, let F' be a |S| x
transformation matrix which factors B into the matri-
ces F' and B such that
B' ~F'BT (6)
where each row of B equals b ~ b" = bF and the di-
mension of B is n x [. Here, B refers to the belief sam-
ple represented in the compressed space. As the main
objective of deriving F' is for dimension reduction, it is
typical that [ << |S|. One can compute Eq.(6) using
NMF which minimizes the Euclidean distance between
BT and its reconstructed versions F ' B'. By equating
the expected reward of a belief state b in the original
belief space V(b) = >, b(s;) R(si,a) = bR., = bFR.,
and that for the compressed belief space V(g) =bR.,,
the reward function for the compressed POMDP be-
comes B
R = FR. (7)

To derive the state-transition function in the com-
pressed space, consider two different paths for comput-
ing the next belief state in the high-dimensional space.
Given the current belief state in the original space, one
path is to first apply the compression and then perform
Bayesian updating in the compressed space. Another
path is to first perform Bayesian updating in the orig-
inal space and then perform the belief compression.
One can then obtain

YT SE(b,a,z)

— é<a,z>(’5t)T (8)
(bt+1)'l' _ FT<’5t+1)T

= SE(b' a,z)

_ G<a,z>(bt)‘r

— G<a,z>FT(gt)T_ (9)

Equating Egs.(8) and (9) using Eq.(6), we obtain

FTé<a,z> G<a’Z>FT. (10)
If F and @ that satisfy Egs.(7) and (10) can be found,
the compressed POMDP will be well-defined and can
be readily solved. Note that the value iteration func-
tion is piecewise linear and thus commonly represented
as sets of coefficient vectors (commonly called « vec-
tors) which correspond to the hyperplanes forming the
envelop of the value function. Getting R is straight-
forward but getting a good enough G is not. In a
preliminary study, we have used pseudo inverse to ob-
tain G but the quality of the policy obtained was bad.
In Section 4, we will show how this limitation can be
alleviated by introducing orthogonality into the NMF.

3.3. High-dimensional Policy Recovery

Once the formulation of the compressed POMDP is
defined and solved, the policy obtained in principle
could be used by the agent for taking actions ratio-
nally. However, updating the belief state in the com-
pressed state turns out to be non-trivial. While NMF
can guarantee elements of compressed belief states to
be non-zero, it cannot guarantee their sum to be 1,
which is assumed in Bayesian updating (Eq.(1)). One
simple walk-around is to avoid this by recovering the
high-dimensional « vectors from the low-dimensional
ones so that the agent can act according to the re-
covered policy and update the belief state in the high
dimensional belief space.

From the value-directed perspective, one can derive «
vectors in the high-dimensional space such that ab’ =
ab' holds?. Asb" = FTb", we can easily obtain

a=aF". (11)

The high-dimensional a vectors can thus be recovered
if Eq.(11) can be solved.

4. Orthogonal NMF Belief Compression
4.1. Motivation

Recall that F' is a |S| x [ projection matrix. Usually

we assume |S| > [ to achieve dimension reduction. So,

2Note that o and b are row vectors.
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the equation & = aF " is under-constrained and has
infinitely many solutions for a. In order to come up
with a closed-form solution for «, we apply an addi-
tional constraint F'TF = I and Eq.(11) will become

a=aF. (12)
In addition, this can result in another closed-formed
solution for G where Eq.(10) can be rewritten as

é<a,z> — FG<a’z>FT. (13)

The remaining question is how to enforce the orthog-
onality in F'. We will call such a factorization O-NMF
in the remaining sections.

4.2. Updating Rules of O-NMF

With the orthogonality constraint added, our compres-
sion problem becomes finding an F' such that

BT=F'BT st. FTF=1. (14)
Using NMF’s conventional notation scheme, it can be
rewritten as as

V=WH, st. WW' =1. (15)

As there are |S| x [ variables for W and |S|? equations
in WWT = I, the problem is over-constrained. Here,
we propose the following updating rules (to be derived
in the next section):

Wer  — W (VH ) .
ik N WHHT t VHTWTW - WHHTW T W),
) WTV);

MW TWH);

16)

Hyj a7)

which minimize |V —-W H ||% as well as [WW T —I||%.3

4.3. Derivation of Updating Rules

We adopt an auxiliary function-based method (Lee &
Seung, 2001) for constructing NMF updating rules.
The general idea is that if L(h) is the objective func-
tion to be minimized in NMF and Z(h,h’) is an aux-
iliary function satisfying the following conditions

Z(h,W') = L(h), Z(h,h) = L(h), (18)
for any h and A/, the NMF updating rule can be con-
structed by defining

R = arg m}jn Z(h, h(t)). (19)

It is obvious to see that L(h(®)) = Z(h®) n®) >
Z(h h®) > L(h(+D) according to Egs.(18) and
(19). Thus L(h®") is non-increasing and thus the up-
dating rule’s convergence can be guaranteed.

3| X||F refers to the Frobenius norm of the matrix X.

So to derive the updating rules for our constrained
problem, the key here is to find an appropriate aux-
iliary function. The objective function for NMF
(Eq.(15)) is

L=|V-WH][}. (20)
The Lagrangian multiplier method can be used for the
constrained minimization. (Ding et al., 2006). The
induced lagrangian function becomes

Ly= ||V -WH|% +TrN\WW ' —I)] (21)
which in turn can be rewritten as

LW)=Tr[-2W'VH" + WHH'W " + \WW ]
(22)
where the constants Tr[V V] and Tr[)\] are ignored.
It can then be shown that the following function

ZW,W') = = S 2VHT ) Wi (1 + log 7#)

W'(HH T YW2 AW/ W3
+Zik (W{k) ik +Zik Wi/klk (23)

is an auxiliary function of L(WW). The proof can be

found in Appendix A.
Based on Eq.(19), we compute arg mwi/n Z(W,W') by

setting
oZ(W, W'y
OWi,
W/ W'HH Wy, AW/ Wiy,
—2VH e —E 42 42 (24
WH Dy 2w Py @Y

to 0 and obtain

’ BN C(WHHT + MW )y,
To determine the value of A, we take the gradient of
L(W) again and obtain

(25)

A=VH'W' - WHH"W'. (26)
Based on Eq.(19), W’s updating rule becomes

(VHT )i
(WHHT + VHTWTW — WHHTWT W),

Wi, = W, (27)

During the NMF iterations, we require A > 0 due
to the square root in Eq.(25). For those VH W T —
WHHTWT which give negative values, we set them to
0 to guarantee the denominator in Eq.(27) to be pos-
itive and thus the nonnegative property can be main-
tained. Given a particular W, we can update H us-
ing the standard updating rule as Eq.(5). Even with
the A truncation, we found in our experiments that
the convergence of the NMF was still stable and the
reconstruction loss decreases gradually with no fluctu-
ations. However, this truncation does result in some
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increase in the reconstruction error and deviation from
the orthogonality constraint, if the initialization of W
and H are not carefully done.

To obtain a good initialization of W which can sat-
isfy the constraint WW T = I, we developed a two-
step NMF procedure. Step 1 is to obtain V = WH'
using the conventional NMF, which is to be followed
by Step 2 which solves H' = W TV using a differ-
ent version of orthogonal NMF proposed in (Ding
et al., 2006) where the orthogonality constraint is
W TW = I. By such a setting, the orthogonality con-
straint (W T)TWT = WWT = [ is set forth. We have
tested the POMDP derived directly based on this ini-
tialization step. The reconstruction error was large but
the orthogonality property of WW T = I was well sat-
isfied. By using it as the initialization for our O-NMF
updating rule in Eq.(27), we noticed further substan-
tial reduction in the loss ||V — W H||% and at the same
time good orthogonality achieved for W. Algorithm 1
summarizes the main steps of our O-NMF. The com-
putational complexity of O-NMF can be shown to be
different from that of NMF by a constant factor.

With the O-NMF in place, we can then easily compute
the POMDP formulation for the compressed space.
Since O-NMF does a linear projection, the compressed
POMDP can be solved using any existing POMDP al-
gorithm. Algorithm 2 gives an overall picture of our
proposed methodology.

Algorithm 1 O-NMF

: Input: data V, reduced dimension p
: Output: W, H

/¥ initialize W and H */

: Set W and H randomly.

for : =1 to iter Num do

Hyj « Hg; (véVTVW‘I/;()%M

(W )ik = (W D)iny/ %’

: end for

: /* update W, H using O-NMF updating rule */
10: while § > € do

11: 6=|V-WH|%

122 A=VH'"WT —-WHH'WT

13:  set -ve A\jz to 0

14: ij :ij(WTV)kj/(WTWHT)kj

15: Wi =W/ (VHT )i /OWHHT + AW )
16: end while

17: return

D UE W R

5. Implementation Details and
Performance Evaluation

In this section, we first explain the algorithm we
adopted for computing the policy and a trick we used

Algorithm 2 O-NMF-based Belief compression

1: Input: original POMDP problem S, reduced di-
mension [
Output: « vectors (policy) for the problem

o

3: Sample beliefs and store them as row vectors in a
matrix B. N

4: Invoke O-NMF to solve BT =F'B

5 R=FR

6: é<a,z> _ FG<a,z>FT

7: Compute optimal policy for POMDP defined by R
and G<**> and get the low-dimensional policy(a
vectors)

8 a=aF

9: return

for the value function initialization. Then, we present
performance evaluation results to demonstrate empiri-
cally the effectiveness and efficiency gained by the pro-
posed O-NMF belief compression.

5.1. Computing Policy Using Point Based
Value Iteration

In our experiments, Perseus — an efficient random-
ized point-based approximate value iteration algo-
rithm (Spaan & Vlassis, 2005) was adopted for com-
puting the policy. Combining Perseus into our frame-
work is straightforward, except that Perseus requires a
backup belief set for reducing the number of a vectors
to be stored. We used the same belief sample created
using the trajectory-based approach for O-NMF to be
also the backup belief set.

5.2. Tighter Initial bound for a Vector

Perseus starts with a single a vector initialized with
a lower bound of the value function. In fact, a good
lower bound can effectively speed up the convergence
of the value iteration. For some of the problems we
tested, we used a tighter lower bound based on the
one-step immediate reward

a’(s) = R(s,a) (28)
instead of conventional initialization

min, , R(s,a)

afs) = T

(29)
used in Perseus (Pineau et al., 2003). The rationale
is that for problems with min, , R(s,a) < 0, Eq.(29)
will further lower the initial lower bound of a vectors
and thus need more value iteration for convergence.
In Fig.1, the bottom left subfigure shows the « vector
initialization using Eq.(28) and the upper left shows
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the conventional initialization using Eq.(29). Initial-
ized as in the bottom left, the value function converged
to the optimal policy as shown in the bottom right in
only 5 steps. But the traditional initialization (upper
left) converges to the optimal policy (upper right) by
taking 31 steps instead. In our experiments, we have
tested the suggested initialization method, the conven-
tional one as well as yet another recently proposed one
(Smith & Simmons, 2005). We found that for some
unsolvable problems for Perseus, our suggested initial-
ization can make them becomes solvable but not the
other two as mentioned.

0 02 04 06 08 1

. 0 02 04 06 08 1
conventional alpha vector init alpha vectors at 31st iteration with conventional init

0 e —

0 02 04 06 08 1 "o 02 04 06 08 1
proposed alpha vector init alpha vectors at Sth iteration using proposed init

Figure 1. Comparison of two « vector initializations.
5.3. Effectiveness in Belief Reconstruction

Compare loss Ioglo(”VfWH“é) Compare log10(KL-Div(V,WH))

1R —&— [Ding et al. 2006]

—— [Ding et al. 2006]
—#— O-NMF

Compare loss |U—FFT|\§

Compare loss |\I—FTF\|§

b - [Ding et al. 2006] + - [Ding et al. 2006] 5

= O 40
80 7 O-NMF —— O-NMF o
X 30 x
60 * k3
fri 20 III
10 Iiris 10

x
D, ST ey
i =

0 20 40 60 80 100 0 20 40 60 80 100
Reduced Dimension Reduced Dimension

Figure 2. Reconstruction accuracy comparison between O-
NMF and [Ding et al. 2006] based on 500 belief samples
obtained from the Hallway2 problem.

As mentioned in Section 4.3, our proposed version of
orthogonal NMF is different from that proposed in
(Ding et al., 2006) regarding the orthogonality con-
straint and Ding et.al's version of orthogonal NMF is
not applicable for our case. However, we still con-

ducted reconstruction accuracy comparison to see if
there is significant difference given the change in the
orthogonality constraint. To our surprise, the empiri-
cal results we obtained show that our proposed version
of O-NMF performed better than Ding et.al’s version
regarding belief reconstruction and orthogonality sat-
isfaction. For example, for the Hallway2 problem, our
method achieved (a) lower belief reconstruction errors
measured in terms of matrix norm and K L-divergence,
and (b) lower orthogonality deviations measured in
terms of [|[WTW —1I||% and ||[WW T —1I||% as shown in
Fig. 2. The performance difference was more obvious
when the reduced dimension was 40 or above.

5.4. Policy Quality and Computational
Efficiency

For performance comparison, we implemented the pro-
posed O-NMF belief compression as well as EPCA-
based belief compression (N. Roy and G. Gordon
& Thrun, 2005) and truncated Krylov compression
(Poupart & Boutilier, 2003) using Matlab 7.0. We ran
all our experiments on a machine with a Dual Xeon
CPU 3.06GHz and the memory size of 2 GB. Full ma-
trices were used to store data in Matlab*. Due to
the non-linear nature of EPCA, we implemented also
a particular grid-based approximation for policy com-
putation as suggested in (Poupart & Boutilier, 2003).
However, our previous work (Li et al., 2005b) showed
that the policy quality we obtained using EPCA-based
compression for the Hallway2 problem was far from
the optimal one. Also, its performance on benchmark
problems like the Hallway2 problem were not reported
in (Poupart & Boutilier, 2003). Therefore, in this pa-
per, we only compare in detail our O-NMF based belief
compression and truncated Krylov compression.

To help understand the behavior of the proposed O-
NMF compression, Fig.3 shows the detailed perfor-
mance in terms of belief reconstruction error and aver-
age reward for solving the Hallway problem at differ-
ent reduced dimensions. The upper subfigure shows
the average KL-divergence between the original 500
belief samples and the reconstructed versions derived
from their compressed counterparts. The middle one
shows the orthogonality derivation. The lower subfig-
ure shows the average reward. It can be observed that
accurate reconstruction and good orthogonality should
both be ensured before good quality policies can be ob-
tained. For this 60-dimensional problem, our proposed
approach could still give a nearly optimal policy when

the dimension was reduced to 37 and could achieve an

4Note that using sparse matrix data structure can fur-
ther speed up O-NMF and the value iteration step.
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Average KL-Divergence

I-FFTE
i

ounted accumulated reward

Figure 3. Performance of O-NMF belief compression for
the Hallway problem compressed to different extents.

essentially lossless low-dimensional policy when the di-
mension was 45.

Table 1. Performance comparison for different problems.

(Tp - policy computing time; T, - compression time)

PROBLEM REWARD  TIME(SEC.)  REDUCED
(STATES/ACTIONS /OBS.) Tp +T. Dim.
Tiger-grid(500 samples) +0.014

(36s 5a 170)

PERSEUS 0.63 104 N/A
PERsEUs+TuUNC. KRy. -VE . .
PERSEUS+O-NMF 0.59 18.14+0.2 28
PERSEUS+O-NMF 0.65 10.26+0.2 30
Hallway (500 samples) +0.005

(60s 5a 210)

PERSEUS 0.50 53 N/A
PERSEUS+TUNC.KRY. 0.44 5.6 +41.27 33
PERSEUS+TUNC.KRY. 0.50 13.78 4+ 202 48
PERSEUS+O-NMF 0.43 1.654-2.45 33
PERSEUS+O-NMF 0.50 2.46+5.49 45
Hallway2(500 samples) +0.014

(92s 5a 170)

PERSEUS 0.31 69.96 N/A
PERsEUS+TUNC.KRY. 0.29 36 + 52.7 48
PERSEUS+O-NMF 0.29 494-8.398 60
Pentagon (1000 samples) +0.0015

(2125 4a 280)

PERSEUS - - N/A
PERSEUS+T.INIT 0.8132 691.3 N/A
RockSample(60 samples) +1.22

(257s 9A 20)

PERSEUS 7.96 35 N/A
PERsEUs+TuUNC. KRy. - - 11
PERSEUS+O-NMF 6.53 2.74+0.3 11

0.6 0.6
0.5 WM*** FAHKGH—O ¥ 0.5 WHQWQ*W%& *
e / N\ 0| 5 / A Y
b= = | R
g 04f 4 o S o4l jt ¥
F g
Sk ¢ L
2 03% s g 03 d‘
g |9 g |9
<o2bi <o2fh!
33 dim Perf. over VI 33 dim Perf. with 2.45 right-shift
01pP —%—- 45 dim Perf. over VI 0.1 |- —%— 45 dim Perf. with 5.49 right-shift
L —O— - Perseus Perf. over VI ,4‘6 —0— - Perseus Perf. over VI

0 10 20 30 40 50
Time(sec.)

60

70
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10
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Time(sec.)
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Figure 4. Detailed performance comparison of the pro-
posed methodology over time within Perseus.

Fig.4 gives a close look at the change of average award
for the policies computed over time for the Hallway
problem using only Perseus and Perseus with O-NMF
belief compression where the dimension was reduced
to 33 and 45. It can be observed from the left sub-
figure that Perseus with O-NMF converged rapidly to
the optimal policy. The right subfigure is essentially
the same as that of the left one, except that we have
taken into account also the O-NMF compression over-
head (2.45s and 5.49s corresponding to the cases of
reduced dimensions being 33 and 45 respectively) and
right-shifted the curves accordingly. For the Hallway
problem, the overhead is obviously insignificant.

We have also conducted a more rigorous performance
comparison between O-NMF compression and trun-
cated Krylov compression. Table 1 tabulates the re-
sults obtained in terms of (a) running time (with
breakdown of the time needed by O-NMF and Perseus)
and (b) the policy’s average award. A number of
benchmark problems have been tested. It can be ob-
served that for the problems Tiger-grid, Hallway, Hall-

way?2, and RockSample, the cases with O-NMF can
give policies of quality almost the same as that with-
out it at a reasonable reduced dimension. Also, the
computational speedup brought by the O-NMF was
quite significant for most of the cases, except for Hall-
way2. For the Pentagon problem, both Perseus and
Perseus with O-NMF cannot solve it. However, it is
interesting to point out that we managed to solve the
Pentagon problem using Perseus by adopting the ini-
tialization discussed in Section 5.2.

Comparing our proposed approach with truncated
Krylov compression (as shown in Table 1), truncated
Krylov compression got negative reward values over
all reduced dimensions for the Tiger-grid problem, and
comparable results as ours for Hallway and Hallway2
problems but requiring a much longer compression
time (202s and 52.7s respectively). For the Rock-
Sample problem, it achieved only a reward value of
2.27 at dimension 21 and also failed to solve the Pen-
tagon problem. The proposed O-NMF based belief
compression obviously outperforms truncated Krylov
compression regarding its effectiveness in reducing the
POMDP’s computational complexity.
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6. Conclusion

This paper describes a novel orthogonal NMF-based
POMDP compression which on one hand explores the
belief space’s sparsity for dimension reduction and at
the same time can efficiently compute the compressed
POMDP formulation which is also value-directed. The
proposed approach has been demonstrated to be effec-
tive in improving the tractability of POMDP based on
a set of benchmark problems.

This work can be further extended at least in the two
directions. (1) O-NMF needs a significant number be-
lief sample points before it is accurate enough. The
computational overhead however will increase with the
belief sample set. We are currently investigating how
to carefully control the complexity of this overhead
portion. (2) The degree to which a belief space can
be compressed could be intrinsically limited for some
problems. As demonstrated in (Li et al., 2005a), it
would be interesting to investigate the possibility for
the belief space to be clustered for more effective per-
cluster belief compression.
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A. Detailed Proof of the Auxiliary
Function

By referring to Egs. (22) and (23), it is obvious to
see that Z(W,W') = L(W) when W/ =W . To show
that the inequality Z(W, W’) > L(W) also holds, the
first part of the proof is to show that the second and
third terms in Z(W,W’) are always bigger than the
corresponding terms in L(WW) respectively. First, we
have the following property (Ding et al., 2006)

ZZ ASI ”’ (AS'B)ip i, > Tr(ST ASB)

=1 p=1

where A € R?™, B € R’fﬁ’“, S e Rk, & e RY*F,
and A and B are symmetric. Since Tr(STASB) =
Tr(ASBST), we can take A =I,S = W,B=H'H

and A = A\ S = W,B = I and the first part of
the proof follows. The remaining part corresponds to
the first term. We can prove that the first term in
Z(W,W’) is again always bigger than that in L(W)
by setting z = W;;/W/, in the following equality

—(1+log(z)) >
This completes the proof.

—z,Vz > 0.



