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Abstract

We consider the problem of learning density
mixture models for classification. Traditional
learning of mixtures for density estimation fo-
cuses on models that correctly represent the
density at all points in the sample space. Dis-
criminative learning, on the other hand, aims
at representing the density at the decision
boundary. We introduce a novel discrimi-
native learning method for mixtures of gen-
erative models. Unlike traditional discrimi-
native learning methods that often resort to
computationally demanding gradient search
optimization, the proposed method is highly
efficient as it reduces to generative learning of
individual mixture components on weighted
data. Hence it is particularly suited to do-
mains with complex component models, such
as hidden Markov models or Bayesian net-
works in general, that are usually too com-
plex for effective gradient search. We demon-
strate the benefits of the proposed method in
a comprehensive set of evaluations on time-
series sequence classification problems.

1. Introduction

Generative probabilistic models such as Bayesian net-
works (BNs) are an attractive choice in a number of
data-driven modeling tasks. Among their advantages
are the ability to easily incorporate domain knowledge,
factorize complex problems into self-contained models,
handle missing data and latent factors, and offer inter-
pretability to results. While such models are implic-
itly employed for joint density estimation, they have
recently been shown to also yield performance compa-
rable to sophisticated discriminative classifiers such as
SVMs and C4.5 (Friedman et al., 1997).
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In the classification setting, maximizing a conditional
likelihood (CML) is known to achieve better classifica-
tion performance than the traditional Maximum Like-
lihood (ML) fitting in a variety of situations (Greiner
& Zhou, 2002; Pernkopf & Bilmes, 2005). Unfor-
tunately, the CML optimization problem is, in gen-
eral, complex with non-unique solutions. Typical CML
learning resorts to gradient-based numerical optimiza-
tion methods. Despite the improved prediction perfor-
mance, the gradient search makes standard approaches
computationally demanding.

Effective use of generative models for classification of-
ten requires estimation of the model’s structure as well
as parameters. Intractability of the structure search
may sometimes be avoided by an ensemble-based ap-
proach (Jing et al., 2005). However, the resulting
model is not a generative model which may limit its
domain of applications to classification tasks only.

In this paper, we focus on the class of density mizture
models. A mixture model has a potential to yield supe-
rior classification performance to a single BN model,
as well as serve as a rich density estimator. Tradi-
tional discriminative mixture learning commonly relies
on the same gradient search used for single BN models
(e.g., (Beaufays et al., 1999)). This paper formulates
an efficient and theoretically sound approach to dis-
criminative mixture learning that avoids the paramet-
ric gradient optimization.

The proposed method exploits the properties of mix-
tures to alleviate the complex learning task. In a
greedy fashion, the mixture components are added re-
cursively while maximizing the conditional likelihood.
More specifically, at each iteration a new mixture com-
ponent f is found that, when added to the current
mixture F', maximally decreases the conditional loss.

Formulated as a functional gradient boosting, the pro-
cedure yields data weights with which the new com-
ponent f will be learned. Our particular weighting
scheme effectively emphasizes the data points on the
decision boundary, a desirable property for success-
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ful classification. At the same time, it focuses on the
insufficiently modeled points, a characteristic of tra-
ditional density estimators and a property useful in
general data fitting.

A crucial benefit of this method is efficiency: finding
a new f requires ML learning on the weighted data,
a tractable task for a large family of distributions.
Thus this approach is particularly suited to domains
with complex component models (e.g., hidden Markov
models (HMMSs) in time-series classification) that are
usually too complex for effective gradient search. In
addition, the recursive approach is amenable to opti-
mal order estimation and lower sensitivity to initial
parameter choices.

The paper is organized as follows: The previous ap-
proaches to discriminative learning of generative mod-
els are discussed in Sec. 2. Our proposed algorithm is
described in Sec. 3 with comparison to related work in
Sec. 4. In the experimental evaluation in Sec. 5, our
algorithm is compared with many standard methods
in an extensive set of sequence classification problems.

2. Background

We consider the supervised classification problem to
predict a class label ¢ € {1,..., K} for a point with
the attribute a which is either vector-valued or struc-
tured like a sequence. Let f(c,a)! denote a BN with
a class variable ¢ and attribute variables a. As a gen-
erative model, it is natural to model it by the (multi-
nomial) class prior f(c) and the class conditional den-
sities f(alc) = f.(a). For example, f.(a) could be a
Gaussian for the continuous vector a, or a product
of independent multinomials for a discrete vector a.
fe(a) may also include many latent variables (e.g., in
the sequence classification where a is a sequence of
measurement, f.(a) can be modeled as the HMM with
state variables hidden).

As a classifier, the class prediction of a new mea-
surement a can be accomplished by the MAP deci-
sion rule: ¢* = argmax, f(c|a). Given training data

= {(c!,a")}™_;, learning a joint density f(c,a) that
minimizes the prediction error is the main issue. The
traditional ML learning optimizes the data joint like-
lihood, >"7" , log f(c*, a’). However, ML does not nec-
essarily yield optimal prediction performance unless
we are given not only the correct model structure but
also a large number of train samples. We briefly review
several learning methods that have been (empirically)
shown to yield better prediction performance than ML.

We use f(c, a) to represent either a BN or a likelihood
at a data point (c,a) interchangeably.

2.1. Conditional Likelihood Maximization
The conditional log-likelihood (CLL) objective func-

tion for f(c,a) is:

Zlogf c'la’) Z {logf(cﬂai)—bg f(ah)].

i=1

CLL =

CLL is directly related with the prediction task. How-
ever, CLL optimization in general does not admit
closed-form solutions for most generative models. One
typically maximizes it using a gradient-based search.
The gradient w.r.t. the parameters 6 of f(c,a) is:

OCLL ~[0 )
= 1 1 1
31 =22 | ggos e — grioas @)
The first term, the gradient of the joint log-likelihood,
is straightforward? to evaluate if f(c,a) has no hidden
variables. The presence of hidden variables z in f(c, a),
on the other hand, trivially results in the expectation

of the gradient of the joint (mcludlng z) log-likelihood:

86]/fcaz

E¢(z1c,a) {89 log f(c,a Z)} (2)

The second term of Eq-(1), the derivative of the
measurement log-likelihood, is the expectation (over
¢) of the joint log-likelihood (in the same man-
ner as Eq-(2) by treating ¢ as hidden). That is,
Flog f(a) = Epayldylog f(c,a)l. Several previ-
ous works demonstrate that CML outperforms ML
when the model structure is suboptimal (Greiner &
Zhou, 2002; Pernkopf & Bilmes, 2005). However, the
computational overhead of the gradient-based numer-
ical search is highly demanding especially for complex
models such as HMMs and general BN structures.

0
5 logflea) =

2.2. Boosted Bayesian Networks (BBIN)

(Jing et al., 2005) proposed a very efficient dis-
criminative learning method for BNs. They treat
f(c,a) as a (weak) hypothesis, namely ¢ = h(a) =
argmax, f(cla), in a boosting (Freund & Schapire,
1995) framework. For each stage, AdaBoost’s weights
w on data (¢, a) are used to learn the next hypothesis
(BN) via weighted ML learning: argmaxy ., w' -
log f(c*,a’). This approach has been shown to inherit
certain benefits from AdaBoost such as good gener-
alization by max-margin. However, the resulting en-
semble cannot be simply interpreted as a generative
model since the learned BNs are just weak classifiers

to be combined for the classification task.

2We assume that all the conditional densities in the BN
belong to the exponential families.
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3. Boosted Mixture Learning

Let F(c,a) denote a mixture of BNs, that is, F'(¢c,a) =
Zf\le am fm(c,a), where ap, > 0 and ) o, = 1.
Note that each component of the mixture is a BN
fm(c,a). The mixture model is learned in a greedy
recursive (boosted) manner: at each stage we add a
new BN component f(c,a) to the current mixture so
that it optimizes a certain objective. Two potential ad-
vantages of this approach over the standard EM-based
mixture learning are (1) the lack of need for a pre-
determined mixture order M, and (2) the decreased
sensitivity to the initial parameter choice.

Formally, for a given objective functional J(F') for the
mixture F', we search for a new component f such that
when we replace F' with ((1 —e€)F +¢f) for some small
positive €, J((1—e) F+ef) is maximally increased. Due
to the convex combination constraint of a mixture, f
should make the projection of the functional gradient
of J(F) onto (f —F) maximized. It results in the opti-
mization problem, f* = argmaxy < f — F,VJ(F) >,
which is equivalent to:

* = argma w(ct,al) - f(c,ab), 3
f g fX; (c',a') - f(c';a") (3)
where w(c, a) = Vp(e,a)J(F) = 0J(F)/0F (c,a). Thus
V F(e,a)J (F') serves as a weight for the data point (c, a)
with which the new f will be learned.

When the objective is the joint log-likelihood (gen-
erative learning), Jaen(F) = Y.i,log F(c',a’), the
functional gradient is 0Jgen (F)/O0F (c,a) = 1/F(c,a)
yielding the generative data weight wgen(c,a) =
1/F (¢, a) for (c,a). On the other hand, the conditional
log-likelihood objective, Jp;s(F) = Y1, log F(c*|a"),
gives birth to the discriminative mixture model.

3.1. Discriminative Mixture Learning

The discriminative objective to be maximized is:

Jpis(F) = ilogF(ciW) = zn:log M 4)
= = @)
The functional gradient of Eq-(4) for the point (or in-
dex of dimension) (c?,a’) can be derived as:

dJpis(F) 0 F(ct,a?) B F(~ct|at)
OF(ct,al) — OF(ct,at) F(a?)  F(ci,al)’
(5)
where F(=c'la’) = 3 . F(cla’) = 1 — F(c'|a’). The
discriminative data weight for (c,a) is wps(c,a) =
(1= F(cla))/F(c,a).

The discriminative weight indicates that the new f is
learned by weighted data proportional to (1—F(ct|a?)),

at the same time, inversely proportional to F(c?,a’).
Hence the data points unexplained by the model, i.e.,
F(c',a’) — 0, and incorrectly classified by the current
mixture, i.e., (1 — F(ct|a’)) — 1, are focused on in the
next stage. This is an intuitively appealing argument.
In contrast, the generative mixture model, would only
focus on unexplained points with weights 1/F(c, a?).

Once the optimal component f* has been selected,
its optimal contribution to the mixture a* can be ob-
tained as:
il ((1 —a)F(ct,a*) + af*(ci,ai))
0 : . .
S\ - a)F(@) + af (@)
(6)

The complete discriminative mixture learning algo-
rithm is outlined in Algorithm 1. Selection of the
first component can be done using the ML learning.
Note that the choice of the initial model is not very
critical as we keep enhancing (initially weak) mix-
ture recursively. Optimization in Eq-(3) is, by tak-
ing a log(), a log-of-sum (instead of sum-of-log), which
can be done via a lower bound maximization tech-
nique, by recursively completing a few iterations of ML
learning of f on the weighted data with the weights
¢ = wpis(c’,at) - f(c¢!,a’). Optimal a can be found
using any line search method.

o = arg max
agl0,1] =

The time complexity of the discriminative mixture
learning is of the order O(M - (Cy- Ny, + Nps)) where
Ny, stands for the complexity of the ML learning, Cjy
is the number of iterations of the the recursive ML, and
Ny s is the complexity of the line search. In practice,
ML recursions are dominant resulting in the overall
complexity O(MCyNysp) with Cp ~ 1. Hence, the
discriminative mixture learning algorithm complexity
is a constant factor of the simple generative learning
of the base model on weighted data.

To illustrate the behavior of this discriminative algo-
rithm consider a simple example in Figure 1 of two
classes, each modeled with a mixture of three Gaus-
sians from which 200 samples were drawn (top). The
central lobe of each class models the majority of sam-
ples. Of the two side lobes, one is irrelevant for classi-
fication while the other carries crucial samples. Sub-
optimal to the true model, our component BN f is
assumed to have a single Gaussian for each class.

The ML learned initial mixture component fi(c,a)
models the majority of the samples (shown in the bot-
tom). In the middle, we depict the next stage weight
distributions determined by fi(c,a) for two learning
criteria. In the discriminative learning, the points close
to the boundary are incorrectly classified by f1(c,a)
and receive high weights wp;s(c,a) while the unex-
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Algorithm 1 Discriminative Mixture Learning.

Input: A set of samples D = {(c?,a’)}1 ;.
Output: Mixture F(c,a) =", amfm(c,a).
Select initial f.
for m=2,3,... do
Select f* by solving Eq-(3) with w = wp;s.
Select a* by solving Eq-(6).
Update F « (1 — a*)F + o™ f*.
end for

-
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Figure 1. Data is generated by the distributions in the top
panel (+ class in blue/dashed and — class in red/solid).
The middle panel shows weights for the second component,
both discriminative wpis(c,a) and generative wgen(c, a).
The bottom panel displays the individual mixture compo-
nents of the learned models. Generatively learned compo-
nent f§ (¢, a) is contrasted to the discriminatively learned
one, f**(c,a).

plained points away from the boundary are not con-
sidered because of their irrelevance for classification.
The new mixture components will now be added close
to the decision boundary (£ in the bottom). On the
other hand, in the generative learning, higher weights
are assigned to unexplained samples (wgen (¢, a) in the
middle), which selects the component corresponding to
the main lobes, away from the boundary, hence obtain-
ing a less discriminative mixture (£$**™ in the bottom).

4. Related Work

In automatic speech recognition, the discriminative
parameter learning of HMMSs and its benefit have
been studied extensively (Woodland & Povey, 2002).
Most methods adopt minimum classification error or
CML (also called maximum mutual information) ob-
jectives, however, their optimization algorithms are
based on gradient search or complex update schemes.
Recently, Sha and Saul (2007) have introduced an al-
ternative discriminative density estimator based on
max-margin, formulating a convex program.

Prior approaches to estimation of mixtures of BNs
have emerged in recent years (Thiesson et al., 1998;
Rosset & Segal, 2002; Meek et al., 2002). Our re-
cursive boosting algorithm for discriminative mixture
learning is based on the functional gradient optimiza-
tion of convex additive models. While similar gradient
approaches have been introduced in the past (Fried-
man, 1999; Mason et al., 1999), they only provided
heuristic methods for the component search or did not
focus on mixtures of generative models. In (Pavlovic,
2004), a mixture fitting problem, reduced to the joint
log-likelihood cost functional optimization in the su-
pervised setting, was solved in a non-heuristic way.
Our algorithm generalizes its framework to the clas-
sification setting with an appropriate data weighting
schemes for the discriminative cost functional.

5. Experiments

To evaluate the utility of the proposed mixture-based
classification method we conduct experiments on syn-
thetic and real data. Here we focus on the task of
classifying structured measurements (i.e., sequences).
This is, in general, more difficult than the static multi-
variate data classification where the standard gradient-
based methods such as CML are not preferred due to
the complex model structures.

In the following experiments we use Gaussian-emission
HMMs (GHMMs) to model the class conditional den-
sities f.(a) for the real multivariate sequence a. The
competing methods are denoted as: (1) ML (ML
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learning for f(c,a)), (2) CML (Sec. 2.1), (3) BBN
(Sec. 2.2), (4) BxML (generative mixture learning),
and (5) BxCML (discriminative mixture learning).

5.1. Synthetic Experiment

2D sequences are generated by the following process:
The class-1 is composed of two GHMMSs, fig and f15,
and the class-2 is another mixture of two GHMMSs, foi
and foy. The parameters of fip and fop are chosen
in a way that they generate sequences looking very
different (easy to distinguish). On the other hand, f15
and fop generate sequences similar to each other (hard
to classify), thus lying on the classification boundary.
The example sequences are depicted in Figure 2. Note
that our base model f(c, a) has a sub-optimal structure
since it has a single GHMM for each class.

—6— Class1 Easy
Class1 Hard

—w— Class2 Easy

= = = Class2 Hard

dim-2

Figure 2. Example sequences generated by true model.

The first component of the mixture models (BxML
and BxCML) is chosen as the ML model. The max-
imum number of iterations of BxML and BxCML is
set as 4, however, BxCML often stops earlier when
the CLL score reaches a value close to 0. We also run
BBN for 10 iterations, sufficient for convergence.

The average test errors and the joint/conditional log-
likelihood scores on test data are shown in Table 1.
BxCML has the lowest error, boosting the incorrect
base model structure effectively. Overall, the meth-
ods that utilize a discriminative objective tend to per-
form better than generative counterparts. BxCML
also improves the joint log-likelihood score over that of
ML, implying that the discriminative mixture model
can still enjoy the benefits of generative models, such
as the richness in synthesis.

5.2. Experiments on Real Data

We next demonstrate the benefits of the proposed
method in a comprehensive set of evaluations on
real-world time-series sequence classification problems.

Table 1. Average test errors (%), log-likelihoods (LL), and
conditional log-likelihoods (CLL) on test data. BBN, a
non-generative classifier, does not have LL or CLL.

Test Error | LL on Test | CLL on Test
ML 19.60 -165.21 -1.97
CML 9.80 -174.99 -1.11
BBN 6.40 N/A N/A
BxML 4.20 -139.12 -0.44
BxCML 0.60 -154.62 -0.02

The 5 classification problems from 4 datasets are de-
scribed in Sec. 5.2.3. All the experimental results are
summarized in Table 2 and Figure 3 with the discus-
sion in Sec. 5.2.4. In the next section we briefly review
two competing discriminative approaches (SVMs and
Nearest Neighbors (NN)) that we compare against in
our experiments. Sec. 5.2.2 outlines our treatment of
multi-class problems.

5.2.1. FSVM anD 1-NN/DTW

One way to approach the sequence classification prob-
lem relies on between-sequence distance measures. A
central issue is the task of defining the distance mea-
sure (kernel for SVM and Euclidean distance for NN)
between pairs of possibly unequal-length sequences.

SVM with Fisher kernel (FSVM): The Fisher
kernel between two sequences a and a’ is defined
as the RBF evaluated on the distance between their
Fisher scores with respect to the underlying genera-
tive model. More specifically, assuming binary clas-
sification3, k(a,a’) = e Ua=Uul’/(20%) " where U, =
Volog fe=i(a). fe=i(a) is usually learned by ML with
the examples of the positive class only. The RBF scale
0? is determined as a median distance between the
Fisher scores corresponding to the training sequences
in the positive class and the closest Fisher score from
the negative class in the train data (Jaakkola et al.,
1999). We use SVM with the Fisher kernel. The SVM
hyperparameters are selected by a cross validation.

NN with dynamic time warping (1-NN/DTW):
For two unequal-length sequences, the dynamic time
warping (DTW) finds the best warping path that mini-
mize the Euclidean distance of aligned sequences using
dynamic programming. With the warped Euclidean
distance measure, we employ 1-NN to classify new se-
quences. We include 1-NN only since we have verified
that the choice of k > 2 in k-NN rarely impacts on the
classification performance in our experiments.

3The multi-class problems can be reduced to many bi-

nary problems. See Sec. 5.2.2.
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5.2.2. TREATING MULTI-CLASS PROBLEMS

In multi-class settings we apply both direct multi-class
solutions and binarization. For FSVM we will ig-
nore direct multi-class solutions due to difficulties in
direct treatment. The binarization is usually done
in either one-vs-others or one-vs-one manner. In the
one-vs-others setting multi-class labels are predicted
using the winner-takes-all (WTA) strategy from the
outputs of the binarized problems. In the one-vs-
one setting we employ the pairwise coupling (PWC)
of (Hastie & Tibshirani, 1998). Note that for FSVM,
the SVM outputs have to be transformed to Platt’s
probabilistic outputs (Platt, 1999) before we apply
PWC* (Duan & Keerthi, 2003). In the notation,
we denote SVM one-vs-one PWC by FSVM(PWC),
while FSVM/(WTA) for one-vs-others.

For the generative models, we evaluate both direct
multi-class solutions and the PWC for one-vs-one. For
instance, for CML, we denote the former by CML,
while the latter by CML(PWC). For BBN, we used
(1) direct multi-class treatment (AdaBoost.M1) de-
noted by BBN, and (2) one-vs-one binarization and
maz-win-vote denoted by BBN(MWYV).

5.2.3. DATASETS

A. Gun/Point: The task is to distinguish whether
gun is drawn or finger is pointed (Keogh & Folias,
2002). The motions are represented by 1D sequences
recording the x-coordinates of the centroid of the right
hand of a subject. This is the only dataset of the equi-
length (150) sequences. The evaluation is performed
by 10-fold cross validation.

B. Australian Sign Language (ASL): This dataset
contains about 100 signs generated by 5 signers with
different levels of skills (Hettich & Bay, 1999). In this
experiment, we consider only 10 selected signs (e.g.,
“hello”, “sorry”, etc.). The sequences have features,
corresponding to the hand position, hand orientation,
finger flexion, and more. The sequence lengths are
very diverse ranging from 17 to 196. We formulate
binary classification problems distinguishing one sign
from another, facing 45 (= (120)) problems. For each
problem, 40 samples (20 from each sign) are gathered
and the leave-1-out test is performed.

C. Georgia-Tech Gait (GT Gait): We also test the
proposed method on the human gait recognition prob-
lem. From the database (Tanawongsuwan & Bobick,
2003), we take sequences of 5 subjects with 4 differ-
ent walking speeds. The goal is to recognize subjects

4This transformation is not necessary for the generative
probabilistic models.

regardless of their walking speeds, that is, a 5-class
problem. The original dataset provides high-quality
3D motion capture features on which most of compet-
ing models perform equally well. To make the classi-
fication task more difficult we consider two modifica-
tion: (1) From the original 1-cycle sequences, we take
sub-sequences randomly. (2) The features related only
to the lower body part are used. The evaluation is
done by 10-fold cross validation.

D. USF Human ID Gait Data: The database®
consists of about 100 subjects walking in the ellipti-
cal paths periodically in front of the cameras. We
focus on the task of motion-based subject identifi-
cation. From the processed human silhouette video
frames we computed the 7" order Hu moments which
are translation and rotation invariant descriptors of bi-
nary images. We randomly choose 7 humans from the
database represented by 16 sequences. We consider
the following two problem settings: (1) Setl (Dis-
tinguish two subjects): We select sequences of only
two humans, and distinguish the two subjects. Thus
we have 21(= (;)) binary classification problems. (2)
Set2 (Recognize all subjects): We classify all 7
human IDs. This is a more difficult 7-class problem.
Both sets are evaluated using leave-1-out validation.

5.2.4. DISCUSSION

Results of our experiments on the four datasets are
summarized in Table 2. The results suggest that the
discriminatively trained mixture model, BxCML, is
among the class of best-performing models, performing
on par or better than state-of-the-art methods such as
FSVM. This points to the critical benefit of BxCML
that couples an increased modeling capacity of mixture
models with the discriminative learning objective.

For the Gun/Point dataset, with binary class equi-
length sequences, the purely discriminative classifiers
(FSVM and 1-NN/DTW) outperform traditional
generative models trained both generatively and dis-
criminatively (ML and CML). On the other hand,
for the ASL dataset which contains diverse-length
sequences, all generative models yield superior per-
formance to example-based classifiers. This is possi-
bly due to the sensitivity of kernel methods (FSVM
and 1-NN/DTW) to the choice of kernel parameters,
which becomes a critical but difficult-to-solve problem
for datasets with diverse-length sequences.

Generative models, on the other hand, naturally ac-
count for varying-length sequences. However, their

representational power may need to be increased via

® Available at http://figment.csee.usf.edu/CaitBaseline.
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the mixture modeling formalism in order to account
for variability not captured by traditional HMMs, as
suggested by the good performance of mixture models
in the Gun/Point.

It is important to note, however, that despite the rep-
resentational capacity of mixtures the role of proper
optimization objective can be crucial. For the GT
Gait dataset, we can see that generative models with
discriminative objectives (CML and BxCML) are
significantly better than those with generative objec-
tives (ML and BxML).

Table 2. Test errors (%): For the datasets evaluated with
cross validation, the averages and the standard deviations
are included. The others contain average leave-1-out test
errors. “~” means redundant since a multi-class method is
to be applied for binary class data. The boldfaced num-
bers indicate the lowest, within the margin of significance,
test errors for a given dataset. The mixture orders for
the boosting algorithms are determined by cross validation,
where they are usually small (fewer than 10 components).

Gun/ GT USF USF
ASL
Point Gait Setl Set2
36.22 11.50
ML 8.67 20.24 55.36
+ 9.62 + 4.78
ML 11.50
- - - 55.36
(PWC) + 4.78
26.06 3.38
CML 5.45 17.11 50.89
+ 5.23 + 3.68
CML 3.63
- - - 39.29
(PWC) + 3.51
28.78 10.13
BBN 4.90 17.11 55.36
+ 13.75 + 3.61
BBN 3.50
_ _ - 42.86
(MWYV) + 3.05
19.28 11.87
BxML 6.33 19.35 48.21
+ 6.15 + 5.11
BxML 14.25
- - - 50.00
(PWC) + 4.90
17.28 5.75
BxCML 5.18 13.84 54.46
+ 5.67 + 2.78
BxCML 6.87
— — — 35.71
(PWC) + 4.09
FSVM 22.67 7.12
10.90 12.95 39.29
(PWC) + 6.58 + 4.17
FSVM 2.87
- - - 44.64
(WTA) + 2.29
1-NN/ 22.33 8.38
12.06 22.17 54.46
DTW + 5.75 + 3.68
24.66 7.75
Avg 7.64 17.54 48.15
+ 7.54 + 3.88

Improved performance of CML compared to BxML
implies that the discriminative learning of models with
even inferior structures can yield superior classifiers.
Overall, comparison of BxCML and BxML suggests
that the impact of discriminative learning of the mix-
tures can be significant.

BBN has the potential similar to BxCML to focus
on the decision boundary modeling. In our experi-
ments, BxCML is never inferior to BBIN, perhaps
pointing to deficiencies in the approximation step of
the weighted ML optimization in BBN. On the other
hand, the weighted ML training in the BxCML ap-
proach does not involve a similar approximation as-
sumption. Additionally, BxCML results in a com-
pletely generative model F'(c, a) that could possess at-
tractive data-synthesis properties, as indicated by our
result on the synthetic data.

While the discriminative mixture model outperforms
other approaches, multi-class problems, as indicated
by USF Set2, raise an important modeling issue. In
particular, USF Set2 suggests that the binarization
yields better performance than direct multi-class treat-
ment for some models. This issue does not daunt gen-
eratively learned generative models (ML/BxML) as
the optimization of the joint likelihood implies no dis-
crimination between the true and the competing class
variables. BxCML, due to discriminative learning,
may exhibit a large difference in binarization and di-
rect multi-class treatment. This behavior is due to the
numerator of the weight, (1 — F(c|a)), which penalizes
the complement classes (—¢) equally for the incorrectly
predicted point (c¢,a). Similar issues have been ob-
served in binary class AdaBoost approaches and will
be addressed in our future work.

6. Conclusions

We introduced a novel discriminative method for
learning mixtures of generative models. Unlike tradi-
tional approaches to discriminative learning of genera-
tive models, the proposed method is highly computa-
tionally efficient. This makes the approach suitable for
domains described by complex generative models and
settings such as the spaces of time-series sequences.

We have shown, through a comprehensive set of eval-
uations, that a mixture learned discriminatively is not
only superior to a single generative model, but also
comparable in performance to ensembles of discrimi-
native models. Moreover, the mixture model continues
to enjoy other benefits of generative models such as the
potential for powerful synthesis of data which will be
explored in our future work.



A Recursive Method for Discriminative Mixture Learning

In this paper, although we focused on the parame-
ter learning to avoid expensive structure search, the
discriminative mixture learning may include and ben-
efit from the structure learning. Methods such as the
structural EM algorithm can readily become a part of
our framework, adjusting the model structure at each
boosting stage.
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Figure 3. Test error scatter plots comparing 7 models from
Table 2. Each point corresponds to one of the 5 classifica-
tion problems. For instance, congregation of points below
the main diagonal in the BxCML vs. ML case suggests
that BxCML outperforms ML in most of the experimen-
tal evaluations. The (red) rectangles indicate the plots
comparing BxCML with others.
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