Multiclass Core Vector Machine

S. Asharaf
M. Narasimha Murty
S. K. Shevade

ASHARAF@QCSA.IISC.ERNET.IN
MNM@CSA.IISC.ERNET.IN
SHIRISHQCSA .IISC.ERNET.IN

Computer Science and Automation, Indian Institute of Science, Bangalore, India - 560012

Abstract

Even though several techniques have been
proposed in the literature for achieving multi-
class classification using Support Vector Ma-
chine(SVM), the scalability aspect of these
approaches to handle large data sets still
needs much of exploration. Core Vector Ma-
chine(CVM) is a technique for scaling up a
two class SVM to handle large data sets.
In this paper we propose a Multiclass Core
Vector Machine(MCVM). Here we formulate
the multiclass SVM problem as a Quadratic
Programming(QP) problem defining an SVM
with vector valued output. This QP prob-
lem is then solved using the CVM technique
to achieve scalability to handle large data
sets. Experiments done with several large
synthetic and real world data sets show that
the proposed MCVM technique gives good
generalization performance as that of SVM
at a much lesser computational expense. Fur-
ther, it is observed that MCVM scales well
with the size of the data set.

1. Introduction

Ever since Vapnik’s influential work in Statistical
Learning theory(Vapnik, 1998), kernel based methods
have gained profound interest amidst the researchers
in machine learning and exploratory data analysis. In
these methods, kernel functions are used to compute
the inner product of data vectors in an implicitly de-
fined kernel induced feature space. By choosing a suit-
able kernel function any machine learning algorithm
that requires only the inner product between data vec-
tors can be transformed into a kernel based method
and this technique is known as kernel trick. One of

Appearing in Proceedings of the 24" International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

the most celebrated kernel based methods is the two
class Support Vector Machine(SVM) for classification
problem. SVMs are hyperplane classifiers defined in
a kernel induced feature space. They achieve optimal
separation of patterns by margin maximization. The
popularity of SVM is mainly attributed to its firm the-
oretical foundation, good generalization performance
in several domains, the geometric interpretability and
ease of application in different fields.

Several attempts have been made to equip the SVM
to handle multiclass classification problems. There are
mainly two types of approaches for multiclass SVM.
The first approach is to construct and combine sev-
eral binary SVMs to obtain a multiclass classifier.
Some of the techniques that fall in this category are
one-against-all, one-against-one and DAGSVM meth-
ods(Hsu & Lin, 2002). This approach is computa-
tionally expensive due to the large number of binary
SVMs that are to be trained for handling each bi-
nary sub problem. The second approach is to for-
mulate and solve an optimization problem handling
the multiclass scenario(Hsu & Lin, 2002). This opti-
mization problem directly takes care of all the data
points and all the available classes. Some representa-
tives from this category are a) the multiclass SVM by
Szedmak and Shawe-Taylor (2005), b) multiclass SVM
by Weston and Watkins (1999) and multi-prototype
multiclass SVM(Aiolli & Sperduti, 2005). The opti-
mization problems involved in these methods are fairly
complicated and hence are computationally expensive.
Even though the decomposition techniques like the one
proposed by Hsu and Lin (2002) and Soman et al.
(2007) help to reduce the complexity of the optimiza-
tion problem, they are still expensive for use in appli-
cations involving large data sets.

Several real world applications typically deal with mas-
sive collection of data and hence the main issue in
using SVM here is that of scalability. The classifi-
cation problem using SVMs is usually formulated as
a Quadratic Programing(QP) problem. The exist-

Multiclass Core Vector Machine

ing solution strategies for this problem have an as-
sociated time and space complexity that is (at least)
quadratic in the number of data points. This makes
the SVM very expensive to use even on data sets hav-
ing a few thousands of elements. Core Vector Ma-
chine(CVM)(Tsang et al., 2005) is a suitable technique
for scaling up a two class SVM to handle large data
sets. In CVM, the quadratic optimization problem
involved in SVM is formulated as an equivalent Mini-
mum Enclosing Ball(MEB) problem. The MEB prob-
lem is then solved by using a faster approximation al-
gorithm introduced by Badoiu and Clarkson (2002).

In this paper we propose the Multiclass Core Vec-
tor Machine(MCVM). Here we formulate the multi-
class classification problem as a quadratic program-
ming problem. When the kernel function satisfies cer-
tain property, it is shown to be equivalent to an MEB
learning problem. This problem is then solved using
the MEB approximation algorithm used in CVM.

The rest of the paper is organized as follows. Sec-
tion 2 deals with Core Vector Machines. In Section
3, the proposed Multiclass SVM formulation is dis-
cussed. The MCVM is introduced in Section 4. The
experimental results are given in Section 5 and Section
6 deals with conclusions.

2. Core Vector Machines

Core Vector Machine applies kernel methods to data
intensive applications involving large data sets. In
CVM, the quadratic optimization problem involved in
SVM is formulated as an equivalent MEB problem. It
is then solved using a fast approximate MEB finding
algorithm employing the concept of core sets(Tsang
et al., 2005).

Given a set of data points S = {x;}!", where z; €
R? for some integer d > 0, the minimum enclosing
ball of S (denoted as MEB(S)) is the smallest ball
that contains all the points in S. Let k be a ker-
nel function with the associated feature map ¢. Then
k(xi,x;) = < ¢(x;),o(x;) >. Here < -,- > denotes
the inner product. Now the primal problem for the
MEB in the kernel induced feature space to find the
MEB B(a, R) with center a and radius R can be stated
as

min R?
R,a
st. ||é(z:) —al> < R® Vi (1)

The corresponding Wolfe Dual(Fletcher, 2000) is

m m

mm E a;aik(x;, ;) gal Xy T;)

1,j=1
m
=1

where ;s are the Lagrange multipliers.

(67 Z 0 Vi (2)

Now consider a situation where

k(z,x) = K, a constant

This is true for kernels like Gaussian given by
k(x;,z;) = e~llzi==;1” " Here || - || represents the Lo
norm and ¢ is a user given parameter.

The dot product kernel like polynomial kernel given by
k(z;,x;) = (< 24,2; > +1)* with normalized inputs
x; and x; also satisfies the above condition. Here A is
a non-negative integer.

The Wolfe Dual of the MEB problem can now be writ-
ten as

m

min Zaiajk(xi,xj)
C =

st > =1 a;>0 Vi (3)
i=1

When the kernel function satisfies k(x, z) = k, any QP
of the above form can be regarded as an MEB problem.

2.1. A Two Class SVM Problem as an MEB
Problem

Given a training data set S = {(x;, y;)}", where z; €
R? and y; € {+1,—1}, the primal for the two class
SVM problem can be written(Tsang et al., 2005) as

m
. 2 2 2
min w||*+b° =20+ C :
Jpin ol =2+ C 3¢

st yi(w'e(z;) +b) > p—& Vi (4)
The Wolfe Dual is

m
: dij
min > iy <yiyjk(93i793j) +yiy; + %)

ij=1

m
s.t. Zai =1
i=1

Multiclass Core Vector Machine

Here §;; is the Kronecker delta function.

To simplify the notation let us denote the pair (z;, y;)
as z;. Now the training data set can be denoted as
S = {z;},. The above equation can now be rewritten
as

m
rrgn Z aiok(zi, 2;)
ij=1
m
s.t. Zai =1

i=1

where

5
k(zi, 2;) = yiyik(zi, ;) + viy; + —

ok
When k(z,x) = & is satisfied this transformed kernel
function k satisfies the condition

k(z,z) = k1, some constant.

Hence the above mentioned problem is an MEB prob-
lem. We now describe the algorithm to find approxi-
mate MEB.

2.2. Approximate MEB Finding Algorithm

The traditional algorithms for finding exact MEB are
not efficient for d > 30(Tsang et al., 2005) and hence
the CVM method adopts a faster approximation al-
gorithm introduced by Béadoiu and Clarkson (2002).
It returns a solution within a multiplicative factor of
(1+¢€) to the optimal value, where € is a small positive
number.

The (1 4 €) approximation of the MEB problem is
obtained by solving the problem on a subset of the
data set called Core Set. Let Bg(a,R) be the ex-
act MEB with center a and radius R for the data
set S and BQ(&R) be the MEB with center a and
radius R found by solving the MEB problem on a
subset of S called Core Set(Q)). Given an € > 0, a
ball Bg(a, (1 + €)R) is an (1 + €)-approximation of
MEB(S) = Bs(a,R) if S € Bg(a, (1 + €)R) and
R<R.

Formally, a subset @ C S is a core set of S if an
expansion by a factor (1+¢) of its MEB contains S(i.e.

S C Bg(a,(1+¢)R)) as shown in Figure 1.

The approximate MEB finding algorithm uses a simple
iterative scheme: At the t*" iteration, the current esti-
mate Bg(ay, Rt) is expanded incrementally by includ-
ing that data point in S that is farthest from the center

a; and falls outside the (1 4 €)-ball Bg(ay, (1 + €)Ry).
The computation to find the farthest point becomes
very expensive when the number of data points in S is
very large. Hence to speed up the process CVM uses a
probabilistic method. Here a random sample S’ hav-
ing 59 points is taken from the points in S (Smola &
Scholkopf, 2000). Then the point in S’ that is farthest
from the center a; is taken as the approximate farthest
point from S. The iterative strategy to include the far-
thest point in the MEB is repeated until all the points
in S are covered by Bg(at, (1 + €)R;). The set of all
such points that got added forms the core set of the
data set.

Figure 1. The dotted circle is the exact MEB of the entire
data. The inner circle is the exact MEB of Core Set(the set
of points enclosed in squares) and its (14 €) expansion(the
outer circle) covers all points.

3. Formulation of Multiclass SVM

The Multiclass SVM(MSVM) is formulated here as an
SVM with vector output. This idea comes from a sim-
ple reinterpretation of the normal vector of the sep-
arating hyperplane(Szedmak & Shawe-Taylor, 2005).
This vector can be viewed as a projection operator of
the feature vectors into a one dimensional subspace.
An extension of the range of this projection into multi-
dimensional subspace gives the solution for vector la-
belled training of SVM.

Let the training data set be S = {(z;,)}, where
z; € R, y; € RTfor some integers d, T > 0. i.e. we
have m training points whose labels are vector valued.

Multiclass Core Vector Machine

For a given training task having T classes, these la-
bel vectors are chosen out of the finite set of vectors
{y1,y2,...y7}. Now we can define the primal for the
learning problem as

m

1
t wTw blI? — 2p + — 2
race()+ o]l p+ Vm;ril

min
W.,b,p,&:

st yT(Wolzs) +0) > p—¢ (7)

The corresponding Wolfe Dual is

m
m(in Z o0 (< i,y > k(2 ;) +
4,j=1

< ¥i,yj > +dijvm)

s.t. Zai =1 >0 Wi (8)
i=1

From the Karush-Kuhn-Tucker(KKT)(Fletcher, 2000)
conditions on equation(7) we get

m m
W= aiyid(x:)" b=> iy

i=1 i=1
So the decision function predicting one of the labels
from 1...T for any test pattern z; can be expressed as

arg max <y, (Wo(z;) +b) >

— arg ma
gt:l...T

(Z(ai <Yirye > (k(zi, 25) + 1))) 9)

i=1

Now the question that arises is about choosing the
label vectors. Let y;(t) denote the t** element of the
label vector y; corresponding to the pattern x;. One
of the convenient ways is to choose it as

(r-1)

T if item 4 belongs to category ¢

1

m otherwise

The inner product between the vectors will then be

1 if © and j is of same class
<Y,y >= T4
;H otherwise

It may be observed that this kind of an assignment is
suitable for any T > 2.

4. Multiclass CVM
4.1. Viewing MSVM as an MEB Problem

To simplify the notation let us denote the pair (x;,y;)
as z;. Now the training data set can be denoted as
S={z}".

To view the MSVM formulation discussed in the above
section as an MEB problem let us rewrite the dual of
MSVM problem given by equation(8) as

m

min Z OéiOéj];}(Zi, Zj)
[

ij=1

st Y ai=1 ;>0 Vi (10)
=1

where k is the modified kernel function given by

k(Zi,Zj) = (< Yiry Yj > k((Ei,IEj)+

<Y, y; > +0;;vm) (11)
When k(z,r) = & is satisfied this transformed kernel
function k also satisfies the condition

k(z,z) = k1, some constant.

Hence the above mentioned problem is an MEB prob-
lem. We can now use the approximate MEB finding
algorithm discussed in Section 2.2 to solve it.

4.2. Solving the MEB Problem

Once the Multiclass SVM problem is formulated as an
MEB problem, we get a modified kernel function k
with an associated mapping function ¢. This MEB
problem is then solved using the approximation al-
gorithm introduced by Badoiu and Clarkson (2002).
The idea here is to incrementally expand the ball by
including the point that is farthest from the center of
the MEB obtained from the previous iteration.

The distance G(z;) of a point z; from the center a of
the MEB is given by

G?(zi) = || 6(zi) — al®

= k(2 %) —QZajff(zj,zi)—i— Z ajonk(zy, z) (12)
j=1

J,k=1

where n is the number of points in the core set from
which the MEB was found in the previous iteration.

Multiclass Core Vector Machine

The above equation is obtained using the expression

a=>Y ap(x;)
i=1

given by the KKT conditions on the Lagrangian for
equation (1). Now the radius R of the MEB computed
at the current iteration can be given as

R =G(z;) where 0 < o; < C (13)

The approximate MEB learning algorithm starts with
a core set containing one point(randomly chosen) from
each of the competing classes. The MEB is then
learned in the incremental manner as explained above.

As in CVM, here also we employ the probabilistic
speed up(Smola & Schélkopf, 2000) method to re-
duce the computational effort. A random sample of
59 points is taken from the training set and the point
from this sample that is farthest from the center of the
MEB obtained from the previous iteration is taken as
the point to be added to the core set in current itera-
tion.

4.3. MCVM Algorithm

To write the algorithm formally let us denote

e the data set by S
e core set at iteration ¢ by Q;

e center of the MEB obtained for core set at itera-
tion ¢ by a;

e radius of tNhe MEB obtained for core set at itera-
tion ¢ by R;

e MEB found for core set Q as Bg(a, R)

The MCVM algorithm employs three user defined pa-
rameters. They are:

e The parameter ¢ of the Gaussian kernel function.

e The € used by the approximate MEB finding al-
gorithm used in MCVM.

e The v parameter value of MSVM implemented by
MCVM.

Now the algorithm can be given as

1. Initialize the core set Q¢ with one point from each
of the classes in S.

2. Train the MEB with the current core set Qg.

3. Terminate if there is no point z such that b(2)
falls outside the (1 + €)-ball Bg(a, (1 + €)R;).

4. Find z such that ¢(z) is farthest from .

Set i =141, QH_l:QU{Z}.
5. Find the new MEB Bg (@it 1, Rit1) from Q41 and
go to step 3.

The low training time requirements of MCVM makes it
amenable to use the standard parameter tuning tech-
niques like cross validation to determine the parame-
ters ¢, € and v.

4.4. Time and Space Complexities of MCVM

Let m be the number of points in the training set.
First, let us consider the case when the probabilistic
speed up is not used in MCVM. In Badoiu and Clark-
son (2002), it is proved that the approximate MEB
finding algorithm converges in at most % iterations.
In other words, the total number of iterations 7 is of

O(1).

€

We start the approximate MEB finding algorithm with
a core set having one randomly chosen data point from
each of the classes. So, if T' is the number of classes,
we have | Qo |= T. Here | - | denotes the cardinality.
Since only one data point is added at each iteration
we get | Q; |= i+ T. Since the total number of iter-
ations is of O(1), the size of the final core set is also
of O(2). In practice it is observed that the size of the
core set is much smaller than this worst case theoreti-
cal upper bound(Kumar et al., 2003). To get an upper
bound on the computational expense, we assume that
the QP problem to find the MEB for a core set is of
O(n?) complexity, where n is the size of the core set
(we do it even though O(n?) algorithms such as the
one discussed in (Scholkopf et al., 2001) exist in the
literature).

Now we can see that core set initialization takes O(1)
time(since we do a random initialization) and the dis-
tance computations in steps 3 and 4 take O((i +T)* +
im) = O(i® + im) time. Finding the MEB in step 5
takes O((i + T)3) = O(i®) time, and the other opera-
tions take constant time. Hence the i'" iteration takes
a total of O(im + i®) time. Now the total time taken
by 7 iterations is

> 0t +i%) = 0tm+7) =0 (5 + %)
=1

€2

which is linear in m for a given e.

Multiclass Core Vector Machine

We know that only the core vectors are involved in
approximate MEB finding QP problem. So at any it-
eration i, the space requirement is of O(] Q; |?). Since
the number of iterations 7 is of O(1) and | Q; |=i+T,
the space complexity for the whole procedure is 0(6%)7
and hence is independent of m for a given e.

Now let us consider the case when the probabilistic
speed up is used. Here also the core set initialization
takes O(1) time. But the distance computations in
steps 3 and 4 take only O((i+7)?) = O(i?) time (since
there is no scan of the entire training data to find the
farthest point outside the current MEB). Time for the
other operations remain the same. So the " itera-
tion takes O(i%) time. As the probabilistic speed up
method may not find the farthest point in each iter-
ation(Tsang et al., 2005), the number of iterations 7
may be larger than % though it can still be bounded by

% (Bédoiu & Clarkson, 2002). Hence, the time com-
plexity of the entire algorithm is

gouﬁ) —0(M =0 (618)

thus for given e, it is independent of m.

As discussed above, the space complexity depends on
the size of the core set which in turn depends on
the number of iterations. In probabilistic speed up
method, the number of iterations is bounded by 6%
and hence space complexity is of O(E%)

When € decreases, the MCVM solution becomes closer
to the exact optimal solution, but at the expense of
higher time and space complexities. Such a trade off
between efficiency and approximation quality is typical
of all approximation schemes(Tsang et al., 2005). For
handling large data sets, an algorithm with the best
asymptotic efficiency(both time and space) is normally
used. Since MCVM is designed for handling large data
sets, the asymptotic efficiency(both time and space)
of the method is analyzed using the O-notation. But
for smaller problems, the MCVM method may be out
performed by algorithms that are not as efficient as
MCVM asymptotically.

It may also be noted that the proposed MCVM tech-
nique is much better than the other direct multiclass
SVM formulations because they have a prohibitive
O(m3) time complexity (note that SVM using SMO
algorithm is only of O(m?) time complexity) for solv-
ing the associated QP problem.

Since both CVM and MCVM techniques solve an iden-
tical QP problem using the same approximate MEB
finding(Badoiu & Clarkson, 2002) algorithm, the con-

vergence proof given by Tsang et al. (2005) holds good
for MCVM technique also.

5. Experimental Results

Experiments are done with two synthetic data
sets and two real world data sets. We com-
pared the results obtained with one-against-one
SVM(OvO-SVM)(Chang & Lin, 2001), one-against-
one CVM(OvO-CVM)(Tsang et al., 2005) and the
proposed MCVM. The one-against-one SVM is cho-
sen for comparison because it is reported to have
given the best performance among the one-against-
all, one-against-one and DAGSVM approaches(Hsu &
Lin, 2002). The LIBSVM Version 2.8 (Chang & Lin,
2001) implementation is used for the experiments with
SVM. In all the experiments we used Gaussian kernel
function. All the experiments were done on a Intel
Xeon(TM) 3.06GHz machine with 2GB RAM.

5.1. Synthetic Data Sets

To evaluate the performance of SVM and the proposed
MCVM technique we generated two synthetic data sets
viz; Synth 1 and Synth 2. These data sets are obtained
from 10 multivariate(5 dimensional) normal distribu-
tions. Each of these distributions is given a different
label and hence we get a 10 class problem. Synth 1
has 100000 points in the training set and 25000 points
in the test set. In case of Synth 2 there are 1000000
points in the training set and 200000 points in the test
set. The parameters used in the experiments and the
results obtained are shown in Table 1 and Table 2 re-
spectively.

5.2. Real World Data Sets

The real world data sets used are: SensIT Vehicle
(acoustic) data set from the LIBSVM page available
at “hitp://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/multiclass” and Intrusion Detection data
set from the UCI KDD archive available at
“http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html”. The parameters used in the experi-
ments are given in Table 1.

5.2.1. SENSIT VEHICLE (ACOUSTIC)

Acoustic(Acst) data set pertains to a 3 class problem
with 78823 patterns in the training set and 19705 pat-
terns in the test set. Each pattern here is described
using 50 numerical features. The results obtained for
this data set are given in Table 3.

Multiclass Core Vector Machine

Data #TR #TST | SVM CVM MCVM
q | ¢ | C g | ¢ | v
Synth 1 100000 25000 0.2 0.12 | 10e-6 | 0.05 | 0.075 | 1.5e-3 | 9e-3
Synth 2 | 1000000 | 200000 0.2 0.05 | 10e-6 | 500 0.1 Te-4 9e-3
Acoustic 78823 19705 0.02 3.5 le-6 led 7.5 2e-3 9e-3
Intrusion | 4898431 | 311029 | 0.026 | 1le-3 | 1le-6 1le6 10 5e-3 5e-3

Table 1. Details of data sets and parameter values used in experiments. The abbreviations used are: number of training

points(#TR), number of points in the test data(#TST).

Data #SV TT GP CT
SVM | CVM | MCVM | SVM | CVM [MCVM | SVM | CVM [MCVM | SVM | CVM | MCVM
Synth 1 | 2338 | 2722 291 296 130 99.548 98.8 98.912 14 11 4
Synth 2 | 9326 | 2908 322 18276 | 23935 99.587 | 95.531 | 98.814 414 148 35

Table 2. Results for the experiments with Synthetic data sets for SVM, CVM and MCVM. The abbreviations used are:
one-against-one SVM(SVM), one-against-one CVM(CVM), Multiclass Core Vector Machine(MCVM), number of support
vectors(#SVs), training time(TT) in seconds, generalization performance(GP) on test data in percentage and classification

time(CT) for test data in seconds.

Training Process
10

OvO-SVM

H
om
T
I

Training Time(in seconds) ————>
5
T
I

MCVM

10 F k|

0
I I

10* 10°

Training Set Size ————>

10
10

10

Figure 2. A plot of Training Time(in seconds, in log scale)
of OvO-SVM and MCVM against the Training set size(in
log scale) for Synthetic Data set.

5.2.2. INTRUSION DETECTION DATA SET

The Intrusion Detection(Intr) data set has 4898431
training patterns and 311029 test set patterns. We
have considered the original 5 class problem. Only the
38 numerical features available were considered and
they were normalized to have values between zero and
one by dividing them by their maximum values. The
results obtained for this data set are given in Table 3.

From the empirical results it is observed that MCVM
technique gives comparable generalization perfor-

Training Process
10 T T

OvO-SVM

H
om
T

Training Time(in seconds) ————>

I I I
10* 10° 10
Training Set Size ————>

10

Figure 3. A plot of Training Time(in seconds, in log scale)
of OvO-SVM and MCVM against the Training set size(in
log scale) for Intrusion Detection Data Set.

mance(overall and class wise generalization) as that
of one-against-one SVM at a very less computational
expense. Further, the results show that MCVM
gives better generalization performance than the one-
against-one CVM at a lesser computational expense.

To study the scalability of the proposed MCVM tech-
nique we have done experiments with the synthetic
data set(Synth 2) and the Intrusion Detection Data
Set. In these experiments we sampled the training
set keeping the class distributions. Training samples
of different sizes are obtained and the corresponding

Multiclass Core Vector Machine

Data #SV TT GP CT

SVM | CVM | MCVM | SVM [CVM | MCVM | SVM [CVM [MCVM | SVM [CVM [MCVM
Acst | 51022 | 13186 1300 5468 | 4984 4196 70.109 | 62.233 | 68.876 718 113 32
Intr | 21714 154 187 29486 | 220 202 91.652 | 87.023 | 91.671 1891 24 66

Table 3. Results for the experiments with Real world data sets for SVM, CVM and MCVM. The abbreviations used are:
one-against-one SVM(SVM), one-against-one CVM(CVM), Multiclass Core Vector Machine(MCVM), number of support
vectors(#SVs), training time(TT) in seconds, generalization performance(GP) on test data in percentage and classification

time(CT) for test data in seconds.

training time taken by OvO-SVM and MCVM algo-
rithms are recorded (OvO-CVM is not included here
because its generalization performance is not compa-
rable). A plot of the increase in Training Time(in sec-
onds, in log scale) against the increase in Training set
size(in log scale) for synthetic and intrusion detection
data sets are shown in Figures 2 and 3 respectively. It
can be observed that the increase in training time for
MCVM is comparatively lesser when compared to that
of OvO-SVM with the increase in the training set size.
The plot corresponding to MCVM clearly illustrates
that the proposed MCVM technique scales well with
the size of the data set.

6. Conclusions

A scalable kernel based multiclass classifier namely
Multiclass Core Vector Machine is proposed in this pa-
per. The proposed method achieves comparable gener-
alization performance as that of one-against-one SVM
at a very less computational expense. Further, MCVM
gives better generalization performance than the one-
against-one CVM at a lesser computational expense.
Some properties of the proposed method are a) The
method scales well with the size of the data set and
b) Incremental training is possible for the method and
hence can be used for online learning.

References

Ajolli, F., & Sperduti, A. (2005). Multiclass Classi-
fication with Multi-Prototype Support Vector Ma-
chines. Journal of Machine Learning Research, 6,
817-850.

Badoiu, M., & Clarkson, K. L. (2002). Optimal core
sets for balls. In DIMACS workshop on Computa-
tional Geometry.

Chang, C.-C., & Lin, C.-J. (2001). LIB-
SVM: A library for Support Vector Machines.
http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.

Fletcher, R. (2000). Practical methods of optimization,
2nd ed. New York: Wiley-Interscience.

Hsu, C.-W., & Lin, C.-J. (2002). A Comparison of
Multiclass Support Vector Machines. IFEE Trans-
actions on Neral Networks, 13, 415-425.

Kumar, P., Mitchell, J. S. B., & Yildirim, E. A. (2003).
Approaximate minimum enclosing balls in high di-
mensions using core sets. ACM Journal of Experi-
mental Algorithms, 8, Article No. 1.1.

Scholkopf, B., Platt, J. C., Shawe-Taylor, J., Smola,
A. J., & Williamson, R. C. (2001). Estimating the
support of a high-dimensional distribution. Neural
Computation, 13, 1443-1472.

Smola, A. J., & Scholkopf, B. (2000). Sparse greedy
matrix approximation for machine learning. Pro-
ceedings of the Seventeenth International Confer-

ence on Machine Learning (pp. 911-918). Stanford,
CAUSA.

Soman, K. P., Loganathan, R., Vijaya, M. S., Ajay, V.,
& Shivsubramani, K. (2007). Fast Single-shot Mul-
ticlass Proximal Support Vector Machines and Per-
ceptrons. Proceedings of the International Confer-
ence on Computing: Theory and Applications (IC-
CTA) (pp. 294-298). Kolkata, India.

Szedmak, S., & Shawe-Taylor, J. (2005). Multiclass
learning at one-class complexity. Technical Report
No: 1508, School of Electronics and Computer Sci-
ence, Southampton, UK.

Tsang, I. W., Kwok, J. T., & Cheung, P.-M. (2005).
Core Vector Machines: Fast SVM training on very
large data sets. Journal of Machine Learning Re-
search, 6, 363-392.

Vapnik, V. N. (1998). Statistical learning theory. John
Wiley and Sons.

Weston, J., & Watkins, C. (1999). Support Vector Ma-~
chines for Multi-class Pattern Recognition. Proceed-
ings of the Seventh European Symposium On Artifi-
cial Neural Networks (pp. 219-224). Brussels.

