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Abstract
Relational data appear frequently in many ma-
chine learning applications. Relational data con-
sist of the pairwise relations (similarities or dis-
similarities) between each pair of implicit ob-
jects, and are usually stored in relation matri-
ces and typically no other knowledge is avail-
able. Although relational clustering can be for-
mulated as graph partitioning in some applica-
tions, this formulation is not adequate for gen-
eral relational data. In this paper, we propose a
general model for relational clustering based on
symmetric convex coding. The model is applica-
ble to all types of relational data and unifies the
existing graph partitioning formulation. Under
this model, we derive two alternative bound opti-
mization algorithms to solve the symmetric con-
vex coding under two popular distance functions,
Euclidean distance and generalized I-divergence.
Experimental evaluation and theoretical analysis
show the effectiveness and great potential of the
proposed model and algorithms.

1. Introduction

Two types of data are used in unsupervised learning, fea-
ture and relational data. Feature data are in the form of
feature vectors and relational data consist of the pairwise
relations (similarities or dissimilarities) between each pair
of objects, and are usually stored in relation matrices and
typically no other knowledge is available. Although feature
data are the most common type of data, relational data have
become more and more popular in many machine learning
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applications, such as web mining, social network analysis,
bioinformatics, VLSI design, and task scheduling. Further-
more, the relational data are more general in the sense all
the feature data can be transformed into relational data un-
der a certain distance function.

The most popular way to cluster similarity-based relational
data is to formulate it as the graph partitioning problem,
which has been studied for decades. Graph partitioning
seeks to cut a given graph into disjoint subgraphs which
correspond to disjoint clusters based on a certain edge cut
objective. Recently, graph partitioning with an edge cut ob-
jective has been shown to be mathematically equivalent to
an appropriate weighted kernel k-means objective function
(Dhillon et al., 2004; Dhillon et al., 2005). The assump-
tion behind the graph partitioning formulation is that since
the nodes within a cluster are similar to each other, they
form a dense subgraph. However, in general this is not true
for relational data, i.e., the clusters in relational data are not
necessarily dense clusters consisting of strongly-related ob-
jects.

Figure 1 shows the relational data of four clusters,
which are of two different types. In Figure 1, C1 =
{v1, v2, v3, v4} and C2 = {v5, v6, v7, v8} are two tradi-
tional dense clusters within which objects are strongly re-
lated to each other. However, C3 = {v9, v10, v11, v12} and
C4 = {v13, v14, v15, v16} also form two sparse clusters,
within which the objects are not related to each other, but
they are still ”similar” to each other in the sense that they
are related to the same set of other nodes. In Web min-
ing, this type of cluster could be a group of music ”fans”
Web pages which share the same taste on the music and
are linked to the same set of music Web pages but are not
linked to each other (Kumar et al., 1999). Due to the impor-
tance of identifying this type of clusters (communities), it
has been listed as one of the five algorithmic challenges in
Web search engines (Henzinger et al., 2003). Note that the
cluster structure of the relation data in Figure 1 cannot be
correctly identified by graph partitioning approaches, since
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they look for only dense clusters of strongly related objects
by cutting the given graph into subgraphs; similarly, the
pure bi-partite graph models cannot correctly identify this
type of cluster structures. Note that re-defining the rela-
tions between the objects does not solve the problem in this
situation, since there exist both dense and sparse clusters.

If the relational data are dissimilarity-based, to apply graph
partitioning approaches to them, we need extra efforts on
appropriately transforming them into similarity-based data
and ensuring that the transformation does not change the
cluster structures in the data. Hence, it is desirable for
an algorithm to be able to identify the cluster structures
no matter which type of relational data is given. This is
even more desirable in the situation where the background
knowledge about the meaning of the relations is not avail-
able, i.e., we are given only a relation matrix and do not
know if the relations are similarities or dissimilarities.

In this paper, we propose a general model for relational
clustering based on symmetric convex coding of the re-
lation matrix. The proposed model is applicable to the
general relational data consisting of only pairwise relations
typically without other knowledge; it is capable of learning
both dense and sparse clusters at the same time; it unifies
the existing graph partition models to provide a generalized
theoretical foundation for relational clustering. Under this
model, we derive iterative bound optimization algorithms
to solve the symmetric convex coding for two important
distance functions, Euclidean distance and generalized I-
divergence. The algorithms are applicable to general rela-
tional data and at the same time they can be easily adapted
to learn a specific type of cluster structure. For example,
when applied to learning only dense clusters, they provide
new efficient algorithms for graph partitioning. The con-
vergence of the algorithms is theoretically guaranteed. Ex-
perimental evaluation and theoretical analysis show the ef-
fectiveness and great potential of the proposed model and
algorithms.

2. Related Work

Graph partitioning (or clustering) is a popular formulation
of relational clustering, which divides the nodes of a graph
into clusters by finding the best edge cuts of the graph.
Several edge cut objectives, such as the average cut (Chan
et al., 1993), average association (Shi & Malik, 2000), nor-
malized cut (Shi & Malik, 2000), and min-max cut (Ding
et al., 2001), have been proposed. Various spectral algo-
rithms have been developed for these objective functions
(Chan et al., 1993; Shi & Malik, 2000; Ding et al., 2001).
These algorithms use the eigenvectors of a graph affinity
matrix, or a matrix derived from the affinity matrix, to par-
tition the graph.

Multilevel methods have been used extensively for graph
partitioning with the Kernighan-Lin objective, which at-
tempt to minimize the cut in the graph while maintaining
equal-sized clusters (Bui & Jones, 1993; Hendrickson &
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Figure 1. The graph (a) and relation matrix (b) of the relational
data with different types of clusters. In (b), the dark color denotes
1 and the light color denotes 0.

Leland, 1995; Karypis & Kumar, 1998).

Recently, graph partitioning with an edge cut objective
has been shown to be mathematically equivalent to an
appropriate weighted kernel k-means objective function
(Dhillon et al., 2004; Dhillon et al., 2005). Based on this
equivalence, the weighted kernel k-means algorithm has
been proposed for graph partitioning (Dhillon et al., 2004;
Dhillon et al., 2005). Yu et al. (2005) propose the graph-
factorization clustering for the graph partitioning, which
seeks to construct a bipartite graph to approximate a given
graph. Nasraoui et al. (1999) propose the relational fuzzy
maximal density estimator algorithm.

In this paper, our focus is on the homogeneous relational
data, i.e., the objects in the data are of the same type. There
are some efforts in the literature that can be considered
as clustering heterogeneous relational data, i.e., different
types of objects are related to each other. For example, co-
clustering addresses clustering two types of related objects,
such as documents and words, at the same time. Dhillon
et al. (2003) propose a co-clustering algorithm to maximize
the mutual information. A more generalized co-clustering
framework is presented by Banerjee et al. (2004) wherein
any Bregman divergence can be used in the objective func-
tion. Long et al. (2005), Li (2005) and Ding et al. (2006)
all model the co-clustering as an optimization problem in-
volving a triple matrix factorization.

3. Symmetric Convex Coding

In this section, we propose a general model for relational
clustering. Let us first consider the relational data in Fig-
ure 1. An interesting observation is that although the dif-
ferent types of clusters look so different in the graph from
Figure 1(a), they all demonstrate block patterns in the re-
lation matrix of Figure 1(b) (without loss of generality, we
arrange the objects from the same cluster together to make
the block patterns explicit). Motivated by this observation,
we propose the Symmetric Convex Coding (SCC) model
to cluster relational data by learning the block pattern of
a relation matrix. Since in most applications, the relations
are of non-negative values and undirected, relational data
can be represented as non-negative, symmetric matrices.
Therefore, the definition of the SCC is given as follows.

Definition 3.1. Given a symmetric matrix A ∈ R+, a dis-
tance function D and a positive number k, the symmetric
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convex coding is given by the minimization,

min
C∈R

n×k
+ ,B∈R

k×k
+

C1=1

D(A,CBCT ). (1)

According to Definition 3.1, the elements of C are between
0 and 1 and the sum of the elements in each row of C equal
to 1. Therefore, SCC seeks to use the convex combination
of the prototype matrix B to approximate the original rela-
tion matrix. The factors from SCC have intuitive interpre-
tations. The factor C is the soft membership matrix such
that Cij denotes the weight that the ith object associates
with the jth cluster. The factor B is the prototype matrix
such that Bii denotes the connectivity within the ith clus-
ter and Bij denotes the connectivity between the ith cluster
and the jth cluster.

SCC provides a general model to learn various cluster
structures from relational data. Graph partitioning, which
focuses on learning dense cluster structure, can be formu-
lated as a special case of the SCC model. We propose the
following theorem to show that the various graph partition-
ing objective functions are mathematically equivalent to a
special case of the SCC model. Since most graph parti-
tioning objective functions are based on the hard cluster
membership, in the following theorem we modify the con-
straints on C as C ∈ R+ and CT C = Ik to make C to be
the following cluster indicator matrix,

Cij =

{
1

|πj |
1
2

if vi ∈ πj

0 otherwise

where |πj | denotes the number of nodes in the jth cluster.

Theorem 3.2. The hard version of SCC model under
Euclidean distance function and B = rIk for r > 0, i.e.,

min
C∈R

n×k
+ ,B∈R

k×k
+

CT C=Ik

||A − C(rIk)CT ||2 (2)

is equivalent to the maximization

max tr(CT AC), (3)

where tr denots the trace of a matrix.

Proof. Let L denote the objective function in Eq. 2.

L = ||A − rCCT ||2 (4)

= tr((A − rCCT )T (A − rCCT )) (5)

= tr(AT A) − 2rtr(CCT A) + r2tr(CCT CCT )(6)

= tr(AT A) − 2rtr(CT AC) + r2k (7)

The above deduction uses the property of trace tr(XY ) =
tr(Y X). Since tr(AT A), r and k are constants, the
minimization of L is equivalent to the maximization of
tr(CT AC). The proof is completed.

Theorem 3.2 states that with the prototype matrix B re-
stricted to be of the form rIk, SCC under Euclidean dis-
tance is reduced to the trace maximization in (3). Since var-
ious graph partitioning objectives, such as ratio association
(Shi & Malik, 2000), normalized cut (Shi & Malik, 2000),
ratio cut (Chan et al., 1993), and Kernighan-Lin objective
(Kernighan & Lin, 1970), can be formulated as the trace
maximization (Dhillon et al., 2004; Dhillon et al., 2005),
Theorem 3.2 establishes the connection between the SCC
model and the existing graph partitioning objective func-
tions. Based on this connection, it is clear that the existing
graph partitioning models make an implicit assumption for
the cluster structure of the relational data, i.e., the clusters
are not related to each other (the off-diagonal elements of
B are zeroes) and the nodes within clusters are related to
each other in the same way (the diagonal elements of B are
r). This assumption is consistent with the intuition about
the graph partitioning, which seeks to ”cut” the graph into
k separate subgraphs corresponding to the strongly-related
clusters.

With Theorem 3.2 we may put other types of structural con-
straints on B to derive new graph partitioning models. For
example, we fix B as a general diagonal matrix instead of
rIk, i.e, the model fixes the off-diagonal elements of B
as zero and learns the diagonal elements of B. This is a
more flexible graph partitioning model, since it allows the
connectivity within different clusters to be different. More
generally, we can use B to restrict the model to learn other
types of the cluster structures. For example, by fixing diag-
onal elements of B as zeros, the model focuses on learning
only spare clusters (corresponding to bi-partite or k-partite
subgraphs), which are important for Web community learn-
ing (Kumar et al., 1999; Henzinger et al., 2003). In sum-
mary, the prototype matrix B not only provides the intu-
ition for the cluster structure of the data, but also provides
a simple way to adapt the model to learn specific types of
cluster structures.

4. Algorithm Derivation

In this section, we derive efficient algorithms for the SCC
model under two popular distance functions, Euclidean dis-
tance and generalized I-divergence.

4.1. Algorithm for SCC under Euclidean Distance

We derive an alternative optimization algorithm for SCC
under Euclidean distance, i.e., the algorithm alternatively
updates B and C until convergence.

First we fix B to update C. To deal with the constraint
C1 = 1 efficiently, we transform it to a ”soft” constraint
by adding a penalty term, α||C1 − 1||2, to the objective
function, where α is a positive constant. Therefore, we
obtain the following optimization.

min
C∈R

n×k
+

||A − CBCT ||2 + α||C1 − 1||2. (8)
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The objective function in (8) is quartic with respect to C.
We derive an efficient updating rule for C based on the
bound optimization procedure (Salakhutdinov & Roweis,
2003; D.D.Lee & H.S.Seung, 1999). The basic idea is
to construct an auxiliary function which is a convex upper
bound for the original objective function based on the solu-
tion obtained from the previous iteration. Then, a new solu-
tion to the current iteration is obtained by minimizing this
upper bound. The definition of the auxiliary function and a
useful lemma (D.D.Lee & H.S.Seung, 1999) are quoted as
follows.

Definition 4.1. G(S, St) is an auxiliary function for F (S)
if G(S, St) ≥ F (S) and G(S, S) = F (S).
Lemma 4.2. If G is an auxiliary function, then F
is non-increasing under the updating rule St+1 =
arg min

S
G(S, St).

We propose an auxiliary function for C in the following
theorem.
Lemma 4.3.

G(C, C̃) =
�

ij

(Aij +
α

n
− 2
�

gh

(AijC̃igBghC̃jh(1 + 2 log Cjh

−2 log C̃jh) +
α

nk
C̃jh(1 + log Cjh − log C̃jh)) +

�

gh

([C̃BC̃
T

]ijC̃igBghC̃jh

C4
jh

C̃4
jh

+

α

2nk
[C̃1]jC̃jh(

C4
jh

C̃4
jh

+ 1)))

is an auxiliary function for

F (C) = ||A − CBCT ||2 + α||C1 − 1||2. (9)

Proof. For convenience, we let β = α
nk .

F (C) =
�

ij

((Aij −
�

gh

CigBghCjh)
2

+ β
�

gh

(Cjh − 1)
2
)

≤
�

ij

(
�

gh

C̃igBghC̃jh

[C̃BC̃T ]ij

(Aij − [C̃BC̃T ]ij

C̃igBghC̃jh

CigBghCjh)
2

+β
�

gh

C̃jh

[C̃1]j
(
[C̃1]j

C̃jh

Cjh − 1)
2
)

=
�

ij

(Aij − 2
�

gh

AijCigBghCjh +

�

gh

[C̃BC̃T ]ij

C̃igBghC̃jh

C
2
igB

2
ghC

2
jh + β

�

gh

[C̃1]j

C̃jh

C
2
jh

−2β
�

gh

Cjh + kβ)

=
�

ij

(Aij + kβ − 2
�

gh

(AijC̃igBghC̃jh
CigCjh

C̃igC̃jh

+

βC̃jh
Cjh

C̃jh

) +
�

gh

([C̃BC̃
T

]ijC̃igBghC̃jh

C2
igC2

jh

C̃2
igC̃2

jh

+β[C̃1]jC̃jh

C2
jh

C̃2
jh

))

≤
�

ij

(Aij + kβ − 2
�

gh

(AijC̃igBghC̃jh(1 + log Cig

+ log Cjh − log C̃ig − log C̃jh) + βC̃jh(1 + log Cjh −

log C̃jh)) +
�

gh

(
1

2
[C̃BC̃

T
]ijC̃igBghC̃jh(

C4
ig

C̃4
ig

+
C4

jh

C̃4
jh

)

+
1

2
β[C̃1]jC̃jh(

C4
jh

C̃4
jh

+ 1)))

=
�

ij

(Aij + kβ − 2
�

gh

(AijC̃igBghC̃jh(1 + 2 log Cjh

−2 log C̃jh) + βC̃jh(1 + log Cjh − log C̃jh)) +

�

gh

([C̃BC̃
T

]ijC̃igBghC̃jh

C4
jh

C̃4
jh

+

1

2
β[C̃1]jC̃jh(

C4
jh

C̃4
jh

+ 1)))

During the above deduction, we uses Jensen’s inequality,
convexity of the quadratic function and inequalities, x2 +
y2 ≥ 2xy and x ≥ 1 + log x.

The following theorem provides the updating rule for C.

Theorem 4.4. The objective function F (C) in Eq.(9) is
nonincreasing under the updating rule,

C = C̃ � (
AC̃B + α

2

C̃BC̃T C̃B + α
2 C̃E

)
1
4 (10)

where C̃ denotes the solution from the previous iteration, E
denotes a k × k matrix of 1’s, � denotes entry-wise prod-
uct, and the division between two matrices is entry-wise
division.

Proof. Based on Lemma 4.3, take the derivative of
G(C, C̃) w.r.t. Cjh to obtain

∂G(C, C̃)

∂Cjh
=

�
i

�
gh

(−4AijC̃igBgh
C̃jh

Cjh
− 2

α

nk

C̃jh

Cjh

+4[C̃BC̃T ]ijC̃igBgh

C3
jh

C̃3
jh

+2
α

nk
[C̃1]j

C3
jh

C̃3
jh

).

Solve ∂G(C,C̃)
∂Cjh

= 0 to obtain

Cjh = C̃jh(

�
i

�
gh AijC̃igBgh + α

2�
i

�
gh[C̃BC̃T ]ijC̃igBgh + α

2
[C̃1]j

)
1
4

Formulate the above equation into the matrix form

C = C̃ � (
AC̃B + α

2

C̃BC̃T C̃B + α
2 C̃E

)
1
4

By Lemma 4.2, the proof is completed.

Similarly, we present the following theorems to derive the
updating rule for B.
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Algorithm 1 SCC-ED algorithm
Input: A graph affinity matrix A and a positive integer k.
Output: A community membership matrix C and a com-
munity structure matrix B.
Method:
1: Initialize B and C.
2: repeat
3:

B = B � CT AC

CT CBCT C
.

4:

C = C � (
ACB + α

2

CBCT CB + α
2 CE

)
1
4

5: until convergence

Lemma 4.5.

G(B, B̃) =
∑
ij

(Aij − 2
∑
gh

AijCigBghCjh +

∑
gh

[CB̃C]ijCigCjh

B2
gh

B̃gh

)

is an auxiliary function for

F (B) = ||A − CBCT ||2. (11)

Theorem 4.6. The objective function F (B) in Eq.(11) is
nonincreasing under the updating rule

B = B̃ � CT AC

CT CB̃CT C
. (12)

Following the way to prove Lemma 4.3 and Theorem 4.4, it
is not difficult to prove the above theorems. We omit details
here.

We call the algorithm as the SCC-ED algorithm, which is
summarized in Algorithm 1. The implementation of SCC-
ED is simple and it is easy to take advantage of the distrib-
uted computation for a very large data set. The complexity
of the algorithm is O(tn2k) for t iterations and it can be
further reduced for sparse data. The convergence of the
SCC-ED algorithm is guaranteed by Theorems 4.4 and 4.6.

If the task is to learn the dense clusters from similarity-
based relational data as the graph partitioning does, SCC-
ED can achieve this task simply by fixing B as the identity
matrix and updating only C by (10) until convergence. In
other words, updating rule (10) itself provides a new and ef-
ficient graph partitioning algorithm, which is computation-
ally more efficient than the popular spectral graph partition-
ing approaches which involve expensive eigenvector com-
putation (typically O(n3)) and the extra post-processing
(Yu & Shi, 2003) on eigenvectors to obtain the clustering.

Compared with the multi-level approaches such as METIS
(Karypis & Kumar, 1998), this new algorithm does not re-
strict clusters to have an equal size.

Another advantage of the SCC-ED algorithm is that it is
very easy for the algorithm to incorporate constraints on B
to learn a specific type of cluster structures. For example,
if the task is to learn the sparse clusters by constraining
the diagonal elements of B to be zero, we can enforce this
constraint simply by initializing the diagonal elements of
B as zeros. Then, the algorithm automatically only updates
the off-diagonal elements of B and the diagonal elements
of B are ’locked’ to zeros.

Yet another interesting observation about SCC-ED is that
if we set α = 0 to change the updating rule for C into the
following,

C = C̃ � (
AC̃B

C̃BC̃T C̃B
)

1
4 , (13)

the algorithm actually provides the symmetric conic cod-
ing. This has been touched in the literature as the symmet-
ric case of non-negative factorizaion (Catral et al., 2004;
Ding et al., 2005; Long et al., 2005). Therefore, SCC-ED
under α = 0 also provides a theoretically sound solution to
the symmetric nonnegative matrix factorization.

4.2. Algorithm for SCC under Generalized
I-divergence

Under the generalized I-divergence, the SCC objective
function is given as follows,

D(A||CBCT ) =
∑
ij

(Aij log
Aij

[CBCT ]ij

−Aij + [CBCT ]ij) (14)

Similarly, we derive an alternative bound optimization al-
gorithm for this objective function. First, we derive the
updating rule for C and our task is the following optimiza-
tion.

min
C∈R

n×k
+

D(A||CBCT ) + α||C1 − 1||2. (15)

Then, the following theorems provide the updating rule for
C.
Lemma 4.7.

G(C, C̃) =
�
ij

(Aij log Aij − Aij +
α

n

+Aij

�
gh

(
C̃igBghC̃jh

[C̃BC̃T ]ij
log

C̃igC̃jh

[C̃BC̃T ]ij
)

+
�
gh

((C̃igBghC̃jh +
α

nk
[C̃1]jC̃jh)

C2
jh

C̃2
jh

)

−2
�
gh

((Aij
C̃igBghC̃jh

[C̃BC̃T ]ij
+

α

nk
C̃jh) log Cjh)
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−2
�
gh

α

nk
C̃jh(1 − log C̃jh))

is an auxiliary function for

F (C) = D(A||CBCT ) + α||C1 − 1||2. (16)

Theorem 4.8. The objective function F (C) in Eq.(16) is
nonincreasing under the updating rule,

Cjh = C̃jh(

∑
i

Aij [C̃B]ih

[C̃BC̃T ]ij
+ α∑

i[C̃B]ih + α[C̃1]j
)

1
2 (17)

where C̃ denotes the solution from the previous iteration.

The following theorems provide the updating rule for B.

Lemma 4.9.

G(B, B̃) =
�
ij

(Aij log Aij − Aij +
�
gh

CigBghCjh

−Aij

�
gh

(
CigB̃ghCjh

[CB̃CT ]ij
(log CigBghCjh

− log
CigB̃ghCjh

[CB̃CT ]ij
)))

is an auxiliary function for

F (B) = D(A||CBCT ). (18)

Theorem 4.10. The objective function F (B) in Eq.(18) is
nonincreasing under the updating rule,

Bgh = B̃gh

∑
ij

AijCigCjh

[CB̃CT ]ij∑
ij CigCjh

(19)

where B̃ denotes the solution from the previous iteration.

Due to the space limit, we omit the proofs for the above
theorems. We call the algorithm based on updating rule
(17) and (19) as SCC-GI, which provides another new rela-
tional clustering algorithm. Similarly, when applied to the
similarity-based relational data of dense clusters, SCC-GI
provides another new and efficient graph partitioning algo-
rithm.

5. Experimental Results

This section provides empirical evidence to show the ef-
fectiveness of the SCC model and algorithms in compari-
son with two representative graph partitioning algorithms,
a spectral approach, Normalized Cut (NC) (Shi & Malik,
2000), and a multilevel algorithm, METIS (Karypis & Ku-
mar, 1998).

Table 1. Summary of the synthetic relational data
Graph Parameter n k

syn1

�
0.5 0 0
0 0.5 0
0 0 0.5

�
900 3

syn2 1 − syn1 900 3

syn3

�
0 0.1 0.1

0.1 0 0.2
0.1 0.2 0

�
900 3

syn4 [0, 1]10×10 5000 10

5.1. Data Sets and Parameter Setting

The data sets used in the experiments include synthetic data
sets with various cluster structures and real data sets based
on various text data from the 20-newsgroups (Lang, 1995),
WebACE and TREC (Karypis, 2002).

First, we use synthetic binary relational data to simulate re-
lational data with different types of clusters such as dense
clusters, sparse clusters and mixed clusters. All the syn-
thetic relational data are generated based on Bernoulli
distribution. The distribution parameters to generate the
graphs are listed in the second column of Table 1 as matri-
ces (true prototype matrices for the data). In a parameter
matrix P , Pij denotes the probability that the nodes in the
ith cluster are connected to the nodes in the jth cluster. For
example, in data syn3, the nodes in cluster 2 are connected
to the nodes in cluster 3 with probability 0.2 and the nodes
within a cluster are connected to each other with probability
0. Syn2 is generated by using 1 minus syn1. Hence, syn1
and syn2 can be viewed as a pair of similarity/dissimilarity
data. Data syn4 has ten clusters mixing with dense clusters
and sparse clusters. Due to the space limit, its distribution
parameters are omitted here. Totally syn4 has 5000 nodes
and about 2.1 million edges.

The graphs based on the text data have been widely used
to test graph partitioning algorithms (Ding et al., 2001;
Dhillon, 2001; Zha et al., 2001). Note that there also ex-
ist feature-based algorithms to directly cluster documents
based on word features. However, in this study our focus
is clustering based on relations instead of features. Hence
graph clustering algorithms are used as comparisons. We
use various data sets from the 20-newsgroups (Lang, 1995),
WebACE and TREC (Karypis, 2002), which cover data sets
of different sizes, different balances and different levels of
difficulties. We construct relational data for each text data
set such that objects (documents) are related to each other
with cosine similarities between the term-frequency vec-
tors. A summary of all the data sets to construct relational
data used in this paper is shown in Table 2, in which n
denotes the number of objects in the relational data, k de-
notes the number of true clusters, and balance denotes the
size ratio of the smallest clusters to the largest clusters.

For the number of clusters k, we simply use the number of
the true clusters. Note that how to choose the optimal num-
ber of clusters is a nontrivial model selection problem and
beyond the scope of this paper. For performance measure,
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Table 2. Summary of relational data based on text data sets.
Name n k Balance Source
tr11 414 9 0.046 TREC
tr23 204 6 0.066 TREC

NG17-19 1600 3 0.5 20-newsgroups
NG1-20 14000 20 1.0 20-newsgroups

k1b 2340 6 0.043 WebACE
hitech 2301 6 0.192 TREC

MEDLINE/
classic3 3893 3 0.708 CISI/CRANFILD

we elect to use the Normalized Mutual Information (NMI)
(Strehl & Ghosh, 2002) between the resulting cluster labels
and the true cluster labels, which is a standard way to mea-
sure the cluster quality. The final performance score is the
average of ten runs.

5.2. Results and Discussion

Table 3 shows the NMI scores of the four algorithms on
synthetic and real relational data. Each NMI score is the
average of ten test runs and the standard deviation is also
reported. We observe that although there is no single win-
ner on all the data, for most data SCC algorithms perform
better than or close to NC and METIS. Especially, SCC-GI
provides the best performance on eight of the eleven data
sets.

For the synthetic data syn1, almost all the algorithms pro-
vide perfect NMI score, since the data are generated with
very clear dense cluster structures, which can be seen from
the parameter matrix in Table 1. For data syn2, the dissim-
ilarity version of syn1, we use exactly the same set of true
cluster labels as that of syn1 to measure the cluster quality;
the SCC algorithms still provide almost perfect NMI score;
however, the METIS totally fails on syn2, since in syn2 the
clusters have the form of sparse clusters, and based on the
edge cut objective, METIS looks for only dense clusters.
An interesting observation is that the NC algorithm does
not totally fail on syn2 and in fact it provides a satisfac-
tory NMI score. This is due to that although the original
objective of the NC algorithm focuses on dense clusters
(its objective function can be formulated as the trace max-
imization in Eq. (3)), after relaxing C to an arbitrary or-
thonormal matrix, what NC actually does is to embed clus-
ter structures into the eigen-space and to discover them by
post-processing the eigenvectors. Besides the dense cluster
structures, sparse cluster structures could also have a good
embedding in the eigen-space under a certain condition.

In data syn3, the relations within clusters are sparser than
the relations between clusters, i.e., it also has sparse clus-
ters, but the structure is more subtle than syn2. We ob-
serve that NC does not provide a satisfactory performance
and METIS totally fails; in the mean time, SCC algorithms
identify the cluster structure in syn3 very well. Data syn4 is
a large relational data set of ten clusters consisting of four
dense clusters and six sparse clusters; we observe that the
SCC algorithms perform significantly better than NC and

METIS on it, since they can identify both dense clusters
and sparse clusters at the same time.

For the real data based on the text data sets, our task is
to find dense clusters, which is consistent with the objec-
tives of graph partitioning approaches. Overall, the SCC
algorithms perform better than NC and METIS on the real
data sets. Especially, SCC-ED provides the best perfor-
mance in most data sets. The possible reasons for this are
discussed as follows. First, the SCC model makes use of
any possible block pattern in the relation matrices; on the
other hand, the edge-cut based approaches focus on diago-
nal block patterns. Hence, the SCC model is more robust to
heavily overlapping cluster structures. For example, for the
difficult NG17-19 dataset, SCC algorithms do not totally
fail as NC and METIS do. Second, since the edge weights
from different graphs may have very different probabilistic
distributions, popular Euclidean distance function, which
corresponds to normal distribution assumption, are not al-
ways appropriate. By Theorem 3.2, edge-cut based algo-
rithms are based on Euclidean distance. On the other hand,
SCC-ED is based on generalized I-divergence correspond-
ing to Poisson distribution assumption, which is more ap-
propriate for graphs based on text data. Note that how to
choose distance functions for specific graphs is non-trivial
and beyond the scope of this paper. Third, unlike METIS,
the SCC algorithms do not restrict clusters to have an equal
size and hence they are more robust to unbalanced clusters.

In the experiments, we observe that SCC algorithms per-
forms stably and rarely provides unreasonable solution,
though like other algorithms SCC algorithms provide local
optima to the NP-hard clustering problem. In the experi-
ments, we also observe that the order of the actual running
time for the algorithms is consistent with theoretical analy-
sis in Section 4.1, i.e., METIS<SCC<NC. For example,
in a test run on NG1-20, METIS, SCC-ED, SCC-GI and
NC take 8.96, 11.4, 12.1 and 35.8 seconds, respectively.
METIS is the best, since it is quasi-linear.

We also run the SCC-ED algorithm on the actor/actress
graph based on IMDB movie data set for a case study of
social network analysis. We formulate a graph of 20000
nodes, in which each node represents an actors/actresses
and the edges denote collaboration between them. The
number of the cluster is set to be 200. Although there is
no ground truth for the clusters, we observe that the re-
sults consist of a large number of interesting and meaning-
ful clusters, such as clusters of actors with a similar style
and tight clusters of the actors from a movie or a movie ser-
ial. For example, Table 4 shows Community 121 consisting
of 21 actors/actresses, which contains the actors/actresses
in movies series ”The Lord of Rings”.

6. Conclusions

In this paper, we propose a general model for relational
clustering based on symmetric convex coding of the rela-
tion matrix. The proposed model is applicable to the gen-
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Table 3. NMI comparisons of NC, METIS, SCC-ED and SCC-GI algorithms
Data NC METIS SCC-ED SCC-GI
syn1 0.9652 ± 0.031 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
syn2 0.8062 ± 0.52 0.000 ± 0.00 0.9038 ± 0.045 0.9753 ± 0.011
syn3 0.636 ± 0.152 0.115 ± 0.001 0.915 ± 0.145 1.000 ± 0.000
syn4 0.611 ± 0.032 0.638 ± 0.001 0.711 ± 0.043 0.788 ± 0.041
tr11 0.629 ± 0.039 0.557 ± 0.001 0.6391 ± 0.033 0.661 ± 0.019
tr23 0.276 ± 0.023 0.138 ± 0.004 0.335 ± 0.043 0.312 ± 0.099

NG17-19 0.002 ± 0.002 0.091 ± 0.004 0.1752 ± 0.156 0.225 ± 0.045
NG1-20 0.510 ± 0.004 0.526 ± 0.001 0.5041 ± 0.156 0.519 ± 0.010

k1b 0.546 ± 0.021 0.243 ± 0.000 0.537 ± 0.023 0.591 ± 0.022
hitech 0.302 ± 0.005 0.322 ± 0.001 0.319 ± 0.012 0.319 ± 0.018

classic3 0.621 ± 0.029 0.358 ± 0.000 0.642 ± 0.043 0.822 ± 0.059

Table 4. The members of cluster 121 in the actor graph
Cluster 121

Viggo Mortensen, Sean Bean, Miranda Otto,
Ian Holm, Brad Dourif, Cate Blanchett,

Ian McKellen ,Liv Tyler , David Wenham ,
Christopher Lee, John Rhys-Davies , Elijah Wood ,

Bernard Hill, Sean Astin, Dominic Monaghan,
Andy Serkis, Karl Urban , Orlando Bloom ,

Billy Boyd ,John Noble, Sala Baker

eral relational data with various types of clusters and unifies
the existing graph partitioning models. We derive iterative
bound optimization algorithms to solve the symmetric con-
vex coding for two important distance functions, Euclidean
distance and generalized I-divergence. The algorithms are
applicable to general relational data and at the same time
they can be easily adapted to learn specific types of cluster
structures. The convergence of the algorithms is theoreti-
cally guaranteed. Experimental evaluation shows the effec-
tiveness and the great potential of the proposed model and
algorithms.
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