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Abstract
A geometric and non parametric procedurefor testing if two �nite set of points are lin-early separable is proposed. The Linear Sep-arability Test is equivalent to a test that de-termines if a strictly positive point h > 0 ex-ists in the range of a matrix A (related to thepoints in the two �nite sets). The algorithmproposed in the paper iteratively checks ifa strictly positive point exists in a subspaceby projecting a strictly positive vector withequal co-ordinates (p), on the subspace. Atthe end of each iteration, the subspace is re-duced to a lower dimensional subspace. Thetest is completed within r � min(n; d + 1)steps, for both linearly separable and nonseparable problems (r is the rank of A, nis the number of points and d is the di-mension of the space containing the points).The worst case time complexity of the al-gorithm is O(nr3) and space complexity ofthe algorithm is O(nd). A small review ofsome of the prominent algorithms and theirtime complexities is included. The worst casecomputational complexity of our algorithmis lower than the worst case computationalcomplexity of Simplex, Perceptron, SupportVector Machine and Convex Hull Algorithms,if d < n 23 .
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1. Introduction
The Linear separability test determines if a hyper-plane separates two sets P and Q � Rd. A hy-perplane H = fvjwtv + b = 0; v 2 Rd; w 2Rd; b 2 R;w; b are �xedg separates the two sets ifwty + b > 0 8y 2 Pwty + b < 0 8y 2 Qor wt(�y) + b(�1) > 0 8y 2 Q
Let P = fv0ijv0i 2 R1�d; i = 1; : : : ; N1gQ = fu0iju0i 2 R1�d; i = 1; : : : ; N2gn = N1 +N2x = [w1; w2; : : : ; wd; b]t

and A =
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.

The linear separability test is equivalent to verifyingif B = fxjAx > 0g is non-empty. Many algorithmshave been proposed for the test and a comprehensivediscussion of the algorithms can be found in (Elizondo,2006) and Ch. 5 in (Duda et al., 2000).
1.1. Algorithms
A general discussion of Linear Programming,Quadratic Programming, Convex Hull and thePerceptron Algorithms to solve the linear separa-bility problem is included in this subsection. Thetime complexities of the algorithms are discussedsubsequently.
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1.1.1. Linear Programming
Let p = [1; 1; : : : ; 1]t 2 Rn; � 2 R. The linear pro-gramming formulation for solving the problem is

minx;� �
subject to Ax+ �p � 1

� � 0
B 6= ; , optimal � = �� = 0

The linear programming problem is solved either bySimplex or Interior Point methods. A feasible solutionto the above problem is easy to determine. Simplexsolves the optimization problem iteratively by movingon the boundary of the convex polyhedral region de-�ned by the constraints. The Interior Point algorithmscan move through the interior of the convex region.
1.1.2. Quadratic Programming
Let � 2 Rn�1. Let x = [w1; w2; : : : ; wd; b]t as de�nedpreviously. Let C > 0 be an arbitrarily large constant.
minw;b 12kwk2 + Ck�k2
sub: Ax � 1� �

� � 0
B 6= ; , k�k2 = k��k2 = 0 in the optimal solution
The feasible region determined by the constraints isconvex and polyhedral. An incremental algorithm�nds a separating hyperplane for pairs of points in Pand Q, and re�nes a common separating hyperplanebetween all pairs of points. If the problem is linearlyseparable, the common separator can be written asa linear combination of very few pairs of boundarypoints in P and Q, called support vectors (Cristianini& Taylor, 2000). SVM �nds a hyperplane which haslarge margin (perpendicular distance of the points in Pand Q closest to the hyperplane). Given that most reallife data sets are linearly non separable (Wasserman,1989, Linear Separability : Ch. 2), SVM identi�es anunique hyperplane which has less misclassi�cations ir-respective of the distributions from which sets P andQ are drawn, if feature vectors in P and Q are drawnindependently and identically from �xed distributionsand n is large (Cristianini & Taylor, 2000, Ch. 4). Thenumber of iterations that the SVM requires to �nd aseparator for the linearly separable problems is inde-pendent of the proximity of P and Q (Tsang et al.,2005).
1.1.3. Convex Hull Separation
The convex hull of a set of points is the smallest convexregion that encloses the points of the set. Let Cv(P )

be the convex hull of P . Let Cv(Q) be the convex hullof Q. B is nonempty if and only if Cv(P )\Cv(Q) = ;.There are many algorithms to compute the Convexhull of a �nite set of points. Quick Hull is a fast incre-mental algorithm for �nding the convex hull (Barberet al., 1996). Given an initial convex hull (a simplexof d+1 points in Rd), each unprocessed point is eitherinside or outside the current convex hull. If the pointis within the convex hull, it is discarded, otherwise aconvex hull is constructed with the new point as oneof the vertices.
1.1.4. Perceptron
Perceptron is an iterative procedure to �nd the sepa-rating hyperplane between sets P and Q. The algo-rithm terminates only if the two sets are separable.It has been proved that the algorithm converges in �-nite number of iterations when there is a separatinghyperplane (Duda et al., 2000). In every iteration, xis changed to increase the sum of the non-positive co-ordinates of the vector Ax (misclassi�ed examples inP and Q). Let Ai 2 R1�(d+1); i = 1; : : : ; n be the rowsof matrix A. Let � > 0 be a �xed small value. Algo-rithm 1 is the Batch Perceptron algorithm for verifyingB 6= ;.
Algorithm 1 B = fxjAx > 0; A 2 Rn�(d+1); x 2Rd+1g, Test if B 6= ;
Input: n� d+ 1 matrix AL 0 //L = 1 if B is non-emptyx random vectora(x) Axif a(x) > 0 thenL 1end ifwhile L == 0 dox x+ �Pai(x)�0Atia(x) Axif a(x) > 0 thenL 1end ifend whilereturn L

1.2. Complexity
A few algorithms converge in �nite number of iter-ations, if and only if B 6= ;. Perceptron algorithmand Ho-Kashyap Procedure belong to this category.Upper Bounds on the number of iterations for conver-gence of the algorithms on linearly separable problemscan be found in (Duda et al., 2000), (Elizondo, 2006).
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The bounds are dependent on the proximity of thetwo sets P;Q and the number of points in the twosets. The Perceptron algorithm has time complexityof O(n2) in the number of points. Examples of algo-rithms which converge in �nite number of iterations forboth linearly separable and non separable problems areLinear Programming Algorithms, Convex Hull proce-dure and Quadratic Programming Algorithms. Con-vex Hull procedure provides a direct solution to theminimum number of misclassi�cations of any hyper-plane, subsequent to identifying the intersection re-gion of the convex hulls of the two sets P and Q. Theworst case time complexity of Linear Programming Al-gorithms (LP solution by Simplex) and Convex Hullprocedure is exponential in dimension (Elizondo, 2006)though on most problems Simplex has low computa-tional complexity of O(n). Interior point algorithmsfor solving LP have worst case complexity of O(n3L),where L is a measure of the machine precision (Gon-zaga, 1988). The worst case computational complexityof Quadratic Programming Algorithm is O(n3). Thealgorithm presented (Subspace Projection - SP) in thispaper is a method to verify if a strictly positive vectorexists in a subspace. It avoids computation of a hyper-plane which misclassi�es the least number of points.
2. Iterative Reduction of Subspaces
In this section, a veri�cation scheme for existence ofx 2 Rd+1 such that Ax > 0 (A is a n� (d+1) matrix)is described. Consider an orthonormal basis of rangeof A. Let U = fu1; u2; : : : ; ur 2 Rng be the basis. Letthe subspace spanned by U beWr. Let a positive pointp in Rn be projected on the subspaceWr. Let the pro-jected point be z(p) = (z1(p); z2(p); : : : ; zn(p))t 2 Wr.In brief, the following results are proved in this sec-tion. If z(p) is a strictly positive point, then x ex-ists. If z(p) � 0 and Iz = fijzi(p) = 0g is non-empty,a strictly positive point exists in Wr if and only ifa vector v of the form vi > 0 8i 2 Iz(p) exists inWr. If p > 0 has equal co-ordinates and z(p) = 0,then a strictly positive vector does not exist in Wr. Ifzi(p) < 0 for some i, a subspace of r � 1 (Wr�1) vec-tors of Wr not including z, intersects with an uniquen � 1 dimensional subspace in Rn. Wr�1 is the in-tersection of Wr and Hn�1 = fv 2 Rnjvtej = 0; j =argmini;zi(p)<0 pipi�zi(p)g. A strictly positive vector ex-
ists inWr if and only if a positive vector exists inWr�1.A simple method to compute an upper bound on thenumber of misclassi�cations is proved in the last the-orem.
The algorithm performs the test by projectingpoints with positive co-ordinates on Wr. Either

the projected point z(p) has strictly positive co-ordinates or some negative co-ordinates, or some zeroco-ordinates. If z(p) has strictly positive co-ordinates,then the sets P and Q are linearly separable. Ifz(p) � 0 the test is performed on linear combina-tions of rows with indices Iz of matrix A. If z(p) hassome negative co-ordinates, the test is performed ona lower dimensional subspace Wr�1 � Wr which ex-cludes z(p). At each step, the dimensionality of thesubspace reduces and a test in one dimensional sub-space is needed in the �nal step. It is easy to verifywhether an one dimensional subspace is a scaling of astrictly positive point. Hence, the maximum numberof steps needed for the completion of the test is equalto the dimension of the range of A.
If a vector with strictly positive co-ordinates h >0 exists in the range of A matrix, then a separatinghyperplane exists. The following theorem proves thesame result when h = z(p) > 0.

Theorem 2.1 If z(p) > 0, then 9 x such that Ax >0.
Proof z(p) 2 Wr. Wr is the range of A. Hence9 x such that Ax = z(p) > 0.
If z(p) is not a strictly positive vector, either z(p) �0 or zi(p) < 0 for some i. Let z(p) � 0. Let Izbe the co-ordinate indices corresponding to zi(p) = 0.The following two theorems prove that h > 0 existsin the range of A if and only if a vector with positivevalues in co-ordinate indices Iz exists in the range ofA. Consequently, to verify if h > 0 exists in Wr, it issu�cient to test if h0 > 0 exists in a subspace of RjIzj.The subspaceW (Iz) is the set of linear combinations ofvj = (AIz(1);j ; AIz(2);j ; : : : ; AIz(jIzj);j); j = 1; : : : ; d+1,

where Ai;j is the element in ith row and jth column ofA.
Theorem 2.2 If a strictly positive vector exists inWr
and z(p) � 0, a vector with positive values in co-

ordinates Iz(p) exists in Wr.
Proof Let h > 0 2 Wr. h has positive values in theco-ordinates Iz(p).
Theorem 2.3 If a vector with positive values in co-

ordinates Iz(p) exists in Wr and if z(p) � 0, then a

strictly positive vector exists in Wr.
Proof Let v 2 Wr with vi > 0 8i 2 Iz(p). Then�z(p) + v > 0 for � > maxi=2Iz(p) �vizi(p) .
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If jIzj = n, the subspace W (Iz) is the same as Wr.The following theorem proves that h > 0 does notexist in Wr if jIzj = n (i.e. z(p) = 0), provided thepositive vector p has equal co-ordinates.
Theorem 2.4 If p is the unit vector with all compo-

nents equal, and z(p) = 0 then Wr does not contain a

strictly positive vector.

Proof Every vector x 2 Rn of the form 0 � xi �1pn ; 8i is at a distance less than or equal to 1 from p.
Every point of Wr � f0g is at a distance greater than1 from p, because 0 is the unique closest point in Wrto p. 0 is at distance 1 from p. Hence, other than 0,no vector of Wr is in the set fx = (x1; x2; : : : ; xn) 2Rnj 0 � xi � 1pn ; i 2 1; : : : ; ng. Hence h = �x; � > 0
does not exists in Wr. Hence h > 0 does not exist inWr.
It is easy to see that, if z(p) = 0, then �z(p) = z(�p) =0; � 2 R.
Let p = [1; 1; : : : ; 1]t be projected on Wr. Let theprojection be z(p). Let zi(p) < 0 for some i. Thefollowing two theorems prove that a vector h > 0 existsinWr if and only if a vector h0 > 0 exists in a subspacewith lesser dimension Wr�1. Wr�1 does not includez(p) and one of the co-ordinates of vectors v in Wr�1is zero (zi(p) < 0 and vi = 0). If more than oneco-ordinate of z(p) is less than zero, the co-ordinatewith index i = argmini zi(p) is set to zero. Hence thelinear separability test can be performed in a lowerdimensional subspace.

Theorem 2.5 If a strictly positive vector exists inWr
and zi(p) < 0 for some i, there exists a positive vector

in Wr�1.
Proof Let h > 0 2 Wr. Let a non negative point lclosest to z(p) on the line joining z(p) and p be consid-ered (Figure 1). lj = 0 for some j such that zj(p) < 0.z(l) = z(p). Let z(l) � l = Pi �iw?i (w?i are or-thonormal to Wr and belong to the complementarysubspace). Let a point q be projected on Wr. Let theprojected point be z(q). Let z(q) � q = Pi �iw?i . If(q � l)t(z(l) � l) � 0, Pi(�i � �i)�i � 0, Pi �2i �Pi �i�i � pPi �2i Pi �2i . Hence Pi �2i � Pi �2i .The least distance of q from Wr is greater than orequal to the least distance of l from Wr.
Let Sl(z) = fijzi(l) < 0; li = 0g, q = l +Pi2Sl(z) 
iei; 
i > 0. (q�l)t(z(l)�l) =Pi 
izi(l) < 0.Hence q is at a distance greater than l from Wr. Ifevery positive point in the set T = fvjv 2 Rn; v 6=0; vj = 0 8 j 2 Sl(z)g has a projection z(v) 2Wr such

that zj(v) < 0; j 2 Sl(z), then every point q > 0 isat a distance greater than 0 from the subspace Wr.Contradiction (h > 0 2 Wr exists; geometrically, allpoints of T cannot be above Wr).
Hence a point t 2 T exists either on or below(zj(t) > 0 for some j 2 Sl(z)) the subspace Wr. Thesigned distance of points of T from Wr is a contin-uous function. Hence the distance between z(v) andv 2 T takes all values between d(t; z(t)) and d(l; z(l)).Therefore a point t0 2 T exists at a distance 0 fromWr. T = Hn�1 = fv 2 Rnj vtej = 0; j 2 Sl(z); j =argmini;zi(p)<0 pipi�zi(p)g. LetWr�1 be the intersectionof Hn�1 and Wr. It is easy to prove that the intersec-tion of Hn�1 and Wr is at most r � 1 dimensional(vectors of Wr�1 = Wr \ H are linearly independentof z(p), as zj(p) < 0 and vj = 0 8 v 2Wr�1). Hence, ifh > 0 exists in Wr, a point t0 � 0 exists in Wr�1.

The existence of a positive point t0 � 0 canbe veri�ed by projecting a positive point p0 �0 2 Hn�1 on Wr�1. Hence the test is recur-sive. The recursion has a maximum depth of r,because testing whether an one dimensional sub-space has a strictly positive point, is trivial. LetRn = Hn. Hn; Hn�1; : : : ;Hn�r+k; : : : Hn�r+1 andWr;Wr�1; : : : ;Wk; : : : ;W1 form a decreasing sequenceof subspaces.
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Figure 1. Projection of p > 0 on subspace Wr
Theorem 2.6 If zi(p) < 0 for some i and v � 0 exists

in Wr such that vi > 0 8 i 2 Gz(p) = fijzi(p) � 0g,
then Wr contains a strictly positive vector.

Proof h = �z(p) + �v > 0 exists in Wr, for � >
maxi2Gz(p) zi(p)vi .
Let the standard ordered basis of Rn be Bn =fe1; e2; : : : ; eng. Let the basis vectors of Hn�r+1 be
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Bk = fei1 ; ei2 ; : : : eikg. Let p1 = ei1 + ei2 + : : :+ eik 2Hn�r+1. Let z(p1) be the projection of p1 on W1.Let z(pk) be the projection of pk 2 Hn�r+k on Wk.The following theorem proves that the number of nonpositive co-ordinates of some vector v 2 Wr is equalto the number of non positive co-ordinates of z(p1)(excluding the co-ordinates of Bn � Bk), assumingzi1(pr) < 0; zi2(pr�1) < 0; : : : ; zir (p1) < 0 for someindices i1; i2; : : : ; ir. Equivalently, there exists a vec-tor v in Wr, such that the number of strictly positiveco-ordinates of v is equal to the number of strictly pos-itive co-ordinates of z(p1) plus n � k. The minimumnumber of misclassi�cations of the points in P and Qis bounded by the number of non positive co-ordinatesof a vector in v 2Wr.
Theorem 2.7 The minimum number of misclassi�ca-

tions of any hyperplane M is bounded by the cardinal-

ity of Nz(p1)(W1) = fijzi(p1) � 0; z(p1) 2 W1; p1;i >0; p1 2 Hn�r+1; p1 = [1; 1; : : : ; 0; 1; : : : ; 1]tg, for a lin-

early non separable problem.

Proof Let pk be a vector with equal co-ordinates instandard order basis of Hn�r+k, and the rest of theco-ordinates set to 0. Let z(pk) be the projection ofpk on Wk; k � r. Let r = 1. 9 x such that Ax =z(p1). Hence, M � jNz(p1)(W1)j. Let r > 1, v =
�z(p1) � z(p2); � > 1 + maxzi(p1)>0 zi(p2)zi(p1) . Hence,
vi > 0 8i 2 fjjzj(p1) > 0 _ (zi(p1) = 0; zi(p2) < 0)g.v 2 W2 contains Nz(p1)(W1) + jfijp2;i = 0gj numberof co-ordinates less than or equal to zero. Similarly,
let v3 = �0v� z(p3); �0 > maxvi>0 zi(p3)vi . The numberof co-ordinates less than or equal to 0 is Nz(p1)(W1) +jfijp3;i = 0gj. By induction vk = �vk�1 � zpk hasNz(p1)(W1) + jfijpk;i = 0gj co-ordinates less than orequal to zero. jfijpr;i = 0gj = 0, (pr > 0 is a vec-tor with all co-ordinates equal in Rn). Hence vr hasNz(p1)(W1) co-ordinates less than or equal to zero.

Further, it follows that the minimum number of mis-classi�cations UB is bounded by the minimum ofjNz(p1)(W1)j and jN�z(p1)(W1)j.
2.1. Examples
2.1.1. XOR Problem
Let P = f(0; 1); (1; 0)g, Q = f(0; 0); (1; 1)g. A =2
664

1 0 10 1 10 0 �1�1 �1 �1

3
775. An orthonormal basis of the range

of A is U =
2
6664

1p2 0 � 120 1p2 120 � 1p2 12� 1p2 0 � 12

3
7775. The projection

of p = 12 (1; 1; 1; 1)t on the range of A is U(U tp) =(0; 0; 0; 0)t. Hence no strictly positive point exists inWk. Hence P and Q are linearly non separable.
2.1.2. AND Problem
Let P = f(1; 1)g, Q = f(0; 0); (0; 1); (1; 0)g. A =2
664

1 1 10 0 �10 �1 �1�1 0 �1

3
775. The projection of 12 (1; 1; 1; 1)t on

the range ofA is (0:25; 0:75; 0:25; 0:25)t. A strictly pos-itive point exists in Wk. Hence P and Q are linearlyseparable.
2.2. Algorithm
In Algorithm 2 an iterative procedure to verify if astrictly positive point exists in a subspace Wr (rangeof A) is presented. It repeatedly projects a point p � 0on progressively smaller subspaces. In the algorithm,projection of p on Wr is performed by �rst orthonor-malizing the vectors which span Wr. This can be re-placed by a function to solve the least squares problemargminx kAx�pk2. For simplicity of presentation, therecursion is described as an iterative procedure.
3. Experiments
Subspace Projection algorithm, Linear ProgrammingProcedure, Perceptron algorithm and Support VectorMachines (SVMlight (Joachims, 1999)) give identicalresults on a representative set of benchmark datasetsin UCI Machine Learning Repository (Newman et al.,1998). The SVM algorithm is trained with large valueof C. C is set to 1012. Experiments were performed on3.2GHz Pentium4 machine with 512MB RAM. In Ta-ble 1, the execution time of SVMlight (implementedin C++) and Subspace Projection (implemented inC++) are compared (processing time includes �leread). The execution time of linear programming pro-cedure (LP - implemented as an optimized MATLAB r

function linprog), Perceptron Algorithm (PR imple-mented in MATLAB r
) and Subspace Projection (SP- implemented in MATLAB r
) are compared in Table2 (processing time excludes �le read). The last columndescribes whether the data sets are Linearly Separable(LS) or not. The Perceptron algorithm does not con-verge on linearly non separable problems. Hence theexecution time of Perceptron algorithm on linearly non
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Algorithm 2 B = fxjAx > 0; A 2 Rn�(d+1); x 2Rd+1g, Test if B 6= ;
Input: n� d+ 1 matrix AL 0 //L = 1 if B is non-emptyA orthonormal basis of the range of Ar  rank(A)N  rz  0 2 Rn
while ((N 6= 0) ^ (L == 0) ^ (A 6= ;)) dop [1; 1; : : : ; 1]t 2 Rn
z  A(Atp)if z > 0 thenL 1 //by Theorem 2.1else if z == 0 thenN  1 //by Theorem 2.4else if z � 0 thenIz  fijzi = 0g //by Theorem 2.2 and Theo-rem 2.3i0  0for i = 1 to n doif i 2 Iz theni0  i0 + 1Ai0;k  Ai;k 8 k = 1; : : : ; rend ifend forn jIzjelsej  argmini;zi(p)<0 pipi�zi(p) //by Theorem 2.5
and Theorem 2.6for k = 1 to r do� Aj;k=zj(p)Ai;k  Ai;k � �zi(p); 8 i 2 1; : : : ; nend forEz  fijzi(p) < 0; Ai;k = 0 8 k = 1; : : : ; rgi0  0for i = 1 to n doif i =2 Ez theni0  i0 + 1Ai0;k  Ai;k 8 k = 1; : : : ; rend ifend forn n� jEzjend ifA orthonormal basis of the range of Ar  rank(A)N  N � 1end whileUB  min(jfijzi � 0; i = 1; : : : ; ngj; jfijzi � 0; i =1; : : : ; ngj) //UB is the upper bound on the min-imum number of misclassi�cations by any hyper-plane, by Theorem 2.7return L;UB

separable problems is not included in Table 2.
3.1. Description of Datasets
In Iris1 dataset, Iris-setosa examples are considered tobe set P , Iris-versicolor and Iris-virginica examples areconsidered to be set Q. In Iris2 dataset, Iris-virginicaexamples are considered to be set P , Iris-setosa ex-amples and Iris-versicolor examples are considered tobe set Q. The Breast Cancer dataset has attributeswith values in a speci�ed range (e.g. 0-4). Such at-tributes are split into two derived attributes (e.g. 0and 4). Nominal attributes are converted into dis-crete values. Examples with missing values are re-moved from the dataset. In the Glass1 dataset, class 1(building windows 
oat processed) feature vectors areconsidered to be set P and the rest of the 6 classes areconsidered to be set Q. Similarly, in Glass2 datasetclass 2 (building windows non 
oat processed) featurevectors are considered to be set P and the rest of the6 classes are considered to be set Q. A small sampleof the Spam dataset (Spam1) is used for testing thealgorithm, because small samples of spam dataset arelinearly separable. The Ionosphere dataset(Ion) is abinary classi�cation problem of radar signals. The col-umn containing indicies of training sample is ignoredin all the datasets. ES is the number of misclassi�edpoints of the hyperplane found by SVM, UB is theupper bound on the misclassi�cations, as computedby our algorithm. Table 3 is a comparison of Es andUB . The test results suggest that subspace projection(SP) has much lower time complexity than LP, PR andSVM. The time complexity of SP is less than O(nr3)due to compiler optimizations. On the spam dataset,Perceptron converges fast only if the initial value ofthe vector x is chosen close to the optimal vector x�satisfying Ax� > 0.
Table 1. Computation Time SVM, and SP in seconds

Data n d r SVM SP LS

Iris1 150 4 5 0.03 0.03 YES

Iris2 150 4 5 17.1 0.05 NO

Ion 351 33 34 22.8 0.14 NO

Breast 277 12 10 16.7 0.05 NO

Glass1 214 9 10 46.8 0.03 NO

Glass2 214 9 10 46.8 0.03 NO

Spam1 359 57 58 307 0.33 YES

3.2. Scalability
The algorithm checks linear separability in linear time,if the dimension is �xed. A randomly labeled data set
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Table 2. Computation Time LP, PR and SP in seconds

Data n d r LP PR SP LS

Iris1 150 4 5 0.26 .002 .003 YES

Iris2 150 4 5 0.46 � .008 NO

Ion 351 33 34 3.95 � 0.45 NO

Breast 277 12 10 10.89 � 0.02 NO

Glass1 214 9 10 4.33 � 0.02 NO

Glass2 214 9 10 5.2 � 0.02 NO

Spam1 359 57 58 3.97 14.1 1.20 YES

Table 3. Number of misclassi�cations by SVM (Es) andSubspace Projection (UB)
Data n d ES UB
Iris1 150 4 0 0

Iris2 150 4 2 4

Ionosphere 351 33 102 126

Breast 277 12 174 133

Glass1 214 9 98 92

Glass2 214 9 98 105

Spam1 359 57 0 0

with large number of points is used to verify this result.It is a collection of linearly non separable data setswith points in 153 dimensions. Number of points n isvaried between 500 and 1500 in steps of 100. The plotof CPU time in seconds of our algorithm for variousvalues of n is presented in Figure 2. From the plotit appears that the number of computations increasesalmost linearly with number of points.
3.3. Conclusions
SP is a simple non-parametric algorithm. Experi-mental results and complexity estimates suggest SPis faster than Linear Programming, Perceptron andSVM. It has lower worst case time complexity thanConvex Hull Algorithm. On linearly non-separableproblems, SVM takes considerably more time than ouralgorithm to �nd a hyperplane with less error. HenceSP can be used to quickly identify an initial hyperplanewith few misclassi�cations. Subsequently the hyper-plane with least misclassi�cations can be obtained bytraining a SVM, hence reducing training time of SVM.On linearly separable problems, SP �nds a separatinghyperplane very fast compared to SVM if the pointsin the two classes are close. Identifying the maximummargin hyperplane given a separating hyperplane isgeometrically not a di�cult one. Hence SP can beused as a method for seeding a primal space SVM al-
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Figure 2. Computational Complexity of SP on a randomlylabeled dataset
gorithm. However, our algorithm is not incremental.SP can be made incremental if incremental projectioncan be achieved. Another interesting problem whichcan be explored is a procedure to �nd a point in therange of A with few negative co-ordinates, by takingprojections of the convex region v > 0; v 2 Rn on therange of A.
3.3.1. Convex Hulls
SP can be used to test if a separating hyperplane existsbetween a �nite set of points P and a single pointset Q = fv 2 Rdg. Hence SP can be used to test ifa point v is inside or outside the convex hull of theset P in linear time. Consequently, an incrementalprocedure to identify the vertices of the convex hull,without constructing the faces of the convex hull canbe developed from our algorithm.
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