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Abstract

We introduce quadratically gated mixture of
experts (QGME), a statistical model for
multi-class nonlinear classification. The
QGME is formulated in the setting of incom-
plete data, where the data values are partially
observed. We show that the missing val-
ues entail joint estimation of the data mani-
fold and the classifier, which allows adaptive
imputation during classifier learning. The
expectation maximization (EM) algorithm
is derived for joint likelihood maximization,
with adaptive imputation performed analyt-
ically in the E-step. The performance of
QGME is evaluated on three benchmark data
sets and the results show that the QGME
yields significant improvements over compet-
ing methods.

1. Introduction

Incomplete data arise for a variety of reasons. In psy-
chological studies, a participant’s response is incom-
plete if he refuses to answer certain questions (Schafer
& Graham, 2002); in computer vision the observation
of an object becomes incomplete if the object is oc-
cluded or some sensor fails to operate (Ghahramani
& Jordan, 1994). In DNA microarray analysis, in-
complete gene expression data may result from image
corruptions, dust or scratches on the slides (Troyan-
skaya et al., 2001). Incomplete data can lead to serious
degradation of statistical learning systems if missing
values are ignored or handled inappropriately.

A widely used approach to incomplete data analysis is
based on imputation, i.e., replacing the missing values
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with plausible surrogates. Single imputation methods
include imputing means or conditional means (Schafer
& Graham, 2002). Rubin’s multiple imputation (MI)
(Rubin, 1987) solves the problem of uncertainty asso-
ciated with single imputations and yet retains simplic-
ity by allowing complete-data techniques to be applied
without modification. The fact that most classifica-
tion techniques have been designed for complete data
makes imputation methods convenient in practice.

Imputation methods ignore the specifics of the algo-
rithms subsequently applied to the imputed data, and
thus are unlikely to achieve the full potential offered
by those algorithms. The work in (Ibrahim, 1990) cir-
cumvents the deficiency of outside-of-algorithm impu-
tations by performing imputation inside the algorithm;
since the data are assumed to take finite discrete val-
ues, the imputation is intrinsically finite. The work
in (Williams et al., 2005) represents an infinite impu-
tation method for continuous data, with missing val-
ues handled by analytical integration; the imputation
model is estimated separately from the algorithm and
the method is limited to linear binary classification.

Nonlinear classification can be accomplished by us-
ing nonlinear activations in neural networks or by
augmenting linear classifiers with kernel functions.
The nonlinear components in these methods, however,
make it difficult to handle incomplete data. To make
an algorithm amenable to incomplete data, it is helpful
to keep its basic components linear.

Given a data set, we can either model it by a single
complicated model or by multiple simple models. Lin-
ear models are simple and suitable for handling incom-
plete data, but they are incapable of modeling nonlin-
ear data. Nevertheless, any arbitrary nonlinear models
can be approximated by a piecewise linear model, with
each linear component modeling a local data manifold
where the data are approximately linear.

The hierarchical mixture of experts (HME) in (Jor-
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dan & Jacobs, 1994) can be used as a piecewise linear
model. The linear gating nodes, however, entail a hier-
archical gating structure, which encumbers handling of
incomplete data and makes HME inappropriate for our
purpose. The piecewise linear regression (PLR) model
in (Li et al., 2006) uses a single-level structure of el-
lipsoids to form the gating network, which partitions
the data space into quadratic subsets. The single-level
structure and quadratic nature of the gating nodes
greatly facilitates handling of incomplete data.

In this paper we extend the regression model in (Li
et al., 2006) to the case of classification, by letting
the response variable y take categorical values (class
labels) and replacing the linear models with multino-
mial probit models (Albert & Chib, 1993). The re-
sulting model is termed Quadratically Gated Mixture
of Experts (QGME). If the latent variable z in pro-
bit models are observed, the linear models are recov-
ered and the QGME reduces to the regression model
in (Li et al., 2006). We formulate the QGME in the
setting of incomplete data, where a feature vector (da-
tum fed to the model) x is partially observed, i.e.,
some components in x are missing. We derive the
maximum-likelihood (ML) estimator for EGMEs via
expectation maximization (EM). Unlike the model in
(Williams et al., 2005), the QGME performs adaptive
infinite imputation of missing values, implemented in
the E-step of the EM algorithm. The adaptivity de-
rives from a joint estimation of the imputation model
and the classifier.

2. The QGME Model

Let xi be a column vector containing d real-number
features, yi ∈ {0, 1, · · · , M −1} be the class label asso-
ciated with xi, and N (x; µ,Σ) denote a multivariate
normal distribution of x with mean µ and covariance
matrix Σ. Let I denote an identity matrix. We define

p(ζi = k) = πk (1)
p(xi|ζi = k) = N (xi; µk,Σk) (2)

p(yi|xi, ζi =k) =
∫
Tyi

zik≤0
N (zik;WT

k xi+bk, I)dzik(3)

from which follows

p(ζi = k|xi) =
πkN (xi; µk,Σk)∑K

k=1 πkN (xi; µk,Σk)
(4)

p(yi|xi) =
∑K

k=1p(ζi = k|xi)p(yi|xi, ζi = k) (5)

We term the model in (5) as quadratically gated mix-
ture of experts (QGME), in which p(yi|xi, ζi = k) is
the k-th expert, p(ζi = k|xi) is a quadratic gating node
giving the probability of selecting the k-th expert, and
the remaining quantities are explained in the following

ζi – is a latent gating variable indicating which
expert is being selected

πk – πk is the prior probability of selecting the
k-th expert

µk,Σk – given ζi = k, xi is governed by a normal
distribution with mean µk and covariance
matrix Σk; the posterior of ζi given xi is
given by Bayes rule, which determines the
probability of selecting the k-th expert af-
ter xi is observed

Wk,bk – are parameters of the k-th expert, which is
a multinomial probit, with linear weights
Wk and intercepts bk

zik – zik = [zi,k,1, · · · , zi,k,M−1] with zi,k,m the
latent utility of class m in the k-th ex-
pert (probit model); by default, zi,k,0 = 0,
meaning class 0 has a zero utility

T – T0 is a (M − 1)× (M − 1) identity matrix;
Tm (m = 1, 2, · · · ,M − 1) is equal to T0

except the elements in the m-th column are
all −1; Tmzik ≤ 0 specifies the constraint
{zik : zi,k,m = max 0≤l≤M−1{zi,k,l}},
which defines the region in the zik space
that is allotted to class m

p(x)
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x1
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Figure 1. Illustration of the quadratic gating in QGME.

As shown in Figure 1, the space of x is partitioned
probabilistically through a mixture of K normal dis-
tributions, whose contours are shown as the ellipsoids.
The partition yields a single-level probabilistic gating
network, which is used in QGME to select the experts.
By assigning any given x to the normal that yields the
maximum probability for x, the space is partitioned
into K hard regions and the boundary of each region
is defined by quadratic functions. The hard partition
yields a deterministic gating network, with each region
associated with a unique expert.

The experts in QGME are probit models, each imple-
menting a linear classifier. For a given expert k, we ex-
press the conditional class probability p(yi|xi, ζi = k)
as the integral of a multivariate normal distribution
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Figure 2. Illustration of the k-th probit expert in QGME,
which gives the conditional class probability p(yi =
m|xi, ζi = k) = p(zik ∈ Rm), for m = 0, 1, · · · , M − 1,
where M is the total number of classes, zik0 ≡ 0, zik is
drawn from a multivariate normal distribution with mean
WT

k xi + bk and covariance matrix I.

N (zik;WT
k xi +bk, I) over a y-dependent region Ry in

the space of zik, a latent vector introduced for xi given
ζi = k. It must be satisfied that Rm ∩Rl is empty for
m 6= l and ∪M−1

m=0 Rm is the space of zik. Figure 2 il-
lustrates the Ry used in QGME, which is specified by
the linear constraint Tyzik ≤ 0, where Ty is defined in
the QGME specification above. It is clear from Figure
2 that zik ∈ R0 implies all components of zik are less
than zero, and zik ∈ Ry (y = 1, · · · ,M−1) implies the
y-th component of zik is greater than zero as well as
other components of zik. Thus the components of zik

can be explained as the utilities of classes 1, · · · ,M−1
and the utility of class 0 is constantly zero (class 0 is
the reference class).

It follows from the definition of QGME that the prob-
ability of xi is a mixture of multivariate normals

p(xi) =
∑K

k=1πkN (xi; µk,Σk) (6)

and the joint probability of yi and xi is given by

p(yi,xi; Θ) =
∑K

k=1πkN (xi;µk,Σk)
×∫

Tyi
zik≤0

N (zik;WT
k xi + bk, I)dzik (7)

where Θ={πk,µk,Σk,Wk,bk}K
k=1 collects the param-

eters of interest in QGME.

Assume the feature vector xi is partially observed, we
partition it into xi = [xoi

i ;xmi
i ], where xoi

i is the sub-
vector of observed features and xmi

i is the subvector
of missing features. The oi and mi denotes the set of
indices for observed and missing features, respectively.

From (7) follows the joint probability of xoi
i and yi

p(yi,xoi
i ; Θ) =

∑K
k=1

∫ ∫
Tyi

zik≤0
πkN (xi; µk,Σk)

×N (zik;WT
k xi + bk, I)dzikdxmi

i (8)

and the marginal probability of xoi
i

p(xoi
i ; {µk,Σk}K

k=1)=
∑K

k=1

∫
πkN (xi; µk,Σk)dxmi

i (9)

The conditional probability p(yi|xoi
i ; Θ) follows di-

rectly from (8) and (9).

The following lemma is useful in deriving the ML es-
timator for the QGME. The proof is given in the Ap-
pendix.

Lemma 1. Let xi = [xoi
i ;xmi

i ], µk = [µoi

k ;µmi

k ], and

Σk =
[

Σoioi

k Σoimi

k

Σmioi

k Σmimi

k

]
, then

N (xi;µk,Σk)N (zik;WT
k xi + bk, I)

=N(xoi
i ;µoi

i ,Σoioi

k )N(zik; τik,Gik)N(xmi
i ; cik,Dik)(10)

where

τik = bk + WT
k µk + ΓT

ik(Σoioi

k )−1(xoi
i − µoi

k ) (11)
Gik = I + WT

k ΣkWk − ΓT
ik(Σoioi

k )−1Γik (12)
cik = µmi

k + Σmioi

k (Σoioi

k )−1(xoi
i − µoi

k )
− [

Υik −Σmioi

k (Σoioi

k )−1Γik

]
G−1

ik

[
zik

−WT
k µk − bk − ΓT

ik(Σoioi

k )−1(xoi
i − µoi

k )
]
(13)

Dik = Σmimi

k −Σmioi

k Σoioi

k
−1Σoimi

k

−(Υik −Σmioi

k Σoioi

k
−1Γik)G−1

ik

×(Υik −Σmioi

k Σoioi

k
−1Γik)T (14)

Γik = Σoioi

k Woi

k + Σoimi

k Wmi

k (15)
Υik = Σmioi

k Woi

k + Σmimi

k Wmi

k (16)

3. ML Estimation of the QGME from
Incomplete Data

The number of experts K is a hyper-parameter rep-
resenting the complexity of QGME, which can be
learned via cross-validation or Bayesian model selec-
tion. Given K, we estimate the parameters Θ through
likelihood maximization.

For independent samples {(xoi
i , yi) : i = 1, · · · , N},

the joint probability given by the QGME is∏N
i=1 p(yi,xoi

i ; Θ), taking logarithm of the joint prob-
ability, we get

`(Θ)=ln
∏N

i=1p(yi,xoi
i ; Θ) =

∑N
i=1ln p(yi,xoi

i ; Θ) (17)

which is the likelihood function we wish to maximize.
We choose to maximize the joint probability of x’s
and y’s, instead of the conditional probability of y’s
given x’s, because we are interested in both the clas-
sifier and the data manifold. As a matter of fact, the
two are nonseparable given that the data are only par-
tially observed. To find an accurate classifier, one
needs to have accurate estimates of the missing fea-
tures, which require a good estimate of the data man-
ifold. In (Williams et al., 2005), the authors take a
two-stage procedure: first the data manifold is esti-
mated by maximizing the marginal probability of x’s;
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based on the estimated manifold, the missing feature
in the classifier are integrated out to get a marginalized
classifier, which is then used to estimate the parame-
ters of the original classifier. Imputation methods are
also based on such a two-stage procedure, with the
marginalization implemented by sampling (finite im-
putation). The following theorem (the proof is given
in the Appendix) shows that the two-stage procedure
is not exact even when the integration over the missing
feature is exact.

Theorem 2. Let p(x; Θ1) be the data manifold with
parameter Θ1, p(y|x; Θ2) be the classifier with param-
eter Θ2, and x = [xo;xm]. Then p(y|xo) depends on
both Θ1 and Θ2.

Since the marginalized classifier depends on both the
parameter (Θ1) of the data manifold and the param-
eter (Θ2) of the original classifier, maximum likeli-
hood estimation should be performed in the space of
(Θ1, Θ2), instead of the space of Θ1.

Because the manifold parameter and the classifier pa-
rameter are coupled in the presence of missing fea-
tures1, estimation of one requires knowing the other,
which entails joint estimation of both. This motivates
maximizing the joint likelihood function `(Θ) in (17).

Direct maximization of `(Θ) is difficult, since we must
deal with the logarithm of sum and integrals. We
apply Jensen’s inequality to move the logarithm in-
side the sum and integrals, obtaining a lower bound of
`(Θ) that is simpler to maximize. We first derive the
lower bound of ln p(yi,xoi

i ; Θ), corresponding to the i-
th data sample; once that is done, the lower bound
of `(Θ) is arrived by summing over data samples. It
follows from (8) that

ln p(yi,xoi
i ; Θ)

= ln
K∑

k=1

∫

Tyi
zik≤0

∫
qik(zik,xmi

i )
πkN (xi; µk,Σk)

qik(zik,xmi
i )

×N (zik;WT
k xi + bk, I)dxmi

i dzik (18)

where
∑K

k=1

∫
Tyi

zik≤0

∫
qik(zik,xmi

i )dxmi
i dzik = 1

and qik(zik,xmi
i ) ≥ 0. Applying Jensen’s inequality

to (18), we obtain

ln p(yi,xoi
i ; Θ)

≥
K∑

k=1

∫

Tyi
zik≤0

∫
qik(zik,xmi

i ) ln
[
πkN (xi;µk,Σk)

1The manifold and classifier parameters are coupled in
QGME even when all features are observed, since the man-
ifold is used to form the gating network, which is a part of
the classifier. But the complete data case is not the focus
in this paper.

×N (zik;WT
k xi + bk, I)

]
dxmi

i dzik

+H[qik(zik,xmi
i )] (19)

where H(·) denotes Shannon entropy. The lower
bound is tight (the equality holds) when

qik(zik,xmi
i )

=
πkN (xi;µk,Σk)N (zik;WT

k xi + bk, I)
p(yi,xoi

i ; Θ)
(20)

which, using Lemma 1, is rewritten as

qik(zik,xmi
i )

= δikNTyi
zik≤0(zik; τik,Gik)N (xmi

i ; cik,Dik) (21)

where

NTyi
zik≤0(zik; τik,Gik)

=





N (zik; τik,Gik)∫
Tyi

zik≤0
N (zik; τik,Gik)dzik

, if Tyizik ≤ 0

0, otherwise
(22)

is a truncated multivariate normal distribution,

δik=
N (xoi

i ; µoi

k ,Σoioi

k )
∫
Tyi

zik≤0
N (zik; τik,Gik)dzik

p(yi,xoi
i ; Θ)

(23)

and the normalization is calculated by

p(yi,xoi
i ; Θ) =

∑K
k=1N (xoi

i ;µoi

k ,Σoioi

k )
×∫

Tyi
zik≤0

N (zik; τik,Gik)dzik (24)

Define

Qi(Θ̂|Θ) =
∑K

k=1

∫
Tyi

zik≤0

∫
qik(zik,xmi

i )

× ln
[
π̂kN (xi; µ̂k, Σ̂k)

×N (zik;ŴT
k xi + b̂k, I)

]
dxmi

i dzik

+H[qik(zik,xmi
i )] (25)

By (19), Qi(Θ̂|Θ) ≤ Qi(Θ̂|Θ̂). If we make Qi(Θ̂|Θ) ≥
Qi(Θ|Θ), we have ln p(yi,xoi

i ; Θ) = Qi(Θ|Θ) ≤
Qi(Θ̂|Θ̂) = ln p(yi,xoi

i ; Θ̂). The inequality still holds if
we sum over samples i. Thus, if we use (21) to compute
qik(zik,xmi

i ) and let Θ̂ = arg max
Θ̂

∑N
i=1 Qi(Θ̂|Θ), we

are assured that Θ̂ is improved over Θ. This gives
the expectation-maximization (EM) algorithm for es-
timating Θ.

We now discuss calculation of Qi(Θ̂|Θ̂). Introducing

rik = µmi

k + Σmioi

k (Σoioi

k )−1(xoi
i − µoi

k )
+

[
Υik −Σmioi

k (Σoioi

k )−1Γik

]
G−1

ik [WT
k µk

+bk + ΓT
ik(Σoioi

k )−1(xoi
i − µoi

k )
]

(26)

Ωik =
[
Υik −Σmioi

k (Σoioi

k )−1Γik

]
G−1

ik (27)

we simplify (13) to

cik = rik + Ωikzik (28)
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Theorem 3. Let E denote expectation with respect to
the truncated normal in (22), and

βik = rik + ΩikE(zik) (29)
Fik =ΩikE[(zik − Ezik)(zik − Ezik)T ]ΩT

ik + Dik(30)

where the expectation E is taken with respect to
the truncated normal in (22). Then Qi(Θ̂|Θ) =∑K

k=1 δikΨi + H[qik(zik,xmi
i )], with

Ψi = ln
1

(2π)
d+1
2 |Σ̂k| 12

−1
2
(
[
xoi

i

βik

]
−µ̂k)T Σ̂−1

k (
[
xoi

i

βik

]
−µ̂k)

−1
2
trace(Σ̂−1

k

[
0 0
0 Fik

]
)

−1
2

∥∥∥E(zik)− ŴT
k

[
xoi

i

βik

]
− b̂k

∥∥∥
2

−1
2
trace(ŴT

k

[
0 0
0 Fik

]
Ŵk)

−1
2
E[(zik − Ezik)(zik − Ezik)T ] (31)

The proof is given in the Appendix. Calculation of∑N
i=1 Qi(Θ̂|Θ) completes the E-step, where the miss-

ing features xmi
i are replaced with the expected values

βik in the k-th expert. Such imputations are adap-
tive since the expected values change as the QGME
parameters are updated in the M-step. With δik

given by (23), the M-step is achieved by maximizing∑N
i=1 Qi(Θ̂|Θ) to obtain

δ̃ik =
δik∑N
i=1 δik

, µ̂k =
N∑

i=1

δ̃ik

[
xoi

i

βik

]

Σ̂k =
N∑

i=1

δ̃ik

{
(
[
xoi

i

βik

]
−µ̂k)(

[
xoi

i

βik

]
−µ̂k)T +

[
0 0
0 Fik

]}

[
b̂ T

k

Ŵk

]
=

( N∑

i=1

δ̃ik(




1
xoi

i

βik






1
xoi

i

βik




T

+




0 0 0
0 0 0
0 0 Fik


)

)−1

×
N∑

i=1

δ̃ik




1
xoi

i

βik


 E(zik)

Computation of the moments of zik involve integrals
of (multivariate) normal distributions over the region
specified by Tyizik ≤ 0. In the binary case, M = 2
and zik is univariate truncated normal, with T0 = 1
and T1 = −1. In this case, we have E(zik) =
τikΦ( τik√

Gik
) +

√
GikN ( τik√

Gik
; 0, 1) and E(z2

ik) = (τ2
ik +

Gik)Φ( τik√
Gik

) + τik

√
GikN ( τik√

Gik
; 0, 1), where Φ(·) is

the cumulative distribution function (cdf) of the stan-
dard normal.

In the trinary case, M = 3 and zik is a bivariate trun-
cated normal. One can use the formulae in (Rosen-
baum, 1961) to compute the moments analytically. In
the general case when M > 3, the results in (Genz,
1992) can be employed to perform the multiple inte-
gral numerically.

4. Experimental Results

We demonstrate the performance of QGME on three
benchmark data sets — Johns Hopkins University
Ionosphere database (Ionosphere), Wisconsin Diag-
nostic Breast Cancer (WDBC) data, and Iris Plant
Database (Iris). These data sets and their descrip-
tions are publicly available at the UCI machine learn-
ing repository (Newman et al., 1998).

4.1. Results on Ionosphere and WDBC

In the first experiment, we compare the QGME to the
method in (Williams et al., 2005), which represents
the most recent development in incomplete data clas-
sification. To replicate the results from previous exper-
iments, we use the same data sets, i.e., Ionosphere and
WDBC, and follow the same experimental procedure,
as used in (Williams et al., 2005). Specifically, for
each data sample, we randomly select a portion of fea-
tures to be observed, assuming the remaining are miss-
ing. This simulates the missing completely at random
(MCAR) case (Schafer & Graham, 2002). Note that
the observed and missing features change from sam-
ple to sample, thus we are considering general missing
patterns. For each of the two data sets, we randomly
partition the data samples into training and testing
subsets. We consider different experimental settings,
by varying the percentage of missing features and the
percentage of data samples used in training. For each
experimental setting, we perform 100 independent tri-
als, each consisting of a random feature partition and
a random sample partition that are performed inde-
pendently of each other. Following Williams et al.,
the area under ROC curve (AUC) (Hanley & McNeil,
1982) is used as algorithms’ performance measure.

The results are summarized in Figure 3, where each
curve is the AUC as a function of the fraction of
data samples used in training, resulting from an av-
erage over the independent trials, and the error bars
on QGME show the standard deviations. The number
of experts K controls the model complexity of QGME.
To examine how the choice of K affects the generaliza-
tion of QGME, we have plotted in Figure 3 the results
for various values of K.

It is noted from Figure 3 that QGME outperforms the
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Figure 3. Results on Ionosphere data. Top: 25 percent features missing; Bottom: 50 percent features missing; From the
leftmost column to the rightmost column, the number of experts used in QGME is K = 1, 3, 5, 10, 20. The results other
than those of QGME are cited from (Williams et al., 2005).
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Figure 4. Results on WDBC data. Left: 25 percent fea-
tures missing; Right: 50 percent features missing. The
QGME implements a linear classifier by using K = 1. The
results other than those of QGME are cited from (Williams
et al., 2005).

competing methods, by significant margins, in almost
all experimental settings. The improvements can be
attributed to the adaptive analytic imputation accom-
plished inside the E-step of EM iterations. The adap-
tivity is a result of correctly handling the coupling of
manifold and classifier parameters via joint estimation
of both, as discussed in Section 3.

Within a wide range of choices for K (from 1 to 20),
the QGME maintains its superiority in performance
over the competing methods, which demonstrates its
robustness to K. The relative insensitivity to K can
be explained by the fact that the basic component (ex-
pert) in QGME is a linear classifier, the simplest of all
classifiers. Since the expert is simple, the model com-
plexity of QGME grows slow with the number of ex-
perts. Many real world data are linearly separable or
nearly so, and a low complexity classifier like QGME
generalizes better on these data.

Though the overall performance is robust to K, the
choice of K does affect QGME in some cases, notably
when the fraction of data used in training is less than

0.3. With few than 30% training data, a smaller K
yields noticeably better performance than a larger K.
This is understandable, considering that extremely in-
sufficient training examples are highly prone to being
overfitted, even by a model with low complexity.

A close observation of Figure 3 reveals that with more
features missing (50%), QGME is less sensitive to K,
showing that the internal adaptive imputation of miss-
ing features is robust to the choice of K, particularly
when the data have heavily missing values. Since
missing feature imputation is the key function for a
method designed for incomplete data classification,
this demonstrates the QGME to be a robust method
for this purpose.

A last observation from Figure 3 is that the margin
in performance improvement is larger when there are
more features missing, which again shows the advan-
tage of adaptive imputation in handling heavily miss-
ing values. In fact, imputation smooths out the data
manifold and ameliorates generalization. The adap-
tive imputation takes into account the classifier when
filling the missing values, and is thus particularly ad-
vantageous.

For the WDBC data, since they are easily separable
data, we set K = 1 to make QGME a linear classifier.
The results in Figure 4, where the error bars on QGME
show the standard deviations, show that QGME out-
performs the competing methods, except when there
are fewer than 20% data used in training. The degra-
dation shows that QGME is more easily affected by
the number of training examples than the number of
missing features. This also suggest that when train-
ing examples are very scarce, joint estimation of data
manifold and classifiers may run into difficulties, since
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it has more parameters to estimate and are more sub-
ject to over-fitting to outliers.

4.2. Results on a Three-class Problem

In the second experiment, we consider the Iris plant
data, which is known as a three-class nonlinear prob-
lem. Instead of comparing to the method in (Williams
et al., 2005), which can only deal with binary prob-
lems, we compare the QGME to support vector ma-
chines (Joachims, 1999), with the missing feature im-
puted with either mean or conditional mean. The con-
ditional mean is obtained from the density p(x) esti-
mated by maximizing (6) with K = 3. The same value
of K is used in QGME to make the results comparable.
Estimation of p(x) is performed using all incomplete
data (labeled or unlabeled).

Since we have three classes, for which the AUC mea-
sure is not appropriate, the performance is evaluated
in terms of correct classification rate, defined as the
fraction of correctly classified data samples in the to-
tal number of data samples being tested. The results
are summarized in Figure 5, which each curve is an
average from 100 independent trials, each consisting a
random feature partition and a random data partition,
performed independently of each other. The error bars
on QGME show the standard deviations.
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Figure 5. Results on Iris data. Left: 25 percent features
missing; Right: 50 percent features missing. The QGME
implements a nonlinear classifier by using K = 3. The
imputation model for SVM is Eqn.(6) with K = 3, es-
timated using all incomplete data samples. The SVM
results are generated by SVMlight, which is available at
http://svmlight.joachims.org/. Two SVM classifiers are
used: SVM-RBF uses a radial basis function (RBF) ker-
nel and SVM-linear uses a linear kernel. The affix -Mean
(or -CondMean) indicates the missing features are imputed
with mean (or conditional mean).

It is seen from Figure 5 that QGME yields better per-
formance than SVM, regardless of the kernel used and
the imputation methods, and the improvement is over
the entire range of experimental settings being inves-
tigated. The improvement is particularly prominent
when there are more features missing (50%) and also
when the training examples are few (10%).

Two more notes are made from Figure 5. First, SVM-
RBF is much better than SVM-linear, demonstrating
the nonlinearity of the problem. For either SVM-RBF
or SVM-linear, imputing conditional means does not
yields much improvement over imputing means, show-
ing the limited utility of imputation when the imputa-
tion model and the classifier are learned in isolation.
In contrast, QGME performs joint estimation of the
two and is more advantageous.

5. Conclusions

We have proposed a statistical model, called quadrat-
ically gated mixture of experts (QGME), for multi-
class nonlinear classification of incomplete data. The
model uses linear classifiers as basic building blocks
and mixes them through one-level quadratic gating.
The model has an intrinsical design customized to data
that are piecewise linearly separable. Many real world
data fall under this category and can be analyzed by
the model. The model handles missing values in a
principled manner, via joint estimation of the imputa-
tion model and the classifier. Joint estimation solves
the problem of parameter coupling between the data
manifold, and the classifier and the resulting adaptive
analytical imputation yields significant improvements
over the methods that separate imputation model es-
timation from classifier learning, as demonstrated ex-
perimentally on three benchmark data sets.

Future work includes Bayesian model selection for K
and fast computation of moments for latent variables
z when there are more then three classes.

Appendix

Proof of Lemma 1
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where
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Assuming partition of xi, µk, and Σk, as given in the
premise, we have

ψik =
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where Γik and Υik are as given in (15) and (16).

Since zik, xoi
i , and xmi

i are jointly normal distributed,
p(xmi

i |zik,xoi
i ) and p(zik|xoi

i ) are also normal distribu-
tions. Then what remains to be proven is to verify that
the mean and covariance matrix of p(zik|xoi

i ) are given by
(11) and (12), and those of p(xmi

i |zik,xoi
i ) are given by

(13) and (14), respectively. The verification if straightfor-
ward, using the properties of multivariate normal, and is
thus omitted here. Q.E.D.

Proof of Theorem 2 It follows from the premise that

p(xo) =
∫

p(x; Θ1)dx
m

p(y,xo) =
∫

p(y,x)dxm =
∫

p(y|x; Θ2)p(x; Θ1)dx
m

Therefore, p(y|xo) = p(y,xo)
p(xo)

=
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,

which evidently depends on both Θ1 and Θ2. Q.E.D.

Proof of Theorem 3 Substituting (21) into (25)
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where the expectation Ex
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where βik and Fik are as given in the premise. Q.E.D.
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