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Abstract
We analyze a simple, Bellman-error-based ap-
proach to generating basis functions for value-
function approximation. We show that it gen-
erates orthogonal basis functions that provably
tighten approximation error bounds. We also il-
lustrate the use of this approach in the presence
of noise on some sample problems.

1. Introduction
In many areas of machine learning, the automatic discov-
ery of features remains an important challenge. In the area
of value-function approximation for reinforcement learning
or the approximate solution of Markov decision processes
(MDPs), which have reaped few of the benefits of tech-
niques such as boosting (Freund & Schapire, 1995) or the
kernel trick (Vapnik et al., 1997), the challenge of feature
selection or discovery remains particularly acute.

Recent efforts in feature discovery for value-function ap-
proximation have been along two main lines. The first is
based upon graph structures built up from observed tra-
jectories through the state space (Mahadevan & Maggioni,
2006). The second is based upon the Bellman error (Men-
ache et al., 2005; Keller et al., 2006). In this paper, we
consider approaches of the second type in the context of
linear value-function approximation. Specifically, we con-
sider a general family of approaches that iteratively add
basis functions to a linear approximation architecture in a
manner where each new basis function is derived from the
Bellman error of the previous set of basis functions. We
call these Bellman Error Basis Functions (BEBFs).

Our main theoretical contribution is to show that BEBFs
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form an orthonormal basis with guaranteed improvement
in approximation quality at each iteration. Since the Bell-
man error can be a quite complicated function that may not
be any easier to represent than the true value function, we
consider the use of a Bellman error approximator to repre-
sent the new basis function. A similar approach was taken
by Keller et al. (2006), who used a form of state aggrega-
tion or clustering to estimate the Bellman error. We prove
a general result showing that the approximation quality can
still improve even if there is significant error in the estimate
of the Bellman error.

We distinguish between two applications of the general
BEBF scheme. One is exact, in which all computations
are made with respect to precise representations of the un-
derlying MDP or Markov chain model. In this setting, we
show that BEBFs result in steadily improving bounds on
the distance from the optimal value function, a significant
open problem in previous work. The second is approximate
in which Markov dynamics are experienced only via sam-
ples and the functions are represented using an approxima-
tion scheme. In this setting, we prove some conservative
conditions that suffice to ensure that new BEBFs that ap-
proximate the Bellman error will improve the linear value
function. Finally, we provide experiments demonstrating
the use of approximate BEBFs in policy iteration.

2. Formal Framework and Notation
We are concerned with controlled and uncontrolled Markov
processes consisting of a set of states s1 . . . sn. Actions,
when applicable, are chosen from the set a1 . . . am; how-
ever, much of our theory applies only to uncontrolled
systems—essentially ones with a single action (m = 1).

Given a state si, the probability of a transition to a state sj

given action a is given by P a
ij and results in an expected

reward of Ra
i . In the uncontrolled case, we use P and R to

stand for the transitions and rewards.
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We are interested in finding value functions V that map
each state si to the expected total γ-discounted reward for
the process. In particular, we would like the solution to the
Bellman equation

V [si] = max
a

(Ra
i + γ

∑

j

P a
ijV [sj ])

in the controlled case (the “max” is eliminated from the
equation in the uncontrolled case).

To simplify notation for manipulating value functions, we
define the Bellman operator T ∗ on value functions as

(T ∗V )[si] = max
a

(Ra
i + γ

∑

j

P a
ijV [sj ]).

In this notation, the Bellman equation becomes V ∗ =
T ∗V ∗. Of particular interest in this paper is the Bellman
operator in the uncontrolled case, T , which is, again, sim-
ply the T ∗ operator without the “max”:

(TV )[si] = Ri + γ
∑

j

PijV [sj ].

The Bellman operator is well known to be a contraction in
maximum norm:

‖V1 − V2‖∞ = ε ⇒ ‖TV1 − TV2‖∞ ≤ γε.

A less known property of the Bellman operator is that it is
a contraction in the weighted L2 norm:

‖V ‖ρ =

√√√√
n∑

i=1

V [si]2ρ[si],

where ρ is the stationary distribution of P : ρ = PT ρ. As
noted by Van Roy (1998),

‖V1 − V2‖ρ = ε ⇒ ‖TV1 − TV2‖ρ ≤ γε.

Unless otherwise indicated, we will use ‖ · ‖ for ‖ · ‖ρ.

Note that defining V 0 = R, then V t+1 = TV t, results in
the value-iteration algorithm. Based on the results above,
V t → V ∗ as t increases.

The Bellman error of a value function V is the difference
between the value function and the result of applying the
Bellman operator: TV − V .

In cases where the value function cannot be represented ex-
actly, it is common to use some form of parametric value-
function approximation, such as a linear combination of
features or basis functions:

V̂ =
k∑

i=1

wiφi,

where Φ = {φ1 . . . φk} is a set of linearly independent
basis functions of the state, and w = {w1 . . . wk} is a set
of scalar weights. We can think of Φ as a design matrix
with Φ[i, j] = φj(si), that is, the basis functions span the
columns of Φ and the states span the rows. For a set of
weights w expressed as a column vector, V̂ = Φw.

Methods for finding reasonable w given Φ and a set of
samples include linear TD (Sutton, 1988), LSTD (Bradtke
& Barto, 1996) and LSPE (Yu & Bertsekas, 2006). If
the model can be expressed as a factored MDP, then the
weights can be found directly (Koller & Parr, 1999). We
refer to this family of methods as linear fixed point meth-
ods because they all solve for the same fixed point:

V̂ = Φw = Πρ(R + γPΦw), (1)

where Πρ is an operator that is the ρ-weighted L2 projec-
tion into the span of Φ, that is, if ∆ = diag(ρ),

Πρ = Φ(ΦT ∆Φ)−1ΦT ∆.

We use Π as shorthand for Πρ unless otherwise indicated.
The closest point (in ‖ · ‖ρ) in the span of Φ to V ∗ is ΠV ∗,
but linear fixed point methods are not guaranteed to find
this point. However, the distance from V̂ to V ∗ is bounded
in terms of the distance from ΠV ∗ to V ∗ (Van Roy, 1998):

‖V ∗ − V̂ ‖ ≤ 1√
1− κ2

‖V ∗ −ΠV ∗‖. (2)

The effective contraction rate κ arises from the combina-
tion of the Bellman operator, T , with contraction rate γ,
and the L2 projection, which is non-expansive, and could
possibly introduce some additional contraction. For this
paper, we conservatively assume κ = γ.

3. Basis Expansion
Basis expansion in the context of linear fixed point methods
addresses the following question: Given a set of basis func-
tions φ1 . . . φk and a linear fixed point solution V̂ , what is a
good φk+1 to add to the basis? This question is asked both
in the context of graph-based approaches (Mahadevan &
Maggioni, 2006) and Bellman-error-based methods (Keller
et al., 2006).

The Bellman error is an intuitively appealing approach to
expanding the basis since it is, loosely speaking, pointing
towards V ∗. We say that φk+1 is a Bellman Error Ba-
sis Function (BEBF) for V̂ = Φw if φk+1 = T V̂ − V̂ .
Constructing Φ′ = [Φ, φk+1] (concatenating column vec-
tor φk+1 to design matrix Φ) ensures that T V̂ is in the
span of Φ′ (trivially by picking new weights w′i = wi for
1 ≤ i ≤ k, and w′k+1 = 1). While this formulation ensures
that V̂ can be represented, it leaves many open questions
such as:



Analyzing Feature Generation for Value-Function Approximation

• How does increasing the expressive power to include
T V̂ affect the performance bound for the fixed point
error bound in Eq. (2)? Adding T V̂ to the space
of representable value functions doesn’t necessarily
mean that a linear fixed point method will choose T V̂ .
Even if a linear fixed point method did pick T V̂ , it
might be no closer to V ∗ than ΠV ∗ is.

• How does performance degrade if φ̂k+1 ≈ φk+1 is
used instead? This question is important because it
typically will be difficult to represent φk+1 exactly for
large problems.

The subsequent two subsections address these questions.

3.1. Exact BEBFs

In this subsection, our analysis continues from the perspec-
tive of the ρ-weighted L2 norm. The inner product between
two vectors V1 and V2 is therefore defined as:

(V1 · V2)ρ =
n∑

i=1

V1[si]V2[si]ρ[si].

Two vectors are orthogonal if (V1 · V2)ρ = 0. Many prop-
erties of the usual, unweighted, L2 norm remain true in a
weighted L2 norm. For example, the Pythagorean theorem
remains true, which means that if (A ·B)ρ = 0, then

‖A + B‖2ρ = ‖A‖2ρ + ‖B‖2ρ.

In the sequel, when we indicate that two vectors are orthog-
onal, the ρ-weighted L2 norm will be implicit. When we
say that a vector is normalized, we mean that the entries
have been divided by a suitable constant to ensure that the
ρ-weighted L2 norm is 1.

Lemma 3.1 If V̂ is a linear fixed point solution using the
basis Φ = {φ1 . . . φk}, then the BEBF φ′ = T V̂ − V̂ is
orthogonal to the span of Φ.

Proof: This result follows immediately from the definition
of the fixed point in Eq. (1), since V̂ is, by definition, the
orthogonal projection of T V̂ into Φ.

A sequence of BEBFs is a set of BEBFs φ1 . . . φk, gener-
ated with an arbitrary, but nonzero, φ1, and φi for i > 1 as
the BEBF for the basis φ1 . . . φi−1.

Corollary 3.2 A sequence of normalized BEBFs φ1 . . . φk

forms an orthonormal basis.

Corollary 3.3 For a system with n states, V ∗ can be repre-
sented exactly using a sequence of no more than n BEBFs.

Without loss of generality, for normalized sequence of
BEBFs φ1 . . . φn,

V ∗ =
n∑

i=1

wiφi

for some w1 . . . wn. This representation of V ∗ is critical
to our analysis, so we describe its significance in more de-
tail: For the purposes of analysis, we will assume a repre-
sentation of V ∗ as if the BEBF procedure had been run to
completion. We are not assuming that these functions are
produced in practice. Rather, we are adopting this represen-
tation to analyze the effect of adding an additional BEBF
to an existing sequence of k BEBFs for k < n.

Informally, our main result states that if the Bellman oper-
ator moves V̂ closer to V ∗ by some amount x, and we use
this Bellman error to generate a new BEBF, then the closest
function in the new space to V ∗ (the term in the right hand
side of Eq. (2)) must improve by at least x. Alternatively,
we can say that the bound is tightening at least as quickly
as it does in value iteration.

Theorem 3.4 Let V̂ be the linear fixed point solution using
a sequence of normalized BEBFs φ1 . . . φk. If ‖V ∗− V̂ ‖−
‖V ∗ − T V̂ ‖ = x, then for new BEBF φk+1, with Φ′ =
[Φ, φk+1], and corresponding Π′, the improvement in the
approximation bound is ‖V ∗−ΠV ∗‖−‖V ∗−Π′V ∗‖ ≥ x.

Proof: The contraction property of T guarantees that x >
0 for V̂ 6= V ∗. By the orthonormality of the basis,

ΠV ∗ =
k∑

i=1

wiφi.

For V̂ =
∑k

i=1 αiφi,

V ∗ − V̂ =
k∑

i=1

(wi − αi)φi +
n∑

i=k+1

wiφi,

where the first term is the error introduced by choosing
other than the closest point in the span of Φ, and the second
term is the residual left because the basis may not be able
to express V ∗ exactly. Since Φ is an orthonormal basis, by
the Pythagorean theorem:

‖V ∗ − V̂ ‖2 =
k∑

i=1

(wi − αi)2 +
n∑

i=k+1

w2
i ,

and since φk+1 is orthogonal to the span of Φ,

‖V ∗ − T V̂ ‖2
= ‖V ∗ − (V̂ + βφk+1)‖2

= (wk+1 − β)2 +
k∑

i=1

(wi − αi)2 +
n∑

i=k+2

wi
2,
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where β is the normalizing constant used to normalize the
Bellman error in producing φk+1.

Since the only difference between these expressions is the
(wk+1 − β)2 term, the reduction in squared distance is at-
tributed entirely to the fact that (wk+1 − β)2 < w2

k+1:

‖V ∗ − V̂ ‖2 − ‖V ∗ − T V̂ ‖2 = w2
k+1 − (wk+1 − β)2.

Reintroducing x into the expression:

‖V ∗ − V̂ ‖2 − ‖V ∗ − T V̂ ‖2
= (‖V ∗ − V̂ ‖ − ‖V ∗ − T V̂ ‖)(‖V ∗ − V̂ ‖+ ‖V ∗ − T V̂ ‖)
= x(‖V ∗ − V̂ ‖+ ‖V ∗ − T V̂ ‖).

Solving for x:

x =
‖V ∗ − V̂ ‖2 − ‖V ∗ − T V̂ ‖2
‖V ∗ − V̂ ‖+ ‖V ∗ − T V̂ ‖

=
w2

k+1 − (wk+1 − β)2

‖V ∗ − V̂ ‖+ ‖V ∗ − T V̂ ‖ . (3)

Now, consider the difference between ‖V ∗ − ΠV ∗‖2 =∑n
i=k+1 w2

i , and ‖V ∗ −Π′V ∗‖2 =
∑n

i=k+2 w2
i :

‖V ∗ −ΠV ∗‖2 − ‖V ∗ −Π′V ∗‖2 = w2
k+1,

which implies

‖V ∗ −ΠV ∗‖ − ‖V ∗ −Π′V ∗‖

=
w2

k+1

‖V ∗ −ΠV ∗‖+ ‖V ∗ −Π′V ∗‖ . (4)

Finally, observe that the numerator in (4) is greater than or
equal to the numerator in (3), and that the denominator in
(4) is less than or equal to the denominator in (3).

3.2. Approximation

In the previous subsection, we assumed that it was possible
to represent the Bellman error exactly over the entire state
space. As with many of the early efforts to discover basis
functions (Mahadevan & Maggioni, 2006), this exact rep-
resentation could be as difficult to find as the value function
itself. In practice, we may be forced to use an approximate
representation, as in, for example, the work of Keller et al.
(2006). For φ̂k+1 ≈ φk+1, we can state some qualitative
results. The first is that expanding the basis in the general
direction of V ∗ ensures progress:

Lemma 3.5 If φ̂k+1 is not orthogonal to V ∗ − V̂ , then
there exists a positive β such that ‖V ∗ − (V̂ + βφ̂k+1)‖ <

‖V ∗ − V̂ ‖. Moreover, if φ̂k+1 is not in the span of Φ, then
for Φ′ = Φ∪φ̂k+1, and corresponding Π′, ‖V ∗−Π′V ∗‖ <
‖V ∗ −ΠV ∗‖.

Proof: Assume

β = 0 = arg minσ‖V ∗ − (V̂ + σφ̂k+1)‖.
By definition, V̂ is then the orthogonal projection of V ∗

onto the line V̂ +σφ̂k+1, and V ∗−V̂ is therefore orthogonal
to φ̂k+1. Thus, unless φ̂k+1 is orthogonal to V ∗ − V̂ , there
exists a β such that V̂ + βφ̂k+1 is closer to V ∗ than V̂ is.

We only sketch the result for ‖V ∗−Π′V ∗‖ < ‖V ∗−ΠV ∗‖
because the analysis is very similar to Theorem 3.4. φ̂k+1

can be expressed as weighted sum of φ1 . . . φn. The
φ1 . . . φk components can be ignored because they are al-
ready in the span of Φ and they do not affect the analysis.
It is then easy to show that any reduction in the squared
distance from V̂ to V ∗ can be mirrored with an equivalent
reduction in the squared distance from ΠV ∗.

This lemma is encouraging, but the ease or difficulty in ob-
taining a φ̂k+1 that points towards V ∗ may not be obvious
since the true direction of V ∗ typically isn’t known until
the problem is solved exactly. The angle between φ̂k+1 and
φk+1 provides a weaker, sufficient (though not necessary)
condition for ensuring progress:

Theorem 3.6 If (1) the angle between φk+1 and φ̂k+1 is
less than cos−1(γ) radians and (2) V̂ 6= V ∗, then there
exists a β such that ‖V ∗ − (V̂ + βφ̂k+1)‖ < ‖V ∗ − V̂ ‖.
Moreover, if conditions (1) and (2) hold and φ̂k+1 is not in
the span of Φ, then for Φ′ = Φ ∪ φ̂k+1, and corresponding
Π′, ‖V ∗ −Π′V ∗‖ < ‖V ∗ −ΠV ∗‖.

Proof: First, we identify the maximum possible angle, θ1,
between T V̂ − V̂ and V ∗ − V̂ . In the worst case, adding
an additional θ2 = π/2− θ1 radians suffices to make φ̂k+1

orthogonal to V ∗ − V̂ . If V ∗ − V̂ = x, then T V̂ can lie on
a circle of radius γx from V ∗. The angle between T V̂ − V̂
and V ∗ − V̂ is maximized when T V̂ − V̂ is tangent to
the radius γx circle, as illustrated in Figure 1a. Since θ1 =
sin−1(γ), θ2 < π/2−sin−1(γ) = cos−1(γ) is sufficient to
ensure that θ1 + θ2 < π/2 and that φ̂k+1 is not orthogonal
to V ∗− V̂ . The conditions of the preceding lemma are then
satisfied, completing the proof.

In Figure 1b, we show a graph of cos−1(γ) in degrees vs.
discount. This graph shows the smallest angular error in
φ̂k+1 that could, in the worst case, prevent φ̂k+1 from im-
proving the value function. In practice, much larger er-
rors could be tolerated if they are not in the same direction
away from V ∗ as T V̂ is. Qualitatively, the graph gives
insight into the impact of the discount factor on BEBF ap-
proximation. In domains without noise, this result could be
used to test if an approximate BEBF should be accepted by
computing the dot product between the training data for the
BEBF and the output of the learned BEBF.
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Figure 1. (a) The worst case angle of φk+1 = T V̂ − V̂ , (b) Worst case angle θ2 vs. discount γ, (c) Value functions for the 50-state chain
varying the number of exact BEBFs.

These results do not rely upon the assumption that φ1 . . . φk

are orthonormal, and generalize to the case where multiple
approximate BEBFs are added, and not just a single φ̂k+1.

3.3. Comparison with Fitted Value Iteration

These BEBF results should be considered in the light of the
known, negative results on the use of supervised learning
for value-function approximation in the context of Fitted
Value Iteration (Boyan & Moore, 1995), or FVI. At itera-
tion k + 1, V̂k+1 is produced by using a function approx-
imator to fit T V̂k. FVI is a frustrating algorithm to use in
practice due to its tendency to diverge for fairly inscrutable
(to the user) reasons. The difficulty arises when errors com-
pound. In contrast, the BEBF approach always finds a fixed
point for any basis functions it produces. While this does
not ensure strictly improving performance as basis func-
tions are added, it ensures a tightening bound on the value-
function error as basis functions are added.

A possible advantage of FVI is that it is more compati-
ble with a maximum norm analysis, while the analysis of
BEBF is, thus far, entirely in ‖ · ‖ρ. This difference po-
tentially makes fitted value iteration more compatible with
policy-improvement approaches. A similarity between fit-
ted value iteration and BEBF is that both methods can get
“stuck” when the function approximation error for a new
basis function (or new iteration of value iteration) is large
enough to cancel out the contraction from T . We expect
that BEBF will be much more robust in practice since any
basis function with positive dot product with φk+1 ensures
a tightening of the bound while fitted value iteration can os-
cillate indefinitely in a region circumscribed by the worst
value-function approximation error. Our expectation of
greater robustness for BEBF vs. FVI was met by our ex-
periments in Section 4.2.2.

3.4. Comparison with Graph-Based Methods

Graph-based methods have the advantage of being less di-
rectly connected to the reward and value function. The ba-
sis functions produced by these methods are derived from
connectivity properties of the state space and could, po-
tentially, be more generally applicable to a wide class of
problems with similar state space connectivity but different
reward functions. Graph-based methods have the disad-
vantage of being less directly connected to the reward and
value functions. The disconnect from the reward and value
function makes it difficult to guarantee a specific amount of
progress with each iteration.

3.5. Comparison with Matching Pursuits

Matching pursuits (Mallat & Zhang, 1993) (or MP) is a
family of approaches for basis selection and synthesis with
a high level structure very similar to BEBF’s. MP was de-
veloped in the context of time-series reconstruction and it-
eratively adds basis functions to a set by finding the func-
tion that best matches the residual between the target func-
tion and the reconstruction of the function using the basis
functions added so far. The target function is sampled di-
rectly, and the basis functions are chosen from a restricted
class of functions for generalization or compression pur-
poses. While BEBFs can be explained in similar terms,
the details and motivation are quite different. With BEBFs,
state transitions are sampled from a Markov chain, and the
target function is defined implicitly through the fixed-point
equations. As such, taking the current residual itself as a
basis does not reduce the error to zero, as it would in MP.
With BEBFs, each additional basis function not only adds
to the expressive power of the basis, but moves the span of
the basis closer to the implicitly defined target.

4. Experimental Results
Our experimental results are of two types. We first consider
the case where the model is available and exact BEBFs can
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be computed. This case is not very realistic because the ef-
fort to compute and represent a BEBF is scarcely less than
that required to compute the exact value function. How-
ever, it does demonstrate the general viability of the rep-
resentation. Our second type of experimental results uses
BEBFs within the context of Least Squares Policy Itera-
tion (LSPI) (Lagoudakis & Parr, 2003). These experiments
demonstrate the robustness of the BEBF approach with
Bellman error estimation and goes beyond the theoretical
framework established above by using projections that are
not weighted by the stationary distribution, and by perform-
ing policy improvement within the LSPI framework.

4.1. Exact BEBFs

As a simple test to validate the use of BEBFs to represent
value functions, we considered the 50-state chain model in-
troduced by Lagoudakis and Parr (2003) and used by Ma-
hadevan and Maggioni (2006) as a test for basis-function
discovery. In this problem, there are 50 states numbered 1
through 50 with a reward of 1.0 at states 10 and 41. Actions
are right/left (+1/ − 1) moves, which succeed with prob-
ability 0.9 and move in the opposite direction with proba-
bility 0.1. We directly encoded the optimal policy into an
exact transition matrix and generated exact BEBFs starting
with an initial BEBF of 1. The experiment terminated with
a total of 16 BEBFs, which yielded an exact representation
of the value function for all 50 states. Figure 1c shows the
value functions for 5, 10, and all 16 basis functions. To give
some sense of the shape of the BEBFs for this problem, we
show the first nine basis functions in Figure 2a. The differ-
ence between the conditions of this experiment and those
of Theorem 3.4 is that we used an unweighted projection
because the Markov chain is periodic and does not have a
stationary distribution. We did try using an approximate
stationary distribution that smoothed over some of the peri-
odicity, and found that it produced a slightly worse fit at the
tails and slightly better fit at the peaks for low numbers of
basis functions. The performance is comparable to that of
other methods that learn features for this task (Mahadevan
& Maggioni, 2006).

4.2. Approximate BEBFs

LSPI (Lagoudakis & Parr, 2003) is a batch, approx-
imate policy-iteration algorithm that uses a variant of
LSTD (Bradtke & Barto, 1996) in its inner loop. For LSPI,
basis functions are Q-functions that map from state-action
pairs to reals. LSPI typically is initialized with a master set
of basis functions from which LSPI makes a copies, one
for each action. LSPI is an off-policy algorithm that uses
every sample in a corpus of (s, a, r, s′) samples to evaluate
every policy it considers.

Our modified version of LSPI computes a completely new

set of basis functions at each policy-evaluation phase using
function approximation. We initialize LSPI with a BEBF
estimated from the immediate reward. Within each phase
of policy evaluation, our modified LSPI adds new basis
functions for each action by training a function approxi-
mator on the Bellman error of the current solution. The
training data come from evaluating Q̂k(s′, πk(s′)) + r −
Q̂k(s, a) for each (s, a, r, s′) sample in the corpus. This
procedure produces noisy estimates of the Bellman error,
which must be smoothed out by the function approximator.
We stop adding new basis functions when the maximum
norm of the most recently added BEBF is below a thresh-
old of 10−5, and terminate LSPI when the most recent pol-
icy is identical to any previous policy. In the spirit of LSPI,
we used a single set of samples for all policy-evaluation
iterations and all function approximation BEBF training.

The choice of function-approximation technique for BEBF
approximation is, of course, quite important for the over-
all performance of the method. The function approximator
must be generic and expressive enough to capture a wide
range of possible functions on the state space. For example,
a simple choice of a fixed degree polynomial basis would
be useless beyond the first iteration of the BEBF approach,
since subsequent basis functions would necessarily lie in
the same space as the first and would add nothing to the
expressive power of the basis. This observation suggests
the use of a non-parametric or semi-parametric function ap-
proximator. For our initial experiments in this framework,
we made the somewhat naive choice of locally weighted
regression (Atkeson et al., 1997), or LWR, to estimate the
BEBFs. In retrospect, this choice turned out to be some-
what more data hungry, CPU hungry, and sensitive to pa-
rameter settings than we might have liked, the biggest prob-
lem being LWR’s tendency to underfit or overfit the Bell-
man error if given a poor choice of precision parameter. It
is possible that an automated method for tuning the preci-
sion based upon cross validation could have helped. These
limitations notwithstanding, we believe our results demon-
strate the soundness of the overall approach since our goal
is to demonstrate the BEBF technique with a generic func-
tion approximator, and not the user friendliness of LWR.

4.2.1. 50-STATE CHAIN

Our first experiments with the 50-state chain used an ex-
act model and randomly generated basis functions. The
goal of these experiments was to evaluate the importance
of matching an approximate BEBF to the true Bellman er-
ror. With random basis functions, we found that quite large
Bellman errors could persist until a nearly complete set of
50 basis functions was constructed. For our experiments
with sampled data, we used 8000 samples from randomly
selected actions and a degree-2 polynomial for LWR with
a precision of 1.0. Since the problem is small enough to
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Figure 2. The 50-state chain: (a) The first 9 BEBFs shown beneath the optimal value function. The first BEBF is on the top left, second
on the top middle, third on the top right, etc., (b) LSTD policy quality vs. number of training samples (c) LSPI with approximate BEBF
performance vs. number of samples.

permit an exact value-function computation, we report the
max-norm difference between the estimated value function
and the true value function. In Figure 2b, we show the
value function quality vs. the maximum number of basis
functions permitted per action for policy evaluation using
LSTD with BEBFs to evaluate the optimal policy. We show
the ‖ · ‖∞ distance between LSPI’s final value function, V̂ ,
and V ∗ in Figure 2c. Even though LSPI has a higher value-
function error than LSTD, the value of the resulting V π

(not shown due to space limitations) is much closer to V ∗

4.2.2. PUDDLE WORLD

Finally, we report results on the Puddle World problem
from Boyan and Moore (1995). Puddle World is a two-
dimensional, cost-minimization, navigation problem that
requires an agent to move to a corner goal state while avoid-
ing “puddles,” which are regions of high cost. This problem
is particularly difficult for function approximation methods
because the reward and value function have very steep gra-
dients. For this reason, we used a degree-0 polynomial for
LWR (equivalent to kernel regression) to help minimize ex-
trapolation errors near the borders of areas with steep gra-
dients. Even with kernel regression, fitted value iteration
was not able to produce good policies in our experiments.
In Figure 3a, we show a sample value function produced
using LSPI with approximately 160, 000 samples, a preci-
sion parameter of 5000, and a max of 40 basis functions
per action. The ridges and peaks in the graph correspond to
the puddles in the domain. Readers familiar with this do-
main will recognize the shape as consistent with previously
reported examples of good value functions for this prob-
lem. Figure 3b shows the discounted sum of rewards for
the learned policy vs. the number of training samples and
Figure 3c shows the percentage of trials that reach the goal
in less than 200 steps under the learned policy. In Figure 3b
and Figure 3c, results are averaged over 10 experiments,

except for the 12,000 episode data point, which is averaged
over 9 experiments. Each experiment learns a policy using
a new sample set, then reports average performance and
success rates over 10 trial simulations following the policy
from a random starting position. Samples were collected in
short episodes starting from a random (non-goal) position
and following a random policy for a maximum of ten steps
or until reaching the goal area.

5. Future Work
In this paper, we have shown the flexibility of the BEBF
framework for automatic feature generation within the con-
text of some relatively well understood problems. The the-
oretical and initial empirical results suggest a fairly flex-
ible framework that could potentially be used to expand
the range of problems that are considered within reach
of reinforcement-learning techniques. Such steps could
require the use of more powerful function-approximation
techniques for approximating the Bellman error. An ad-
vantage of the BEBF approach is that it provides well cir-
cumscribed function-approximation problems at each stage
and guaranteed tightening of approximation error bounds.

Although we have demonstrated the use of the BEBF ap-
proach with unweighted projections and policy improve-
ment in LSPI, this application goes beyond the theoreti-
cal analysis, so there is room for further theoretical de-
velopment, perhaps drawing inspiration from the work of
Munos (2003). In the area of Bellman-error estimation,
there is some potential for theoretical development in the
direction of sample complexity bounds, perhaps by mak-
ing some assumptions about the smoothness of the model.
Another worthwhile extension would be a strengthening of
the approximate BEBF results that quantified the weaken-
ing of the exact BEBF guarantees in terms of the error in
the BEBF approximator.
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Figure 3. Puddle World: (a) Learned Puddle World value function with approximately 160,000 samples (16,000 sampling episodes) (b)
The discounted total reward for the learned policy with LSPI and BEBF vs. the number of sampling episodes (c) The percentage of trials
that reach the goal in less than 200 steps vs. the number of sampling episodes.

6. Conclusion
We have presented a theoretical analysis of the effects of
generating basis functions based upon the Bellman error in
the context of linear value-function approximation. Our re-
sults show guaranteed tightening of error bounds when the
exact Bellman error is used, and give conservative condi-
tions under which improvement can be guaranteed when
an approximation of the Bellman error is used. Our ex-
perimental results demonstrate the use of a Bellman error
approximation based upon locally weighted regression as a
means of basis-function generation in the context of least
squares policy iteration.
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