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Abstract
We revisit recently proposed algorithms for prob-
abilistic clustering with pair-wise constraints be-
tween data points. We evaluate and compare ex-
isting techniques in terms of robustness to mis-
specified constraints. We show that the tech-
nique that strictly enforces the given constraints,
namely the chunklet model, produces poor re-
sults even under a small number of misspeci-
fied constraints. We further show that methods
that penalize constraint violation are more robust
to misspecified constraints but have undesirable
local behaviors. Based on this evaluation, we
propose a new learning technique, extending the
chunklet model to allow soft constraints repre-
sented by an intuitive measure of confidence in
the constraint.

1. Introduction
Clustering is the traditional problem of learning a partition
of an observed dataset X = {xi}N

i=1 of N data points into
K clusters. The traditional goal is to choose a partition-
ing Y = {yi ∈ {1 . . .K}}N

i=1 that optimizes an objective
function J(X, Y ); e.g., minimizing intra-cluster variance.
However, such broad clustering objectives are not neces-
sarily congruent with the particular notion of separation for
any given task. This has motivated the incorporation of
prior knowledge to guide the clustering process toward a
desirable partition. One form of prior knowledge is pair-
wise constraints among a subset of data points.

In recent years, clustering with pair-wise constraints
emerged as a new paradigm for semi-supervised cluster-
ing. In this framework, the clustering agent is given obser-
vations X and a set of constraints C composed of pair-wise
must-link and cannot-link constraints specifying points
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that should or should not be clustered together, respec-
tively. These constraints are typically assumed to be either
given by an expert or inferred from domain knowledge.
There are two primary strategies for incorporating must-
and cannot-link constraints: learning a metric and con-
strained clustering. This work only considers constrained
clustering.

Constrained clustering techniques directly incorporate
constraints into the clustering procedure. Some con-
strained clustering algorithms use modifications to graph-
based techniques (Yu & Shi, 2001; Kamvar et al., 2003;
Kulis et al., 2005). Other techniques explicitly used the
constraints to reduce the search space of common cluster-
ing algorithms (Wagstaff & Cardie, 2000; Wagstaff et al.,
2001). More recent techniques incorporate the constraints
directly into their models, resulting in probabilistic models
that augment mixture models by directly modeling the con-
straints (Shental et al., 2003; Basu et al., 2004; Lu & Leen,
2004; Lange et al., 2005).

In this paper we revisit probabilistic mixture models for
clustering with pairwise constraints, highlighting the pos-
itive and negative aspects of existing techniques. In par-
ticular, we focus on three main issues. The first is the
robustness of the various methods to the realistic case in
which some constraints are misspecified. The second is the
difficulty in specifying interpretable penalty weights. The
third is the local nature of approximate inference methods,
which can lead to suboptimal results. Further, we intro-
duce a new approximation algorithm that extends the chun-
klet model (Shental et al., 2003) to soft constraints, thereby
providing robustness against misspecified constraints.

The rest of the paper is organized as follows. In Section 2
we describe the probabilistic models for clustering with
pair-wise constraints and we critique them in Section 3. In
Section 4 we present our approach—an extension of the
chunklet model. We empirically compare these approaches
in Section 5 followed by a discussion in Section 6.
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2. Background
We consider the problem of clustering a set X of data
points into K clusters using a model parameterized by Θ
(e.g. a set of centroids {µc}) with side information in the
form of a set of constraints C composed of pairwise must-
link and cannot-link constraints. Each must-link con-
straint (i ↔ j) specifies that the points i and j should be in
the same cluster. Similarly, every cannot link (k = `) sug-
gests k and ` should not be in the same cluster. Constraints
that are strictly enforced are called absolute; that is, any
configuration that violates an absolute constraint has zero
probability. Constraints that are can be violated are called
soft constraints, and they also have an associated violation
penalty. Here Wij ∈ [0,+∞] denotes the penalty for vio-
lating a soft constraint between i and j.1 In the remainder
of this paper, constraints will be soft unless otherwise spec-
ified.

In this work, we only consider probabilistic models that
extend the mixture model framework; e.g., a mixture of
Gaussians. In a classical mixture model, there are two in-
dependence assumptions: (1) given the model’s parameters
Θ, all labels are independent, and (2) given its label yi, the
data point xi is independent of all other labels and data.
Formally, these are

P (Y |Θ) =
N∏

i=1

P (yi|Θ) (1)

P (X|Y, Θ) =
N∏

i=1

P (xi|yi,Θ). (2)

These assumptions define the fundamental components of
the mixture model: the prior distribution on the labels and
the data model.

We consider probabilistic models that extend classic mix-
ture models by constructing a hidden Markov random
field (HMRF) on the labels (Basu et al., 2004). In an
HMRF, the must-link and cannot-link constraints are rep-
resented graphically by undirected links between labels
and the graph is assumed to be Markovian: the distri-
bution of a label only depends only on its neighborhood
Ni , {j | (i, j) ∈ C}. Thus, for the HMRF the prior
distribution satisfies

P (yi|Y−i,Θ, C) = P (yi|YNi
,Θ, C) , (3)

where Y−i denotes the set of all labels other than yi.

An HMRF violates the independence assumption in Eq. (1)
but preserves the data model in Eq. (2). The new prior dis-
tribution that replaces Eq. (1) is

P (Y |ΩC,Θ, C) ∝ P (Y |Θ)P (ΩC|Y, Θ, C) , (4)

1The case of absolute constraints is equivalent to restricting
Wij ∈ {0, +∞}.

where ΩC is the event that Y is consistent with the con-
straints. Here, P (Y |Θ) is the original prior given in Eq. (1)
and P (ΩC|Y, Θ, C) is a weighting function for constraint
violations. The form of this weighting function is a direct
consequence of the HMRF structure. The Hammersley-
Clifford theorem shows that the HMRF’s Markovian as-
sumption is equivalent to a Gibbs distribution. The partic-
ular form chosen is defined by a penalty Vij as

P (ΩC|Y, Θ, C) ∝ exp

−
N∑

i=1

∑
j∈Ni

Vij

 (5)

Vij =

 −I {yi = yj} ·Wij i ↔ j
I {yi = yj} ·Wij i = j

0 o.w.
(6)

where I {·} is the indicator function of an event.2 Finally,
the conditional distribution for the label yi is

P (yi|YNi ,Θ, C) ∝ exp

−2
∑
j∈Ni

Vij

 . (7)

In the remainder of this section, we review techniques that
use the Gibbs distribution. All of the techniques considered
here are EM-style algorithms. With a few slight variations,
the M-steps of all these algorithms are nearly identical—
they all estimate cluster parameters Θ using maximum-
likelihood estimation procedures. However, the E-steps of
these approaches differ depending on the approximate in-
ference methods used to compute the posterior:

P (yi|X, Θ, C) =
∑
Y−i

P (X|Y, Θ)︸ ︷︷ ︸
data model

P (Y |Θ, C)︸ ︷︷ ︸
label prior

. (8)

In theory, this posterior can be computed exactly using the
junction tree algorithm. This computation is NP-complete
in general, but it can be approximated. In this setting,
the most prominent approximation approaches are based
on the chunklet model (Shental et al., 2003), iterated con-
ditional modes (Basu et al., 2004), Gibbs sampling (Lu
& Leen, 2004), and the mean-field approximation (Lange
et al., 2005). Next we describe in detail each algorithm and
how it differs from the others.

2.1. The Chunklet Model

If we assume that all constraints are correct, we can restrict
the problem to sets of only absolute constraints. In this

2Equivalently, we can define the penalty Vij = (1 −
I {yi = yj}) · Wij when i ↔ j to make it everywhere positive.
However, this alternative only differs by an additive constant in
the exponent of Eq. (5) and thus is part of the constant of propor-
tionality.
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setting, we can exploit the relational semantics of the con-
straints to simplify the posterior inference. The resulting
method is called the chunklet model (Shental et al., 2003).

The case of absolute constraints leads to a Gibbs prior that
assigns equal probability to every consistent assignment
and zero probability otherwise. Thus, Eq. (5) reduces to

P
(
ΩĈ|Y, Θ, Ĉ

)
∝ I

{
Y ∈ ΓĈ

}
where Ĉ is the set of absolute constraints and ΓĈ is the
set of assignments consistent with them. Moreover, since
all constraints are satisfied, the chunklet model exploits the
properties of the constraints. In particular, the must-link is
an equivalence relation and induces a partition of the data
points into equivalence classes called chunklets—a set of
points that belong to the same cluster. The chunklets are
defined by the transitive closure of the must-link graph and
the L-th chunklet is modeled as a group of points with a
single common label, ych

L . Thus, the analog of Eq. (8) for a
chunklet is

P
(
ych

L |X, Θ
)

= P
(
ych

L |Θ
) ∏

i∈L

P
(
xi|ych

L ,Θ
)

.

The grouping behavior of the chunklets is desirable in the
following sense: the points of a chunklet act as a single
entity that penalizes large deviations. For instance, in a K-
means setting with a Gaussian data model, maximizing a
chunklet’s posterior is equivalent to minimizing the sum of
the squared distance of each point in the chunklet to the
clusters’ centroids.

Finally, cannot-links also transfer to the chunklets; that is,
i ∈ L and j ∈ M and i = j ∈ Ĉ implies L = M . Un-
fortunately, exact inference on chunklets with cannot-links
requires the junction-tree algorithm. However, inference
on the chunklet’s HMRF is often simpler in practice since
chunklets partially group the data.

2.2. The ICM Approach

The iterated conditional modes (ICM) approach to the
HMRF (Basu et al., 2004) is designed to find an assign-
ment to Y that maximizes the joint probability of the labels
given the data, Θ and C, for the purposes of a K-means
algorithm with hard assignments; i.e.,

max
Y

[P (Y |X, Θ, C)] .

To avoid expensive junction tree calculations, ICM per-
forms a local search over the space of possible labels. It
begins with the assignment that maximizes the data model
P (X|Y, Θ) and iteratively increases the complete joint dis-
tribution by greedily changing each label to minimize the
sum of its distance to the cluster centroid and its constraint

violation penalties. This process continues until unilater-
ally changing a single label can no longer increase the joint
probability. While orders of magnitude faster than most
other approaches, the ICM approximation is extremely de-
pendent on the order of label updates and is only appropri-
ate in a K-means setting with hard assignments to clusters.

2.3. The PPC Model

The Penalized Probabilistic Clustering (PPC) algo-
rithm (Lu & Leen, 2004) extends the ICM technique for
soft assignments via Gibbs sampling. As with ICM, la-
bels are changed based on the objective function, but PPC
chooses assignments probabilistically. In particular, for
each sample, its label yi is sampled conditioned on the cur-
rent values Y−i for all other labels. Averaging over a set of
these samples gives a distribution over the possible assign-
ments for each yi. In this way, the method approximates
the soft assignment probabilities of each point. However,
sampling over assignments can be slow.

2.4. The Maximum-Entropy Model

Finally, the Maximum-Entropy model performs approxi-
mate inference on the weighted HMRF using a mean field
approximation (Lange et al., 2005). In particular, this
approach constructs a factorial approximate distribution
q(Y ) =

∏
i qi(yi) minimizing its KL divergence to the ac-

tual posterior in Eq. (8). This results in a search for a sta-
tionary point of qi(k), constrained such that

∑
k qi(k) = 1,

using the following equation:3

qi(yi) ∝ P (xi|yi,Θ) exp

 ∑
j∈Ni

(qj(yi)− 1)Vij

 . (9)

This provides a fast approximation for soft assignments,
but computing the stationary points of the above system of
equations can be prone to local minima.

3. Bad Modeling Behaviors
We have now seen several elegant approaches to approxi-
mating an HRMF. In this section, we discuss some of their
shortcomings and motivate a new method.

3.1. Misspecified Constraints

One of the most important practical properties in con-
strained clustering is robustness to misspecification of con-
straints by an expert. As with any data, constraints are sub-
ject to some degree of inaccuracy depending on the task.
However, the techniques used to make algorithms efficient

3The authors originally allowed for a wider range of models
by replacing P (xi|yi = k, Θ) with a more general expression.
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or accurate can lead to poor behavior under even small
amounts of error in the constraints.

Constraint propagation is particularly sensitive to misspec-
ified constraints. Consider the transitive closure of must-
links—a single incorrect constraint between points i and
j is propagated to their entire transitive neighborhoods.
Thus, the chunklet model, which assumes error-free con-
straints, is substantially degraded by even small levels of
error. The ICM approach can use the transitive closure to
generate new constraints unless contradictory constraints
are detected. While this error-detection heuristic mitigates
the effect of errors on performance, they still have a sub-
stantial impact.

The general technique for handling misspecified con-
straints is to allow constraint violations but penalize them.
While the general technique is sound, there is no seman-
tic meaning associated with the weights specified in Eq. 6.
These penalty weights are unitless, and their salience is
data-dependent. While the weight 50 is larger than 5, it is
unclear how much more of an impact the former will have
than the latter. Overall, the notion of specifying penalties
seems unintuitive and we propose a different notion of con-
straint weights.

3.2. The Downside of Local Approximations

Aside from its sensitivity to misspecified constraints, the
chunklet model utilizes must-link constraints elegantly.
Other approximations to the HMRF are less ideal in the
following sense: they only perform local updates based on
each data point’s immediate neighborhood. The ICM, PPC,
and mean field approaches all incrementally update each yi

distribution independently until the field converges. These
point-wise updates can be trapped in local optima, espe-
cially for large weights. The following examples illustrate
these points.

Example 1: Consider a 2-cluster problem with two
points i and j and a cannot-link between them with weight
W : i = j. Suppose that the unconstrained distributions of
i and j are [0.1, 0.9] and [0.01, 0.99], respectively. While
both points are initially assigned to cluster 2, strict enforce-
ment of the cannot-link would place them in separate clus-
ters: Which point should be moved to cluster 1? Running
exact inference with the junction tree algorithm gives the
following:

W
0.01 0.1 1 3 5 ∞

P (yi = 2) .898 .881 .567 .102 .084 .083
P (yj = 2) .989 .988 .960 .918 .917 .917

For small weights, both are likely to be in cluster 2, reflect-
ing their initial probabilities and low penalty for violation.
However, as the weight W increases we see the most likely

assignment has point j is in cluster 2 and i is in cluster
1. Unfortunately, these distributions are not necessarily re-
flected by the HMRF approximations—all depend on the
update order to some degree. In the ICM approach, both
points would start in cluster 2. If point j is updated first,
a large W will move j into cluster 1—an equilibrium state
for the ICM algorithm but the wrong one. Gibbs sampling,
on the other hand, will eventually approach the true distri-
bution. However, as W increases, the sampling distribu-
tion becomes increasingly peaked, thereby decreasing the
mixing rate of the chain. Similarly, for the mean-field ap-
proach, equilibria of Eq. (9) represent progressively poorer
approximations to the HMRF as W gets large.

Example 2: All three of these approaches approximate
the distribution of highly connected components poorly
when their links have large weights. For instance, con-
sider a 2 cluster problem with a clique of L completely
connected points with weight W on all its must-links. The
first L−1 points are nearly evenly split between the clusters
with an unconstrained distribution [.51, .49]. However, the
L-th point is initially distributed as [0.01, .99]. Using junc-
tion tree, we find that the most-likely assignment places all
points in cluster 2. In the iterative approximation methods,
the first L− 1 points start in cluster 1 and the L-th point is
in cluster 2. For L ≥ 3, the ICM approach will never move
any of the first L − 1 points to cluster 2. Further, the L-th
point will move to cluster 1 if W ≥ 4.6

L−1 . Gibbs sampling
allows for non-optimal assignments, but the clique’s dense
structure highly penalizes moving any of the first L − 1
points to cluster 2. Thus, for L > 3 and W large, it is ex-
tremely unlikely to ever reach the state when all points are
in cluster 2. These behaviors stand in stark contrast to the
result from exact inference.

4. The Sampled Chunklet Algorithm
To address the issues discussed in the previous section,
we construct a model that extends the chunklet model to
handle soft constraints by directly sampling constraints to
build probabilistic chunklets rather than using approxima-
tions to the weighted HMRF. This technique is similar to
the Swendsen-Wang method (Swendsen & Wang, 1987)
used in statistical mechanics to avoid the pitfalls of lo-
cal updates and recently it has been used for segmenting
images (Barbu & Zhu, 2003). These methods were con-
structed to augment the performance of MCMC based par-
tition algorithms, whereas our setting has both data metrics
and an additional set of constraints.

Our approach performs comparably to the chunklet model
in an error-free setting, and it provides robustness against
misspecified constraints. Moreover, our approach uses a
weight representing the expert’s confidence in each con-
straint instead of arbitrary penalty weights.
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The essential idea of our approach is to construct a sin-
gle sample by sampling each constraint based on the ex-
pert’s confidences and to infer chunklets from the sampled
constraints; i.e., a sample from the space of viable chun-
klets. For each such sample, we apply the regular chunklet
method, and we average over all samples to compute the
posterior distribution of the labels. In this section, we ex-
plain how our sampling strategy is a valid approximation to
the posterior, then we explain how we constructed samples
in practice.

4.1. Theoretical Basis for Sampling

We validate our sampling technique by showing that the
Gibbs distribution given in Eq. (5) can be approximated
by sampling and the posterior inference of yi can be ap-
proximated by averaging distributions inferred from sam-
pled constraints. To this end, let us only consider a set
of weighted must-links. For i ↔ j with weight Wij , the
penalty function is equivalent to Vij = (1− I {yi = yj}) ·
Wij , as noted in Footnote 2. The weight function then is

P (ΩC|Y, Θ, C) ∝
N∏

i,j=1

exp {−Wij}(1−I{yi=yj})

where Wij = 0 for j /∈ Ni. Let Pij , 1−exp {−Wij} and
let (Mij |Y ) ∼ Ber (Pij) be i.i.d. Bernoulli random vari-
ables representing the random constraint i ↔ j. By defini-
tion, E [1−Mij |Y ] = exp {−Wij} so we can replace the
exponential terms with these conditional expectations in
the expression above. Further, the yi and yj are not random
in these expectations since we condition on Y . Moreover,
we have (1 − I {yi = yj}) ∈ {0, 1} and E[X]i = E[Xi]
for any constant i ∈ {0, 1}, so we can move the exponent
inside the expectation. Finally, it can be shown that these
random variables are independent conditioned on Y , so we
are able to exchange the product and expectation. We find
that the random variable is the indicator of constraint con-
sistency:

P (ΩC|Y, Θ, C) ∝ E

 N∏
i,j=1

(1−Mij)(1−I{yi=yj})
∣∣∣Y


= E

[
I {Y ∈ ΓC}

∣∣∣Y ]
.

Now, recall from Section 2.1 that this indicator is exactly
the weighting function for the chunklet model. Thus, we
approximate our weighting function by averaging the chun-
klet weighting functions for S sampled sets of constraints:

P̃ (ΩC|Y, Θ, C) =
1
S

S∑
s=1

P
(
ΩĈ(s) |Y, Θ, Ĉ(s)

)
(10)

where the presence of a must-link i ↔ j in the s-th sample
is indicated by M

(s)
ij ∼ Ber (Pij). Thus, Pij represents

the probability that the must-link i ↔ j occurs in the s-th
model.4

This approximation P̃ to the Gibbs prior distribution on
the labels can also be used in the E-step for an approximate
posterior for each label yi:

P̃ (yi|X, Θ, C) ∝ 1
S

S∑
s=1

P (s)(yi|X, Θ, Ĉ(s)) (11)

where each P (s) is calculated using the chunklet model de-
fined by the sampled absolute constraints Ĉ(s) generated in
the s-th sample. A similar derivation validates the sampling
for cannot-links.

4.2. Constraint Sampling

We describe our methodology for building a sample from
the weighted constraints, C. For the s-th sample, we
first construct a set of must-link constraints independently:
M

(s)
ij ∼ Ber(Pij). Each of these M

(s)
ij indicates the exis-

tence of the must-link i ↔ j in the s-th sample.

As a practical issue, the sampled constraint graph po-
tentially contains contradictions. When contradictions
occur in a sample, it becomes infeasible and must be
discarded. However, to avoid wasted samples, we de-
tect the set of potential contradictory cannot-links: C =
{(i, j) | i = j is contradictory}. Since the sample is
only feasible if none of the contradictory constraints are
sampled, the probability that the sample will be feasible is
ωs =

∏
(i,j)∈C (1− Pij). Thus, in Eq. (11) we can weight

the sample by ωs to emulate the effect of the contradic-
tions over many samples without discarding the sample.
Finally, the remaining cannot-link constraints are indepen-
dently sampled.

Combining the sampled must-links and cannot-links gives
us a set of hard constraints for the s-th sample: Ĉ(s) =
{i ↔ j | Mij = 1} ∪ {i = j | (i, j) /∈ C ∧ Cij = 1}. The
chunklet model is applied using the sampled constraints to
obtain the posteriors P (s) and these samples are combined
by using a weighted analog of Eq. (11).

5. Experiments
Here we present empirical results from the HMRF approx-
imations on both toy and real data. While many of these
algorithms have different capabilities (e.g. cluster prior and
covariance estimation), we compared their approximate in-
ference strategies on a level playing field. To this end, each
algorithm was constrained to the simple task of centroid
estimation and were given the same initial starting point.

4In general, this is not equivalent to the probability that yi =
yj .
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The performance of different algorithms was assessed by
calculating the normalized mutual information (NMI); a
symmetric measure of the dependency between the cluster-
ing and the true labels (Strehl et al., 2000).

5.1. Constraint Generation

We randomly generated weighted constraints for our trials.
Given a desired number of must-links M , we generate each
must-link by randomly selecting a cluster and uniformly se-
lecting two unique points in that cluster to be must-linked.
Similarly, for a cannot-link, two unique clusters are se-
lected at random and a point is randomly selected from
each. To introduce errors, a fraction E of the constraints
are mislabeled; e.g. a must-link would be mislabeled as
a cannot-link. Finally, each constraint is annotated with
a probability P from a beta distribution. If the constraint
is correct, P ∼ Beta(α, 1) for some α > 1; otherwise,
P ∼ Beta(1, β) for some β > 1. In our experiments we
used α = β = 5. We generated P this way to reflect the un-
derlying assumption: an expert should have lower certainty
in erroneous constraints than in correct ones. This assump-
tion is also implicit in the concept of penalizing constraint
violations.

While our sampled chunklet model was designed for con-
straints annotated with certainties (Pij), other approaches
are not directly compatible with this prior information. For
approaches designed for penalty weights, we showed in
Section 4 that sampling a constraint with probability Pij is
equivalent to a penalty weight Wij = − log(1−Pij) in the
Gibbs prior— we use this mapping and when these penalty
weights are used with a method, we will subscript the
method with “log P ”. As our experiments show, this map-
ping proves to be a useful representation of the weights.

5.2. Experiment 1: Toy Data

This experiment was conducted on a toy dataset consisting
of 200 points sampled from each of three bivariate Gaus-
sians. This dataset is depicted in Figure 1. For each of
100 trials, we constructed four random constraint sets cor-
responding to E ∈ {0, 0.05, 0.10, 0.25} to assess the al-
gorithms at varying levels of error. For each set of ran-
dom constraints, we began with no constraints and incre-
mentally added them, producing a trace of each algorithm’s
performance as it receives progressively more information.
Furthermore, to reduce the uncertainty inherent in initial-
ization, each algorithm was seeded with the correct labels.
However, since no mixture of unit-variance Gaussians can
fit our data exactly, the models had to converge to sub-
optimal assignments. Thus, in this experiment we mea-
sured how effectively each approximation technique was
able to utilize the constraints in choosing a local minimum
in the neighborhood of the true partition.

−8 −6 −4 −2 0 2 4 6
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cluster 1
cluster 2
cluster 3

Figure 1. A depiction of the toy data used for the first test. The
data consists of 3 distinct but overlapping clusters.

Figure 2 shows the algorithms’ performance as a function
of the percentage of misspecified constraints for two cases:
100 constraints and 800 constraints. In both cases, with no
misspecified constraints, the chunklet and sampled chun-
klet methods outperform all other methods. However, as
the percentage of misspecified constraints increases, the
performance of the chunklet model degrades very quickly,
while the other methods degrade more gracefully. In ad-
dition, with more constraints, all methods perform better
when there are no misspecified constraints, but the chun-
klet method’s performance degrades even faster with the in-
crease in specification errors. The sampled chunklet model
is more sensitive to the errors compared to the ICM and
mean field methods, but performs better with lower error
percentages. It is worth noting that while the PPC does not
appear to be sensitive to the misspecified constraints, it also
hardly utilizes correct constraint when there are no errors.

Finally, Figure 3 shows the performance of the ICM al-
gorithm as a function of the weight set on the constraints.
Here we follow the practice used in the original ICM pa-
per, and set a single weight on all constraints. We also
extend this practice with a simple heuristic of threshold-
ing the probabilities with a value T ; i.e. only using con-
straints such that Pij > T , effectively using fewer con-
straints when the oracle’s confidence is below the thresh-
old, T . Figure 3(a) shows the performance when there
are no constraint errors. As the weights increase, there
is first an improvement in the ICM’s performance, but as
the weights further increase, there is significant degrada-
tion in performance. Figure 3(b) shows the same results
with 25% misspecified constraints. Again, we see that the
performance varies depending on the weight used, peaking
at weight=1, and dropping off as the weight increases.

The effect of the simple thresholding heuristic is also evi-
dent: while the aggressive thresholding resulted in poorer
performance when there were no errors (ICM>0.75’s per-
formance is much lower than ICM>0), the opposite is
true when there are 25% errors—with the performance of
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(a) 50 Must-links, 50 Cannot-links
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(b) 400 Must-links, 400 Cannot-links

Figure 2. The effect of constraint errors on the various cluster-
ing algorithms with 100 (top) and 800 (bottom) constraints. Er-
ror bars represent the 99% confidence intervals around the mean
NMI.

ICM>0 and ICM>0.25 degrading significantly as the weight
increases. As there is no obvious method for detecting
the percentage of misspecified constraints, choosing the
threshold T would be difficult. In both figures, we also see
that the performance of the ICM with fixed weights com-
pared to the ICMlog P is lower for most weight settings and
thresholds.

5.3. Experiment 2: UCI Datasets

To further illustrate our results, we applied the clustering
techniques to two UCI datasets, Digits and Iris (Newman
et al., 1998). The Digits datasets is a collection of 2000 in-
stances of the ten digits (200 examples of each digit). The
Iris dataset consists of 150 instances of three classes. For
the Digits dataset we randomly selected a subset of 400
data points to cluster into ten clusters. We used all the sam-
ples of the Iris dataset. In this experiment, we built a 100
trials each with 20 random initial labels and four different
levels of error.

Figure 4 shows the performance of the various algorithms
on the two datasets as the percentage of misspecified con-
straints increases. As observed on the toy data, the chunklet
and sampled chunklet methods outperform ICM and mean
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Figure 3. Mean NMI of ICM approaches with a single weight for
all constraints as the weight is increased for different levels of
error. Error bars represent the 99% confidence interval. In each
trial there were 400 must-link and 400 cannot-link constraints.
Baseline using the translated ICM approach (ICMlog P ) is used to
compare the performance of the uniformly weighted constraints.

field when there are no misspecified constraints. However,
as the error increases, the chunklet model is the most sen-
sitive to this change, followed by the sampled chunklet
model, although it is competitive.

6. Summary and Future Work
In this paper we revisited probabilistic methods for cluster-
ing with pair-wise constraints, highlighting their positive
and negative aspects.

We observed that the chunklet model, a direct extension
of the mixture of distributions to the case of absolute con-
straints, is best in an error free setting. It is also highly
sensitive to misspecified constraints. In contrast, have also
shown that the ICM, PPC and mean field methods, which
allow weight-penalized constraint violations, are signifi-
cantly more robust to misspecified constraints, but are out-
performed for low levels of errors.

Additionally, we have shown that methods of approximate
inference can produce suboptimal results, depending on the
weight on the constraint. Our empirical evidence showed
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Figure 4. The effect of misspecified constraints on the Chunklet,
sampled chunklets and ICM algorithms for the Digits (top) and
Iris (bottom) data.

that this is especially important when the weights are fixed
for all constraints. Further, since the scale of penalty
weights lacks an intuitive interpretation, choosing their ap-
propriate value poses a practical challenge.

To address these issues we introduced the sampled chunklet
algorithm, which extends the chunklet model by sampling
constraints. We have shown the theoretical justification for
our method and demonstrated that it performs as well as the
chunklet model when there are no misspecified constraints.
It is also more tolerant of misspecified constraints than the
chunklet model though other HMRF approximations tend
to outperform our technique for high errors.

In the derivation of our method, we also showed the rela-
tionship between the weights used by the existing methods
and a probability that represents the expert’s confidence in
the specified constraints. We further used this relationship
to set the weights for the ICM, PPC and mean-field method,
with empirical evidence showing that it outperforms both
the chunklet model and our sampled chunklet algorithm for
high percentages of misspecified constraints.

Finally, by sampling constraints, our method improves the
robustness of the chunklet model, but is outperformed by
versions of the ICM and mean-field methods in settings

with many erroneous constraints. Further investigation
suggests that, when in abundance, misspecified constraints
contaminate every sample and their effect is compounded
by the transitive closure—this leads to poor samples that
degrade our technique’s performance. Future studies are
needed to make our method more robust in these settings.

Acknowledgments
We thank Hewlett Packard for their support of this work.
We also thank the ICML reviewers for their comments and
suggestions. Finally, we thank Michael Jordan, Anthony
Joseph, Peter Bartlett, Marco Barreno, and Junming Yin
for their insightful discussions relating to this work.

References
Barbu, A., & Zhu, S.-C. (2003). Graph partition by

swendsen-wang cuts. ICCV.

Basu, S., Bilenko, M., & Mooney, R. J. (2004). A proba-
bilistic framework for semi-supervised clustering. KDD.

Kamvar, S. D., Klein, D., & Manning, C. D. (2003). Spec-
tral learning. IJCAI.

Kulis, B., Basu, S., Dhillon, I. S., & Mooney, R. J. (2005).
Semi-supervised graph clustering: a kernel approach.
ICML.

Lange, T., Law, M. H. C., Jain, A. K., & Buhmann, J. M.
(2005). Learning with constrained and unlabelled data.
CVPR.

Lu, Z., & Leen, T. K. (2004). Semi-supervised learning
with penalized probabilistic clustering. NIPS.

Newman, D., Hettich, S., Blake, C., & Merz, C. (1998).
UCI repository of machine learning databases.

Shental, N., Bar-Hillel, A., Hertz, T., & Weinshall, D.
(2003). Computing gaussian mixture models with em
using equivalence constraints. NIPS. MIT Press.

Strehl, A., Ghosh, J., & Mooney, R. J. (2000). Impact of
similarity measures on web-page clustering. AAAI.

Swendsen, R. H., & Wang, J.-S. (1987). Nonuniversal crit-
ical dynamics in monte carlo simulations. Phys. Rev.
Lett., 58, 86–88.

Wagstaff, K., & Cardie, C. (2000). Clustering with
instance-level constraints. ICML (pp. 1103–1110).

Wagstaff, K., Cardie, C., Rogers, S., & Schroedl, S. (2001).
Constrained k-means clustering with background knowl-
edge. ICML (pp. 577–584).

Yu, S. X., & Shi, J. (2001). Grouping with bias. NIPS.


