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Abstract

Regularized Kernel Discriminant Analy-
sis (RKDA) performs linear discriminant
analysis in the feature space via the kernel
trick. The performance of RKDA depends
on the selection of kernels. In this paper, we
consider the problem of learning an optimal
kernel over a convex set of kernels. We show
that the kernel learning problem can be for-
mulated as a semidefinite program (SDP) in
the binary-class case. We further extend the
SDP formulation to the multi-class case. It
is based on a key result established in this
paper, that is, the multi-class kernel learn-
ing problem can be decomposed into a set of
binary-class kernel learning problems. In ad-
dition, we propose an approximation scheme
to reduce the computational complexity of
the multi-class SDP formulation. The perfor-
mance of RKDA also depends on the value of
the regularization parameter. We show that
this value can be learned automatically in the
framework. Experimental results on bench-
mark data sets demonstrate the efficacy of
the proposed SDP formulations.

1. Introduction

Regularized Kernel Discriminant Analysis (RKDA)
works by embedding the data into a high-dimensional
feature space through a nonlinear mapping, where a
linear transformation is applied to achieve the max-
imum class discrimination (Baudat & Anouar, 2000;
Mika et al., 2001; Mika et al., 2003). The nonlinear
mapping is implicitly specified by a kernel function,

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

which computes the inner products between the im-
ages of every possible data pair in the feature space.
Thus, one of the key issues in RKDA is the selection
(learning) of kernels.

The problem of kernel learning has been addressed by
many researchers recently. Crammer et al. (2003)
proposed to design kernels using boosting. Lanckriet
et al. (2004b) pioneered the work of learning a linear
combination of pre-specified kernels for Support Vec-
tor Machines (SVM) (Vapnik, 1998; Cristianini & Tay-
lor, 2000) using convex programming and the work has
been improved in (Bach et al., 2004) using the Sequen-
tial Minimal Optimization (SMO) algorithm (Platt,
1999). Recently, formulation of the kernel learning
problem as semi-infinite linear program has been pro-
posed along with extensions to regression and one-class
classification (Sonnenburg et al., 2006). While most
approaches produce stationary combinations, Lewis
et al. (2006) proposed to use different combinations
for different inputs. Argyriou et al. (2006) extended
such method for combining potentially infinite number
of kernels and the resulting problem is a difference of
convex (DC) program. In general, approaches based
on learning a convex combination of kernels offer the
additional advantage of facilitating heterogeneous data
integration from different sources. They have been ap-
plied for combining various biological data, e.g., amino
acid sequences, hydropathy profiles, and gene expres-
sion data for enhanced biological inference (Lanckriet
et al., 2004a). Jebara (2004) considered the kernel
selection problem in the context of multi-task learn-
ing. Other approaches for kernel learning includes
those based on hyperkernels (Ong et al., 2005; Tsang
& Kwok, 2006) and regularization (Micchelli & Pontil,
2005). The problem of kernel learning for discriminant
analysis has been addressed originally in (Fung et al.,
2004) and Kim et al. (2006) formulated this problem
as a semidefinite program (SDP).

In this paper, we consider the problem of learning an
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optimal kernel over a convex combination of kernels
for RKDA. First, we show that the kernel learning
problem can be formulated as a SDP in the binary-
class case. Second, we extend the SDP formulation
to the multi-class case based on a key result estab-
lished in this paper, that is, the multi-class kernel
learning problem can be decomposed into k binary-
class kernel learning problems, which are constrained
to share a common kernel, where k is the number of
classes. The multi-class kernel learning problem and
the corresponding decomposed formulation share the
same optimal kernel, although they may have differ-
ent optimal transformation matrices. In other words,
the decomposed formulation is equivalent to the orig-
inal one for the purpose of kernel learning. In ad-
dition, we show that the computational complexity of
the multi-class SDP formulation can be reduced by ap-
plying an approximation scheme. In many cases, the
performance of RKDA also depends on the value of
the regularization parameter. We show that this value
can be learned simultaneously and automatically in
the framework. We have conducted experiments using
benchmark data sets to show the effectiveness of the
proposed SDP formulations.

2. Binary-class Kernel Learning

In this section, we first review the basics of kernel
methods, as well as the SDP formulation for binary-
class kernel learning in (Kim et al., 2006). Then we
propose a simplified SDP formulation, which will be
extended to the multi-class case in the next section.

We use X to denote the input or instance space, which
is a subspace of IRd, and Y = {−1,+1} to denote
the output or class label set. An input-output pair
(x, y), where x ∈ X and y ∈ Y, is called an ex-
ample. Let X = [x1, · · · , xm] be the data matrix.
A symmetric function K : X × X → IR is called a
kernel function (Schölkopf & Smola, 2002) if it sat-
isfies the finitely positive semidefinite property: for
any x1, · · · , xm ∈ X , the Gram matrix G ∈ IRm×m,
defined by Gij = K(xi, xj), is positive semidefinite.
Any kernel function K implicitly maps the input set
X to a high-dimensional (possibly infinite) Hilbert
space HK equipped with the inner product (·, ·)HK

through a mapping φK from X to HK : K(x, z) =
(φK(x), φK(z))HK

. In kernel-based classification, the
algorithms learn a classifier f : X → {−1,+1} whose
decision boundary is affine in the feature space HK :

f(x) = sgn(wT φK(x) + b),

where w ∈ HK is the vector of feature weights, b ∈ IR
is the intercept, and sgn(u) = +1, if u > 0, and −1
otherwise.

Let {x+

1 , · · · , x+
m+

} and {x−
1 , · · · , x−

m
−

} denote the col-
lections of data points from the positive and negative
classes, respectively. The total number of data points
in the training set is m = m++m−. For a given kernel
function K, the basic idea of RKDA in the binary-class
case is to find a direction in the feature space HK onto
which the projections of the two sets {φK(x+

i )}
m+

i=1
and

{φK(x−
i )}

m
−

i=1
are well separated. Define the centroids

of the two classes as follows:

µ+

K =
1

m+

m+
∑

i=1

φK(x+

i ), µ−
K =

1

m−

m
−

∑

i=1

φK(x−
i ),

and the two class covariance matrices as follows:

S+

K =
1

m+

m+
∑

i=1

(φK(x+

i ) − µ+

K)(φK(x+

i ) − µ+

K)T , (1)

S−
K =

1

m−

m
−

∑

i=1

(φK(x−
i ) − µ−

K)(φK(x−
i ) − µ−

K)T . (2)

Specifically, in RKDA the separation between the
two classes is measured by the ratio of the variance
(wT (µ+

K − µ−
K))2 between the classes to the vari-

ance wT
(

m+/mS+

K + m−/mS−
K

)

w within the classes.
Thus, the following objective function is maximized:

F1(w,K) =
(wT (µ+

K − µ−
K))2

wT
(m+

m S+

K + m
−

m S−
K + λI

)

w
, (3)

where λ > 0 is a regularization parameter and I is
the identity matrix. The optimal weight vector that
maximizes the objective function in Eq. (3) for fixed
K and λ is given by

w∗ = (m+/mS+

K +m−/mS−
K +λI)−1(µ+

K −µ−
K). (4)

The maximum value of the objective function in
Eq. (3) achieved by w∗ is given by

F ∗
1 (K) = (µ+

K − µ−
K)T w∗. (5)

It follows from the Representer Theorem (Schölkopf &
Smola, 2002) that the optimal weight vector in RKDA
is in the span of the images of the training points in
the feature space. In other words, there exists a vector

α∗ = [α+

1 , · · · , α+
m+

, α−
1 , · · · , α−

m
−

] ∈ IRm, (6)

such that w∗ = φK(X)α∗, where φK(X) is the data
matrix in the feature space. The optimal vector α∗ is
given by (Kim et al., 2006)

α∗ =
1

λ
(I − J(λI + JGJ)−1JG)a, (7)

where a is an m-dimensional vector given by

a = [1/m+, · · · , 1/m+,−1/m−, · · · ,−1/m−]T , (8)
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and the matrix J is defined as:

J =

(

1
√

m+
(I − 1

m+
em+

eT
m+

) 0

0 1
√

m
−

(I − 1

m
−

em
−

eT
m

−

)

)

.

where em+
and em

−

are vectors of all ones of length
m+ and m−, respectively. The optimal value F ∗

1 (K)
in Eq. (5) is thus given by

F ∗
1 (K) =

1

λ
aT G(I − J(λI + JGJ)−1JG)a. (9)

In (Kim et al., 2006), G is restricted to be a convex
combination of p given kernel matrices G1, · · · , Gp as

G ∈ G =

{

G

∣

∣

∣

∣

∣

G =

p
∑

i=1

θiGi,

p
∑

i=1

θi = 1, θi ≥ 0

}

.

(10)
It was shown in (Kim et al., 2006) that the optimal
G ∈ G based on the kernel function K that maxi-
mizes F ∗

1 (K) in Eq. (9) can be obtained by solving a
semidefinite program (SDP) (Vandenberghe & Boyd,
1996; Boyd & Vandenberghe, 2004). General-purpose
optimization packages such as SeDuMi (Sturm, 1999)
can be used to solve the SDP problem.

2.1. Proposed SDP Formulation

We work on the centered version of the kernel matrices
in the following discussion. This is equivalent to data
centering as commonly used for data pre-processing.
We learn an optimal kernel matrix G̃ ∈ G̃:

G̃ =

{

G̃

∣

∣

∣

∣

∣

G̃ =

p
∑

i=1

θiG̃i,

p
∑

i=1

θi ri = 1, θi ≥ 0

}

, (11)

where G̃i = PGiP , ri = trace(G̃i), and P ∈ IRm×m is
the centering matrix defined as

P = I −
1

m
emeT

m, (12)

and em is the vector of all ones of size m. Consider
the maximization of the following objective function:

F2(w,K) =
(wT (µ+

K − µ−
K))2

wT (ΣK + λI)w
, (13)

where ΣK , the so-called total scatter matrix in the fea-
ture space is defined as follows:

ΣK =
1

m
φK(X)P φK(X)T , (14)

and µK is the global centroid of the data in the feature
space given by

µK =
1

m

(

m+
∑

i=1

φK(x+

i ) +

m
−

∑

i=1

φK(x−
i )

)

. (15)

It is easy to verify that Eqs. (3) and (13) are equiva-
lent in terms of the computation of the optimal w for
fixed K and λ. We show in the following theorem that
optimizing F2(w,K) in Eq. (13) with respect to the
kernel leads to a simplified SDP formulation:

Theorem 2.1. Given a set of centered kernel matri-
ces G̃1, · · · , G̃p, the optimal kernel matrix G̃ ∈ G̃ that
maximizes the objective function in Eq. (13) can be
found by solving the following semidefinite program-
ming problem:

min
θ,t

t

subject to

(

I + 1

λ

∑p
i=1

θiG̃i a
aT t

)

� 0,

θ ≥ 0, θT r = 1, (16)

where a is defined in Eq. (8), θ = [θ1, · · · , θp]
T , r =

[

trace(G̃1), · · · , trace(G̃p)
]T

, and M � 0 implies that

matrix M is positive semidefinite.

Proof. The optimal weight vector that maximizes
F2(w,K) in Eq. (13) is given by

w∗ = (ΣK + λI)−1(µ+

K − µ−
K), (17)

and the maximum value of F2(w, k) is given by

F ∗
2 (K) = (µ+

K − µ−
K)T (ΣK + λI)−1(µ+

K − µ−
K). (18)

Using the Sherman-Woodbury-Morrison formula
(Golub & Van Loan, 1996), we have

w∗ =
1

λ
φK(X)

(

I − P (λI + PGP )
−1

PG
)

a, (19)

and

F ∗
2 (K) = (µ+

K − µ−
K)T w∗ = aT φK(X)T w∗

=
1

λ
aT
(

G − GP (λI + PGP )
−1

PG
)

a.

Since the vector a defined in Eq. (8) is of zero mean,
i.e., Pa = a, we have

F ∗
2 (K) =

1

λ
aT P

(

G − GP (λI + PGP )−1PG
)

Pa

=
1

λ
aT
(

G̃ − G̃(λI + G̃)−1G̃
)

a, (20)

where G̃ = PGP . Since

G̃ − G̃(λI + G̃)−1G̃ = λG̃(λI + G̃)−1

= λI − λ2(λI + G̃)−1,

the optimal value F ∗
2 (K) in Eq. (20) is given by

F ∗
2 (K) = aT a − λaT (λI + G̃)−1a. (21)
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Thus, the maximization of F ∗
2 (K) in Eq. (21) with a

fixed λ, is equivalent to the minimization of

λaT (λI + G̃)−1a = aT

(

I +
1

λ
G̃

)−1

a, (22)

subject to the constraint that G̃ ∈ G̃, which can be
formulated as the following minimization problem:

min
θ

aT

(

I +
1

λ

p
∑

i=1

θiG̃i

)−1

a

subject to θ ≥ 0, θT r = 1. (23)

It follows from the Schur complement lemma (Golub
& Van Loan, 1996; Lanckriet et al., 2004b) that the
following inequality

aT

(

I +
1

λ
G̃

)−1

a ≤ t

is equivalent to the Linear Matrix Inequality
(LMI) (Boyd & Vandenberghe, 2004)

(

I + 1

λ G̃ a
aT t

)

� 0.

This completes the proof by adding a variable t.

3. Multi-class Kernel Learning

In this section, we extend the SDP formulation to the
multi-class case. We are given a data set that con-
sists of m samples {(xi, yi)}

m
i=1, where xi ∈ IRd, and

yi ∈ {1, 2, · · · , k} denotes the class label of the i-th
sample. The following objective function is maximized
in multi-class RKDA:

F3(W, K) = trace
(

(

W
T (ΣK + λI) W

)

−1
W

T
BKW

)

,

(24)

where W is the transformation matrix, BK is the so-
called between-class scatter matrix defined as

BK = φK(X)HHT φK(X)T , (25)

H = [h1, h2, · · · , hk], where hi is a vector whose j-th
entry is given by

√

n/nj −
√

nj/n if xj belongs to the

i-th class, and −
√

nj/n otherwise. Thus, the optimal
W for RKDA can be obtained by computing the top
eigenvectors of (ΣK + λI)

−1
BK .

Since the weight vectors are in the span of the images
of the data points in the feature space, W = φK(X)A

for some matrix A = [α1, · · · , αℓ] ∈ IRm×ℓ. Thus,
F3(W,K) can be written as

trace
(

(

A
T (GPG + λG) A

)

−1
A

T
GHH

T
GA

)

. (26)

Define two matrices SK
t and SK

b as follows:

SK
t = GPG + λG, SK

b = GHHT G. (27)

Since the null space of SK
t lies in the null space of SK

b ,
there exists a nonsingular matrix Z such that

ZT SK
t Z =

(

I 0
0 0

)

, ZT SK
b Z =

(

Σb 0
0 0

)

, (28)

where Σb is diagonal with the diagonal entries sorted
in non-decreasing order. The optimal A∗ consists of
the first q columns of Z, that is, A∗ = [z1, · · · , zq], and
q = rank(SK

b ). It follows that the optimal value of
F3(W,K) achieved by A∗ is given by

F ∗
3 (K) = trace(Σb) = trace

(

(

SK
t

)−1
SK

b

)

. (29)

We can use the pseudo-inverse instead if SK
t is singu-

lar. All the following arguments still follow.

The optimal kernel function K can be computed by
maximizing F ∗

3 (K) in Eq. (29), which is however
highly nonlinear and difficult to solve. In the follow-
ing, we present a formulation equivalent to the one in
Eq. (29), which is more tractable computationally.

Consider the maximization of the following objective
function:

F4(W,K) =
k
∑

i=1

(wT
i φK(X)hi)

2

wT
i (ΣK + λI)wi

, (30)

where W = [w1, · · · , wk], and hi is the i-th column of
H from Eq. (25). The following lemma shows that the
optimal kernel matrix coincides for F3 and F4.

Lemma 3.1. Let F3 and F4 be defined as in Eq. (24)
and Eq. (30), respectively. Let W ∗ and K∗ be the op-
timal solution to the following optimization problem:

max
K

max
W

F3(W,K), (31)

and let W̃ ∗ and K̃∗ be optimal solution to the following
optimization problem:

max
K

max
W

F4(W,K). (32)

Then K∗ = K̃∗.

Proof. Since W = φK(X)A, where A = [α1, · · · , αℓ],
we have wi = φK(X)αi and

F4(W, K) =

k
∑

i=1

(αT
i Ghi)

2

αT
i (GPG + λG)αi

=

k
∑

i=1

(αT
i Ghi)

2

αT
i SK

t αi

.

The computation of αi and αj , for i 6= j, is inde-
pendent of each other when the kernel function K
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and λ are fixed. The optimal α∗
i is given by α∗

i =
(

SK
t

)−1
Ghi. It follows that the maximum value of

F4(W,K) achieved by A∗ = [α∗
1, · · · , α

∗
k] is given by

F ∗
4 (K) =

k
∑

i=1

(Ghi)
T
(

SK
t

)−1
Ghi. (33)

Based on the properties of the trace (Golub & Van
Loan, 1996), we have

F ∗
4 (K) =

k
∑

i=1

trace
(

(Ghi)
T
(

SK
t

)−1
Ghi

)

= trace

(

(

SK
t

)−1
k
∑

i=1

(

Ghih
T
i GT

)

)

= trace
(

(

SK
t

)−1 (

GHHT GT
)

)

= trace
(

(

SK
t

)−1
SK

b

)

= F ∗
3 (K).

This completes the proof.

Following the result for the bianry case, we can formu-
late the multi-class RKDA kernel learning problem as
the following SDP problem:

min
t1,···,tk,θ

k
∑

j=1

tj

subject to

(

I + 1

λ

∑p
i=1

θiG̃i hj

hT
j tj

)

� 0, for all j

θ ≥ 0, θT r = 1. (34)

Solving the SDP problem in Eq. (34) is computation-
ally expensive for large k, as the complexity of the con-
straint depends on the number of classes. To alleviate
this computational problem, we replace the k positive
semidefinite (PSD) constraints in Eq. (34) with a more
strict but relatively simple one. It is based on the re-
sult summarized in the following lemma:

Lemma 3.2. Let M ∈ IRm×m be any positive definite
matrix, a1, · · · , ak ∈ IRm, and t1, · · · , tk ∈ IR. Then















M a1 a2 · · · ak

aT
1 t1 0 · · · 0

aT
2 0 t2 · · · 0
...

...
...

...
...

aT
k 0 0 · · · tk















� 0 (35)

implies
(

M aj

aT
j tj

)

� 0, for all j. (36)

Proof. For a symmetric and positive semidefinite ma-
trix, it is known that all of its principal submatrices
are also symmetric and positive semidefinite. Matrices
in Eq. (36) are all principal submatrices of the matrix
in Eq. (35). This can be seen by removing 2 to j and
j +2 to k +1 rows and columns of the block matrix in
Eq. (35). This completes the proof of the lemma.

Thus, we obtain the following approximate SDP for-
mulation for multi-class kernel learning problem:

min
t1,···,tk,θ

k
∑

j=1

tj

s.t.













I + 1

λ

∑p

i=1
θiG̃i h1 h2 · · · hk

hT
1 t1 0 · · · 0

hT
2 0 t2 · · · 0
...

...
...

...
...

hT
k 0 0 · · · tk













� 0,

θ ≥ 0, θ
T
r = 1. (37)

Note that the optimal solution to the formulation in
Eq. (37) satisfies the constraints in Eq. (34).

4. Joint Kernel and Regularization

Parameter Learning

The SDP formulations discussed in the last two sec-
tions focus on the kernel learning only, while the regu-
larization parameter λ is pre-specified. In some cases,
the performance of RKDA depends on the value of
λ. In this section, we show that the proposed SDP
formulations can be reformulated for the automatic
estimation of λ. This is motivated from the work in
(Lanckriet et al., 2004b).

Recall from Eq. (22) that the following objective func-
tion is minimized in binary-class RKDA:

aT

(

I +
1

λ
G̃

)−1

a.

We aim to estimate λ in a joint framework. However,
a very small value of λ, or a large trace value of I + 1

λ G̃
will make the objective function small. To deal with
this problem, we propose the following formulation for
joint kernel and regularization parameter learning:

min
θ,λ,τ

aT

(

I +
1

λ

p
∑

i=1

θiG̃i

)−1

a · τ

subject to θ ≥ 0, λ > 0,

trace

(

I +
1

λ

p
∑

i=1

θiG̃i

)

= τ, (38)
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Table 1. Comparison of eight algorithms using four binary-class data sets. The mean classification accuracy of 30 different
partitions is reported. For SDPθ and SDPKim, λ is set to 10−8 as used in (Kim et al., 2006). For SM1 and SM2, C is set
to 1 as used in (Lanckriet et al., 2004b). The accuracy of SDPKim on the Cancer data set is not shown, as we observed
several cases of numerical problem from the SDP solver when running SDPKim on Cancer. See the text for a detailed
description of various algorithms.

Data set SDPθ SDPθ,λ SDPKim SM1 SM2 SM2C RKDACV SVMCV

Sonar 85.60 90.16 88.46 89.75 89.59 89.84 88.86 89.27
Heart 76.85 81.54 81.98 82.59 82.71 82.53 76.54 82.22
Cancer 96.05 96.00 — 97.08 97.15 97.01 95.30 96.62

Ionosphere 89.90 95.10 89.14 95.28 94.81 95.19 93.62 93.52

which aims to minimize the objective function and con-
trol the trace value simultaneously. It is equivalent to
the following formulation:

min
θ,λ,τ

aT

(

1

τ
I +

1

τλ

p
∑

i=1

θiG̃i

)−1

a

subject to θ ≥ 0, λ > 0,

trace

(

1

τ
I +

1

τλ

p
∑

i=1

θiG̃i

)

= 1. (39)

We set G̃0 = I and treat 1/τ as its coefficient. The
binary-class SDP formulation for joint kernel and reg-
ularization parameter learning can be derived as

mint,θ̃ t

subject to

(

∑p

i=0
θ̃iG̃i a

aT t

)

� 0,

θ̃ ≥ 0,

p
∑

i=0

θ̃itrace(G̃i) = 1, (40)

where θ̃ = [θ̃0, θ̃1, · · · , θ̃p]
T , θ̃0 = 1/τ , θ̃i = θi/(τλ),

for i = 1, · · · , p, and G̃0 = I. With the computed θ̃,
we can obtain λ and θi for all i up to a scaling factor.

Similarly, we can derive the following SDP formulation
for multi-class problems:

min
t1,···,tk,θ̃

k
∑

j=1

tj

subject to

(

∑p

i=0
θ̃iG̃i hj

hT
j tj

)

� 0, for all j

θ̃ ≥ 0,

p
∑

i=0

θ̃itrace(G̃i) = 1, (41)

where θ̃ = [θ̃0, θ̃1, · · · , θ̃p]
T , θ̃0 = 1/τ , θ̃i = θi/(τλ), for

i = 1, · · · , p, and G̃0 = I. This can be adapted for the
approximate SDP formulation in Eq. (37).

5. Experimental Study

In this section, we evaluate the SDP formulations pro-
posed in this paper using a collection of benchmark
data sets. The reported experimental results are aver-
aged over 30 random partitions of the data into a train-
ing and a test set of ratio 4:1 (binary-class problems)
and 3:2 (multi-class problems). Following (Kim et al.,
2006), we focus on learning a convex combination of

ten Gaussian kernels: K(x, z) =
∑10

i=1
θi e−||x−z||2/σ2

i .
The values of σi are chosen uniformly over the inter-
val [10−1, 102] on the logarithmic scale, as in (Kim
et al., 2006). We use the standard SDP solver Se-
DuMi (Sturm, 1999) for computing the optimal kernel.

5.1. Experiments on Binary-class Problems

For the binary-class case, we evaluate two for-
mulations: SDP with regularization parameter λ
fixed (SDPθ) and SDP with λ learned automati-
cally (SDPθ,λ). We compare them with relevant algo-
rithms: 1-norm soft margin SVM (SM1), 2-norm soft
margin SVM with or without the regularization pa-
rameter C optimized automatically (SM2C and SM2)
as proposed in (Lanckriet et al., 2004b), and SDP for-
mulation (SDPKim) proposed in (Kim et al., 2006),
as well as RKDA and SVM with the optimal kernel
and regularization parameter selected via double cross-
validation (RKDACV and SVMCV ). We conduct the
experiments using four binary-class data sets as used
in (Lanckriet et al., 2004b). Sonar, Ionosphere, and
Breast Cancer are from the UCI Machine Learning
Repository (Newman et al., 1998). Heart is from the
STATLOG project1.

Several observations can be made from the results pre-
sented in Table 1. First, SDPθ,λ outperforms SDPθ

and SDPKim on Sonar, Heart, and Ionosphere data
sets, and is comparable to SDPθ on Cancer data set.
This result shows the effectiveness of the automatic

1http://www.is.umk.pl/projects/datasets-
stat.html#Heart
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learning of λ in SDPθ,λ. Second, SDPθ,λ outperforms
RKDACV and is comparable to SVMCV on all test
data sets. Note that double cross-validation selects the
single best kernel. The favorite performance of SDPθ,λ

over RKDACV may be due to the existence of com-
plementary information in different kernels. Finally,
SDPθ,λ, SM1, SM2, SM2C , and SVMCV are compa-
rable. However, the first four methods determine the
kernel automatically and avoid the cross-validation.

Table 2. Comparison of four algorithms using five multi-
class data sets. The approximate formulations for multi-
class SDPθ and SDPθ,λ have been used for the comparison.
In SDPθ, λ is set to 10−8.

Data Set SDPθ SDPθ,λ RKDACV SVMCV

Wine (3) 96.97 98.66 97.69 98.30
USPS (3) 94.41 99.41 99.13 99.33
USPS (6) 87.14 97.93 98.08 97.62
USPS (8) 78.35 96.93 96.03 95.96

Waveform (3) 81.95 83.08 83.05 83.41

5.2. Experiments on Multi-class Problems

For the multi-class case, we compare SDPθ and SDPθ,λ

with RKDACV and SVMCV . We also compare the ex-
act and approximate formulations in terms of classifi-
cation accuracy and computational cost.

Experimental results on five data sets are summarized
in Table 2, where we have used the approximate for-
mulations for SDPθ and SDPθ,λ. The USPS data set
is described in (Hull, 1994), and the Wine and Wave-
form data sets are from UCI Machine Learning Repos-
itory. We select the first 3, 6, and 8 classes in USPS,
while all 3 classes in Wine and Waveform are used.
We thus obtain five distinct data sets: USPS (k = 3),
USPS (k = 6), USPS (k = 8), Wine (k = 3), and
Waveform (k = 3). For each class, we randomly choose
100 samples from the original data sets.

We can observe from Table 2 that SDPθ,λ outperforms
SDPθ in all cases, while it is comparable to RKDACV

and SVMCV . This result shows the effectiveness of the
proposed multi-class SDP formulation for joint kernel
and regularization parameter learning. It is expected
to be more effective for heterogeneous data integration.

Figure 1 shows the comparison between the exact and
approximate multi-class SDP formulations using three
data sets: Waveform (k = 3), Wine (k = 3), and
USPS (k = 3). The comparison is based on classifica-
tion accuracy and computation time (in seconds). The
main observation from Figure 1 is that the SDP formu-
lations under the approximate constraint (SDPapprox

θ

and SDPapprox

θ,λ ) are comparable to the exact SDP for-

mulations (SDPexact

θ and SDPexact

θ,λ ) in terms of classi-
fication accuracy, while they are much more efficient.
Thus, the use of the approximate constraints doesn’t
degrade the classification performance. Interestingly,
SDPapprox

θ and SDPapprox

θ,λ achieve similar performance
in classification, however the latter has a much less
computational cost. This implies that with the auto-
matic learning of λ, SDPapprox

θ,λ requires a smaller num-
ber of iterations before convergence than SDPapprox

θ .

6. Conclusion and Future Work

We propose a simplified SDP formulation for the
binary-class kernel learning problem in RKDA, which
can be extended naturally to the multi-class case. We
also show that the regularization parameter in RKDA
can be learned automatically in the framework.

Our experimental results have shown that the pro-
posed approximate SDP formulations work well in
most cases, especially when λ is tuned automatically,
while they have a much less computational cost in com-
parison with the exact formulations. We plan to carry
out theoretical analysis on the approximate scheme.
The semidefinite program is expensive to solve even for
problems of moderate size. We are currently investi-
gating efficient formulations for kernel and regulariza-
tion parameter learning based on Quadratically Con-
strained Quadratic Program (QCQP) (Boyd & Van-
denberghe, 2004). The proposed formulations can be
applied for heterogeneous data integration. We plan
to apply these approaches for the analysis of biological
images (Ye et al., 2006), where various types of feature
sources will be integrated.
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Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Smola,
A., & Müller, K. (2003). Constructing descriptive and
discriminative nonlinear features: Rayleigh coefficients
in kernel feature spaces. IEEE Trans. Pattern Analysis
Machine Intelligence, 25, 623–633.

Newman, D., Hettich, S., Blake, C., & Merz, C. (1998).
UCI repository of machine learning databases.

Ong, C. S., Smola, A. J., & Williamson, R. C. (2005).
Learning the kernel with hyperkernels. Journal of Ma-
chine Learning Research, 6, 1043–1071.

Platt, J. C. (1999). Fast training of support vector ma-
chines using sequential minimal optimization. In Ad-
vances in kernel methods: support vector learning, 185–
208. Cambridge, MA, USA: MIT Press.

Schölkopf, S., & Smola, A. (2002). Learning with ker-
nels: Support vector machines,regularization, optimiza-
tion and beyond. MIT Press.
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