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Abstract

In supervised learning, we commonly assume
that training and test data are sampled from
the same distribution. However, this as-
sumption can be violated in practice and then
standard machine learning techniques per-
form poorly. This paper focuses on revealing
and improving the performance of Bayesian
estimation when the training and test distri-
butions are different. We formally analyze
the asymptotic Bayesian generalization error
and establish its upper bound under a very
general setting. Our important finding is
that lower order terms—which can be ignored
in the absence of the distribution change—
play an important role under the distribu-
tion change. We also propose a novel vari-
ant of stochastic complexity which can be
used for choosing an appropriate model and
hyper-parameters under a particular distri-
bution change.

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

1. Introduction

The goal of supervised learning is to infer an underly-
ing relation between input x and output y from train-
ing data. This allows us to predict the output value of
an unseen test input point. A common assumption in
the supervised learning scenario is that the test data
is sampled from the same underlying distribution as
the training data. However, this assumption is not
often fulfilled in practice, e.g., when the data genera-
tion mechanism is non-stationary or the data sampling
process has time or cost constraint. If the joint distri-
bution p(x, y) is totally different between training and
test phases, we may not be able to extract any infor-
mation about the test data from training data. There-
fore, the change of distribution needs to be restricted
in a reasonable way.

One of the most interesting types of distribution
change would be the situation called the covariate shift
(Shimodaira, 2000): the input distribution p(x) varies
but the functional relation p(y|x) remains unchanged.
For data from many applications such as off-policy
reinforcement learning (Shelton, 2001), bioinformat-
ics (Baldi et al., 1998) or brain-computer interfacing
(Wolpaw et al., 2002), the covariate shift phenomenon
is conceivable. Sample selection bias (Heckman, 1979)
in econometrics may also include a particular form of
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Figure 1. Schematic illustration of the distribution change:
Left block: Covariate shift in a regression problem. In-
put distributions are different between the training and
test phases, while the target function remains unchanged.
Right block: Functional relation change in a classification
problem. The target decision boundary changes, while the
input distribution stays unchanged.

covariate shift. Another possible type of distribution
change is the functional relation change, where p(y|x)
changes between the training and test phases. Un-
der the classification scenarios, the situation called the
class prior change—the class prior probability p(y) is
different for training and test data, can be often ob-
served. See Fig.1 for illustration.

Standard supervised learning techniques are not de-
signed to work appropriately under the distribution
change. So far, several frequentist’s methods have
been developed to improve the performance, e.g.,
in the covariate shift scenarios (Shimodaira, 2000;
Sugiyama & Müller, 2005; Sugiyama et al., 2007) and
when the class-prior change occurs (Lin et al., 2002).
However, it seems that a Bayesian perspective under
such distribution changes is still an open research is-
sue.

In this paper, we therefore investigate the behavior of
Bayesian estimation in the presence of the distribution
change. Our primal result is that lower order terms
which can be ignored in the absence of the distribu-
tion change play an important role under the distribu-
tion change. Note that this result is derived without
assuming the regularity condition (White, 1982) and
is applicable to non-regular statistical models such as
multi-layer perceptrons, Gaussian mixtures, and hid-
den Markov models. However, precisely investigating
the lower order terms may only be possible in some
limited cases. To cope with this problem, we derive an
upper bound of the Bayesian generalization error for
more general analysis.

The prediction performance of Bayesian estimation
can be improved by properly choosing the model struc-
ture and hyper-parameters. For this purpose, the
stochastic complexity (Rissanen, 1986) is often used
as an evaluation criterion. The stochastic complexity
corresponds to the probability of having the current
training data given a model and hyper-parameters.
Therefore, employing the stochastic complexity under
the distribution change may not be suitable when the
training and test data follow different distributions.
In this paper, we propose a novel variant of stochastic
complexity that can appropriately compensate for the
effect of covariate shift.

2. Bayesian Estimation without

Distribution Change

In this section, we briefly introduce the standard
Bayesian estimation procedure without distribution
change and review asymptotic forms of the general-
ization error and the stochastic complexity.

2.1. Bayesian Inference

Let {Xn, Y n} = {X1, Y1, . . . , Xn, Yn} be a set of train-
ing samples that are independently and identically
generated following the true distribution r(y|x)q(x).
Let p(y|x,w) be a learning machine and ϕ(w) be the
a priori distribution of parameter w. Then the a pos-
teriori distribution is defined by

p(w|Xn, Y n) =
1

Z(Xn, Y n)

n∏

i=1

p(Yi|Xi, w)ϕ(w),

where
Z(Xn, Y n) =

∫ n∏

i=1

p(Yi|Xi, w)ϕ(w)dw. (1)

The Bayesian predictive distribution is given by

p(y|x,Xn, Y n) =

∫
p(y|x,w)p(w|Xn, Y n)dw.

We evaluate the generalization error by the average
Kullback divergence from the true distribution to the
predictive distribution:

G(n)=EXn,Y n

[∫
r(y|x)q(x) log

r(y|x)
p(y|x,Xn, Y n)

dxdy

]
.

The stochastic complexity (Rissanen, 1986) is defined
by F (Xn, Y n) = − logZ(Xn, Y n), (2)

which can be used for selecting an appropriate model
or hyper-parameters. When analyzing the behavior of
the stochastic complexity, the following function plays
an important role:F (n) = EXn,Y n [F (Xn, Y n)] , (3)

where EXn,Y n [·] stands for the expectation value over
all sets of training samples and

F (Xn, Y n) = F (Xn, Y n) +
∑n

i=1 log r(Yi|Xi).
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The generalization error and the stochastic complexity
are linked by the following equation (Watanabe, 1999):

G(n) = F (n+ 1) − F (n). (4)

2.2. Asymptotic Generalization Error

Watanabe (2001a) developed an algebraic geometrical
approach to analyzing the asymptotic generalization
error of Bayesian estimation. This approach includes
as a special case the well-known result by Schwarz
(1978), but is substantially more general—the gener-
alization error of non-regular statistical models such
as multi-layer perceptrons can also be analyzed.

When the learning machine p(y|x,w) can attain the
true distribution r(y|x), i.e., there exists a parameter
w∗ such that p(y|x,w∗) = r(y|x), the asymptotic ex-
pansion of F (n) is given as follows (Watanabe, 2001a).

F (n) = α log n− (β − 1) log log n+O(1), (5)

where the rational number −α and natural number β
are the largest pole and its order of

J(z) =
∫
H(w)zϕ(w)dw.

H(w) is defined by

H(w) =

∫
r(y|x)q(x) log

r(y|x)
p(y|x,w)

dxdy. (6)

Combining Eqs.(5) and (4) immediately gives

G(n) =
α

n
− β − 1

n log n
+ o

(
1

n log n

)
,

when G(n) has an asymptotic form. The coefficients
α and β indicate the speed of convergence of the gen-
eralization error when the number of training samples
is sufficiently large.

When the learning machine cannot attain the true dis-
tribution (i.e., the model is misspecified), the stochas-
tic complexity has an upper bound of the following
asymptotic expression (Watanabe, 2001b).

F (n) ≤ nC + α log n− (β − 1) log log n+O(1), (7)

where C is a non-negative constant. When the gen-
eralization error has an asymptotic form, combining
Eqs.(7) and (4) gives

G(n) ≤ C +
α

n
− β − 1

n log n
+ o

(
1

n log n

)
, (8)

where C is the bias.

3. Analysis of the Bayesian

Generalization Error with

Distribution Change

In this section, we analyze the generalization error of
Bayesian estimation under the distribution change.

3.1. Notations

In the following, let us denote the training distribu-
tion with subscript 0 and the test distribution with
subscript 1. Then the covariate shift situation is ex-
pressed by

r0(y|x) = r1(y|x) and q0(x) 6= q1(x),

while the functional relation change is described as

r0(y|x) 6= r1(y|x) and q0(x) = q1(x).

For i = 0, 1, let

Gi(n)=Ei
Xn+1,Yn+1

E0
Xn,Y n

[
log

ri(Yn+1|Xn+1)

p(Yn+1|Xn+1, Xn, Y n)

]
,

where Ei
X,Y stands for the expectation over X and

Y taken from ri(y|x)qi(x). Note that the functions
G0(n) and G1(n) correspond to the generalization er-
rors without and with distribution change, respec-
tively. Our primal goal in this section is to reveal the
asymptotic form of G1(n).

3.2. Asymptotic Expansion of Generalization
Error

Let us define a function,

U i(n+ 1) =Ei


− log

∫
exp


−

n∑

j=1

log
r0(Yj |Xj)

p(Yj |Xj , w)

− log
ri(Yn+1|Xn+1)

p(Yn+1|Xn+1, w)

)
ϕ(w)dw

]
,

for i = 0, 1, where Ei ≡ Ei
Xn+1,Yn+1

E0
Xn,Y n . Note that

U0(n) = F (n) (see Eq.(3)). We assume

(A1) Gi(n) has an asymptotic expansion and
Gi(n) → Bi as n→ ∞, where Bi is a constant.

(A1’) U i(n) has the following asymptotic expansion,

U i(n) = ain+ bi log n+ · · ·
︸ ︷︷ ︸

T i

H
(n)

+ ci +
di

n
+ o

(
1

n

)

︸ ︷︷ ︸
T i

L
(n)

(9)

in the descending order with respect to n, where
ai, bi, ci, and di are constants. independent of n.

Note that (A1’) is not essential but only for notational
convenience.

Lemma 1 The generalization error G1(n) is ex-
pressed as G1(n) =U1(n+ 1) − U0(n). (10)

Theorem 1 Under the assumptions (A1) and (A1’),
the asymptotic expansion of G1(n) is expressed by

G1(n) = a0 + (c1 − c0) +
b0 + (d1 − d0)

n
+ o

(
1

n

)
,
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and T 1
H(n) = T 0

H(n).

The proof is given in Appendix A.

In the standard case without the distribution change,
it is straightforward to show that

G0(n) = a0 +
b0
n

+ o

(
1

n

)
.

Thus an important finding from the above theorem
is that the lower order terms in T i

L(n) which do not
appear in the asymptotic expansion of G0(n) can not
be ignored in the asymptotic expansion of G1(n).

Example 1 Let the true distribution and learning
model be

r(y|x) =
1√

2πσ2

exp

(
− y2

2σ2
2

)
,

p(y|x, a) =
1√

2πσ2

exp

(
− (y − ax)2

2σ2
2

)
,

where the parameter is only a ∈ R1. Note that the
learning model p(y|x, a) can attain the true distribu-
tion r(y|x) by a = 0. We assume a Gaussian prior,

ϕ(a) =
1√
2πσ

exp

(
− a2

2σ2

)
.

The training and test input distributions q0 and q1 are
respectively defined by

qi(x) =
1√

2πσi

exp

(
− x2

2σ2
i

)
.

The coefficients in Theorem 1 are as follows:

a0 = a1 = 0, b0 = b1 = 1/2,

c1 − c0 = 0, d1 − d0 = (σ1/σ0 − 1)/2.

Then the generalization errors are written as

G1(n) =
σ2

1

2nσ2
0

+ o

(
1

n

)
, G0(n) =

1

2n
+ o

(
1

n

)
.

We omit the derivation because of lack of space; but
we note that, due to the lower order terms, the deriva-
tion is not straightforward despite its simplicity at first
glance.

In this regression case, the learning model can attain
the true distribution, and the true line (y = 0) does
not change in the test phase (i.e., the covariate shift).
When the test input distribution is wider than the
training input distribution (i.e., σ1 > σ0), the gener-
alization errors satisfy G1(n) > G0(n). This is consis-
tent with an intuition that the data far from the origin
bring more information on the true function (y = 0).

3.3. Bound of Generalization Error

The above theorem gives an insight that clarifying
the asymptotic form of G1(n) requires to compute the
lower order terms. However, the algebraic geometrical
approach (see Section 2.2) does not take account of the

lower order terms and we need to directly investigate
them. This is usually very hard—even for a simple
case such as Example 1, the calculation of lower order
terms is not straightforward.

Here we propose a different approach: deriving an up-
per bound on G1(n) in terms of G0(n). Since the al-
gebraic geometrical method can be used for revealing
G0(n), this approach allows us to deal with a broader
class of models. We assume

(A2) The largest difference between the training and
test distributions is finite, i.e.

M = max
x,y∼r0(y|x)q0(x)

[
r1(y|x)q1(x)
r0(y|x)q0(x)

]
<∞.

Theorem 2 Under the assumptions (A1) and (A2),
the generalization error G1(n) asymptotically has an
upper bound,

G1(n) ≤MG0(n) +D1 +D2,

where D1 =

∫
r1(y|x)q1(x) log

r1(y|x)
r0(y|x)

dxdy,

D2 =

{
0 r1(y|x) = r0(y|x),
1 otherwise.

The proof is given in Appendix B.

Example 2 Let r1(y|x) = r0(y|x) and the training
input distribution q0(x) and the test input distribution
q1(x) be Gaussians,

qi(x) =
1√

2πσi

exp

[
− (x− µi)

2

2σ2
i

]
.

Then,

M = max
x∼q0(x)

[
q1(x)

q0(x)

]
=
σ0

σ1
max

x∼q0(x)
exp

[
(µ0 − µ1)

2

2(σ2
0 − σ2

1)

− σ2
0 − σ2

1

2σ2
0σ

2
1

(
x− σ2

0µ1 − σ2
1µ0

σ2
0 − σ2

1

)2]
.

In this case, (A2) requires σ0 > σ1 independent of µi

and then M = σ0

σ1
exp

[
(µ0−µ1)

2

2(σ2
0
−σ2

1
)

]
.

3.4. Discussion of the Theorems

Under the assumption (A1), Bi represents the bias
and Si corresponds to the speed of convergence, i.e.,

Gi(n) = Bi +
Si

n
+ o

(
1

n

)
.

Here we analyze the speed of convergence and bias of
Bayesian estimation under the distribution change.

3.4.1. Bias

According to Theorem 1, B0 = a0, B1 = a0+(c1−c0).
Thus the constant terms of U i(n) induce the distinc-
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Table 1. Upper bounds of B1. CS and FRC denote the
covariate shift and functional relation change, respectively.

B0 = 0 B0 6= 0
No dist. change B1 = 0 B1 = B0

CS B1 = 0 B1 ≤MB0

FRC B1 = D1 B1 ≤MB0 +D1 + 1
CS & FRC B1 = D1 B1 ≤MB0 +D1 + 1

tion of the bias. As for the bias B1, the following
corollary holds.

Corollary 1 When the learning machine p(y|x,w)
can realize the true r0(y|x) (i.e., B0 = 0), B1 = D1.

The proof is given in Appendix B. Table 1 summarizes
the upper bound of B1 in each case based on Theorem
2 and Corollary 1. Note that D1 = 0 under the covari-
ate shift (r1(y|x) = r0(y|x)).
When the learning model p(y|x,w) can realize the true
r0(y|x) (the middle column of Table 1), B1 ≥ B0(= 0)
always holds. Therefore, the bias is generally larger
than the case without the distribution change. How-
ever, when the learning model p(y|x,w) can not realize
the true r0(y|x) (the right column of Table 1), B1 < B0

can occur depending on the sign of c1 − c0.

3.4.2. Speed of Convergence

According to Theorem 1, S0 = b0, S1 = b0+(d1−d0).
Note that S0 corresponds to α in Eq.(8). The sign of
d1 − d0, which determines the magnitude relation be-
tween S0 and S1, depends on the setting. In Example
1, the both variances σ2

0 and σ2
1 affect the sign.

We recall that a faster convergence does not neces-
sarily imply a lower generalization error due to the
bias term. However, the speed term is dominant when
the model can attain the true distribution under the
covariate shift. In this case, B0 = B1 = 0 and
S1 ≤ MS0, M = maxx∼q0

q1(x)/q0(x). In the above
equation, the quantity M appears as a maximum fac-
tor of speeding-down. This would be natural since M
represents the amount of difference in the training and
test distributions. For example, if the support of the
test distribution is not included in the support of the
training distributions, M becomes infinity and no con-
clusion is derived from the bound. In such a case, the
explicit computation as Example 1 is required.

3.5. Numerical Example

Let us illustrate the error bounds using a simple re-
gression problem borrowed from Sugiyama and Müller
(2005): y = sinc(x) + ε, where the noise ε follows
N(0, σ2) with σ2 = (1/4)2. We assume the noise
variance σ2 is known. The training and the test in-
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puts are subject to N(1, (1/2)2) and N(2, (1/4)2), re-
spectively (see Fig 2). We use the linear regression

model f̂(x) = w1 + w2x, and estimate the parameter
w = (w1, w2) in the Bayesian framework with the prior
distribution ϕ(w) being N(µ, λ−1I2). (11)
µ and λ are hyper-parameters and are determined
based on the stochastic complexity.

Under this setting, the posterior distribution
p(w|Xn, Y n) is Gaussian N(µn,Λn), where

µn = Λn(σ−2ΨnY n + λµ),

Λn = (σ−2Ψn(Ψn)> + λI2)
−1,

Ψn = (ψ(X1), . . . , ψ(Xn)), ψ(x) = (1, x)>.

The predictive distribution p(y|x,Xn, Y n) is also
Gaussian N(mn(x), vn(x)), where

mn(x) = ψ>(x)µn, vn(x) = ψ>(x)Λnψ(x) + σ2.

The generalization errors are expressed as

Gi(n) =
1

2
E0

Xn,Y n

{ ∫
qi(x)

[{sinc(x) −mn(x)}2

vn(x)

+
σ2

vn(x)
− 1 − log

σ2

vn(x)

]
dx

}
,

for i = 0, 1. The maximum ratio M defined by (A2)
is 2 exp(8/3). Note that M is finite according to Ex-
ample 2. The generalization errors G0 and G1 con-
verge to B0

.
= 0.2939 and B1

.
= 2.2818, respectively,

where we used the fact that µn and Λn converge to
E0[ψ(x)ψ>(x)]−1E0[ψ(x)f(x)] and 02×2, respectively.

Fig.3 depicts the generalization error G1(n) and its up-
per bound as functions of the sample size n. The values
are averages over 400 (for n ≤ 100) and 100 (for n >
100) realizations. For comparison, the generalization
error G0(n) in the absence of the distribution change
and its shift defined by G01(n) = G0(n)−B0 +B1 are
also plotted. This shifted error has the same bias as
G1(n) and the same convergence speed term as G0(n).
In this specific example, the bias term of G1(n) is
larger than G0(n) and the speed term does not seem
so different.
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4. Importance-Weighted Stochastic

Complexity

In the previous section, we analyzed the asymptotic
generalization performance of Bayesian estimation un-
der the distribution change. In this section, we shift
our focus toward more practical aspects and show how
the generalization performance could be improved un-
der the covariate shift scenarios.

4.1. Definition

In Bayesian inference, the stochastic complexity is of-
ten used for selecting the model structure and hyper-
parameters. However, as seen in Eqs.(1) and (2), the
original stochastic complexity is computed from the
marginal likelihood of training data. Under the co-
variate shift, we need to select the model structure
and hyper-parameters in terms of the likelihood of the
test data (both inputs and outputs). However, the test
data is not available during the training phase.

To cope with this problem, we propose a variant of
stochastic complexity called the importance-weighted
stochastic complexity (IWSC), which is defined as fol-
lows.

F
IW

(Xn, Y n) = − log

∫
exp

[
lIW (w)

]
ϕ(w)dw, (12)

where lIW (w) =

n∑

i=1

W (Xi) log p(Yi|Xi, w),

and W (x) = q1(x)/q0(x). Here, we assume that W (x)
is known; when it is unknown, we may use an estimate
(e.g., (Huang et al., 2007)).

4.2. Example of IWSC

Here we illustrate the behavior of IWSC using a toy
example. Let us consider the following setting: the
model p(y|x, a) is a Gaussian N(af(x), σ4), where a is
the parameter. The prior is the same as Example 1,
N(µ, σ). The true distribution r(y|x) is also a Gaus-
sian N(g(x), σ2). Then IWSC is rewritten as

F
IW

(Xn, Y n|µ) =

{ n∑

i=1

W (Xi)

}
log(

√
2πσ4)

+
1

2
log

[
1 +

σ2

σ2
4

n∑

i=1

W (Xi)f
2(Xi)

]
+

µ2

2σ2

− 1

2σ2σ2
4

(σ2
∑n

i=1W (Xi)f(Xi)Yi + σ2
4µ)2

σ2
∑n

i=1W (Xi)f2(Xi) + σ2
4

. (13)

First, let us analyze the behavior of the average IWSC.
Considering the order of n, we can prove that

E0
Xn,Y n

[
F

IW
(Xn, Y n|µ)

]

= n

(
log(

√
2πσ4) −

〈
fg

〉2

1

2σ2
4

〈
f2

〉
1

)
+

1

2
log n+O(1),

where µ is a hyper-parameter and
〈
f
〉
1

= E1
x[f(x)].

This implies that the average IWSC is expressed in
terms of the expectation over the data from the test
input distribution, not on the training input distribu-
tion, and thus the application of the importance weight
W (x) would be reasonable.

Next we focus on the optimization of the hyper-
parameter µ. We can show that the hyper-parameter
that minimizes Eq.(13) is given as

µ̂ ≡ arg minF
IW

(Xn, Y n|µ) =

∑n

i=1W (Xi)f(Xi)Yi∑n

i=1W (Xi)f2(Xi)
.

This result claims that IWSC selects a reasonable
hyper-parameter because we can prove that µ̂ on av-
erage converges to

E0
Xn,Y n [µ̂] =

〈
Wfg

〉
0〈

Wf2
〉
0

=

〈
fg

〉
1〈

f2
〉
1

,

where
〈
f
〉
0

= E0
x[f(x)]. The convergent point is the

same as the hyper-parameter selected by the ordinary
stochastic complexity when the training input distri-
bution agrees with the test input distribution.

4.3. Experimental Results

We report a result of a simple numerical example to
illustrate how IWSC actually works. We again used
the same toy regression problem used in Section 3.5.

Linear models were learned with 200 training samples
by the Bayesian procedure. The noise variance σ2 is
assumed to be known for simplicity and the hyper-
parameters µ and λ in Eq.(11) were selected based
on the stochastic complexity (2) or IWSC (12). The
results are depicted in Fig.4. The solid lines in the
left-most and second-left graphs show the mean of the
prior, i.e. µ1 + µ2x, while the dashed lines indicate
the regions within three times of the standard devi-
ations determined by the dispersion parameter λ. ‘◦’
are training samples and ‘×’ are noiseless test samples.
The result of IWSC (see the second-left graph) predicts
the output values in the test region very well, while
SC only captures the training samples (see the left-
most graph). We remark that the hyper-parameters
in the second-left panel were obtained only from the
training samples (‘◦’) through IWSC. The profiles of
SC and IWSC over the mean hyper-parameter µ are
depicted in the second-right and right-most graphs,
showing that both surfaces are smooth with a unique
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Figure 4. Learned functions obtained based on SC (left-most) and IWSC (second-left). SC (second-right) and IWSC
(right-most) over the mean hyper-parameter µ (λ was optimally chosen by SC and IWSC, respectively).

minimum but at the different points.

4.4. Related Works

The importance-weight has been widely used in the
context of frequentist’s approach. Maximum likeli-
hood estimation is no longer consistent under the
covariate shift when the model is misspecified; in-
stead, the maximizer of the importance-weighted log-
likelihood is consistent (Shimodaira, 2000).

max
∑n

i=1W (Xi) log p(Yi|Xi, w). (14)

However, this is not efficient and is rather unstable
in practical situations with finite samples. To cope
with this problem, an adaptive variant was proposed
(Shimodaira, 2000):

max
∑n

i=1W (Xi)
λ log p(Yi|Xi, w), (15)

where 0 ≤ λ ≤ 1. λ controls the trade-off between con-
sistency and efficiency and it needs to be chosen appro-
priately for better estimation. Note that any empirical
error based methods could be extended similarly.

The task of choosing λ is the model selection problem.
Standard model selection methods such as Akaike’s in-
formation criterion (Akaike, 1974) and cross-validation
(Stone, 1974) are not designed to work well under the
covariate shift. To cope with this problem, a mod-
ified information criterion has been developed (Shi-
modaira, 2000), where the importance-weight plays
an essential role. Similarly, an importance-weighted
model selection criterion specialized for linear regres-
sion (Sugiyama & Müller, 2005) and an importance-
weighted cross-validation method (Sugiyama et al.,
2007) have been developed and have shown to work
well in real-world problems.

In the above importance-weighting framework, it is
theoretically assumed that the importance is known
a priori. However, this may not be the case in prac-
tice. To cope with this problem, a method of directly
estimating the importance in a non-parametric way
has been developed (Huang et al., 2007), which ef-
fectively makes use of the kernel trick (Schölkopf &
Smola, 2002) in a class of reproducing kernel Hilbert
spaces.

Experimental design where the training input distribu-
tion is designed by users is a relevant situation since
it naturally induces the covariate shift. A standard
approach to experimental design in least-squares re-
gression often ignores the bias of the estimator and
design the training input distribution so that the vari-
ance of the estimator is minimized (Fedorov, 1972).
However, when the model is misspecified—which is a
usual case in practice—the bias may not be ignored be-
cause of the covariate shift. Instead, the importance-
weighted least squares method produces an asymptotic
unbiased estimator and its use allows us to apply the
variance-only approach also in the experimental de-
sign of approximately linear regression (Wiens, 2000;
Sugiyama, 2006). Furthermore, an experimental de-
sign method for totally misspecified models has been
developed (Kanamori & Shimodaira, 2003), where the
importance-weight plays an essential role in establish-
ing the consistency.

5. Conclusions

This paper clarified the asymptotic behavior of the
Bayesian generalization error under the distribution
change. Our result gave an interesting insight that the
lower order terms which are ignored in the standard
asymptotic theory play important roles under the dis-
tribution change. We also established an upper bound
of the asymptotic generalization error in terms of the
generalization error in the absence of the distribution
change. In order to improve the prediction perfor-
mance, we proposed a variant of stochastic complexity
which can be used for choosing an appropriate model
and hyper-parameters under the covariate shift.

Our future study will focus on investigating and im-
proving the tightness of the bound. Similar to IWSC,
the likelihood term in the posterior distribution can
also be modified by the importance weight W (Xi) for
compensating for the change in the input distribu-
tions (Shimodaira, 2000). A promising direction in
this line would be to combine these procedures into a
single framework and analyze the generalization per-
formance.
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A. Proof of Lemma 1 and Theorem 1

In the same way to derive Eq.(4), we can obtain
Gi(n) = U i(n + 1) − U0(n). The asymptotic expan-
sions of U i(n) and G1(n) are immediately derived
based on this relation, (A1), and (A1’). If a co-
efficient of T 1

H(n) in U1(n) is different from that of
T 0

H(n), the assumption (A1) is violated. For exam-
ple, if a1 6= a0, G

1(n) has the term (a1 − a0)n. This
means G1(n) → ∞ as n→ ∞. Therefore, it must hold
that T 1

H(n) = T 0
H(n).

B. Proof of Theorem 2 and Corollary 1

Define that

D3 = 1 −E0
Xn,Y n

[ ∫
r1(y|x)p(y|x,Xn, Y n)

r0(y|x)
q1(x)dxdy

]
.

According to S(x) ≡ e−x − 1 + x,

G1(n) =E0
Xn,Y n

[∫
r1(y|x)q1(x) log

r0(y|x)
p(y|x,Xn, Y n)

dxdy

]

+D1 = D4(n) +D1 +D3, (16)

where D4(n) = E0
Xn,Y n

[∫
r1(y|x)q1(x)
r0(y|x)q0(x)

r0(y|x)q0(x)

× S

(
log

r0(y|x)
p(y|x,Xn, Y n)

)
dxdy

]
.

When r1(y|x) = r0(y|x), D3 = D2(= 0). Otherwise,
D3 ≤ D2(= 1). Since S(x) ≥ 0, G1(n) ≤ MG0(n) +
D1 + D2, which completes the proof of Theorem 2.
Next, we prove Corollary 1. When n→ ∞ and B0 = 0,

p(y|x,Xn, Y n) → r0(y|x).
Therefore, D4(n) and D3 in Eq.(16) asymptotically
goes to zero, which means B1 = D1.
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