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Abstract To date, most efforts have focused on the study of robust
MDPs .9, Givan et al., 2000; lyengar, 2005; Nilim & El
Ghaoui, ), a framework in which one makes the assumption
that parameters can only lie in a bounded uncertainty set.
Although this formulation for the MDP problem remains
tractable under mild conditions, it suffers from relying on
the union bound for bounding probabilistic evérasd of-

ten generates overly conservative strategies.

In this paper we offer a more practical way of handling un-
certainty in the parameters. Following some recent work
by Mannor et al. (2007) that studied the effect of parameter
uncertainty on the mean and variance of value function esti-
mates, we consider the parameters as random variables and
take a Bayesian point of view on the question of decision-
making when faced with this extra layer of uncertainty in
the MDP model. The Bayesian framework naturally leads
to a performance measure we call the percentile critérion,
which is both conceptually natural and representative of
the trade-off between optimistic and pessimistic straegi
when facing parameter uncertainty. Unlike robust meth-
ods, our approach reasons directly about the effect of this
uncertainty on the total cumulative reward itself. This in
1. Introduction turn leads to the notion of a cost-effective exploratioatstr
pay when given the option to invest in the reduction of this
uncertainty.

Markov decision processes are an effective tool
in modeling decision-making in uncertain dy-
namic environments. Since the parameters of
these models are typically estimated from data,
learned from experience, or designed by hand,
it is not surprising that the actual performance
of a chosen strategy often significantly differs
from the designer’s initial expectations due to
unavoidable model uncertainty. In this paper,
we present a percentile criterion that captures
the trade-off between optimistic and pessimistic
points of view on MDP with parameter uncer-
tainty. We describe tractable methods that take
parameter uncertainty into account in the process
of decision making. Finally, we propose a cost-
effective exploration strategy when it is possible
to invest (money, time or computation efforts) in
actions that will reduce the uncertainty in the pa-
rameters.

Markov decision processes (MDPs) are an effective too
in modeling decision-making in uncertain dynamic envi-
ronments €.g, Putterman, 1994). Since the parametersThe percentile criterion (or chance constraint) that is
of these models are typically either estimated from datawidely studied for single-period optimization problems
learned from experience or designed by hand, it is not sure.g, Charnes & Cooper, 1959; &opa, 1995; Calafiore
prising that, in some applications, unavoidable modeling& ElI Ghaoui, 2006) will be generalized in Section 2 to
uncertainty often causes the long term performance of #finite-horizon MDPs. Although general percentile op-
strategy to significantly differ from the model’s predici®  timization problems are suspected to be “severely com-
(refer to experiments by Mannor et al., 2007). For this reaputationally intractable” (Nemirovski & Shapiro, 2006),

i i i i . .
son, criteria that address parameter uncertainty in glanerai1AS the size of the state space grows, one needs to consider

and specifically in MDPs are of interest §, Silver, 1963, |5rger uncertainty sets for each parameters to accommodate a
Ben-Tal & Nemirovski, 1998). probabilistic constraint.

T — . n _ *Note that Filar et al. (1995) introduced the percentile crite-
Appearing inProceedings of the, ™ International Conference rion as a risk-adjusted performance measure for “average reward
on Machine LearningCorvallis, OR, 2007. Copyright 2007 by \pps. However, their study did not address the question of pa-
the author(s)/owner(s). rameter uncertainty.
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in Section 3 we demonstrate that the problem of rewardecomes:

uncertainty can reduce to a deterministic second order

cone programd.f., Lobo et al.,, 1998) and that transi- o0

tion uncertainty can be addressed approximately. Sec-max. = min ]E:E(Z a're(we)|zo o< g, m) . (1)
tion 4 presents a proposed cost-efficient strategy for the o =0

exploration-exploitation dilemma in the context of MDPs

with non-negligible observation costs and compare its perThere are two types of uncertainty that are of interest. In

formance against popular exploration schemes. the first type, termed fixed uncertaintyand P are drawn
once and remain fixed for all time steps. In the second type,
2. Background termed repeated uncertaintyand P are repeatedly drawn

In the context of an MDP with parameter uncertainty, Cur_from their feasible set at each time step. In both cases, the

rent methods either disregard parameter uncertaintyger pr ©Ptimal policyz™ for Problem (1) can be found efficiently
pare for the worse case. Our research focuses on a critericgﬁee Nilim & EIl Ghaoui, ).
that trades off between the two conflicting views. 2.3. The Percentile MDP Problem

2.1. The Nominal MDP Problem Consider a Bayesian setup where the random reward vector

We consider an infinite horizon Markov decision process’ 2nd random transition matrix are known to be indepen-

described as follows: a finite state spaceith | S| states, a 4Nt and have joint probability distribution functiofiér)

finite action spacet with | A| actions, a transition probabil- 2Nd./(P) respectively. In such a scenario, unless the dis-
ity matrix P € RISIXIAIXISI with P(s, a,s') = P(s']s, a) tributions are supported over a “small” bounded subset of

their domain, formulating Problem (1) with= {r|f(r) #

0} andP = {P|f(P) # 0} is no longer pertinente(g, if

7 oc N'(pi, X7), thenR = RI5 and (1) is—oc). Evenifthe
optimization is performed over a restricted bounded subset
(e.g, ellipsoids representing a 95% confidence), there is
no clear method to select this uncertainty set since the real
concern is the level of confidence in the total cumulative
reward and not in the individual parameters. Instead, it is

an initial distribution on stateg, and a reward vector
r € RIS, For reasons of tractability, we will limit our
attention to the set of mixed stationary Markov policies,
which is denoted byf'. When considering an infinite hori-
zon, an optimal discounted reward stationary poticig a
solution to the following optimization problem:

max. E, (32, alr(z)|zo x ¢,7) , much more relevant to express the risk adjusted discounted
mer performance of an uncertain MDP in the followimpgr-
centile form:

wherea € [0, 1) is the discount factot.

The nominal problem is known to be easily solvable us- hax. Y (2a)
ing value iteration. However, it does not take into account’

any uncertainty in the choice of the parameterand r.

In practice, this uncertainty is unavoidable and using the
most likely (or expected) parameters can actually lead tavhere the probability? is the probability of drawing the
a significant bias in the performance of the chosen policyeward vectorr, for each time step independently from

sub. to P (E(Y.,2, a'Fe(z)|zo o ¢, 7) > y) > 1, (2b)

(see Mannor et al., 2007). f(7) and the transition matrix® from f(P), and where
E(:|zo oc g,7) is the expectation of the trajectory given a
2.2. The Robust MDP Problem concrete realization af and P, a policyr, and a distribu-

The most common approach to account for uncertainty irfion of the initial state;. For a given policyr, the above

the parameters of an optimization problem is to use robugpercentile problem gives us anguarantee that will per-

optimization. This framework assumes that the uncertairform better thary*, the optimal value of Problem (2), un-

parameters are constrained to lie in a given set (hopefullgler the influence of and P. Note that, whem = 1,

convex) and optimizes the worse case scenario over this sétroblem (2) and Problem (1) are equivalent; thus; n

In the case of discounted reward MDP, where the rewardés a measure of risk of the policy doing worse thgn In

r; for each time step and the transition matfbare known  what follows, we will present the details from a Bayesian

to lie in a seR andP respectively, the robust problem thus point of view in order to preserve the clarity of our deriva-

T o _ _Fions. However, frequentist. extens:io_n:.s_follow naturally a
Although our analysis will consider the case where the re-, \yaqnar et al., 2007. Section 3 will initially focus on how

ward only depends on the current state, the results presented |n . . . . .
this work can easily be extended to a reward function of the form{0 find an optimal policy to Problem 2 with either reward

r(s,a,s'). They can also be extended to the average reward criOf parameter uncertainty. Later, in Section 4, the perteenti
terion. criterion will be used to guide exploration.



Percentile Optimization in Uncertain MDP with Application to Efficient Ex ploration

3. Decision Making under Parameter Using Lemma 3.1, Constraint (4a) can be converted into the
Uncertainty equivalent deterministic convex constraint given that

We first present solution methods for the percentile prob-0'5'

lem with fixed uncertaint§.Under the assumption of Gaus- vl s — ()| { oTY? } le>y.

sian rewards, solving the percentile MDP is not harder than "

solving the nominal MDP. We will then present a secondLemma 3.2 : Using the change of variables = vT1I,%
order approximation for the problem of transition uncer- Constraint(4b)is equivalent to:

tainty with Dirichlet priors. Because of space constraint, T T

we refer the reader to a full version of this paper for proofs vi=q +ad, paba

and extensions of the presented solution methods to other vl = Y acA Py, pe =0, YVacA,

distributions. wherep, is thea-th column ofp, and from feasible point

3.1. The Case of Reward Uncertainty (v, p), an equivalent paifv, IT) feasible according to Con-

. . . straint (4b) can be retrieved using:
The Gaussian assumption on reward uncertaiftypx (4b) 9

N (uz,%7), is a standard assumption in many applications ) 0 if v(s') =0
asit gllow_s th_e modeling of correlation between thg reward (s s a) = p;((ss//))ﬂ{s — '} otherwise.
obtained in different states. In what follows, we will show

that finding an optimal stationary policy for the problem The following theorem is proven using the constraint

of maximizing then-percentile of the total expected dis- replacement technique presented in Lemma 3.1 and
counted rewardife., Problem 2) under fixed Gaussian un- Lemma 3.2

certainty in the reward can be explicitly expressed as a sec-
ond order cone prograne.f., Lobo et al., 1998). The first Theorem 3.3 : For anyn < [0.5,1), the discounted re-
step is to convert the Constraint (2b) to a form where theward percentile Problem 2 with fixed Gaussian reward un-

expectation operator is expanded. certainty is equivalent to the convex second order cone pro-
gram
T t~ - 3
P} q" (allP)'F: 2 y) 2 n. @) max. X, ol = 07 )| 015 2 (69)
t=0 P

T _ T T
Using the assumption of fixed uncertainty, the following sub. to 2aba = +2a0paka (6b)

form is equivalent to Constraint (3): pe >0, YaecA, (6¢)
N where given an optimal assignmegit, an optimal policy
Pr(v'F>y) > (48) 7+ can be retrieved using:
q" 3 _(allP)" = vT. (4b) vy T T Eani) =0
=0 e Zpap(f%s) otherwise.

Lemma 3.1 :(Theorem 10.4.1 of Rkopa, 1995) Suppose ) .
¢ € R™ has a multivariate Gaussian distribution. Then the Solving a second order cone program (SOCP) is often con-

set ofz € R™ vectors satisfying sidered to be not much more computationally demanding
than solving a linear program of comparable size (it is
P(zT¢ <0)>p feasible to solve problems af)?-10* variables). This is
an appealing feature for the percentile problem which is ac-
is the same as those satisfying tually preserved under different reductions of the Gaussia
assumption. However, one can show that the NP-complete
2T pe + @ (p)y/2TEex <0, 3SAT problem can be reduced to solving Problem 2 with a

discrete distribution on the rewards. Hence,

wherepe = E(£), X¢ is the covariance matrix of the ran- Theorem 3.4 : Solving the percentile MDP Problem 2

dom vecto, p is a fixed probability such that < p <1, with general uncertainty in the reward parameters is NP-
and® is the cumulative distribution function #f (0, 1). hard

“Although this work focuses on fixed uncertainty, similar  ®By p = v 11, we refer top € R!SI*I4! such that(s’, a) =
methods can be derived for the problem of repeated uncertainty.(UTH)(s'7 a) =Y v(s)I(s, s, a).

SHere, IT € RIFIXISXIAl such thatII(s1, s2,a) = ’In our implementation, we used a toolbox developed for Mat-

m(s1,a)l{s1 = s2} and the matrix multiplicatiodl P is carried  |ab: “CVX: Matlab Software for Disciplined Convex Program-
alongRIS* STAD s RUSTAD XS], ming” by Michael Grangt al.
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3.2. The Case of Uncertainty in Transition Parameters  Let F(x) be the second order approximation of the ex-

This type of uncertainty is naturally present in applicaso
where one does not have a physical model of the dynam-

ics of the system. In this cas&, must be estimated from | 1o+ chow that minimizing () leads to a near-

experimentation and contains inherent uncertainty. Unforoptimal percentile policy, we make the assumption that
tunately, as was the case for reward uncertainty, one c%

how that th il blem i tationally h ehaves according to a Dirichlet distribution. This allows
iSn g\évnerZI € percentile problem 1S computationally harcq 14 phound the approximation error in terms of number of

observed transitions. One can then show, using Markov’s
Corollary 3.5 : Solving percentile MDP Problem 2 for inequality, that the following theorem holds.

general uncertainty in the transition parameters is NP-
hard.

F(r) =q" X™r + a?¢" X" QX ™r .

Theorem 3.6 : Given state transition samples
{(s1,a1,$1), ..., (sm,an,8y,)} and  suppose that
Because we cannot expect to solve this problem with gend/&" = min; , M, andn € 0.5, 1), policy

eral transition uncertainty, our analysis makes the Dieich

assumption and proposes a solution method that generates T = arg max F()
near optimal solutions given a sufficient number of samples
drawn fromP. iso(1/4/(1 —n)M&") optimal according to the percentile

Unlike in the case of reward uncertainty, where the opti-MDP Problem 2 with known rewards, where the probability
mal policy can be found using the nominal problem, find-P is the probability of drawing” from the posterior Dirich-
ing a policy that simply minimizes the expected return let distribution given thafl/ () transitions were observed
Ep (Y52 alr(z)|ze o g,7) under transition uncer- from each staté and actiona.

tainty P is already non-trivial. More specifically, as pre-

sented in (Mannor et al. 2007), the expected return can b§'3'
expressed as

A Machine Replacement Problem with Dirichlet
Uncertainty in the Transition Parameters

We have chosen the machine replacement problem as an

E(i (2| ) = application for our methods. Let us assume that we are in-
— @ TT) 1o 4, 7)) = terested in the repair cost that is incurred by a factory that
h o holds a large number of machines, given that each of these
E(q" Z ak(XwHAp)kaT) 7 machines are modeled with the same underlying MDP for

which the transition parameters are not known with cer-
o R ~ tainty. In such a setting, it would be natural to apply a
whereAP = P—E(P),andX™ = (I —oIlE(P))~'. The  repair policy uniformly on all the machines with the hope
matrix X™ is always well defined sinc can only gener-  that, with probability higher than, this policy will have a

ate stochastic matrices, thus ensuring that oIIE(P) is  low maintenance cost on average. This is exactly what the
nonsingulaf The expressioft (3,2 a'r(z¢)|zo o< ¢,7)  percentile criterion quantifies.

therefore depends on all the moments of the uncertainty ith, experiment uses a version of the machine replacement

P. Because we expect the higher order moment® @, hjem with 10 states, 4 actions, a discount factor of 0.8, a
decay quickly with the number of samples drawn frlém iorm initial state distribution and transition uncénts

itis reasonable to focus on second order approximation  ,oqeled with a Dirichlet distribution. States 1 to 8 deserib

k=0

oo the normal aging of the machine, while stafés and R2
E(Z alr(zy)|o o ¢, ) = ¢" X™r + o2¢" XTIIQX™r represent two possible stages of repafd: being normal
t=0 repairs with a cost of 2, an®#2 a more involved one with
IS1x|A]x|S| a cost of 10. A cost of 20 penalizes reaching an age of
where@ € R , such that 8. In each of these states, one has access to three repair
- - ia) v services for the machine. We assume a Dirichlet model
Qliad) = (IE(APX”HAP))(WJ) B 7T(Z?“)ZEJ‘,-)) () for all transitions. In the case of each of the three repair

~ options, we use slightly perturbed versions of a reference
This is under the assumption that the rows/béire inde-  Dirichlet model that is presented in Figure 1. In this figure,
pendent and using(*) to represent the covariance be- the expected transition parameters are presented given tha
tween the terms of the transition vector from statgith )/ transitions are observed from each state and action.

actiona. We apply three solution methods to this decision problem.

8Refer to footnote 5 First, the nominal problem is formulated using the expected
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O Doing nothing order to reduce the transition variance and, indirectlg, th
’ Repairing with option] overall expected cost.

4. Efficient Exploration using Percentile
Optimization

In many practical situations, one has the possibility of in-

vesting (money, time or computation efforts) in actiong tha

| . -\‘ will reduce one’s uncertainty in the model. This gives rise
0% 2% 0 M to the so-called exploration-exploitation dilemma, one of

Figure 1.Instance of a machine replacement problem with Dirich-the most studied ISSues In reinforcement learning. In a
let uncertainty in the transition parameters. more popular version of this problem, an agent must de-
cide at each point of time between actions with known re-
ol turn or actions with unknown return but with the potential
/’7 of even better return. Methods such as R-max and model
o ______.--------:;:_',‘,',',','.'. based interval estimation (see Strehl & Littman, 2005)] lea
g e e with high-probability to near-optimal policies in polyno-
§ mial time. We are interested in a slightly different frame-
%'“’ /,—”' — robustooiey mean work. We assume that, before committing to an exploita-
s T pominalpoly mean tlor) strgtegy (guch as a repair policy fqr the problem de-
- - - -robust policy 0.9 percenile scribed in Section 3.3), one has the option to buy observa-
o = = =nominal policy 0.9 percentile . .
S - = =2nd order approx. policy 0.9 percentie] tions of the reward vector (or of transitions) for any state
v s A eduaions & ° and action pai(i, a) of the system. In this context, a valid

] ) . ~_ exploration strategy needs to provide either a pair) that
Figure 2.Performance comparisons between the optimal policies; wishes to observe or commit to a full exploitation strateg
according to the nominal, robust and percentile criteria on 1000(%0r the system. We believe that this framework is particu-
runs of the machine replacement problem as the uncertainty i?arly well suited for problems of short horizon compared to
reduced. .

the size of the state space.

- N In order to provide guidance in this decision, we apply the
transition probabilities. Then, we apply the robust methodconcept of value of information (see Howard, 1966) to the
presented in Section 2.2, for which we choose to use agercentile framework. Given a probabilistic prior on the
uncertainty set a box il!9/*141%I5| that contains” with  model parametersand P, and a risk-sensitive measure of
90% confidencé. Finally, we use the “2nd order approx- returng(r, 7, P) for stationary policiesr € T, we define
imation” performance measure presented in Section 3.2 tghe value of sampling and P at (i,a) as
find an optimal policy for this machine replacement prob- . N
lem 10 V(i,a) = E (ma}xg(w’,f",P’)) —max§(m, 7, P), (7)
Figure 2 shows the mean and 90th percentile performanc%heref, and P’ are the posterior distribution af and P

of the different methods on this problem as uncertainty in . . o
: L : respectively given random reward and transition samples
the parameters decreases {drincreases). Itis interesting 7 o : S
from state; with action a, and the expectation is taken

to see that the policy obtained by the 2nd order approxima- R "
. . . . over the prior distribution of reward and transition param-
tion method outperforms the policy obtained using the ro- I . . . .

eters. Intuitively,V(i, a) gives the expected increase in re-

levels (low to high). This is mainly due to the fact the 2nd)furn given that one would know more about the parameters

2 . . rel i,a). The learning str we pr I
order approximation method returns a policy that uses, wﬁ ztﬁd:togr’gagnax Ve(ie:) as %hs,e't ?gggcogt%f?sgt?\?eslﬁf;ts

states 8 andi1, a mixed strategy over the repair options in tion for a new observation, and decides to stop investing in

°Implementation details: using 10000 samples drawn flom uncertainty reduction when the maximuwii, a) achiev-
and a giveny ratio, for each parametét; ;) we choosel(; ,.;;  able is smaller then the observation cost. In what follows,
and B q,;) o that they include a ratio of of the random sam- e apply this simple learning strategy on the percentile

ples. A search ovey is done to find the minimaj that leads to a : ; ; i i
bOX Aty < Pivas) < Bir.a.y) CONtaINING 90% of the samples E:gk;lﬁﬁ;ﬁiﬁ:gUSSlan priors on rewards, or Dirichlet pri

drawn fromP. We do not discuss the validity of this method as it
is purely illustrative of the difficulties involved in the choice of an

90% uncertainty set foP. , "
%mplementation details: Matlab's optimization toolbox was Ve start by studying the case where we know the transition

used to solve this constrained non-convex optimizatioFi(af). parameters of the MDP exactly but where we have uncer-

4.1. Efficient Learning of Gaussian Rewards
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tainty about the rewards. We assume that we have the op-
tion of buying noisy measurements of the rewatdsa) =
r(i,a) +v(i,a), wherev(i,a) x N'(0,0,). Using a Gaus-
sian prior to represent the uncertaintyif¥, a), one can
easily solve the percentile problem (see Section 3.1) to find
an optimal risk-sensitive policy, the question is: is it tor
buying more information about the MDP before commit-

Average performance

t|ng toa pOllcy of this form? 2, "::" : —— Mean return with exact parameter knowledge|
B ':, = Mean return for random sampling

Given a measureme;?ﬂ(z,a) and a prior distribution on o e Tt for Detamiie b campling
(7 1 ===09 ile f d li
7(i,a) o< N(p(i,a), a(m)), we can evaluate the posterior e o oo sarPing

H H H ~I( / 12 11 = = =0.9 percentile for percentile based sampling
@stnbutpnr (2'7(1) o N(M(i,a)aa(i,a))- The.value of o : = = - ot .
informationV (4, a), with G(r, 7) set as the optimal value Total number of rewards observed

of percentile Problem 6, can therefore be estimated USIn()&igurr:‘ 3.Average percentile and mean performances of sampling

Monte Carlo methods. To reduce computation, our apyirategies on a set of 1000 random MDPs with reward uncertainty
proach relies on computing a lower bound #fi,a) by (free observations).
evaluatingV(i,a) = E(G(7*, 7, \)) — max, G(m,7) ,

, .
7(i,a) 5

wheren* = arg maxg g(ﬂ', ’1:) It turns out that this ap- — Percentile based sampling with threshold rule]
- - . - ===U bound f d li

proximation forV(i,a) can be computed in closed-form |~ Upper bound for MBIE sampling

given ﬂ.* . 4h *, = = =Upper bound for percentile based sampling

V(iva) = E(g(ﬂ-*vﬁ/ﬁ(i,a))) - g(ﬂ-*ﬂz)

1 .
=E (Z pZTuw) — o )| S TR s — G, 7)

1 T 1 T 1 0 0.5 1 15 2
= (77) ( Z p:; Eﬁ ||2 — || sz Z;{ ||2> , Observation cost
a a Figure 4.Average total percentile return on the MDPs of Figure 3
for a range of observation costs.

Average performance
w

N

since the posterior update fet(i, ) is independent of
and sincel (u7) = wr for such a Gaussian model. In

this framework, the) parameter for the percentile problem \,o4n and percentile return of the strategy through optimiz-
;tudlgd in Section 31 controls how conservative the pollcyIng the nominal problem and the percentile MDP problem
is during the exploitation stage. given the uncertain reward. We note that the percentile
The following experiments compare percentile based samstrategy clearly outperforms both MBIE and random sam-
pling to random sampling and the model based interval espling for percentile return and, when restricted only to a
timation (MBIE) strateg¥? on a set of 1000 randomly gen- small number of observations, even in terms of mean re-
erated MDPs with reward uncertainty. Each model has 1@urns. Figure 4 shows the average total percentile cost (fi-
states, 2 actions, a discount factor of 0.8, initial reward u nal percentile return added to cost of extracted samples)
certaintyr(i,a) o N (u7(i,a), 1) and measurement noise of our learning strategy given different observation psice

v o« N(0,1). For a given model, eachi, a) has a deter- Since MBIE and random sampling do not provide a stop-
ministic transition drawn uniformly from the set of states ping criterion for exploration, average total percentibstc
and hasu;(i,a) drawn fromA/(0,1). Figure 3 presents cannot be directly evaluated for them. Instead, we com-
the average percentile and average mean performances oygited a lower bound on this performance by selecting in
this set of uncertain MDPs given a number of observationgach run, given the observation cost, the most profitable
chosen by the different strategies (no observation cast). Ipoint to start exploitation. We see that the percentile cri-
each run, once a strategy ran out of observations, the poserion based strategy outperforms even this performance
terior uncertainty”” was computed and used to evaluate thebound for both random and MBIE sampling.

"'The posterior updates ayg, ., = 0(; ) (t(i.a)/0a) +  4.2. Efficient Learning of Dirichlet Transitions

N / _ —1 —1\—1 / H .
7(i,a)/ov) ando ) = (0, +0,7)" . Note thatog, ) IS, the case where we have transition uncertainty, we model
independent of the observédi, a).

2Being an online method, MBIE only provides a rule our uncertf’iinty using a D_irichlet prior 3”0' now have the op-
given a state, for choosing the action with highest explora‘rion-tlon of buying state transition observations. The same-prob

exploitation potential. To adapt this method to our framework, wel€m arises in this framework: when Shquld one stop paying
first draw a state randomly and then select the action with MBIE.for these observations and start exploiting the systemeas on
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knows it? GivenM transition observations from states-

ing actiona, one can update the Dirichlet prior as suggested
in the Bayesian framework (see Gelman et al., 2003). Us
ing G(m, P) = F(x), the 2nd order approximation to the
expected return presented in Section 3.2, the value ofinfor
mation)(i, a) can therefore be estimated with Monte Carlo
methods. Here, computing the lower bound ¥, a) as

in Section 4.1 largely reduces the computational complex-

3.5

= Mean return with exact parameter knowledge|
= Mean return for random sampling
~——Mean return for MBIE sampling

Average performance

ity of the Monte Carlo method by sparing us from perform- e pose sampling
ing the optimization inside the expectation term of Equa- L5 e o e b campling
tion (7). 0 50 100 150 200 250

Total number of transitions observed

Our experiments compare the percentile learning rule to

random sampling and model based interval estimatiorfigure 5.Average percentile and mean performances on a set of

strategy on a set of 1000 randomly generated MDPs Wiﬂ,}_ooo random MDPs with transition uncertainty (free observa-

transition uncertainty. Each model has 10 states, 4 action8°"S)-

a discount factor of 0.8. For a given model, the rewards are

generated from\V/ (0, 1) for each state, and the initial un-

certainty in a transition fronfi, ) is generated by select-

ing 3 possible next states uniformly, drawing the Dirichlet

parameters uniformly in the [0,1] interval and normalizing

them to sum td. As in Section 4.1, Figure 5 presents the

average percentile and mean performances over the set of

uncertain MDPs given a number of observations chosen by

the different strategies (no observation cost). Again, the

percentile rule outperforms on average random sampling ) ‘ ‘ ‘ ‘

and MBIE in the choice of observations to make. Figure 6 ° 005 O oS 02 0.25

Zh0W§ the ayerage total perc.entlle.COSt of Ol.Jr learnlngStrafl:igure 6.Average total percentile return on the MDPs of Figure 5
gy given different observation prices. Unlike the case ok a range of observation costs.

reward uncertainty, the stopping criterion does not outper

form the lower bounds on other methods but we expect it

to perform well against any reasonable stopping criterion

i1
[ —— Percentile based sampling with threshold rule
[ = = =Upper bound for random sampling

% | == =Upper bound for MBIE sampling

H P el Upper bound for percentile based sampling

Average performance

~.
~ee

based on random or MBIE sampling. although a series of them might. This phenomenon can be
. ) observed in Figure 3 where the percentile strategy does not
5. Discussion lead in general to the optimal policy of the underlying MDP

In the context of high cost observations, the results of Secas more samples are used. However, in applications where
tion 4 demonstrate that random sampling and MBIE areone can only afford a small number of observations (com-
less efficient exploration methods comparing to the proared to the size of the state space), Figure 4 shows that the
posed value of information exploration. This is mainly due percentile strategy is the best option.

to the fact that these methods disregard the cost of observahe application of value of information to the exploration-
tions, but focus entirely on reaching awptimal policy in  exploitation dilemma is not new (see Dearden et al., 1999).
the long term. Methods such as thé algorithm (Kearns  However, previous work only applied this concept to the
and Singh 1998) and the R-max algorithm (Brafman andviDp in its nominal form without considering the value
Tennenholtz 2003) suffer similarly. When observationsof risk-sensitive policies. Also, these methods have been
incur a non-negligible cost, the exploration-exploitatio considered to be impractical since they are confronted to

dilemma takes the shape of a problem better expressqﬂe problem of evaluatingt (max G, 7 15/)) with
through value of information. Ideally, one needs to reason 7 T

about sequences of observations that will have a high exd (7', 7, ) being the optimal value of the nominal prob-
pected impact on percentile return while preserving a lowem for each pair(i,a). This can only be done using
observation cost. Unfortunately, because this problem i#lonte Carlo methods and the computation requirements
intractable, we settle for a strategy that acts greedilynwit 9row quickly with the dimension of the state space, as one
respect to a single decision. Such a strategy is therefordeeds to solve an MDP for each Monte Carlo sample of
subject to aborting exploration when no single observatiorfach(i,a) pair. By studying the percentile problem, we

can lead to an immediate useful reduction of uncertaintyPPtain a form forV'(i, a) which can be approximated ef-
ficiently using the lower bounds presented in Section 4.1
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MDP “A” w.p 90% MDP “B” w.p 10% polynomial time algorithm for near-optimal reinforce-
ment learning. J. of Machine Learning ResearclB,
213-231.

Calafiore, G., & El Ghaoui, L. (2006). On distributionally
robust chance-constrained linear progran@ptimiza-

Figure 7.Uncertain MDP where 90th percentile based sampling tion Theory and Applicationd.30, 1-22.

is risk tolerant and chooses actibn Charnes, A., & Cooper, W. (1959). Chance constrained
programming.Management Scieng®, 73-79.
and 4.2%3 Dearden, R., Friedman, N., & Andre, D. (1999). Model-

It is important to note that the success of our exploration Pased Bayesian exploratioRroc. of Uncertainty in Al
strategy relies on the formulation of an adequate prior over (Pp. 150-159).

the parameters and of a percentile threshold that truly reFilar, J., Krass, D., & Ross, K. (1995). Percentile perfor-
flects risk tolerance. Consider the uncertain MDP pre- mance criteria for limiting average Markov control prob-
sented in Figure 7. If prior knowledge indicates that the lems.IEEE Trans. on Automatic Contro40, 2-10.

system MDP “A" is with 90% probability, a 90th percentile gejman, A., Carlin, J., Stern, H., & Rubin, D. (2003).

based sampling chooses to exploit using actiamithout Bayesian data analysis, second editiol€hapman &

sampling any state. This might seem sub-optimal since by Hajl/CRC.

sampling the reward in stateit is possible to completely . i
OIGslvan, R., Leach, S., & Dean, T. (2000). Bounded

determine the system and then choose the policy that avoi - e
the negative reward. Percentile based sampling disregards parameter Markov decision processeAttificial Intel-
' ligence 122, 71-109.

the risk related to this negative event since, based on the
prior distribution, the risk is tolerated by the target per-Howard, R. (1966). Information value theoff£ EE Trans.
centile. In this example, one might feel more comfortable ©n Systems Science and CybernetSC-222-26.

using a 99th percentile. lyengar, G. (2005). Robust dynamic programmiigath-
Finally, we believe that percentile based explorationtstra ~ematics of Operations Resear@, 257-280.

egy should naturally extend to model based online learningkearns, M., & Singh, S. (1998). Near-optimal reinforce-
We also expect that many important problems that have ment learning in polynomial timeRroc. ICML (pp. 260—
been addressed using standard MDP models and “naive” 268).

exploration methods, should be revisited and better " obo, M., Vandenberghe, L., Boyd, S., & Lebret, H.

solved using the proposed risk-sensitive percentile crite (1998). Applications of second order cone program-
rion. ming. Linear Algebra and its App284, 193—-228.
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