
Learning to Solve Game TreesDavid Stern dhs26�am.a.ukCambridge University, Cambridge, UKRalf Herbrih rherb�mirosoft.omThore Graepel thoreg�mirosoft.omMirosoft Researh Ltd., Cambridge, UKAbstratWe apply probability theory to the task ofproving whether a goal an be ahieved bya player in an adversarial game. Suh prob-lems are solved by searhing the game tree.We view this tree as a graphial model whihyields a distribution over the (Boolean) out-ome of the searh before it terminates. Ex-periments show that a best-�rst searh al-gorithm guided by this distribution exploresa similar number of nodes as Proof-NumberSearh to solve Go problems. Knowledge isinorporated into searh by using domain-spei� models to provide prior distributionsover the values of leaf nodes of the game tree.These are surrogate for the unexplored partsof the tree. The parameters of these mod-els an be learned from previous searh trees.Experiments on Go show that the speed ofproblem solving an be inreased by ordersof magnitude by this tehnique but are mustbe taken to avoid over-�tting.1. IntrodutionWe address the issue of proving whether goals an beahieved by a player in an adversarial game. The taskis to prove that a player (the `attaker') an ahievethe goal whatever the ations of the opponent (the`defender'). Suh problems are solved by searhingthe state spae (the game tree) (Pearl, 1984; Russell& Norvig, 1995).We assume every node in the game tree has an under-lying `Delphi' value: the Boolean value that would bereturned by an orale with perfet knowledge (Palay,Appearing in Proeedings of the 24 th International Confer-ene on Mahine Learning, Corvallis, OR, 2007. Copyright2007 by the author(s)/owner(s).

1985). This value is TRUE for a node if the goal anbe provably ahieved in the orresponding position andFALSE if the goal annot be ahieved. After fully ex-ploring the tree we an determine by logial dedutionthe value of the root node. In this ase the tree is`solved' and searh terminates. During a searh thevalues of some nodes are not yet determined and wean quantify the unertainty about these values usingprobabilities. We assign a probability of 1 to everyTRUE node and probability 0 to every FALSE node.All other nodes have some probability between 0 and 1whih represents a degree of belief about whether thenode is TRUE (see Setion 3).By plaing prior distributions on the values of the leafnodes of the game tree we an inorporate knowledgeinto searh. These distributions are surrogate for theunexplored parts of the tree. As searhes are per-formed, nodes beome proved as TRUE or FALSE andthese proofs an be used to update the surrogate dis-tributions so future searhes are more e�ient.A number of approahes using probability distribu-tions to guide searh in games have been suggested(Palay, 1985; Baum & Smith, 1997; Russell & We-fald, 1991). In these ases distributions are used tomodel the unertainty in the real-numbered value ofgame states. In this work we are onerned with bi-nary (WIN/LOSS) games for whih the semantis ofa real-numbered state-value are unlear so we assumethe underlying Delphi value of a node an only beTRUE or FALSE.Many individual nodes must be solved reursively inorder to solve a game tree so eah node represents asearh problem in its own right. This means that aomplex problem provides a rih soure of informationabout problem solving in general. In Setion 4 weapply these ideas to the game of Go. A Go position inonjuntion with the rules of the game ontains all theinformation neessary for perfet play but if we havelimited omputational resoures we must take are to

Learning to Solve Game Treesextrat only relevant information. The game tree givesthe struture required to extrat this knowledge.This type of supervised learning is unusual beause it isthe agent itself generating the observations. However,as long as we make our inferenes based entirely onour probabilisti model (the searh tree) and on whihnodes are observed to be TRUE or FALSE we reeivethe full protetion of the likelihood priniple (MaKay,2003): it is not possible to bias our models by the fatwe are seletively exploring the state spae beauseall proofs and disproofs we observe are objetive fatsabout the domain.2. Searh in Games2.1. AND / OR Trees1Let the set of possible positions in a game be
N . A problem is de�ned by its `goal', g :
N → {TRUE, FALSE, UNKNOWN}. Eah position
n ∈ N has a set of legal suessor positions, L(n),eah of whih an be generated by an ation of a player(a move). Two players, `attaker' and `defender', takeit in turns to move. We are onerned with provingwhether the attaker an reah a state in whih thegoal is TRUE taking into aount all possible ationsof `defender'. The (Boolean) result of this proof is theDelphi value of the node and is denoted d(n) where
d : N → {TRUE,FALSE}.Starting at a root position r ∈ N we `develop' itby generating eah legal suessor position (its `hil-dren'). In this way we begin to generate a searhtree, T := {N , E}, whih represents possible (direted)paths through state spae. Eah edge e ∈ E orre-sponds to a transition between states (a move). Werefer to the set of hildren of a node n as ch(n) andthe parent of a node c as pa(c). One a position isdeveloped it is alled an `internal' node otherwise itis a `leaf' node. Leaf nodes, l, where g(l) is TRUEor FALSE are alled `terminal' nodes. We iterate theproess of developing non-terminal leaf positions to ex-pand the searh tree.The values of previously explored paths throughstate spae are represented as an AND/OR Tree(AOT) (Nilsson, 1971). Eah node n ∈ Nin the AOT is labelled with a value v(n) ∈
{TRUE, FALSE, UNKNOWN}. If v(n) is TRUE orFALSE then node n is `solved' and v(n) = d(n). AnAOT has two types of nodes: OR nodes and AND1We use the ommon onvention of referring to the searhgraph as a `tree'. In fat a game orresponds to a diretedayli graph beause it is possible for the same state to bereahed via di�erent paths.

TT FT T T T ? FT F ? ? T F FT TFigure 1. And / Or Tree with truth values of nodes labelled.The ars underneath some of the nodes indiate that they areAND nodes. The other nodes are OR nodes.nodes. For a given tree with values assigned to the leafnodes we determine the values of the internal nodes by:AND node: v(n) =
∧

c∈ch(n)

v(c)OR node: v(n) =
∨

c∈ch(n)

v(c).The AND operator (∧) is de�ned suh that if any hildof a node is FALSE then the node is FALSE, oth-erwise if any hild is UNKNOWN then the node isUNKNOWN, otherwise it is TRUE. The OR opera-tor (∨) is de�ned suh that if any hild of a node isTRUE then the node is TRUE, otherwise if any hildis UNKNOWN the node is UNKNOWN, otherwise itis FALSE; see Figure 1 for an example tree.Eah AND node orresponds to a position in whih itis the defender's turn to move (beause every defenderresponse must be onsidered to prove that the goal anbe ahieved). Eah OR node orresponds to a positionin whih it is the attaker's turn to move (beauseonly one working attaker move must be found in eahposition along the path to the solution). This shemeis equivalent to the minimax algorithm with a binaryvalued evaluation funtion (Russell & Norvig, 1995).If the root has value TRUE or FALSE then the tree is`solved' and the value of the tree is the value of its root.If a tree has value TRUE it is `proved', if it has valueFALSE it is `disproved'. If no hildren an be added toa leaf node (beause no legal moves are available) thenit has value FALSE if it is an AND node and TRUEif it is an OR node.In this work we fous on best-�rst searh. At eahstep in a best-�rst searh the most promising node

Learning to Solve Game Trees?[2,2℄?[2,2℄ F [∞,0℄?[1,3℄ ? [1,2℄ T[0,∞℄ ?[1,1℄ ?[1,1℄ F [∞,0℄?[1,1℄ ?[1,1℄ ?[1,1℄ ?[1,1℄ ? [2,1℄ F[∞,0℄ F[∞,0℄?[1,1℄ ?[1,1℄Figure 2. And / Or Tree with proof and disproof numbers la-belled as [PN,DN℄. The path to the most proving leaf is shown.(aording to some riteria) is developed. This is inontrast to depth-�rst searh where the searh treeis enumerated up to some �xed depth. In pratiedepth �rst searh has proved muh more suessful ingame playing appliations beause of the di�ulty ofmove seletion. However, using depth as the riterionfor terminating searh may result in a great deal ofwasted omputational e�ort by not onentrating onimportant lines of play. Both depth-�rst and best-�rstmethods su�er from the horizon e�et : important linesof play may be terminated before they are played outleading to a poor estimation of the value of the root(Palay, 1985).2.2. GoAOTs an be used to desribe problems in the gameof Go2. Go is an anient oriental board game of twoplayers, `Blak' and `White' (Müller, 2002). The play-ers take turns to plae stones on the intersetions ofa grid with the aim of making territory by surround-ing areas of the board. All the stones of eah playerare idential. One plaed, a stone is not moved butmay be aptured (by being surrounded with opponentstones). We fous on the task of solving a lass ofGo problems alled tesuji3 problems where the goal ineah ase is to apture a partiular stone on the board(Davies, 1975) (Figure 7). For these problems g(n) isTRUE if the goal vertex is empty in position n.2 A great deal of information about Go an be found athttp://www.gobase.org.3A tesuji is the best play in a ertain loal position. Thesemoves have names suh as the `net', the `ladder', the `ranesnest' et. Tesuji problems are used in teahing a player thesestandard plays.

?0.5469
?0.5469 F 0.0?0.875 ? 0.625 T1.0 ?0.5 ?0.5 F 0.0?0.5 ?0.5 ?0.5 ?0.5 ? 0.25 F0.0 F0.0?0.5 ?0.5Figure 3. Searh tree as Bayesian network. Eah node is la-belled with its probability of being TRUE. The estimated pathof best play is also labelled - notie it is the same as the pathfollowed by PNS (Figure 2).2.3. Proof Number SearhWe ompare our tehniques to Proof Number searh(PNS) (Allis, 1994), a state-of-the-art best-�rst searhalgorithm for �nding solutions to problems representedas AOTs. Two numbers are assigned to eah node: theproof number (PN) and the disproof number (DN).The PN of a node is de�ned as the minimum numberof nodes that must be developed in order to prove thatnode.

PNn =

∑

c∈ch(n) PNc if internal AND node,minc∈ch(n)PNc if internal OR node,
0 if g(n) = TRUE,

∞ if g(n) = FALSE.

1 if UNKNOWN leaf nodeBy symmetry the rules for propagating DNs are thesame as the rules for PNs if we exhange OR for ANDand TRUE for FALSE. Figure 2 shows an AOT withproof and disproof numbers labelled. Given a searhtree the next node to develop is determined by workingdown the tree from the root, seleting the hild withthe lowest PN at eah OR node and the hild with thelowest DN at eah AND node. One a leaf is reahedit is developed and then the PNs and DNs are prop-agated up to the root. This proess is repeated untilthe tree is solved.3. Searh and InfereneProbability propagation (PP) applies the rules of prob-ability to alulating a belief distribution over the Del-phi values of nodes in the tree. We assume that the

Learning to Solve Game Trees

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

PNS Nodes

P
P

N
od

es

Figure 4. Comparing the number of nodes developed in orderto solve a set of tesuji Go problems.value of eah hild of a node is distributed indepen-dently of the states of its siblings. This assumptionmay frequently be violated (for example in a game treethe values of siblings are likely to be orrelated as onethe player is in a strong position there are likely to bemany good moves available). This seems more likelyto be a problem for global (strategi) searh of thegame tree rather than loal, tatial searh, to whihthe ideas presented here seem more appliable.For eah node, n, we store the probability of it be-ing TRUE: Pn := P (d(n) = TRUE) , n ∈ N . If anode has value FALSE the probability Pn = 0, if ithas value TRUE then Pn = 1. If the node is UN-KNOWN then the probability represents our degreeof belief about the value of the node being TRUE. In-ferene is ahieved by simple propagation rules (Pearl,1984; Chi & Nau, 1988):
AND :Pn = P

∧

c∈ch(n)

d(c)

 =
∏

c∈ch(n)

Pc (1)
OR :Pn = P

∨

c∈ch(n)

d(c)

 = P

¬
∧

c∈ch(c)

¬d(c)

= 1 −
∏

c∈ch(c)

(1 − Pc). (2)The Bayesian network for the model is shown in Figure3. The joint distribution of the Delphi values of allnodes in the game tree is:
P (N) =

∏

n∈N\F

P
(

d(n)| {d(c)}c∈ch(n)

)

∏

l∈F

P (d(l))(3)

where F is the set of leaves (the searh fron-tier). For an AND node, P (d(n)| {d(c)}c∈ch(n)) =

I(d(n) =
∧

c∈ch(n) d(c)) and for an OR node
P (d(n)| {d(c)}c∈ch(n)) = I(d(n) =

∨

c∈ch(n) d(c)). ForTRUE or FALSE nodes the priors on the leaf val-ues, P (d(l)) are set to 1 or 0 respetively. For UN-KNOWN leaves the priors represent our prior beliefabout whether the node is TRUE or FALSE (set to0.5 in initial experiments).The Algorithm The game tree is explored by thebest-�rst searh proedure desribed in the algorithmboxes. At eah step the best node to expand is se-leted by starting at the top of the tree and workingdownwards following the path of best play (aordingto urrent beliefs). There are two ways in whih newobservations an hange the planned sequene of a-tions - by reduing the value of the urrent plan or byinreasing the value other ations so as to make thempreferable (Russell & Wefald, 1991). Our method ex-plores the �rst of these possibilities.To implement the propagation rules we represent theprobabilities as log-odds ratios, logodds(p) := L(p) :=
ln(p

1−p
). This uses the full �oating point range to rep-resent L(p), with high preision at both ends of therange (orresponding to probabilities lose to 1 or 0).The log-probability domain is not suitable as it haspoor auray for probabilities lose to 1 whih arereadily generated by the OR rule in large problems.Algorithm 1 FindBestNode(n)if n is leaf thenreturn nelse if n is AND node thenreturn FindBestNode(argminc∈ch(n){Pc})elsereturn FindBestNode(argmaxc∈ch(n){Pc})end ifAlgorithm 2 UpdateBeliefs(n)if n is AND node thenCalulate Pn via (1)elseCalulate Pn via (2)end ifUpdateBeliefs(pa(n))Experiments (See Setion 5.1 and Figure 4) show thatPP and PNS must expand roughly the same number ofnodes to solve Go problems. Comparing �gures 2 and3 it an be seen that PP and PNS are similar strate-gies. Both methods avoid exploring branhes of the

Learning to Solve Game TreesAlgorithm 3 Develop(n)
ch(n) := L(n)for all c ∈ ch(n) doif g(c) TRUE then

Pc := 1.0else if g(c) FALSE then
Pc := 0.0else
Pc := p(d(c)) (prior)end ifend forAlgorithm 4 Searhwhile proot < 1.0 do

n = FindBestNode(root)Develop(n)UpdateBeliefs(pa(n))end whiletree leading to AND nodes with many hildren (dueto the fat that a proof of suh a branh would involveproving more nodes in total). PP di�ers from PNS inthat it has an a�nity for developing OR nodes withmany hildren (due to the fat that eah hild of anOR node represents an independent additional haneof �nding a proof of the parent). That is, PP tends toexplore parts of the searh tree where player has moremoves available and opponent has fewer moves avail-able. Thus PP seems to reover an intuitive heuristi:mobility.4. Searh and KnowledgeSearh is a proess of observation. The searh algo-rithm is initialised with some prior beliefs about theleafs of the tree. These prior distributions are surro-gate for the as-yet unexplored parts of the tree. Thereis a trade-o� between searh and knowledge: the moreaurate the prior beliefs the fewer states the searhermust explore to �nd a proof. When searh termi-nates the parameters eah surrogate prior distribution,
p(d(l)) an be updated aording to the �nal value ofthe node, d(l), determined by the searh. If the vetor
l denotes all of the nodes in all of the searhes then thejoint likelihood is given by p(d(l)|q) =

∏

i p(d(li)|q).The parameters q are shared aross nodes (dependingon whih ommon patterns math) so generalisationaross di�erent positions and searh tasks is possible.4.1. Pattern MathingExat loal pattern mathing gives a rapid and sur-prisingly aurate Go move preditor (Stern et al.,

7

5

7

6

4

3

4

6

7

4

2

1

2

4

7

5

3

1

0

1

3

5

7

4

2

1

2

4

7

6

4

3

4

6

7

5

7

Figure 5. The sequene of nested pattern templates Ti with i ∈

{0, . . . , 7}.2006). In this paper we apply this tehnique to rep-resent knowledge in searh. A pattern is de�ned asthe exat arrangement of stones in a sub-region ofthe board entred on the empty loation of the boardwhere a move is to be made. We de�ne a set of �xednested `templates' Ti ∈ T (Figure 5). Eah template
Ti is a mask whih determines the sub-region of theboard within whih the arrangement of stones (of size
i) must math for the pattern to be present. Size 1is the smallest template (just the point at whih themove is made) and Size 7 is the largest. Thereforeeah move in a Go position orresponds to a stak of8 patterns of nested sizes. Eah pattern maps to ane�iently generated hash key suh that the patternsare invariant to the 8-fold symmetry of the square. Inontrast to our earlier work, here eah pattern vertexhas �ve states (attaker stone, defender stone, emptyvertex, o�-board, goal stone) and the patterns are notinvariant to olour reversal.Nodes (positions) are mapped to patterns via the movewhih generated the node. Let the stak of all patternswhih math for a node n be denoted by π(n). Eahpattern de�nes a many-to-one mapping from searhtree nodes to a look-up table, H, via the hash key.This table an be viewed as a partial-transposition ta-ble. A transposition table (TP) is a tool used in mostpratial game searh implementations whih ontainsthe values of all board positions that previously ap-peared in the searh so if a position is enounteredagain the information already gathered about it anbe exploited (Plaat et al., 1986). In this work wedo not map from positions to TP entries but insteadfrom patterns (partial positions) to table entries. Thispartial mathing allows generalisation aross di�erentsearh tasks whih is bought at the ost of unertainty- hene the entries in the partial-TP are probabilitydistributions.When a node, n, is developed and its hildren c ∈ L(n)are added to the tree then the patterns for eah patterntemplate T ∈ T entred on the moves whih generatethese hildren are harvested, i.e. added to H.

Learning to Solve Game Trees
x00

p(x00) = N (x00; µ0, σ
2
0)

0

x101

1

0

1

1 x11 x12

p(x12|x00)

= N (x12; x00, β
2
0)

x20
2

1

2

1

0

1

2

1

2

x21 x22 x23 x24 x25 x26

p(x26|x12)

= N (x26; x12, β
2
1)

y00 y01 y10 y11 y20 y40 y50 y51 y60 y61 y62

Figure 6. Hierarhial Pattern Model. In this ase there are 11patterns in total in the hierarhy in 3 levels. The full system has8 levels in the hierarhy. The diagram shows 11 observations.4.2. Surrogate Tree ModelsBeta Model Let π̂(l) denote the largest pattern(whih has been observed at least one before) math-ing for node l. The prior distribution on the valueof a leaf node, p(d(l)), is distributed aording toa Bernoulli distribution, p(d(l)|qπ̂(l))= Ber(d(l); qπ̂(l)).The parameter q represents a prior belief about thenode being TRUE. We plae a Beta prior on qπ̂(l),
p(qπ̂(l))= Beta(qπ̂(l);απ̂(l), βπ̂(l)). This gives the pre-ditive distribution p(d(l)|απ̂(l), βπ̂(l)) =

απ̂(l)

απ̂(l)+βπ̂(l)and the parameters απ̂(l) and βπ̂(l) are pseudo-ountsorresponding to the number of observed proofs anddisproofs respetively of all nodes where π̂(l) is foundto math.After searh termination, the posterior distributionover the parameter p(ql|d(l)) is Beta(ql;α
′
π̂(l), β

′
π̂(l))with α′ = α + 1 if d(l) = TRUE and β′ = β + 1 if

d(l) = FALSE. This update is applied for all elementsof π(n) for eah solved node, n, in the tree.Hierarhial Gaussian Model We also onsidereda model whih takes aount of the entire stak of pat-terns that math at a vertex. Intuitively the evideneprovided by a larger pattern should dominate over theevidene from a smaller pattern at the same loationbeause the larger pattern ontains all the informa-tion of the smaller pattern plus additional information.However, the smaller patterns should be allowed to in-�uene the value of the larger patterns in ases wherethe larger patterns have been seen infrequently.First we de�ne a hierarhial model of the value of Gomoves. Let the set of the values of all the (in�nite)possible observations of all possible Go moves in allpossible positions be Y. Also, let the set of (latent)values of all possible patterns of all sizes be X . Eah

member of X shall be denoted xij where xij is thevalue of the jth pattern of size i. The index of thesmallest pattern size is 0 so the value of the smallest(zero sized) pattern is x00. The largest pattern sizeis m (in the experiments here m = 7). An observedvalue, yjk ∈ Y, is the kth observation of the jth fullboard position. The joint distribution is:
p(Y,X) = p(X) · p(Y|X)

= p(x00)

m
∏

h=1

∏

k

∏

j

p(xhj |x(h−1)k)

... ·
∏

q

∏

i

p(yqi|xnq)where p(xij |x(i−1)j) = N (xij ;x(i−1)j , β
2
i−1),

p(yij |xni) = N (yij ;xni, 1) and p(x00) =
N (x00;µ0, σ

2
0). Figure 6 shows a orrespondinggraphial model with m = 3. The variane param-eters, β2

i , orrespond to the variability of the latentvalue of patterns of sizes i + 1 about the value of thesize i pattern that also mathes and are estimatedempirially. The preditive (Gaussian) distributionover the move-value yij is determined by beliefpropagation (MaKay, 2003).In order to use this model as a prior over the proba-bility of a leaf node, n, being TRUE in the searh treewe introdue the onditional distribution p(d(n)|y) =
fswitch(d(n), y) = I((y > 0)∧d(n))+I((y < 0)∧¬d(n))(we observe the onstraint that a TRUE node has posi-tive value and a FALSE node has negative value). Thisorresponds to letting the probability of a node beingproved TRUE be the area under the positive orthantof the Gaussian belief: p(d(n)|µ, σ) = Ber(d(n), 1 −
Φ(0;µ, σ2)) for p(y) = N (y;µ, σ). After searh termi-nation, for a node with value d(n) and a belief fromthe hierarhial model of N (y;µ, σ2) the update is:

p(y|d(n)) =
fswitch(d(n), y) · N (y;µ, σ2)

Z(µ, σ2, d(n))
.This is non-Gaussian so we approximate it by theGaussian losest in terms of KL divergene. Followingthis approximation inferene is by belief propagation.5. Experiments: PNS vs PPPNS and PP are applied to the task of solving a setof Go problems whih we know in advane all have aTRUE solution. A disproof riterion was de�ned basedon the liberty ount of the goal stone. The number ofliberties of a stone is the minimum number of stonesthat must be played to apture it. The goal funtion

Learning to Solve Game Trees����������
����
�
�
�
����
�
�
�
�
������
�����
�
��������������������������The Knight's-Move Tesuji
�����������������
�
�����
�
�
������
�
����
��
�
������
�
�����
�
�����������The Nose TesujiFigure 7. Example tesuji apture problems (Davies, 1975). Thegoal is to apture the stones marked with a triangle.was set as

g(n) =

TRUE if goal vertex empty,
TRUE if a ladder works,
FALSE if liberties of goal > L,

UNKNOWN otherwiseIf searh terminates with value FALSE then L is in-remented and the searh repeated. This proess isrepeated until the searh terminates with value TRUE.5.1. No KnowledgeFirstly the performane of PNS and PP with an ig-norant prior (p(d(l)) = 0.5, l ∈ F) are ompared ona set of 192 Go apture problems4 (see Figure 4). Inmost problems the two algorithms perform similarlyas disussed in Setion 3.5.2. LearningIn a seond set of experiments we inlude additionalproblems that ould not be solved by PNS. These arerandomly divided into a training set (289 problems)and a test set (145 problems). The pattern table, H,is initially empty. During learning the searher har-vests patterns ontinuously. The prior distribution foreah new node is assigned using one of the surrogatemodels desribed in Setion 4.2, using the patterns todetermine the parameters of the models. Learning isarried out by updating the posteriors over the param-eters of the surrogate models after searh terminationfor moves leading to TRUE and FALSE nodes.A time-out of 120s is set for eah problem. Thesearher iterates over the training set re-attemptingproblems that previously failed until as many prob-lems as possible are solved. The result plots are gen-erated by timing the solver on the test set and om-paring these times with the time taken by PNS. Timeis used for omparison so additional ost assoiated4These are also available at http://t-t.dk/madlab thanks toThomas Thomsen.

with pattern mathing and inferene is taken aountof. Problems that are solved after learning but ouldnot be solved by PNS are labelled as rosses on theplots. Problems whih ould be solved by PNS butnot PP are labelled as irles on the plots. The dotsorrespond to problems that ould be solved by bothalgorithms. Problems whih ould be solved by neitheralgorithm are omitted.The Beta model is tested (Figure 8 top) with two dif-ferent initial settings for the prior parameters (α and
β). Learning improves the speed of problem solving,sometimes by orders of magnitude. However, thereare a number of problems whih fail after learning butwere able to be solved before learning suggesting over-�tting. This problem is ameliorated by using a peakedprior (Figure 8 right). The hierarhial model per-forms somewhat better with less over-�tting (Figure 8bottom). The left plot orresponds to an initial settingof zero previous observations. The plot on the rightwas generated by assigning prior beliefs as if a num-ber of previous observations of p(d(l)) = 0.5 had beenmade (ompare with initialising the pseudo ounts ofa Beta distribution).6. ConlusionsProbability propagation as a means to solve Go prob-lems appears to perform similarly to best-�rst proof-number searh. Experiments suggest it is possible tolearn from previous searhes how to searh faster by or-ders of magnitude. However, great are must be takento prevent over-�tting.AknowledgementsWe would like to thank David MaKay, Tom Minka andThomas Thomsen for interesting disussions. This workwas supported by a grant from Mirosoft Researh.ReferenesAllis, V. L. (1994). Searhing for solutions in gamesand arti�ial intelligene. Dotoral dissertation,University of Limburg.Baum, E. B., & Smith, W. D. (1997). A bayesianapproah to relevane in game playing. Arti�ialIntelligene.Chi, P., & Nau, D. (1988). Comparison of the minimaxand produt bak-up rules in a variety of games.Searh in Arti�ial Intelligene.Davies, J. (1975). Tesuji. Kiseido Publishing Com-pany.

Learning to Solve Game Trees

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

PNS Milliseconds

P
P

 M
ill

is
ec

on
ds

All problems
Newly Solved Problems
Newly Failed Problems

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

PNS Milliseconds

P
P

 M
ill

is
ec

on
ds

All problems
Newly Solved Problems
Newly Failed Problems

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

PNS Milliseconds

P
P

 M
ill

is
ec

on
ds

All problems
Newly Solved Problems
Newly Failed Problems

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

PNS Milliseconds

P
P

 M
ill

is
ec

on
ds

All problems
Newly Solved Problems
Newly Failed Problems

Figure 8. Time taken to solve Go problems - PNS vs PP. Top Left: Beta model. prior α0 = 1, β0 = 1 (27 problems newly failed,6 problems newly solved, mean speedup fator: 45.9); Top Right: Beta model, prior α0 = 1000, β0 = 1000 (13 problems newlyfailed, 8 newly solved, speed, mean speedup fator: 30.7). Bottom Left: Hierarhial , uniform prior (21 newly failed, 5 newlysolved, mean speedup fator: 135.5); Bottom Right: Hierarhial model, prior hand tuned to redue learning rate (5 newly failed,14 newly solved, mean speedup fator: 8.8).MaKay, D. J. C. (2003). Information theory, infer-ene and learning algorithms. Cambridge UniversityPress.Müller, M. (2002). Computer Go. Arti�ial Intelli-gene, 134, 145�179.Nilsson, N. J. (1971). Problem solving in arti�ial in-telligene. MGraw-Hill.Palay, A. J. (1985). Searhing with probabilities. Pit-man Publishing Ltd.Pearl, J. (1984). Heuristis: Intelligent searh strate-gies for omputer problem solving. Assison-Wesley.Plaat, A., Shae�er, J., Pijls, W., & de Bruin, A.(1986). Exploiting graph properties of game trees.

Proeedings of the Thirteenth National Confereneon Arti�ial Intelligene (AAAI-96) (pp. 234�239).Portland, OR.Russell, S., & Norvig, P. (1995). Arti�ial intelligene:A modern approah. Prentie Hall.Russell, S., & Wefald, E. (1991). Do the right thing:Studies in limited rationality. The MIT Press.Stern, D., Herbrih, R., & Graepel, T. (2006).Bayesian pattern ranking for move predition in thegame of Go. ICML '06: Proeedings of the 23rdinternational onferene on Mahine learning (pp.873�880). New York, NY, USA: ACM Press.

