
Large-scale RLSC Learning Without Agony

Wenye Li wyli@cse.cuhk.edu.hk

Kin-Hong Lee khlee@cse.cuhk.edu.hk

Kwong-Sak Leung ksleung@cse.cuhk.edu.hk

Dept. Computer Science & Engineering, The Chinese University of Hong Kong, Hong Kong, China

Abstract

The advances in kernel-based learning ne-
cessitate the study on solving a large-scale
non-sparse positive definite linear system.
To provide a deterministic approach, recent
researches focus on designing fast matrix-
vector multiplication techniques coupled with
a conjugate gradient method. Instead of us-
ing the conjugate gradient method, our paper
proposes to use a domain decomposition ap-
proach in solving such a linear system. Its
convergence property and speed can be un-
derstood within von Neumann’s alternating
projection framework. We will report sig-
nificant and consistent improvements in con-
vergence speed over the conjugate gradient
method when the approach is applied to re-
cent machine learning problems.

1. Introduction

Given training data (xi; yi)
m

i=1
where xi ∈ Rd and

yi ∈ R, the supervised learning tries to seek a predic-
tive function f : Rd → R that explains the relation-
ship between x and y. Following Tikhonov(Tikhonov
& Arsenin, 1977), a simple yet effective approach
stems from a regularized learning framework(Poggio
& Girosi, 1990)(Poggio & Smale, 2003) by

min
f∈HK

1

m

m
∑

i=1

(yi − f (xi))
2

+ γ ‖f‖2

K , (1)

where ‖f‖K is the norm in HK - the Reproducing
Kernel Hilbert Space (RKHS), induced by a sym-
metric positive definite function Kx (x′) = K (x,x′)
(a kernel). The last term in Equation (1), where

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

γ > 0, forces smoothness and uniqueness of the solu-
tion. According to the representer theorem(Kimeldorf
& Wahba, 1971), the solution has the form f =
∑m

j=1
cjKxj

where c = (c1, · · · , cm)
T

and

(K + γmI) c = y (2)

where K is an m × m positive definite kernel matrix
with elements Kij = K (xi,xj), I is the identity ma-

trix and y = (y1, · · · , ym)
T
.

The matrix A = K + γmI is strictly positive definite.
The linear system Ac = y can be solved in O

(

m3
)

basic floating point operations and O
(

m2
)

storage by
direct methods such as Gaussian elimination and LU
factorization, where m is the number of training data.
And it soon becomes evident that the direct solvers are
impractical for large-scale problems, e.g., m > 10000.

To deal with this problem, one line of work sug-
gested to use low-rank approximations to the kernel
matrix(Smola & Schölkopf, 2000)(Williams & Seeger,
2001)(Fine & Scheinberg, 2001)(Lee & Mangasarian,
2001). These methods try to choose a reduced sub-
set of the training dataset and represent the selected
points exactly in the Hilbert space while representing
the other points approximately as linear combinations
of the selected points. Some success has been achieved,
yet these methods do not guarantee the approximation
of the kernel matrix in a deterministic sense. These
methods assume that most eigenvalues of the matrix
are zero. This is not always true and its violation
might incur limited reduction in computational time
and memory.

To provide a deterministic method to speed up kernel
machines learning, (Fung & Mangasarian, 2001) used
Sherman-Morrison-Woodbury formula to calculate the
inverse of (K + γmI). This approach works well on a
linear kernel with a small d (recall d is the number of
dimensions). For other problems, people still need to
find general approaches.

Another way for a deterministic solution is to explore

Large-scale RLSC Learning Without Agony

the iterative techniques. Beginning with a given ap-
proximate solution, the methods modify the compo-
nents of the solution successively, until convergence
is achieved(Barrett et al., 1994)(Golub & van Loan,
1996)(Saad & van der Vorst, 2000). They do not guar-
antee a solution for all systems of equations. However,
when they do yield a solution, they are usually less
expensive than direct methods.

Among the iterative solvers, the conjugate gradi-
ent method is generally suggested to solve Equa-
tion (2) (Rifkin, 2002)(Yang et al., 2005)(Shen et al.,
2006)(Freitas et al., 2006). It consecutively performs a
matrix-vector multiplication Kc. The computational
cost is O

(

m2
)

per iteration. If rank (K) = r, the
method converges theoretically in r+1 steps. Then the
computational complexity in solving the equation is
O

(

rm2
)

and the storage requirement is O
(

m2
)

which
is used to store K. While this represents an improve-
ment for some problems, the rank of the matrix may
not be small. In machine learning tasks, K is often full
rank and then the computational complexity becomes
O

(

m3
)

.

In this paper, we consider a different iterative method,
a domain decomposition approach, to solve a positive
definite linear system from machine learning problems.
The approach can be understood and justified as the
successive orthogonal projections among different sub-
spaces of an RKHS. When applying this approach to
machine learning tasks, we will report significant and
consistent improvements in convergence speed over the
conjugate gradient method.

A word on notation: Besides the K and Kx we have
used in a kernel function, a bold capital letter denotes
a matrix (e.g. K), and a corresponding normal let-
ter with subscript i, j refers to the (i, j)-th entry (e.g.
Kij). Similarly, a bold lower case letter denotes a vec-
tor (e.g. c), and a corresponding normal letter with
subscript i refers to the i-th entry (e.g. ci). 0 denotes
a vector of all 0’s. Furthermore, let A be an m×m ma-
trix and c be an m × 1 vector. If s1, s2 ⊆ {1, · · · ,m},
then As1,s2

is a matrix obtained from A by keeping
only the rows with indices in s1 and the columns with
indices in s2, and cs1

is a vector obtained from c by
keeping the elements with indices in s1.

2. A Simple Algorithm

To solve a linear equation Ac = y, where A is an
m × m strictly positive definite coefficient matrix and
y is an m-dim vector, a simple yet efficient algorithm
is shown below:

Algorithm 1 Solve a p.d. linear system Ac = y.

1: s = {1, · · · ,m}
2: Divide s into subsets sj , j = 1, · · · , `.
3: t = 0, c = 0

4: repeat

5: t = t + 1, ct = 0

6: for j = 1 to ` do

7: Solve ct
sj

by Asj ,sj
ct

sj
= ysj

.

8: y = y − As,sj
ct

sj

9: csj
= csj

+ ct
sj

10: end for

11: until c converges
12: return c

2.1. Analysis

Some analysis of the algorithm: The algorithm is a
standard domain decomposition approach. It solves
the linear system Ac = y iteratively. In an iteration
from step 5 to step 10, the algorithm solves ` sub-
systems Asj ,sj

ct
sj

= ysj
, 1 ≤ j ≤ `. For simplicity,

we assume the size of each subsystem is k =
⌈

m
`

⌉

,
which may be regarded as a constant. The computa-
tional cost of each subsystem in step 7 is O

(

k3
)

by
direct methods. There is a trick which greatly simpli-
fies the computation. We first compute the Cholesky
factorization of the coefficient matrix in each subsys-
tem before the iterations start, which requires a cost
of O

(

`k3
)

= O
(

k2m
)

. Then we use the factorized
matrices to solve the subsystems, which requires only
O

(

k2
)

in solving one and O
(

`k2
)

= O (km) in solving
all.

The major computation comes from the modification
of the residual in step 8. The total computation of
As,sj

ct
sj

, 1 ≤ j ≤ ` roughly requires O
(

m2
)

by di-
rect matrix-vector multiplications. We can also resort
to the fast matrix-vector multiplication methods1 de-
veloped recently(Sun & Pitsianis, 2001)(Yang et al.,
2005), which may simplify the computation to a linear
complexity in some cases.

In summary, the computational complexity per itera-
tion is O

(

m2
)

, which is the same as conjugate gradi-
ent. However, in terms of the convergence speed, as
we will see later, this approach needs far fewer itera-
tions in solving a positive definite linear system from
machine learning tasks.

The major memory consumption comes from the stor-
age of As,sj

in step 8. The memory requirement is

1Instead of multiplying Ac directly, these methods first
decompose A = DT D, where D has a much lower row
dimension than A. Then the methods compute DT (Dc).

Large-scale RLSC Learning Without Agony

O
(

m2
)

if we store the whole coefficient matrix A,
which is the same as conjugate gradient. It is also pos-
sible to store only one As,sj

at a time, which requires
only an O (km) storage. When the fast matrix-vector
multiplication methods are applicable, the memory re-
quirement may be further reduced.

2.2. Parallelism

To tackle large-scale problems in practice, we often
consider the concurrent execution when designing an
algorithm. For the domain decomposition approach
presented above, we can parallelize it easily.

As we have analyzed, the major computation comes
from the iterative modification of the residual in step
8. Since this step only involves matrix-vector multi-
plication, it can be parallelized. The computations of
As,sj

ct
sj

can be evenly partitioned to different com-
puting nodes and then the results are summed up.
The memory burden can also be distributed to all the
nodes. Each node only needs to store one part of A

instead of the whole kernel matrix, and the storage
requirement becomes much smaller. As for the com-
munication cost in parallelism, only the multiplication
results need to be synchronized in each iteration, which
is trivial.

3. Justification

The algorithm in section 2 may be justified by two
steps. The first step maps the linear system in Equa-
tion (2) to an interpolation problem, and then estab-
lishes the relationship between the interpolation prob-
lem and the orthogonal projection in a Hilbert space.
The second step analyzes the orthogonal projection by
von Neumann’s alternating projection theorem. The
convergence property and speed of the algorithm be-
come evident after the analysis.

The following lemma is a necessary step to understand
a positive definite linear system Ac = y from an in-
terpolation point of view.

Lemma 1 For any m × m positive definite matrix
A, there exist m points x1, · · · ,xm in a space Rd

and a kernel function K defined on Rd, such that
Aij = K (xi,xj).

Proof. We only need to find such m points x1, · · · ,xm

and such a kernel K defined on a space Rd.

Since A is positive definite, A can be decomposed into

A = VΛVT ,

where V = (v1, · · · ,vm) is an orthogonal matrix

and Λ is a diagonal matrix with non-negative di-
agonal entries λ1, · · · , λm. Letting d = m, xi =
(√

λ1v1i, · · · ,
√

λmvmi

)T
, (1 ≤ i ≤ m) and K be a lin-

ear kernel defined on Rd completes the proof.

With this lemma, we can see that the problem of find-
ing a solution to Ac = y is equivalent to the prob-
lem of finding a function f =

∑m

j=1
cjKxj

such that
f (xi) = yi for all xi. Here we abuse the notation
slightly. The K used here is a different kernel from
the K in Equation (1).

We need the following definitions. Given a kernel func-
tion Kx (x′) = K (x,x′) and a finite set of distinct
points X = {x1, · · · ,xm} in Rd, let HK denote the
RKHS induced by K. That is, HK is a finite dimen-
sional space







m
∑

j=1

ajKxj
(·) : a1, · · · , am ∈ R







endowed with the inner product

〈f, g〉 =

m
∑

i,j=1

aibjK (xi,xj)

where

f =

m
∑

i=1

aiKxi
and g =

m
∑

j=1

bjKxj
.

Given Xi ⊆ X (1 ≤ i ≤ `), we use Hi to denote the
subspace of functions in HK associated with Xi. That
is

Hi =

{

f ∈ HK : f =
∑

x∈Xi

cxKx, where cx ∈ R

}

.

3.1. Interpolation Operator and Orthogonal

Projection

Let us recall the definition of orthogonal projection in
a Hilbert space.

Definition 1 (Orthogonal Projection) Let V be a
closed subspace of a Hilbert space H. The linear op-
erator P : H → V is called the orthogonal projection
onto V if for any f ∈ H and any v ∈ V

〈v, f − Pf〉 = 0,

where 〈·, ·〉 denotes the inner product in H.

The orthogonal projection is associated with the best
approximation. For any f ∈ H and a closed subspace

Large-scale RLSC Learning Without Agony

V of H, the orthogonal projection of f onto V is the
unique g ∈ V such that 〈f − g, f − g〉 is minimized.

We also define the interpolation operator which is rel-
evant to our linear system.

Definition 2 (Interpolation Operator) Let
X1, · · · , X` be subsets of X, such that ∪`

i=1Xi = X.
Given f ∈ HK , define interpolation operators
Pi : HK → Hi, i = 1, · · · , ` by

Pif =
∑

x∈Xi

cxKx and (Pif) (z) = f (z) for all z ∈ Xi.

The next result identify each operator Pi as the or-
thogonal projection onto the function subspace Hi.
This is a key observation utilized in (Faul & Pow-
ell, 1999)(Schaback & Wendland, 2000)(Beatson et al.,
2000). And we explained it in terms of the relationship
between the interpolation operators and the orthogo-
nal projections.

Lemma 2 Let Xi ⊆ X, (1 ≤ i ≤ `) be a finite set of
distinct points in Rd and Pi denote the interpolation
operator defined above. Then Pi is the orthogonal pro-
jection from HK onto Hi.

Proof. Given f =
∑

x∈X axKx and Hi with a basis
{Kv1

, · · · ,Kvn
}, where {v1, · · · ,vn} ⊆ Xi. Suppose

Pif =

n
∑

j=1

cvj
Kvj

exists. The coefficients c = (cv1
, · · · , cvn

)
T

must solve
the linear system

Gc = b

with

Gjk =
〈

Kvj
,Kvk

〉

, j, k = 1, · · · , n

and

bj =
〈

Kvj
, f

〉

= f (vj) , j = 1, · · · , n.

The Gram matrix G is strictly positive definite and
the solution is unique. In fact, it can be verified that
Pif (x) = f (x) holds for all x ∈ Xi. Hence Pif exists
and is unique. It can also be easily verified that Pif

is the best approximation of f in Hi. That is, Pif

is the unique g such that 〈f − g, f − g〉 is minimized.
We omitted the verifications here.

The lemma now follows from the characterization of
f ∈ HK onto a closed subspace Hi of HK , which is the
unique g ∈ Hi such that 〈f − g, f − g〉 is minimized.

It is now possible to understand the algorithm in sec-
tion 2 as a version of von Neumann’s alternating pro-
jections. Each execution of step 7 in the algorithm
corresponds to an orthogonal projection from HK onto
its subspace Hi.

3.2. von Neumann’s Alternating Projection

Theorem

The von Neumann’s alternating projection theo-
rem(von Neumann, 1955) concerns an orthogonal pro-
jection in a general Hilbert space H. The motivation
is as follows: It is well known that the orthogonal pro-
jection onto the intersection U ∩ V of the two closed
subspaces U and V of H can be obtained by the prod-
uct PuPv if PuPv = PvPu, where Pu and Pv are the or-
thogonal projections onto U and V, respectively. The
question arises out of the orthogonal projection onto
U ∩V when PuPv 6= PvPu. Denote this desired projec-
tion by Pu ∧ Pv, and the answer is given by the limit
of the sequence

lim
t→∞

(PuPv)
t
f = (Pu ∧ Pv) f, (3)

where the left-hand side converges to the right-hand
side in the norm of H and f denotes any element of
H. Equation (3) generalizes by induction to any finite
number of subspaces and their corresponding projec-
tions. This is von Neumann’s alternating projection
theorem.

3.3. Convergence Speed

We are able to analyze the convergence speed of the
domain decomposition approach in section 2 by von
Neumann’s alternating projection algorithm, the con-
vergence property of which has been well studied in
mathematics. If we define Qi = I − Pi, i = 1, · · · , `,
then Qi is the orthogonal projection onto H⊥

i (the
subspace orthogonal and complementary to Hi), and
(Q` · · ·Q1)

t
f denotes t complete iterations of the al-

ternating projections. The convergence speed of the
alternating projection algorithm can be understood in
terms of the angles among the subspaces H⊥

i .

Definition 3 Let U1 and U2 be two closed subspaces
of a Hilbert space H with U = U1 ∩U2. Then the angle
α between U1 and U2 is given by

cos α (4)

= sup

{〈

u

‖u‖ ,
v

‖v‖

〉

: u ∈ U1 − U ,v ∈ U2 − U
}

.

The following theorem(Smith et al., 1977) guarantees
that the alternating projection algorithm has at least
a linear convergence speed.

Large-scale RLSC Learning Without Agony

Theorem 1 Let Q1, · · · , Q` be ` orthogonal projec-
tions onto closed subspaces U1, · · · ,U` of a Hilbert
space H. Let U = ∩`

i=1Ui. Let Q : H → U be the
orthogonal projection onto U , and let αj be the angle
between Uj and ∩`

i=j+1Ui. Then for any f ∈ H,

∥

∥

∥
(Q` · · ·Q1)

t
f − Qf

∥

∥

∥

2

≤ c2t ‖f − Qf‖2
,

where

c2 ≤ 1 −
`−1
∏

j=1

sin2 αj .

It is noteworthy that this is a pessimistic estimation
of the convergence rate. In practice, as we will see in
the experiments, the convergence speed is often much
faster. It is also noteworthy that the angle between
some Uj and ∩`

i=j+1Ui might be zero and c = 1, which
makes us not be able to verify the approach’s con-
vergence property by this theorem. Obviously, some
trivial assumptions will rule out this possibility, for ex-
ample, each Uj , (1 ≤ j ≤ `) has an element which only
belongs to it, and to no other U ′

js.

3.4. A Domain Decomposition Approach

Based on the justification, we come to the following
domain decomposition approach. It generates the se-
quence of residuals {f`t+i}, where t = 1, 2, · · · and
i = 1, 2, · · · , ` via

f0 = f and f`t+i = f`t+i−1 − Pif`t+i−1.

And the sequence of approximations {c`t+i} is gener-
ated by:

c0 = 0 and c`t+i = c`t+i−1 + Pif`t+i−1.

The algorithm in section 2 exactly implements this
approach.

A graphical illustration is given in figure (1). Sup-
pose a Hilbert space HK can be decomposed into two
subspaces: U and V. For any unknown f ∈ HK ,
we project f0 = f onto U and the projection Puf0

can be computed. In the second step, we project
f1 = Quf0 = f0 − Puf0 onto V and Pvf1 can be
computed. Then we project f2 = Qvf1 = f1 − Pvf1

onto U , and so on and so forth. By von Neumann’s
alternating projection theorem, the projection comes
to U ∩ V in the end, which is the zero function in
our case. Correspondingly, we start from a zero func-
tion. By summing up the successive projections of
fi, (i = 0, 1, 2, · · ·) onto U or V, we can approximate f

to arbitrary precision in the norm of the space.

In some sense, this domain decomposition approach
and the classical conjugate gradient method belong to

�

� �

� � �

Figure 1. A graphical illustration of the domain decompo-
sition approach. An unknown function f comes near the
zero function after several projections. Accordingly, we can
approximate f based on the projection information.

two completely different categories of solvers of linear
equations. As shown in figure (1), the domain de-
composition method may be regarded as a projection-
based method. Conjugate gradient, just as its name
implies, is a gradient-based method. Instead of solving
Ac = y directly, the method studies the minimization
of a quadratic form: 1

2
cT Ac + yT c. Starting with

an arbitrary point c0, the method slides successively
to another approximation along the conjugate gradi-
ent direction in minimizing the quadratic function. It
reaches a minimizer when it converges, which is equiv-
alent to the solution to Ac = y if A is symmetric and
positive definite.

4. Experiments

To compare the performance of the domain decom-
position approach and the conjugate gradient method
in machine learning tasks, we carried out a series of
experiments in solving positive definite linear equa-
tions. The equations were generated in the regularized
least-squares classification (RLSC) problems. Two
commonly-used kernels, the linear kernel and Gaus-
sian RBF kernel, were adopted in the experiments.
Because the Gaussian kernel parameter and the reg-
ularization parameter γ affect the convergence speed
of both algorithms, we used cross validation before-
hand to select the parameters which gave the optimal
classification accuracy2.

We report the results of six experiments using the
three datasets from CMU text mining group3, which

2For a wide range of parameter choices near the opti-
mal ones, similar convergence trends were observed in the
comparisons.

3http://www.cs.cmu.edu/˜TextLearning/datasets.html

Large-scale RLSC Learning Without Agony

are representative of our many experiments on differ-
ent datasets. The 20-newsgroups dataset has about
19, 000 web pages in 20 classes. The webkb dataset has
about 8, 300 pages in 7 classes. The 7-sectors dataset
has about 4, 600 pages in 7 classes. In the experiments,
a document is represented by bag-of-words. We first
computed the kernel matrix K using the whole dataset
with a linear kernel and a Gaussian kernel respectively.
Then we got the matrix A by K+γmI. Each element
of y was set by a number specifying a document’s class
label, i.e., 1, 2, · · · , 20 for 20-newsgroups dataset4. Fi-
nally, we solved the linear system Ac = y for the vec-
tor c. For domain decomposition, we set the size of
each subsystem Xi to be 1, 000.

Figure (2)(a)-(f) depicts the results of relative residu-

als ‖Ac−y‖
‖y‖ versus the number of iterations. We can see

that comparing with the conjugate gradient method
which exhibits oscillatory behaviors in the experi-
ments, the domain decomposition approach is more
stable in reducing the relative residuals. It reaches an
acceptable residual after about 10 iterations in the ex-
periments, which is much fewer than the number of
iterations required by the conjugate gradient method.
As for the running time, the two methods do not differ
much in each iteration, and so domain decomposition
requires much less running time than conjugate gradi-
ent to converge.

5. Conclusions

Recent researches in machine learning necessitate the
study on solving a large-scale positive definite linear
system. To provide a deterministic solver for this type
of equations, people generally resort to the conjugate
gradient method. The conjugate gradient method with
incomplete Cholesky factorizations is the de facto it-
erative solver for sparse positive definite linear sys-
tems which typically originate from the systems re-
lated to elliptic partial differential equations. How-
ever, the positive definite systems in machine learning
problems are often not sparse, the Cholesky factoriza-
tion becomes expensive for large-scale dense systems,
and a direct application of conjugate gradient may not
be the best choice.

In this paper, we considered a domain decomposition
approach for the task. It is not a new approach, and
can be regarded as a variant of block Gauss-Seidel
method in solving linear equations. People may also
found the similarity in the backfitting algorithm for
generalized linear models(Hastie & Tibshirani, 1986).

4Similar convergence trends were observed when each y
is set to either −1 or +1 for practical binary classification.

The viewpoint in analyzing this approach was ever
used in (Beatson et al., 2000), where the authors
designed a fast algorithm for interpolation problems
and studied its convergence property within von Neu-
mann’s alternating projection framework after having
established the algorithm’s relationship with the or-
thogonal projections in a Hilbert space. This paper
showed that their analysis generalizes to all positive
definite linear systems.

We applied the approach to the regularized least-
squares classification problems and obtained signifi-
cant and consistent improvements over the standard
conjugate gradient method. Besides RLSC, a se-
ries of other models(Williams & Rasmussen, 1996)(Li
et al., 2007) may also benefit from this approach. An-
other advantage of the approach lies in the parallelism,
which provides the ability to solve large-scale problems
in practice.

Two topics related to the approach need to be fur-
ther investigated. In the analysis of the algorithm,
the angles between different subspaces are shown to
be relevant to the convergence speed. In fact, it is
also possible to study the angles defined in Equation
(4) explicitly. How to partition the data into dif-
ferent subsystems so as to maximize the angles and
make the algorithm converge faster? One possible
solution is to pre-process the data using, for exam-
ple, some tree-based structures(Preparata & Shamos,
1985)(Shen et al., 2006).

The second investigation is relevant to the real ap-
plications. It is not unusual to see a machine learn-
ing task which has up to millions of training data.
With such a domain decomposition approach and the
fast matrix-vector multiplication techniques, the effec-
tiveness of kernel-based method in large-scale learning
may be practically verified.

After finishing the work of this paper, we came to know
the recent work of (Ratliff & Bagnell, 2007) that gave
a novel variant of the conjugate gradient method to
speed up the training of kernel machines. Empirical
comparisons between the work and the domain decom-
position approach will be carried out in the future.

Acknowledgments

The authors would like to thank the anonymous re-
viewers for their valuable comments and suggestions.
This research was partially supported by RGC Ear-
marked Grant #4173/04E and #4132/05E of Hong
Kong SAR and RGC Research Grant Direct Alloca-
tion of the Chinese University of Hong Kong.

Large-scale RLSC Learning Without Agony

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

#(iterations)

re
la

tiv
e

re
si

du
al

CG
DD

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

#(iterations)

re
la

tiv
e

re
si

du
al

CG
DD

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

#(iterations)

re
la

tiv
e

re
si

du
al

CG
DD

(a) 20-newsgroups (linear) (b) webkb (linear) (c) 7-sectors (linear)

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

#(iterations)

re
la

tiv
e

re
si

du
al

CG
DD

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

#(iterations)

re
la

tiv
e

re
si

du
al

CG
DD

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

#(iterations)

re
la

tiv
e

re
si

du
al

CG
DD

(d) 20-newsgroups (Gaussian) (e) webkb (Gaussian) (f) 7-sectors (Gaussian)

Figure 2. Comparisons of convergence speed between conjugate gradient (CG) and domain decomposition (DD) using
different datasets and kernels. The domain decomposition approach requires much fewer iterations than the conjugate
gradient method to converge.

References

Barrett, R., Berry, M., Chan, T. F., Demmel, J.,
Donato, J., Dongarra, J., Eijkhout, V., Pozo, R.,
Romine, C., & van der Vorst, H. (1994). Templates
for the solution of linear systems: Building blocks
for iterative methods. Philadelphia, PA, USA: Soci-
ety for Industrial and Applied Mathematics.

Beatson, R., Light, W., & Billings, S. (2000). Fast
solution of the radial basis function interpolation
equations: Domain decomposition methods. SIAM
J. Sci. Comput., 22, 1717–1740.

Faul, A., & Powell, M. (1999). Proof of convergence of
an iterative technique for thin plate spline interpola-
tion in two dimensions. Advances in Computational
Mathematics, 11, 183–192.

Fine, S., & Scheinberg, K. (2001). Efficient svm train-
ing using low-rank kernel representations. Journal
of Machine Learning Research, 2, 243–264.

Freitas, N. D., Wang, Y., Mahdaviani, M., & Lang, D.
(2006). Fast Krylov methods for n-body learning. In
Y. Weiss, B. Schölkopf and J. Platt (Eds.), Advances
in neural information processing systems 18, 251–
258. Cambridge, MA: MIT Press.

Fung, G., & Mangasarian, O. (2001). Proximal sup-
port vector machine classifiers. Proceedings of the

Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-
01) (pp. 77–86). New York: ACM Press.

Golub, G. H., & van Loan, C. F. (1996). Matrix com-
putations. John Hopkins Studies in the Mathemat-
ical Sciences. Baltimore, Maryland: Johns Hopkins
University Press. Third edition.

Hastie, T., & Tibshirani, R. (1986). Generalized addi-
tive models. Statistical Science, 1, 297–318.

Kimeldorf, G., & Wahba, G. (1971). Some results
on Tchebycheffian spline functions. J. Math. Anal.
Appl., 33, 82–95.

Lee, Y.-J., & Mangasarian, O. (2001). Rsvm: Reduced
support vector machines. First SIAM International
Conference on Data Mining. Chicago.

Li, W., Lee, K.-H., & Leung, K.-S. (2007). General-
ized regularized least-squares learning with prede-
fined features in a Hilbert space. In B. Schölkopf,
J. Platt and T. Hoffman (Eds.), Advances in neural
information processing systems 19. Cambridge, MA:
MIT Press.

Poggio, T., & Girosi, F. (1990). Regularization algo-
rithms for learning that are equivalent to multilayer
networks. Science, 247, 978–982.

Large-scale RLSC Learning Without Agony

Poggio, T., & Smale, S. (2003). The mathematics of
learning: Dealing with data. Not. Am. Math. Soc,
50, 537–544.

Preparata, F. P., & Shamos, M. I. (1985). Computa-
tional geometry: An introduction. Springer.

Ratliff, N. D., & Bagnell, J. A. (2007). Kernel con-
jugate gradient for fast kernel machines. IJCAI
2007, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, Hyderabad, In-
dia, January 6-12, 2007 (pp. 1017–1022).

Rifkin, R. (2002). Everything old is new again: A
fresh look at historical approaches in machine learn-
ing. Doctoral dissertation, Massachusetts Institute
of Technology.

Saad, Y., & van der Vorst, H. A. (2000). Iterative solu-
tion of linear systems in the 20th century. Journal of
Computational and Applied Mathematics, 123, 1–33.
Numerical analysis 2000, Vol. III. Linear algebra.

Schaback, R., & Wendland, H. (2000). Numerical tech-
niques based on radial basis functions. Curve and
Surface Fitting (pp. 359–374). Nashville, TN: Van-
derbilt University Press.

Shen, Y., Ng, A., & Seeger, M. (2006). Fast Gaus-
sian process regression using kd-trees. In Y. Weiss,
B. Schölkopf and J. Platt (Eds.), Advances in neu-
ral information processing systems 18, 1227–1234.
Cambridge, MA: MIT Press.

Smith, K., Solomon, D., & Wagner, S. (1977). Prac-
tical and mathematical aspects of the problem of
reconstructing objects from radiographs. Bulletin
of the American Mathematical Society, 1227–1270.

Smola, A. J., & Schölkopf, B. (2000). Sparse greedy
matrix approximation for machine learning. Pro-
ceedings of the Seventeenth International Confer-
ence on Machine Learning (pp. 911–918). Morgan
Kaufmann.

Sun, X., & Pitsianis, N. P. (2001). A matrix version
of the fast multipole method. SIAM Review, 43,
289–300.

Tikhonov, A., & Arsenin, V. (1977). Solutions of ill-
posed problems. Winston and Sons.

von Neumann, J. (1955). Mathematical foundations of
quantum mechanics. Princeton University Press.

Williams, C. K. I., & Rasmussen, C. E. (1996). Gaus-
sian processes for regression. In D. S. Touretzky,
M. C. Mozer and M. E. Hasselmo (Eds.), Advances

in neural information processing systems, vol. 8.
Cambridge, MA: MIT Press.

Williams, C. K. I., & Seeger, M. (2001). Using the
Nyström method to speed up kernel machines. In
T. K. Leen, T. G. Dietterich and V. Tresp (Eds.),
Advances in neural information processing systems
13, 682–688. MIT Press.

Yang, C., Duraiswami, R., & Davis, L. (2005). Effi-
cient kernel machines using the improved fast Gauss
transform. In L. K. Saul, Y. Weiss and L. Bottou
(Eds.), Advances in neural information processing
systems 17, 1561–1568. Cambridge, MA: MIT Press.

