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Abstract

The k-Nearest Neighbors algorithm can be eas-
ily adapted to classify complex objects (e.g. sets,
graphs) as long as a proper dissimilarity function
is given over an input space. Both the represen-
tation of the learning instances and the dissimi-
larity employed on that representation should be
determined on the basis of domain knowledge.
However, even in the presence of domain knowl-
edge, it can be far from obvious which complex
representation should be used or which dissimi-
larity should be applied on the chosen represen-
tation. In this paper we present a framework that
allows to combine different complex representa-
tions of a given learning problem and/or different
dissimilarities defined on these representations.
We build on ideas developed previously on met-
ric learning for vectorial data. We demonstrate
the utility of our method in domains in which the
learning instances are represented as sets of vec-
tors by learning how to combine different set dis-
tance measures.

1. Introduction

The k-Nearest Neighbor (kNN) algorithm (Aha, 1997) is an
effective method to address classification problems. Simi-
lar to other distance-based algorithms kNN does not require
a direct access to the training examples, instead it accesses
the data only by a (dis-)similarity function. Although in-
tuitively simple the kNN algorithm has proved its utility
in many real-world applications (Aha, 1997). The com-
mon approach in most of the kNN classifiers is to repre-
sent the training instances as vectors in the R™ space where
the Euclidean metric is used to measure the dissimilarities
between examples. This approach has the advantages of
simplicity and generality, however, it has two main limi-

Appearing in Proceedings of the 24" International Conference
on Machine Learning, Corvallis, OR, 2007. Copyright 2007 by
the author(s)/owner(s).

tations. First, most of today’s machine learning applica-
tions hardly fit within the typical propositional representa-
tion and in such cases more general representations (e.g.
sets, graphs) should be used (WoZnica et al., 2006; Ramon
& Girtner, 2003). Second, the Euclidean metric implies
that the input space is isotropic, which is rarely valid in
practical applications.

The proper representation of the learning examples and the
actual dissimilarity over that representation are important
constituents of kNN critically influencing its performance.
Both of them should be directly determined by domain
knowledge and application requirements, however, in prac-
tice we rarely have a solid description of the learning prob-
lem. As a result for a given problem there might exist sev-
eral plausible dissimilarities which are defined on different
representations and reflect different aspects of the data. As
an example consider labeled graphs, a widely used repre-
sentation in machine learning to represent complex objects,
e.g. chemical compounds. Graphs, depending on the appli-
cation requirements, can be represented among others as
adjacency matrices, set of trees or sets of walks (Ramon
& Girtner, 2003). Moreover, for each of the above repre-
sentations different dissimilarities can be applied. An ob-
vious question is how to select from this set of predefined
dissimilarities and representations the one that best fits the
requirements of the problem at hand. A simple solution is
to select the dissimilarity (usually from a predefined set of
dissimilarities) by cross-validation. The main drawback of
this approach is that only one dissimilarity per training set
is selected which limits the expressiveness of the resulting
method. Additionally this approach requires the use of ex-
tra data.

In this paper we show how to learn distance measures for
the kNN classification by combining predefined distances
and the corresponding representations. We exploit ideas
developed previously for adapting a metric to a given task
by learning it directly from the data. In this context sev-
eral attempts have been recently made, either in super-
vised (Goldberger et al., 2005; Globerson & Roweis, 2006;
Domeniconi & Gunopulos, 2002; Weinberger et al., 2006;
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Yang et al., 2006; Schultz & Joachims, 2004) or in semi-
supervised settings (Xing et al., 2003; Hillel et al., 2003).
The distance measures are usually restricted to belong to
a Mahalanobis metric family' parametrized by a positive
semi-definite (PSD) matrix. All these methods were de-
veloped for vectorial data and are similar in the sense that
the actual problem is cast as a mathematical optimization
task. However, these algorithms differ wrt the actual objec-
tive function that is being optimized and hence they implic-
itly assume different distributions of the data. In this work
we exploit three of the above methods, namely the ones
presented in Xing et al. (2003), Goldberger et al. (2005)
and Globerson and Roweis (2006), and adapt them so that
they can be used in the context of complex structures. To
the best of our knowledge it is the first attempt to learn dis-
tances over complex structures.

We will demonstrate our approach in applications in which
learning examples are most naturally represented in the
form of sets of vectors of possibly different cardinalities
and the distances to be combined are different distances on
sets. Nevertheless the framework is more general and can
be applied on any arbitrary combination of distances and
complex objects representation.

The paper is organized as follows. In Section 2 we de-
scribe the problem of choosing the complex representation
and the dissimilarity function defined over that represen-
tation for a given application. In Section 3 we propose a
framework for learning combinations of distance measures
on complex objects where we exploit methods that were
initially developed for learning metrics over vectorial data.
Experimental results are reported in Sections 4 and 5, and
Section 6 presents the related work. We conclude with Sec-
tion 7 where we address open issues and future work.

2. Representations and Dissimilarities on
Complex Objects

One of the main challenges in applications involving com-
plex objects is that of the proper representation of the learn-
ing instances. The choice of the correct representation is
crucial for the successful application of machine learning
techniques since it renders the actual problem easier (if not
trivial) to solve. Different languages for representing com-
plex objects for the task of learning have been used over
the years, mainly based on first order logic (Dzeroski &
Lavrac, 2001). Within these languages the complex objects
can be represented in different manners modeling for dif-
ferent semantics and aspects of the problem. For example,
depending on the application, graphs can be represented as
sets of trees, walks, etc. (Ramon & Girtner, 2003) or adja-

'The Mahalanobis metric parametrized by a positive semi-
definite matrix A is defined as: da(z,y) = (z — )T A(z — y)

cency matrices.

Strongly associated with the problem of selection of the
appropriate representation, is that of selection of an ap-
propriate dissimilarity on the selected representation. It is
possible to have different dissimilarities for a given repre-
sentation, where again each dissimilarity models different
semantics. Using again the example of graphs: if these are
represented as sets of objects then we can choose among
different dissimilarity measures on sets, whereas if they
are modeled as adjacency matrices then we should choose
among different dissimilarity measures for matrices.

Ideally, both the representation of the learning instances
and the dissimilarity employed on that representation,
should be determined on the basis of domain knowledge.
However, even in the presence of domain knowledge, it can
be far from obvious which complex representation should
be used or which dissimilarity should be applied in the cho-
sen representation. In this paper we take the view that the
establishment of the appropriate combination of represen-
tation and dissimilarity should be a part of the learning
process. In what follows we will collectively identify the
couple consisting of the representation and the dissimilarity
employed on this representation as a distance measure.

2.1. Distances on Sets

We will demonstrate the utility of our approach on learn-
ing complex distance combinations on problems where the
learning objects come in the form of sets and we need to
combine different set distance measures. Thus in this sec-
tion we will give a brief description of set distance mea-
sures. We should emphasize here that the use of sets does
not mean we are limited only to applications for which sets
is an adequate representation, in fact the ideas presented
later for distance combination are applicable to any type of
distance measures over complex objects.

The central idea in set distance measures used in this
work is the definition of a mapping of elements of one
set to elements of the other set such that the final distance
is determined on the basis of specific pairs of elements
from the two corresponding sets. Different types of map-
pings correspond to distances that have different seman-
tics (Woznica et al., 2006). It should be noted that the other
approach for computing distances is performed by compar-
ing summary statistics computed from the corresponding
sets, e.g. (Tatti, 2007); distances of that type can also be
incorporated within the framework presented here. Con-
sider two nonempty and finite sets A = {a} C X and
B = {b} C X. Letd(.,.) be a metric defined on X.
The set distance measure D defined on 2% as D(4, B) =
2 (ap)er d(a,b), ie. itis a sum of pairwise distances over
specific pairs which are defined by F' C A x B. Most of

the set distances are normalized by D(A, B) := %
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such that the final distance takes values between O and 1.
Within this framework we can define the Sum of Minimum
Distances (Dsyp), Hausdorff (Dy), RIBL (Dgripr), Sur-
Jjections (Dg), Linkings (Dy,), Fair Surjections (Drg) and
Matchings (Dyp) distances. Description of these distance
measures together with the corresponding references to ex-
isting literature can be found in (WoZnica et al., 2006).

Nothing can be said about the general superiority of one
distance measure over another. While this provides oppor-
tunities for exploiting prior knowledge, it can also be diffi-
cult in practice to find prior justification for the use of one
set distance instead of another, thus providing an ideal con-
text for distance combination.

3. Learning to Combine Distances

We view the problem of complex distance combination as
an optimization problem where the two main constituents
are the definition of a (differentiable) cost function that
depends on the class labels and an optimization method.
We only focus on learning a global distance measure
as opposed to local methods which aim to determine a
“stretched” neighborhood around each query instance such
that class conditional probabilities are likely to be con-
stant (Yang et al., 2006; Domeniconi & Gunopulos, 2002).
Local methods form an interesting alternative and were
shown to achieve better performance for data exhibiting
“difficult” distributions, however, global methods have the
advantage of providing insight into the underlying struc-
ture of the data which might be subsequently used e.g. for
dimensionality reduction.

We begin with a labeled set of n complex objects
{(z1,11), (2,Y2)s -+, (Tn,yn)} where z; € X and y; €
{1,2,...,c}. Each complex object x; is given by the vec-
tor [;,,...,%;,, | where z;, € Xy and A3, 1 = 1,...,m,
are different representation spaces of the complex objects.
Thus ; € X = X} x --- x X,,,. On each of the A} a
distance measure D is defined. We define ﬁ(xi,xj) =
[D1(iy,24,)s -« Din(i,,, 24, )]T. The quadratic com-
bination of the above m distances is defined as:

Di(fl]i,l’j> zﬁ(xi,xj)TA [j(fl]i,.’[]j) (])

where A is a m X m positive semi-definite (PSD) matrix
(A = 0) to ensure that D 4 is a valid pseudometric?. Equa-
tion 1 can be reparametrized as:

D‘Q/V(xi,xj) = ﬁ($i,$j)TWTWﬁ(Ii7Ij) (2)

where A = WTW and W is a m x m marix. For any
W we have A = WTIW = 0. An optimization problem

’In fact D4 will be a pseudometric iff A > 0 and all D;,l =
1,...,m are (pseudo-)metrics. In general A > 0 is necessary to
ensure that D% is non-negative.

where the objective function is optimized wrt matrix W is
not constrained by W > 0 and thus is easier to solve. Note
that the quadratic form of Equation 1 is similar to that of the
Mahalanobis distance for vectorial data. The difference is
that the Mahalanobis distance requires direct access to the
training examples whereas D? (or D) accesses the data
only by the corresponding distance functions. The above
formulation can be applied to any complex data for which
different distance measures are defined.

A common approach for learning a metric is to provide in-
formation in the form of equivalence relations as pairwise
constraints on the data. In the classification framework
there is a natural equivalence relation, namely whether two
points are in the same class or not, i.e. S = {(z;, z;)|y; =
y;} and D = {(z;,2,)|y; # y;}. The general problem of
metric learning in a supervised setting can be now stated as
the following optimization problem:

mZin Fz(S,D,D%) (3)

where F is a differentable function, Z = Aor Z = W,
and this optimization is subject to some constraints. For
example, for the parametrization in Equation 1 the opti-
mization from Equation 3 has to be constrained by A > 0.
Depending on the actual form of the function 7 in Equa-
tion 3 and the optimization technique, different instantia-
tions of the algorithm can be obtained.

In the next three subsections we explore three different in-
stantiations of the above framework which differ with re-
spect to the actual objective function which is being op-
timized. We based our study on methods originally de-
veloped for vectorial data, namely Xing’s method (Xing
et al., 2003), the Maximally Collapsing Metric Learning
(MCML) method (Globerson & Roweis, 2006) and Neigh-
borhood Component Analysis (NCA) method (Goldberger
et al., 2005). We adapted these methods so that they can
learn quadratic distance combinations of the form given in
Equation 1 (for Xing’s and MCML methods) and Equa-
tion 2 (for NCA). The methods differ with respect to the
assumptions they make for the data distribution. We should
emphasize here that the three distance learning methods we
build upon were developed for vectorial data. In that con-
text the methods were learning the appropriate weighted
combination of attributes. In our context they will learn
combinations of full blown distances on the complete rep-
resentation of the learning objects.

3.1. Xing’s Method

The first method proposed by Xing et al. (2003) was orig-
inally developed for semi-supervised clustering. Adapting
from (Xing et al., 2003) we formulate the problem of dis-
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tance combination as the following optimization task:
mjn Z(I“mj)es D%(xi,xj) )
s.t. Z(%%)Ep Da(ziz;) >1,A>0
It can be shown that the optimization problem from Equa-

tion 4 is convex and is equivalent (up to a multiplication of
A by a positive constant) to minimizing:

.7:,4 = Z .DA(.’L’i,.’L'j)

(x,2,)€ED
%)

Z D?(w,2;)—log
(z,x;)€S

subject to A > 0.

From Equation 5 it is clear that more emphasis is put on
minimizing the pairwise distances between all examples in
the same class. This implicitly assumes that instances from
each class form a single compact connected set. In partic-
ular, for binary problems where the negative class contains
any examples which do not have the property encoded by
the positive class, the cost function for the Xing method
will be severely penalized. A similar problem occurs for
data exhibiting highly multi-modal distributions. The other
problem with the method from Equation 4 is that the use
of squared distance in the minimization term and the root
of square distance for the constraint term is arbitrary and
asymmetric.

3.2. MCML

The MCML algorithm is based on the simple geometric in-
tuition that all points of the same class should be mapped
onto a single location and far from points of the other
classes (Globerson & Roweis, 2006). To learn the met-
ric which would approximate this ideal geometrical setup
a conditional distribution is introduced which for each ex-
ample x; selects another example x; as its neighbor with
some probability p4(j]¢), and inherits its class label from
the point it selects. The probability p4(j|¢) is based on the
softmax of the D 4 distance:

_Di (17'EJ)

e
pa(jli) = Zk;éi e—Di(zi
It can be shown (Globerson & Roweis, 2006) that any set of
points which has the distribution po(j|¢) = 1 if (x;,z;) €
S and po(j|i) = 01if (z;, z;) € D exhibits the desired ideal
geometry. It is thus natural to seek a matrix A such that
pa(j]7) is as close (e.g. in the sense of the KL divergence)
to po(j|¢). This is equivalent to minimizing (subject to A >
0):

3 ,p(ili) =0 6)

Fa= ZKL[po(jli)lpAoli)] ©)

MCML is not based on Gaussian assumptions and the suf-
ficient statistics used in the method are n “spread” matrices

centered at each point (Globerson & Roweis, 2006). The
main difference between the MCML methods and Xing’s is
that the former puts more emphasis into the pairs of points
which are in different classes. As a result the MCML is
better suited for classification problems.

3.3.NCA

The NCA method from (Goldberger et al., 2005) attempts
to directly optimize a continuous version of the leave-one-
out error of the kNN algorithm on the training data. The
main difference between NCA and the two previous meth-
ods is that optimization in NCA is done wrt matrix W of
Equation 2. The actual cost function used is a differentiable
function based on stochastic neighbor assignments in the
weighted space which is based on py (j|i) of Equation 6.
In the following we denote the set of points that share the
same class with z; by C; = {j|(z;,z;) € S}. Under this
stochastic selection rule the probability pyy (i) of classify-
ing z; correctly is given by pw (i) = >_ . pw (4 7).

The objective function, as presented in (Goldberger et al.,
2005), which is to be maximized is given by:

Fw = — Zlog(pw<i>> (8)

which expresses the probability of obtaining an error free
classification on the training set (Goldberger et al., 2005).

The main advantage of the NCA method is that it is non-
parametric, making no assumptions about the shape of the
class conditional distributions or the corresponding bound-
aries. In this sense it is similar to the MCML method. As
already mentioned the main problem with the NCA algo-
rithm is that there is no guarantee that a gradient method
will converge to the global optima.

3.4. Regularization

One possible problem with the optimization task of Equa-
tion 3 is that for full matrices Z the number of parame-
ters to estimate is m?2. This could be problematic in cases
where m is large wrt the number of instances in the training
database and could lead to overfitting. One possible solu-
tion to overcome this problem is to add a soft constraint to
the objective function, which results in the following regu-
larized optimization task

min (Fz(S, D, D}) + AR(Z)) ©)

where R(Z) is a regularization term and A > 0 is a reg-
ularization parameter. For D4 defined in Equation 1 we
set R(A) = Tr(A), i.e. the trace of A, whereas for Dy,
given in Equation 2 we set R(W) = ||W||% where |W|| £
is the Frobenious norm of W. It is easy to show that
Tr(A) = [[W]#.
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An alternative solution that we will explore is to re-
strict matrix A (or W) to be diagonal resulting in a
weighted combination of distances, i.e. D%(z;,z;) =
>t tuD?(xi, x;) where t;; are the diagonal elements
of A or WTW. This restriction can be seen as a simple
form of regularization since it reduces the effective number
of parameters from m? to m.

It should be noted that the regularization technique based
on diagonal matrices, although faster then the one of
Equation 9, is also less expressive since it does not ac-
count for interactions between different distance measures.
When full matrices are used these interactions are weighted
by off diagonal elements of matrix A or WTW, i.e.

D% (wi,%5) = 321 mg=1.m Lk Di(xi, 25) Dyg(2i, 25).

3.5. Solving Optimization Problems

As already mentioned in the Xing and MCML methods the
objective functions are convex (Avriel, 2003) and thus the
optimization problems are well defined in the sense that
there exists a single global optimum. In order to ensure that
A = 0 we use the iterative projection approach as in Xing
et al. (2003). We calculate the eigen-decomposition of
A=, )\kukug, where \i, k = 1,...,m are A’s eigen-
values, uy the corresponding eigenvectors, and set A =
> max(Ag, 0)uiuf. In the NCA method the optimiza-
tion is done wrt matrix W of Equation 2 which makes
the optimization problem easier to solve, since it is uncon-
strained. However, the objective function is no longer con-
vex and is thus susceptible to local minima.

To solve the optimization problems we exploit the conju-
gate gradient method (Avriel, 2003) where backtracking
line search is used to optimize the step-size parameter. For
full matrices this method has a complexity of O(m?) since
it requires computing a gradient in the form of an m x m
matrix. In the case of diagonal matrices the above com-
plexity is reduced to O(m).

4. Experiments

In the experiments we will evaluate the methods proposed
in Section 3 on a number of relational benchmark datasets
where training instances are represented as sets of vectors.
The different complex distance combination methods are
compared in the context of the kNN algorithm. The goal is
to examine whether we can increase the predictive perfor-
mance of kNN by combining them. We will denote kNN in
which the combined distances are used by kNNpc.

We compared two regularized instantiations of the Xing,
MCML and NCA methods, over full and diagonal ma-
trices which we will denote respectively METHODyg);
and METHOD 43, where METHOD is Xing, MCML or
NCA. We used two methods as a baseline for comparison.

The first one, denoted as kNNp,gt, is obtained by simply
selecting the set distance which gives the best 10-fold CV
performance on the full dataset and reporting that perfor-
mance. It should be noted that this performance estimate
is optimistically biased. The second, denoted as kNN ¢y,
is based on an inner cross-validation loop to select the ap-
propriate set distance. More precisely on each training set
an inner 10-fold stratified cross-validation is performed for
each set distance in order to select the one with the highest
accuracy.

We experiment on a number of relational problems: musk,
mutagenesis, diterpenes and protein fingerprints. The musk
dataset was described in Dietterich et al. (1997) and is
a standard multi-instance benchmark dataset; we worked
with both versions (1 and 2) of the dataset, containing re-
spectively 92 and 102 instances. The Mutagenesis dataset
was introduced in Srinivasan et al. (1994); we experiment
with the 188-instance, “regression friendly” version of this
dataset, and represent each molecule as a set of bonds
together with the two adjacent atoms. In the diterpenes
dataset (Dzeroski et al., 1996) the goal is to identify the
type of diterpenoid compound skeletons given their 13C-
NMR-Spectrum,; it contains 1503 instances. The last clas-
sification task was first described in (Hilario et al., 2004).
Protein fingerprints are groups of conserved motifs (re-
gions) drawn from multiple sequences alignment that can
be used as diagnostic signatures to identify and characterize
collections of protein sequences. Broadly speaking, finger-
prints may be diagnostic for a gene family or superfamily
(united by a common function), or a domain family (united
by a common structural motif). In this work we model
protein fingerprints as sets of their component motifs; the
dataset contains 1842 instances.

In all the datasets the number of nearest neighbors was op-
timized in an inner 10-fold cross validation loop over & =
{1,3,9}. Depending of the dataset, we used two different
values of the regularization parameter A: for datasets with
a ”small” number of instances wrt the number of distance
measures, m, (musk and mutagenesis) we set A = 10, i.e.
heavy regularization, whereas for datasets with a "large”
number of instances wrt m (diterpenes and protein finger-
prints) we set A = 0.1, i.e. soft regularization. We estimate
accuracy using stratified ten-fold cross-validation and con-
trol for the statistical significance of observed differences
using McNemar’s test (sig. level=0.05). The results (with
the significance test results) are presented in Table 1.

5. Results

In Table 1, we see that MCML and NCA have an advantage
over the baseline methods considered. They are never sig-
nificantly worse and sometimes they are significantly better
than both kNNpes and kNN¢y. On the other hand Xing’s
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Table 1. Accuracy and significance test results of the kKNNpc algorithm for benchmark datasets (+ stands for a significant win of the
first algorithm in the pair, - for a significant loss and = for no significant difference). The first sign in the parenthesis corresponds to the
comparison of kNNpc vs. KNN where the best distance is used (the KNNpes; column) and the second to the comparison of KNNpc
vs. KNN with cross-validation (the kNN ¢y column). Additionally for kNNgcg; the best set distance measure is given in parenthesis.
Xingguit, MCMLgui1 and NCA 11 denote methods where optimization is performed over a full matrix whereas in Xingdiag, MCMLdgiag
and NCA 4;,¢ the matrix is restricted to be diagonal.

Xinggan Xinggiag MCMLgyn1 | MCMLgiag NCAtun NCAdiag kNNBest kNNcv
MUSKT | 80.4(=)(=) | 75.0(=)(=) | 84.8(=)(=) | 84.8(=)(=) | 85.9(=)(+) | 89.6(=)(+) | 84.8 (Dr) 793
MUSK2 | 65.7(=)(=) | 53.9()(2) | 72.5(=)(=) | 66.7(=)(=) | 77.5(=)(=) | 85.1(=)(+) | 77.5 (Drs) 745
MUTA 80.8(=)(=) | 83.5(=)(=) | 80.3(=)(=) | 89.1(+)(+) | 78.7(=)(=) | 76.1(=)(=) | 84.0 (Dsmp) 82.4
DITERP. | 70.3(-)(-) | 96.5(=)(=) | 96.2(=)(=) | 98.3(+)(+) | 98.3(+)(+) | 95.7(=)(=) | 96.1 (Dm) 96.1
FP T7.4(-)(-) | 83.8(-)(-) | 84.8(=)(=) | 84.7(=)(=) | 84.7(=)(=) | 84.9(=)(=) | 85.4 (Dwm) 85.5

method does not fair so well, being sometimes significantly
worse than both baseline methods.

We also conducted experiments where the optimization is
performed over full matrix instantiations without the reg-
ularization (these results are not reported in this paper).
The main finding is that the regularized versions of MCML
and NCA tend to have an advantage over the correspond-
ing non-regularized instantiations, mainly for datasets with
small number of examples (musk and mutagenesis). For
large datasets the differences in performances are not sta-
tistically significant.

The poor performance of Xing’s method might be a result
of the fact that the objective function in this method is heav-
ily penalized for data exhibiting a multi-modal distribution
whereas MCML and NCA are non-parametric; they make
no assumptions about the shape of the class conditional
distributions or the boundaries between different classes.
Another possible explanation for the poor performance of
Xing’s method, especially in muskl, musk2 and mutage-
nesis datasets, is that in these datasets the negative class
contains any examples which do not have the property en-
coded by the positive class. As already mentioned, in such
cases the cost function implemented by the Xing method
is severely penalized. Finally note that the performances
achieved by MCML¢g,1 and NCAgi,e on the diterpenes
dataset are the best reported so far in the literature.

The results of the optimization process, both for full and
diagonal matrices, can be visualized to provide insight into
the relative importance of the distance measures (or their
combinations), as these are determined by each method.
An example of such a visualization is given in Figure 1
for the musk2 dataset, where optimization is performed
over diagonal matrices. The x-axis corresponds to a given
distance measure for which the corresponding accuracy of
kNN, estimated by 10-fold CV, is given in parenthesis. The
y-axis represents the (normalized) weights returned by the
three methods. The visualization results are in agreement
with results from Table 1. In particular NCA 43,4 assigns
high weights to distance measures which individually ex-
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SMD (75.5%) H (76.5%) RIBL (59.8%) S (73.5%) L (73.5%) FS (77.5%) M (59.8%)
Distances (accuracy for distance)

Figure 1. Relative importance of the different set distance mea-
sures, for the musk2 dataset, as these are computed by Xingdiag.,
MCMLgiag and NCA gia¢. Weights are normalized by the Frobe-
nius norm of A. For each set distance measure we also give the
corresponding performance of kNN in parenthesis.

hibit good performance (Dgnip, D, Ds, Drg and Dyy) and
neglects the ones with low performance (Dgrpr, and Dyy).
On the other hand the poor performance of Xinggjag (53.9
%) is a result of assigning a very high weight to Dripy..
The full matrix obtained for the diterpenes dataset is dis-
played graphically in Figure 2. The highest weights are
assigned to Dy, Dg, Drg and Dy as well as the combina-
tions of these distances.

Using the method instantiations based on diagonal matri-
ces, it is easy to reduce the size of the problem by select-
ing only the [ top-ranked distance measures (according to
the assigned coefficients) which can be used to obtain the
distance combination. We examined the performance of
kNNp¢ for [ ranging from 1 to m (i.e. the total number
of distance measures). The visualization for the muskl
dataset is given in Figure 3. It should be noted that the
objective functions are optimized wrt all the distance func-
tions considered. Indeed from Figure 3 it is clear that the
best performance of kNN is achieved when all the dis-
tance measures are used (i.e. [ = m). However, the per-
formance when we select the three top distance measures
is very similar to the performance when all distances are
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Figure 2. Relative importance of the different set distance mea-
sures, for the diterpenes dataset, as these are computed by
NCA . Weights are normalized by the Frobenius norm of A.

Estimated accuracy

I "Yaiaq

3 4 5
Number of selected distances

Figure 3. The estimated accuracy for Xingaiag, MCMULgiag and
NCAaiag for the muskl dataset where [ = 1,..., m top ranked
distance measures (according to the assigned coefficients) are
combined for computing the actual distance. Additionally the per-
formance of kNNgest and kNNcv is given.

used.

There is an interesting synergy that arises from the nature
of the set distances and the fact that we learn combinations
of them. Remember that all the set distances we consid-
ered are defined on the basis of a given mapping, F', of
elements of one set to elements of the other set. One can
view the task of learning a set distance measure as learn-
ing the mapping F', i.e. which pairs of elements of the two
sets should participate in the mapping and how important
they are. Under this view learning a set distance measure
would correspond to learning the weights w,; (associated
with a pair of elements (a,b) € A x B), in the function
D(A,B) = Z(%b)eAxB wapd(a,b) where wq, € {0,1}
(or more general wgp, € [0, 1]). It can be seen that the com-
bination of distances from Equation 1 provides an interme-
diate solution to this problem. By restricting the matrix
from Equation 1 to be diagonal, we obtain a set distance
measure of the form D(A,B) = 2, cr wavd(a,b)
where F' = |J!*, F;, F; is the mapping corresponding to

set distance measure D; and w,, is computed by adding
the coefficients assigned to set distance measures in which
(a,b) appears. The final mapping, F', is more expressive
than any of its constituents, F7;, and cannot be obtained by
considering any of the F);s individually.

6. Related Work

As already noted any (semi-)supervised metric learning
method can be adapted to distance combination in complex
domains, as long as in the objective function the access to
data is only through a distance function. The RCA algo-
rithm from (Hillel et al., 2003) constructs a Mahalanobis
metric from a weighted sum of in-class covariance matri-
ces; however, it only takes into account similar pairs of
points and discards the dissimilar ones. As a result it is
unlikely that this method will perform well on fully labeled
data. The method proposed in (Schultz & Joachims, 2004)
learns the metric from relative and qualitative examples of
the form “A is closer to B than A is to C”. It is not straight-
forward to extend this method to learn the metric in clas-
sification settings. Two algorithms from (Shalev-Shwartz
et al., 2004) and (Weinberger et al., 2006) can be easily
adapted to distance combinations. The cost functions in
these algorithms are based on the notion of large margin
which separates elements with different labels while keep-
ing elements of the same class together. The main differ-
ence is that the latter focuses on the local neighborhood
while the former seeks to minimize distance between all
similarly labeled examples.

In addition to metric learning several attempts have been
recently made to learn kernel operators directly from the
data, e.g. (Lanckriet et al., 2004). This approach is more
general than metric learning in the sense that any valid ker-
nel k can be directly used to compute a pseudo metric in
the feature space. The proposed methods differ in the ob-
jective functions as well as in the classes of kernels that
they consider. In the case of set distances based on kernels
there are two main problems. First, most of the kernels
over sets proposed so far in the literature are based on av-
eraging (i.e. they depend on all the elements in the two
sets). This feature might be inappropriate for some appli-
cations (e.g. multiple-instance problems) where the classi-
fication depends on specific pairs of elements from the two
sets (WozZnica et al., 2006). Second, with the exception of
the work of Argyriou et al. (2005), all of the methods work
only in a transductive setting, i.e. completing the labeling
of a partially labeled dataset.

7. Conclusions and Future Work

In this paper we presented a framework that allows to com-
bine different complex representations of a given learning
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problem and/or different dissimilarities defined on these
representations. We exploit ideas developed previously on
metric learning for vectorial data. To the best of our knowl-
edge this is the first time that distance combination (which
amounts to distance learning) is applied to non-vectorial
data.

In the future we will consider other metric learning algo-
rithms described in Section 6. We will also examine the
impact of other regularization techniques on classification
performance. In particular, we will exploit more aggressive
regularization similar to that used in LASSO (Tibshirani,
1996), which forces some of the elements of matrix A (W)
shrunk to zero. We would like also to extend our framework
to combine distances locally (Yang et al., 2006; Domeni-
coni & Gunopulos, 2002), which will result in an even
more flexible method for distance combination on complex
domains.
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