
Three New Graphical Models for Statistical Language Modelling

Andriy Mnih amnih@cs.toronto.edu

Geoffrey Hinton hinton@cs.toronto.edu

Department of Computer Science, University of Toronto, Canada

Abstract

The supremacy of n-gram models in statis-
tical language modelling has recently been
challenged by parametric models that use
distributed representations to counteract the
difficulties caused by data sparsity. We pro-
pose three new probabilistic language models
that define the distribution of the next word
in a sequence given several preceding words
by using distributed representations of those
words. We show how real-valued distributed
representations for words can be learned at
the same time as learning a large set of
stochastic binary hidden features that are
used to predict the distributed representation
of the next word from previous distributed
representations. Adding connections from
the previous states of the binary hidden fea-
tures improves performance as does adding
direct connections between the real-valued
distributed representations. One of our mod-
els significantly outperforms the very best n-
gram models.

1. Introduction

One of the main tasks of statistical language modelling
is learning probability distributions of word sequences.
This problem is usually reduced to learning the con-
ditional distribution of the next word given a fixed
number of preceding words, a task at which n-gram
models have been very successful (Chen & Goodman,
1996). Density estimation for discrete distributions
is inherently difficult because there is no simple way
to do smoothing based on input similarity. Since all
discrete values are equally similar (or dissimilar) as-
signing similar probabilities to similar inputs, which
is typically done for continuous inputs, does not work

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

in the discrete case. Representing discrete structures
such as words using continuous-valued distributed rep-
resentations and then assigning probability to these
structures based on their representations automati-
cally introduces smoothing into the density estima-
tion problem making the data sparsity problem less
severe. Recently, significant progress in statistical lan-
guage modelling has been made by using models that
rely on such distributed representations. Feed-forward
neural networks that operate on real-valued vector rep-
resentations of words have been both the most popu-
lar and most successful models of this type (Bengio
et al., 2003; Morin & Bengio, 2005; Emami et al.,
2003). A number of techniques have been proposed
to address the main drawback of these models – their
long training times (Bengio & Senécal, 2003; Schwenk
& Gauvain, 2005; Morin & Bengio, 2005). Hierarchi-
cal alternatives to feed-forward networks, which are
faster to train and use, have been considered (Morin
& Bengio, 2005; Blitzer et al., 2005b), but they do not
perform quite as well. Recently, a stochastic model
with hidden variables has been proposed for language
modelling (Blitzer et al., 2005a). Unlike the previous
models, it uses distributed representations that consist
of stochastic binary variables as opposed to real num-
bers. Unfortunately, this model does not scale well to
large vocabulary sizes due to the difficulty of inference
in the model.

In this paper, we describe three new probabilistic lan-
guage models that use distributed word representa-
tions to define the distribution of the next word in
a sequence given several preceding words. We start
with an undirected graphical model that uses a large
number of hidden binary variables to capture the de-
sired conditional distribution. Then we augment it
with temporal connections between hidden units to in-
crease the number of preceding words taken into ac-
count without significantly increasing the number of
model parameters. Finally, we investigate a model
that predicts the distributed representation for the
next word using a linear function of the distributed
representations of the preceding words, without using

Three New Graphical Models for Statistical Language Modelling

any additional latent variables.

2. The Factored Restricted Boltzmann

Machine Language Model

Our goal is to design a probabilistic model for word se-
quences that uses distributed representations for words
and captures the dependencies between words in a se-
quence using stochastic hidden variables. The main
choice to be made here is between directed and undi-
rected interactions between the hidden variables and
the visible variables representing words. Blitzer et al.
(2005a) have proposed a model with directed interac-
tions for this task. Unfortunately, training their model
required exact inference, which is exponential in the
number of hidden variables. As a result, only a very
small number of hidden variables can be used, which
greatly limits the expressive power of the model.

In order to be able to handle a large number of hid-
den variables, we use a Restricted Boltzmann Ma-
chine (RBM) that has undirected interactions between
multinomial visible units and binary hidden units.
While maximum likelihood learning in RBMs is in-
tractable, RBMs can be trained efficiently using con-
trastive divergence learning (Hinton, 2002) and the
learning rule is unaffected when binary units are re-
placed by multinomial ones.

Assuming that the words we are dealing with come
from a finite dictionary of size Nw, we model the ob-
served words as multinomial random variables that
take on Nw values.

To define an RBM model for the probability distribu-
tion of the next word in a sentence given the word’s
context w1:n−1, which is the previous n − 1 words
w1, ..., wn−1, we must first specify the energy function
for a joint configuration of the visible and hidden units.
The simplest choice is probably

E0(wn, h;w1:n−1) = −
n
∑

i=1

vT
i Gih, (1)

where vi is a binary column vector of length Nw with 1
in the wth

i position and zeros everywhere else, and h is
a column vector of length Nh containing the configura-
tion of the hidden variables. Here matrix Gi specifies
the interaction between the multinomial1 visible unit
vi and the binary hidden units. For simplicity, we have
ignored the bias terms – the ones that depend only on
h or only on vn. Unfortunately, this parameterization

1Technically, we do not have to assume any distribution
for w1, ..., wn−1 since we always condition on these random
variables. As a result, the energy function can depend on
them in an arbitrary, nonlinear, way.

requires nNwNh free parameters which can be unac-
ceptably large for vocabularies of even moderate size.
Another weakness of this model is that each word is
associated with a different set of parameters for each
of the n positions it can occupy.

Both of these drawbacks can be addressed by intro-
ducing distributed representations (i.e. feature vec-
tors) for words. Generalization is made easier by shar-
ing feature vectors across all sequence positions, and
defining all of the interactions involving a word via
its feature vector. This type of parameterization has
been used in feed-forward neural networks for mod-
elling symbolic relations (Hinton, 1986) and for statis-
tical language modelling (Bengio et al., 2003).

We represent each word using a real-valued feature
vector of length Nf and make the energy depend on
the word only through its feature vector. Let R be an
Nw×Nf matrix with row i being the feature vector for
the ith word in the dictionary. Then the feature vector
for word wi is given by vT

i R. Using this notation, we
define the joint energy of a sequence of words w1, ..., wn

along with the configuration of the hidden units h as

E(wn, h;w1:n−1) = − (
n
∑

i=1

vT
i RWi)h

− bT
h h − bT

r RT vn − bT
v vn. (2)

Here matrix Wi specifies the interaction between the
vector of hidden variables and the feature vector for
the visible variable vi. The vector bh contains bi-
ases for the hidden units, while the vectors bv and
br contain biases for words and word features re-
spectively.2 To simplify the notation we do not ex-
plicitly show the dependence of the energy functions
and probability distributions on model parameters.
In other words, we write P (wn|w1:n−1) instead of
P (wn|w1:n−1,Wi, R, ...).

Defining these interactions on the Nf -dimensional fea-
ture vectors instead of directly on the Nw-dimensional
visible variables leads to a much more compact param-
eterization of the model, since typically Nf is much
smaller than Nw. Using the same feature matrix R

for all visible variables forces it to capture position-
invariant information about words as well as further re-
ducing the number of model parameters. With 18,000

2The inclusion of per-word biases contradicts our philos-
ophy of using only the feature vectors to define the energy
function. However, since the number of these bias param-
eters is small compared to the total number of parameters
in the model, generalization is not negatively affected. In
fact the inclusion of per-word biases does not seem to af-
fect generalization but does speed up the early stages of
learning.

Three New Graphical Models for Statistical Language Modelling

Figure 1. a) The diagram for the Factored RBM and the
Temporal Factored RBM. The dashed part is included only
for the TFRBM. b) The diagram for the log-bilinear model.

words, 1000 hidden units and a context of size 2
(n = 3), the use of 100-dimensional feature vectors
reduces the number of parameters by a factor of 25,
from 54 million to a mere 2.1 million. As can be seen
from Eqs. 1 and 2, the feature-based parameteriza-
tion constrains each of the visible-hidden interaction
matrices Gi to be a product of two low-rank matrices
R and Wi, while the original parameterization does
not constrain Gi in any way.

The joint conditional distribution of the next word and
the hidden configuration h is defined in terms of the
energy function in Eq. 2 as

P (wn, h|w1:n−1) =
1

Zc

exp(−E(wn, h;w1:n−1)), (3)

where Zc =
∑

wn

∑

h exp(−E(wn, h;w1:n−1)) is a
context-dependent normalization term. The condi-
tional distribution of the next word given its context,
which is the distribution we are ultimately interested
in, can be obtained from the joint by marginalizing
over the hidden variables:

P (wn|w1:n−1) =
1

Zc

∑

h

exp(−E(wn, h;w1:n−1)). (4)

Thus, we obtain a conditional model, which does not
try to model the distribution of w1:n−1 since we always
condition on those variables.

2.1. Making Predictions

One attractive property of RBMs is that the probabil-
ity of a configuration of visible units can be computed
up to a multiplicative constant in time linear in the
number of hidden units (Hinton, 2002). The normaliz-
ing constant, however, is usually infeasible to compute
because it is a sum of the exponential number of terms
(in the number of visible units). In the proposed lan-
guage model, though, this computation is easy because

normalization is performed only over vn, resulting in
a sum containing only Nw terms. Moreover, in some
applications, such as speech recognition, we are inter-
ested in ratios of probabilities of words from a short
list and as a result we do not have to compute the
normalizing constant at all (Bengio et al., 2003).

The unnormalized probability of the next word can be
efficiently computed using the formula

P (wn|w1:n−1) ∝ exp(−bT
r RT vn − bT

v vn)
∏

i

(1 + exp(Ti)), (5)

where Ti is the total input to the hidden unit i when
w1, ..., wn is the input to the model.

Since the normalizing constant for this distribution can
be computed in time linear in the dictionary size, ex-
act inference in this model has time complexity linear
in the number of hidden variables and the dictionary
size. This compares favourably with complexity of ex-
act inference in the latent variable model proposed in
(Blitzer et al., 2005a), which is exponential in the num-
ber of hidden variables.

2.2. Learning

The model can be trained on a dataset D of word
sequences using maximum likelihood learning. The
log-likelihood of the dataset (assuming IID sequences)
simplifies to

L(D) =
∑

log P (wn|w1:n−1), (6)

where P is defined by the model and the sum is over
all word subsequences w1, ..., wn of length n in the
dataset. L(D) can be maximized w.r.t. model param-
eters using gradient ascent. The contributions made
by a subsequence w1, ..., wn from D to the derivatives
of L(D) are given by

∂

∂R
log P (wn|w1:n−1) =

〈

n
∑

i=1

vih
T WT

i + vnbT
r

〉

D

−

〈

n
∑

i=1

vih
T WT

i + vnbT
r

〉

M

, (7)

∂

∂Wi

log P (wn|w1:n−1) =
〈

RT vih
T
〉

D
−

〈

RT vih
T
〉

M
, (8)

Three New Graphical Models for Statistical Language Modelling

where 〈·〉D and 〈·〉M denote expectations w.r.t. dis-
tributions P (h|w1:n) and P (vn, h|w1:n−1) respectively.
The derivative of the log likelihood of the dataset w.r.t.
each parameter is then simply the sum of the contri-
butions by all n-word subsequences in the dataset.

Computing these derivatives exactly can be computa-
tionally expensive because computing an expectation
w.r.t. P (vn, h|w1:n−1) takes O(NwNh) time for each
context. One alternative is to approximate the expec-
tation using a Monte Carlo method by generating sam-
ples from P (vn, h|w1:n−1) and averaging the expression
we are interested in over them. Unfortunately, gener-
ating an exact sample from P (vn, h|w1:n−1) is just as
expensive as computing the original expectation. In-
stead of using exact sampling, we can generate sam-
ples from the distribution using a Markov Chain Monte
Carlo method such as Gibbs sampling which involves
starting vn and h in some random configuration and
alternating between sampling vn and h from their re-
spective conditional distributions given by

P (wn|h,w1:n−1) ∝

exp((hT WT
n + bT

r)RT vn + bT
v vn), (9)

P (h|w1:n) ∝ exp((

n
∑

i=1

vT
i RWi + bT

h)h). (10)

However, a large number of alternating updates might
have to be performed to obtain a single sample from
the joint distribution.

Fortunately, there is an approximate learning pro-
cedure called Contrastive Divergence (CD) learning
which is much more efficient. It is obtained by mak-
ing two changes to the MCMC-based learning method.
First, instead of starting vn in a random configuration,
we initialize vn with the state corresponding to wn.
Second, instead of running the Markov chain to con-
vergence, we perform three alternating updates (first
h, then vn, and then h again). While the resulting
configuration (vn, h) (called a “confabulation” or “re-
construction”) is not a sample from P (vn, h|w1:n−1),
it has been shown empirically that learning still works
well when confabulations are used instead of samples
from P (vn, h|w1:n−1) in the learning rules given above
(Hinton, 2002).

In this paper, we train all our models that have hid-
den variables using CD learning. In some cases, we
use a version of CD that, instead of sampling vn from
P (wn|h,w1:n−1) to obtain a binary vector with a single
1 in wnth position, sets vn to the vector of probabilities
given by P (wn|h,w1:n−1). This can be viewed as us-
ing mean-field updates for visible units and stochastic

updates for the hidden units, which is common prac-
tice when training RBMs (Hinton, 2002). Using these
mean-field updates instead of stochastic ones reduces
the noise in the parameter derivatives allowing larger
learning rates to be used.

3. The Temporal Factored RBM

The language model proposed above, like virtually all
statistical language models, is based on the assump-
tion that given a word’s context, which is the n − 1
words that immediately precede it, the word is con-
ditionally independent of all other preceding words.
This assumption, which is clearly false, is made in or-
der keep the number of model parameters relatively
small. In n-grams, for example, the number of pa-
rameters is exponential in context size, which makes
n-grams unsuitable for handling large contexts. While
the dependence of the number of model parameters on
context size is usually linear for models that use dis-
tributed representations for words, for larger context
sizes this number might still be very large.

Ideally, a language model should be able to take ad-
vantage of indefinitely large contexts without needing
a very large number of parameters. We propose a sim-
ple extension to the factored RBM language model
to achieve that goal (at least in theory) following
Sutskever and Hinton (2007). Suppose we want to
predict word wt+n from w1, ..., wt+n−1 for some large
t. We can apply a separate instance of our model (with
the same parameters) to words wτ , ..., wτ+n−1 for each
τ in {1, ..., t}, obtaining a distributed representation of
the ith n-tuple of words in the hidden state hτ of the
τ th instance of the model.

In order to propagate context information forward
through the sequence towards the word we want to
predict, we introduce directed connections from hτ to
hτ+1 and compute the hidden state of model τ + 1
using the inputs from the hidden state of model τ as
well as its visible units. By introducing the dependen-
cies between the hidden states of successive instances
and specifying these dependencies using a shared pa-
rameter matrix A we make the distribution of wt+n

under the model depend on all previous words in the
sequence.

3.1. Making Predictions

Exact inference in the resulting model is intractable
– it takes time exponential in the number of hidden
variables (Nh) in the model being instantiated. How-
ever, since predicting the next word given its (near)
infinite context is an online problem we take the filter-

Three New Graphical Models for Statistical Language Modelling

ing approach to making this prediction, which requires
storing only the last n − 1 words in the sequence. In
contrast, exact inference requires that the whole con-
text be stored, which might be infeasible or undesir-
able.

Unfortunately, exact filtering is also intractable in this
model. To get around this problem, we treat the hid-
den state hτ as fixed at pτ when inferring the distribu-
tion P (hτ+1|w1:τ+n), where pτ

j = P (hτ
j = 1|w1:τ+n−1)

Then, given a sequence of words w1, ..., wt+n−1 we in-
fer the posterior over the hidden states of model in-
stances using the following recursive procedure. The
posterior for the first model instance is given by Eq.
10. Given the (factorial) posterior for model instance
τ , the posterior for model instance τ + 1 is computed
as

P (hτ+1|w1:τ+n) ∝

exp((

n
∑

i=1

vT
i RWi + (bh + Apτ)T)hτ+1). (11)

Thus, computing the posterior for model instance τ +
1 amounts to adding Apτ to that model’s vector of
biases for hidden units and performing inference in the
resulting model using Eq. 10.

Finally, the predictive distribution over wn is obtained
by applying the procedure described in Section 2.1 to
model instance t after shifting its biases appropriately.

3.2. Learning

Maximum likelihood learning in the temporal FRBM
model is intractable because it requires performing ex-
act inference. Since we would like to be able to train
models with large numbers of hidden variables we have
to resort to an approximate algorithm.

Instead of performing exact inference we simply ap-
ply the filtering algorithm from the previous section to
compute the approximate posterior for the model. For
each model instance the algorithm produces a vector
which, when added to that model’s vector of hidden
unit biases, makes the model posterior be the posterior
produced by the filtering operation. Then we compute
the parameter updates for each model instance sepa-
rately using the usual CD learning rule and average
them over all instances.

The temporal parameters are learned using the follow-
ing rule applied to each training sequence separately:

∆A ∝

t−1
∑

τ=1

(pτ+1 − p̂τ+1)T pτ . (12)

Here p̂τ+1

i is the probability of the hidden unit i being

on in the confabulation produced by model instance
τ + 1. See (Sutskever & Hinton, 2007) for a more
detailed description of learning in temporal RBMs.

4. A Log-Bilinear Language Model

An alternative to using stochastic binary variables for
modelling the conditional distribution of the next word
given several previous words is to directly parameterize
the distribution and thus avoid introducing stochastic
hidden variables altogether. As before, we start by
specifying the energy function:

E(wn;w1:n−1) = −

(

n−1
∑

i=1

vT
i RCi

)

RT vn

− bT
r RT vn − bT

v vn. (13)

Here Ci specifies the interaction between the feature
vector of wi and the feature vector of wn, while br

and bv specify the word biases as in Eq. 2. Just like
the energy function for the factored RBM, this energy
function defines a bilinear interaction. However, in the
FRBM energy function the interaction is between the
word feature vectors and the hidden variables, whereas
in this model the interaction is between the feature
vectors for the context words and the feature vector
for the predicted word. Intuitively, the model pre-
dicts a feature vector for the next word by computing
a linear function of the context word feature vectors.
Then it assigns probabilities to all words in the vo-
cabulary based on the similarity of their feature vec-
tors to the predicted feature vector as measured by
the dot product. The resulting predictive distribution
is given by P (wn|w1:n−1) = 1

Zc

exp(−E(wn;w1:n−1)),
where Zc =

∑

wn

exp(−E(wn;w1:n−1)).

This model is similar to the energy-based model pro-
posed in (Bengio et al., 2003). However, our model
uses a bilinear energy function while their energy func-
tion is a one-hidden-layer neural network.

4.1. Learning

Training the above model is considerably simpler and
faster than training the FRBM models because no
stochastic hidden variables are involved. The gradients
required for maximum likelihood learning are given by

∂

∂Ci

log P (wn|w1:n−1) =
〈

RT viv
T
n R
〉

D
−

〈

RT viv
T
n R
〉

M
, (14)

Three New Graphical Models for Statistical Language Modelling

Table 1. Perplexity scores for the models trained on the
10M word training set. The mixture test score is the per-
plexity obtained by averaging the model’s predictions with
those of the Kneser-Ney 6-gram model. The first four
models use 100-dimensional feature vectors. The FRBM
models have 1000 stochastic hidden units. GTn and KNn
refer to back-off n-grams with Good-Turing and modified
Kneser-Ney discounting respectively.

Model Context Model Mixture
type size test score test score

FRBM 2 169.4 110.6
Temporal FRBM 2 127.3 95.6

Log-bilinear 2 132.9 102.2
Log-bilinear 5 124.7 96.5

Back-off GT3 2 135.3
Back-off KN3 2 124.3
Back-off GT6 5 124.4
Back-off KN6 5 116.2

∂

∂R
log P (wn|w1:n−1) =
〈

n−1
∑

i=1

(vnvT
i RCi + viv

T
n RCT

i) + vnbT
r

〉

D

−

〈

n−1
∑

i=1

(vnvT
i RCi + viv

T
n RCT

i) + vnbT
r

〉

M

. (15)

Note that averaging over the model distribution in this
case is the same as averaging over the predictive distri-
bution over vn. As a result, these gradients are faster
to compute than the gradients for a FRBM.

5. Experimental Results

We evaluated our models using the Associated Press
News (APNews) dataset consisting of a text stream
of about 16 million words. The dataset has been pre-
processed by replacing proper nouns and rare words
with the special “proper noun” and “unknown word”
symbols respectively, while keeping all the punctua-
tion marks, resulting in 17964 unique words. A more
detailed description of preprocessing can be found in
(Bengio et al., 2003).

We performed our experiments in two stages. First,
we compared the performance of our models to that of
n-gram models on a smaller subset of the dataset to
determine which type of our models showed the most
promise. Then we performed a more thorough com-
parison between the models of that type to the n-gram
models using the full dataset.

In the first experiment, we used a 10 million word
training set, a 0.5 million word validation set, and a
0.5 million word test set. We trained one non-temporal

and one temporal FRBM, as well as two log-bilinear
models. All of our models used 100-dimensional fea-
ture vectors and both FRBM models had 1000 stochas-
tic hidden units.

The models were trained using mini-batches of 1000
examples each. For the non-temporal models with
n = 3, each training case consisted of a two-word con-
text and a vector of probabilities specifying the dis-
tribution of the next word for this context. These
probabilities were precomputed on the training set and
stored in a sparse array. During training, the non-
temporal FRBM, vn was initialized with the precom-
puted probability vector instead of the usual binary
vector with a single 1 indicating the single “correct”
next word for this instance of the context. The use of
probability vectors as inputs along with mean field up-
dates for the visible unit, as described in Section 2.2,
allowed us to use relatively high learning rates. Since
precomputing and storing the probability vectors for
all 5-word contexts turned out to be non-trivial, the
model with a context size of 5 was trained directly on
6-word sequences.

All the parameters of the non-temporal models except
for biases were initialized to small random values. Per-
word bias parameters bv were initialized based on word
frequencies in the training set. All other bias parame-
ters were initialized to zero.

The temporal FRBM model was initialized by copy-
ing the parameters from the trained FRBM and ini-
tializing the temporal parameters (A) to zero. During
training, stochastic updates were used for visible units
and vn was always initialized to a binary vector rep-
resenting the actual next word in the sequences (as
opposed to a distribution over words).

For all models we used weight decay of 10−4 for word
representations and 10−5 for all other weights. No
weight decay was applied to network biases. Weight
decay values as well as other learning parameters were
chosen using the validation set. Each model was
trained until its performance on a subset of the val-
idation set stopped improving. We did not observe
overfitting in any of our models, which suggests that
using models with more parameters might lead to im-
proved performance.

We compared our models to n-gram models estimated
using Good-Turing and modified Kneser-Ney discount-
ing. Training and testing of the n-gram models was
performed using programs from the SRI Language
Modelling toolkit (Stolcke, 2002). To make the com-
parison fair, the n-gram models treated punctuation
marks (including full stops) is if they were ordinary

Three New Graphical Models for Statistical Language Modelling

words, since that is how they were treated by the net-
work models.

Models were compared based on their perplexity on
the test set. Perplexity is a standard performance
measure for probabilistic language models, which is
computed as

P = exp(−
1

N

∑

w1:n

log P (wn|w1:n−1)), (16)

where the sum is over all subsequences of length n in
the dataset, N is the number of such subsequences,
and P (wn|w1:n−1) is the probability under the model
of the nth word in the subsequence given the previous
n−1 words. To make the comparison between models
of different context size fair, given a test sequence of
length L, we ignored the first C words and tested the
models at predicting words C+1, ..., L in the sequence,
where C was the largest context size among the models
compared.

For each network model we also computed the perplex-
ity for a mixture of that model with the best n-gram
model (modified Kneser-Ney 6-gram). The predictive
distribution for the mixture was obtained simply by
averaging the predictive distributions produced by the
network and the n-gram model (giving them equal
weight). The resulting model perplexities are given
in Table 1.

The results show that three of the four network models
we tested are competitive with n-gram models. Only
the non-temporal FRBM is significantly outperformed
by all n-gram models. Adding temporal connections to
it, however, to obtain a temporal FRBM, improves the
model dramatically as indicated by a 33% drop in per-
plexity, suggesting that the temporal connections do
increase the effective context size of the model. The
log-bilinear models perform quite well: their scores are
on par with Good-Turing n-grams with the same con-
text size.

Averaging the predictions of any network model with
the predictions of the best n-gram model produced
better predictions than any single model, which sug-
gests that the network and n-gram models complement
each other in at least some cases. The best results
were obtained by averaging with the temporal network
model, resulting in 21% reduction in perplexity over
the best n-gram model.

Since the log-bilinear models performed well and, com-
pared to the FRBMs, were fast to train, we used only
log-bilinear models in the second experiment. Simi-
larly, we chose to use n-grams with Kneser-Ney dis-
counting as they significantly outperformed the n-

Table 2. Perplexity scores for the models trained on the
14M word training set. The mixture test score is the per-
plexity obtained by averaging the model’s predictions with
those of the Kneser-Ney 5-gram model. The log-bilinear
models use 100-dimensional feature vectors.

Model Context Model Mixture
type size test score test score

Log-bilinear 5 117.0 97.3
Log-bilinear 10 107.8 92.1

Back-off KN3 2 129.8
Back-off KN5 4 123.2
Back-off KN6 5 123.5
Back-off KN9 8 124.6

grams with Good-Turing discounting. For this experi-
ment we used the full APNews dataset which was split
into a 14 million word training set, 1 million word val-
idation set, and 1 million word test set.

We trained two log-bilinear models: one with a con-
text of size 5, the other with a context of size 10. The
training parameters were the same as in the first ex-
periment with the exception of the learning rate, which
was annealed to a lower value than before.3 The re-
sults of the second experiments are summarized in Ta-
ble 2. The perplexity scores clearly show that the log-
bilinear models outperform the n-gram models. Even
the smaller log-bilinear model, with a context of size
5, outperforms all the n-gram models. The table also
shows using n-grams with a larger context size does not
necessarily lead to better results. In fact, the best per-
formance on this dataset was achieved for the context
size of 4. Log-bilinear models, on the other hand, do
benefit from larger context sizes: increasing the con-
text size from 5 to 10 decreases the model perplexity
by 8%.

In our second experiment, we used the same training,
validation, and test sets as in (Bengio et al., 2003),
which means that our results are directly compara-
ble to theirs4. In (Bengio et al., 2003), a neural lan-
guage model with a context size of 5 is trained but its
individual score on the test set is not reported. In-
stead the score of 109 is reported for the mixture of
a Kneser-Ney 5-gram model and the neural language

3This difference is one of the reasons for the log-bilinear
model with a context of size 5 performing considerably bet-
ter in the second experiment than in the first one. The
increased training set size and the different test set are
unlikely be the only reasons because the n-gram models
actually performed slightly better in the first experiment.

4Due to limitations of the SRILM toolkit in dealing with
very long strings, instead of treating the dataset as a single
string, we broke up each of the test, training, and valida-
tions sets into 1000 strings of equal length. This might
explain why the n-gram scores we obtained are slightly
different from the scores reported in (Bengio et al., 2003).

Three New Graphical Models for Statistical Language Modelling

model. That score is significantly worse than the score
of 97.3 obtained by the corresponding mixture in our
experiments. Moreover, our best single model has a
score of 107.8 which means it performs at least as well
as their mixture.

6. Discussion and Future Work

We have proposed three new probabilistic models for
language one of which achieves state-of-the-art perfor-
mance on the APNews dataset. In two of our models
the interaction between the feature vectors for the con-
text words and the feature vector for the next word is
controlled by binary hidden variables. In the third
model the interaction is modelled directly using a bi-
linear interaction between the feature vectors. This
third model appears to be preferable to the other two
models because it is considerably faster to train and
make predictions with. We plan to combine these two
interaction types in a single model, which, due to its
greater representational power, should perform better
than any of our current models.

Unlike other language models, with the exception of
the energy based model in (Bengio et al., 2003), our
models use distributed representations not only for
context words, but for the word being predicted as
well. This means that our models should be able to
generalize well even for datasets with very large vo-
cabularies. We intend to test this hypothesis by com-
paring our models to n-gram models on the APNews
dataset without removing rare words first.

In this paper we have used only a single layer of hid-
den units, but now that we have shown how to use
factored matrices to take care of the very large num-
ber of free parameters, it would be easy to make use
of the greedy, multilayer learning algorithm for RBMs
that was described in (Hinton et al., 2006).

Acknowledgements

We thank Yoshua Bengio for providing us with the
APNews dataset. This research was funded by grants
from NSERC, CIAR and CFI.

References

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C.
(2003). A neural probabilistic language model. Jour-

nal of Machine Learning Research, 3, 1137–1155.

Bengio, Y., & Senécal, J.-S. (2003). Quick training of
probabilistic neural nets by importance sampling.
AISTATS’03.

Blitzer, J., Globerson, A., & Pereira, F. (2005a).
Distributed latent variable models of lexical co-
occurrences. Proceedings of the Tenth International

Workshop on Artificial Intelligence and Statistics.

Blitzer, J., Weinberger, K., Saul, L., & Pereira, F.
(2005b). Hierarchical distributed representations for
statistical language modeling. Advances in Neu-

ral Information Processing Systems 18. Cambridge,
MA: MIT Press.

Chen, S. F., & Goodman, J. (1996). An empirical
study of smoothing techniques for language model-
ing. Proceedings of the Thirty-Fourth Annual Meet-

ing of the Association for Computational Linguistics

(pp. 310–318). San Francisco: Morgan Kaufmann
Publishers.

Emami, A., Xu, P., & Jelinek, F. (2003). Using a
connectionist model in a syntactical based language
model. Proceedings of ICASSP (pp. 372–375).

Hinton, G. E. (1986). Learning distributed representa-
tions of concepts. Proceedings of the Eighth Annual

Conference of the Cognitive Science Society (pp. 1–
12). Amherst, MA.

Hinton, G. E. (2002). Training products of experts by
minimizing contrastive divergence. Neural Compu-

tation, 14, 1711–1800.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006).
A fast learning algorithm for deep belief networks.
Neural Computation, 18, 1527–1554.

Morin, F., & Bengio, Y. (2005). Hierarchical prob-
abilistic neural network language model. AIS-

TATS’05 (pp. 246–252).

Schwenk, H., & Gauvain, J.-L. (2005). Training neu-
ral network language models on very large corpora.
Proceedings of Human Language Technology Confer-

ence and Conference on Empirical Methods in Nat-

ural Language Processing (pp. 201–208). Vancouver,
Canada.

Stolcke, A. (2002). SRILM – an extensible language
modeling toolkit. Proceedings of the International

Conference on Spoken Language Processing (pp.
901–904). Denver.

Sutskever, I., & Hinton, G. E. (2007). Learn-
ing multilevel distributed representations for high-
dimensional sequences. AISTATS’07.

