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Abstract
Ranking nodes in graphs is of much recent
interest. Edges, via the graph Laplacian,
are used to encourage local smoothness of
node scores in SVM-like formulations with
generalization guarantees. In contrast, Page-
rank variants are based on Markovian ran-
dom walks. For directed graphs, there is no
simple known correspondence between these
views of scoring/ranking. Recent scalable al-
gorithms for learning the Pagerank transition
probabilities do not have generalization guar-
antees. In this paper we show some corre-
spondence results between the Laplacian and
the Pagerank approaches, and give new gen-
eralization guarantees for the latter. We en-
hance the Pagerank-learning approaches to
use an additive margin. We also propose a
general framework for rank-sensitive score-
learning, and apply it to Laplacian smooth-
ing. Experimental results are promising.

1. Introduction

Learning to rank is of much recent interest. A series of
papers (Herbrich et al., 1999; Joachims, 2002; Burges
et al., 2005), and even a recent NIPS workshop (Agar-
wal et al., 2005), are dedicated to ranking instances
represented as feature vectors in some feature space.
A few variants have been studied: ordinal regression,
where an instance is assigned a label from an ordered
k-level scale; bipartite ranking, where instances are rel-
evant or irrelevant, and the job is to rank relevant in-
stances before any irrelevant ones (2-level ordinal re-
gression); and learning from arbitrary preference pairs
u ≺ v, meaning that u should be ranked lower than v.
A significant complication is added by the presence
of relationships (represented by edges in a graph) be-
tween the instances (represented by nodes). Label-
ing of nodes in graphical models is very well-studied
(Taskar, 2004; Zhou et al., 2005), but the interest in
ranking, motivated partly by Web (Joachims, 2002),
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XML and database search (Balmin et al., 2004), is
relatively nascent. We describe two approaches be-
low. These have known correspondences for undi-
rected graphs but not directed graphs.
Associative networks: The first approach (Agarwal,
2006) adopts the associative Markov network (Taskar,
2004) philosophy: ranks are induced by scores assigned
to nodes, and edges hint that the scores must be lo-
cally smooth. As in spectral graph partitioning, the
smoothness is encouraged via a quadratic penalty term
involving the Laplacian ofG (Zhou & Schölkopf, 2004).
This can be shown (Agarwal, 2006) as equivalent to
regularizing the scoring function in an RKHS, which
enables drawing on (Agarwal & Niyogi, 2005) to show
elegant generalization bounds for bipartite ranking.
Random walks: The second approach involves scor-
ing nodes using the stationary distribution of Marko-
vian random walks (Brin & Page, 1998), and is by far
the most popular approach in search applications. In
this setting, a directed edge indicates endorsement, not
necessarily similarity of scores; e.g., thousands of ob-
scure pages link to www.kernel-machines.org. Ear-
lier, the transition probabilities used to be tuned by
hand; recently, we (Agarwal et al., 2006) proposed
methods (henceforth NetRank) to learn the transi-
tion parameters from pairwise preferences. Pagerank
is modeled as a flow p, and the algorithm minimizes the
KL divergence from p to a “reference” flow q, so that p
satisfies Markovian balance constraints as well as pref-
erence constraints ≺. Unfortunately, these methods
had no theoretical guarantees of generalization.
Our contributions: Our primary contribution is to
consolidate and extend these two views of learning to
rank in graphs. We first show two correspondence re-
sults in Section 3. Although local smoothness was the
guiding concern in using graph Laplacians, they are
closely related to Markovian walks for both directed
(Chung, 2005) and (trivially) undirected graphs. We
show that a Laplacian-based regularizer indeed seeks
to preserve Pagerank-based node orders in the absence
of preferences. Conversely, if NetRank achieves a low
KL divergence, then the Laplacian roughness penalty
is low as well.
Using the stability framework of Bousquet and Elis-
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seeff (2002), we next demonstrate, in Section 4, gen-
eralization capability of minor variants of NetRank;
this gives theoretical justification for their approach.
Moreover, we enhance the formulation with an addi-
tive margin in Section 5, which improves its accuracy
considerably in practice.
In search applications, the perceived quality of ranking
algorithms is very sensitive to the top ranks (Matveeva
et al., 2006; Rudin, 2006; Burges et al., 2006). Un-
fortunately, minimizing rank-sensitive loss functions
appears much harder than minimizing (a bound on)
the number of violated constraints (Joachims, 2002).
Our final contribution in Section 6 is a general frame-
work for approaching rank-sensitive losses armed with
only pairwise preferences. We demonstrate it with
the Laplacian smoothing approach, and generalization
bounds from Section 4 carry over.
Benefits: Pagerank variants are widely used for rank-
ing nodes in graphs. Markov balance constraints (Sec-
tion 2) and linearity have helped harness the massive
literature on graph eigensystems to design highly scal-
able Pagerank algorithms (Jeh & Widom, 2003). But
Pagerank transitions are designed by hand, hardly ever
learnt from ≺. NetRank, as it is, does not give gener-
alization guarantees, and, indeed, does not generalize
well in experiments. On the other hand, balance is not
ensured by the Laplacian smoothing approach (Agar-
wal, 2006) which gives formal generalization guaran-
tees. Laplacian smoothing not only involves diagonal-
izing a large matrix, but it also assigns arbitrary scores
to nodes, thus inducing all possible permutations. In
contrast, for a given graph, certain node orders may
be impossible to achieve via Pagerank. Therefore, the
hypothesis space of Pagerank is contained in the hy-
pothesis space of the Laplacian smoothing approach.
In preliminary experiments (Section 7), it appears that
this increased bias does aid generalization. Given our
new evidence of generalization, and our new enhance-
ments to use additive margin and cost/rank-sensitive
learning, learning Pagerank flows compares favorably,
as a general technique, to Laplacian-based smoothing.

2. Preliminaries and previous work

We set up some notation. The graph is G = (V,E).
Instances are nodes, denoted u, v, etc., and also in-
terpreted as matrix/vector indexes in {1, . . . , |V |}. A
preference pair is written as “u ≺ v”, meaning u is less
preferred than v, and should rank lower. For conve-
nience, we use ≺ as both a relation and a set. In this
paper we do not associate feature vectors with nodes,
but the model we use has been extended to incorporate
node features such as text (Balmin et al., 2004).
G has an associated fixed |V |×|V | transition probabil-

ity matrix Q, with Q(u, v) = Pr(u→ v). We assume G
has no dead-end nodes. In standard Pagerank Q(u, v)
is the reciprocal of the out-degree of u. Each row of Q
sums to 1. In each step in the Pagerank random walk
model (Brin & Page, 1998), the “random surfer” walks
to some neighbor with probability 0 < α < 1 and tele-
ports with probability 1−α. A |V |×1 teleport vector r
determines the probability of jumping to a specific u in
case of a teleport. Here we assume uniform r = ~1/|V |.
The steady-state node visit probabilities π ∈ R|V |×1

are given by π = αQ>π + (1 − α) ~1
|V | , which solves to

π = (1 − α)(I − αQ>)−1 ~1
|V | . For convenience, tele-

port is often implemented using a dummy node d with
(u, d) and (d, u) transitions for each ordinary node u.
The resulting graph Ĝ = (V̂ = V ∪d, Ê) has transition
matrix

Q̂ =
[
αQ (1− α)~1|V |×1

~1/|V | 0

]
∈ Rn×n with n = |V |+ 1

and the steady-state π̂ that satisfies π̂ = Q̂>π̂ is closely
related to π (Langville & Meyer, 2004). While Q and
Q̂ are very sparse in practice, (I − αQ>)−1 is large,
dense and never computed explicitly. Henceforth we
shall talk about random walks in Ĝ, but continue to
useQ and π for notational simplicity. Let Π = diag(π).
π and Q induce a reference circulation q along each
edge of Ĝ, given by quv = π(u)Q(u, v). Note that∑

u,v quv = 1. In NetRank, we seek to optimize a
circulation {puv} which stays close to q in terms of KL
divergence while trying to satisfy ≺:

min
{0≤puv}
{0≤suv}

∑
(u,v)∈Ê

puv log
puv

quv
+ C

∑
u≺v

suv (KL)

s.t.:
∑

(u,v)∈Ê

puv = 1 (1)

∀v ∈ V̂ :
∑

(u,v)∈Ê

puv −
∑

(v,w)∈Ê

pvw = 0

∀v ∈ V : −αpvd + (1− α)
∑

(u,v)∈Ê

puv = 0

∀u ≺ v :
∑

(w,u)∈Ê

pwu −
∑

(w,v)∈Ê

pwv − suv ≤ 0 (2)

Note that (2) includes no margin; we will visit this
issue in Section 5. The solution p will induce a n × 1
score vector φ, where φ(v) =

∑
(u,v)∈Ê puv.

In contrast, from the associative network viewpoint,
edge (u, v) connotes similarity, carefully encoded using
domain knowledge as a fixed weight w(u, v); in general
w(u, v) 6= w(v, u). The total outgoing weight of a node
u is ω(u) =

∑
(u,v)∈Ê w(u, v). We assume all ω(u) > 0.

W is used to design a fixed matrix Q with Q(u, v) =
w(u, v)/ω(u). Q induces Q̂, π and Π as before.
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Agarwal (2006) assigns to each node u a score fu ∈ R,
so as to minimize an objective function that balances
violations of ≺ against the norm of f in a suitable
RKHS:

min
f :V→R

s={suv≥0:u≺v}

1
2f

>Lf +B
∑
u≺v

suv subject to

fv − fu ≥ 1− suv ∀u ≺ v

(Lap)

L is the directed graph Laplacian fixed by Q̂ and Π
(which is itself determined by Q̂):

L = I− 1
2 (Π1/2Q̂Π−1/2 + Π−1/2Q̂>Π1/2). (3)

Optimizing (Lap) requires the computation and stor-
age of the large and dense pseudoinverse L+. Note
that, in general, the solution f need not correspond to
any flow, unlike p or q above.
While (Lap) clearly employs L for local smoothness,
the involvement of Π in L in (3) hints that there may
be connections between solutions of (Lap) and (KL).
Unlike in undirected graphs, the connection is not im-
mediate.

3. Laplacian-KL correspondence

Fact 1. If Q̂(KL) = Q̂(Lap) and ≺= ∅, the optimal
solutions to both (KL) and (Lap) will order nodes v
in decreasing order of π(v).

Proof. If ≺ is empty, the objective of (KL) reduces
to KL(p‖q), which is minimized for p = q. The regu-
larizer in (Lap), which uses the directed Laplacian of
(Chung, 2005), can be rewritten as

f>Lf =
∑

{u,v}∈Ê

π(u)Q̂uv

(
f(u)√
π(u)

− f(v)√
π(v)

)2

It is easy to see that this regularizer is minimized when
fv ∝

√
π(v).

Therefore, even though the hypothesis space of the
associative network view contains that of the random
walk view, they coincide in their parsimonious beliefs
in the absence of training data.
Next we show a more nontrivial property: any flow p
that is “close to” q also induces a smooth scoring func-
tion on the nodes of the graph. Following the notation
of Smola and Kondor (2003), let (λi, ψi), i = 1, . . . , n
be the spectrum of L with 2 ≥ λ1 ≥ λ2 · · · ≥ λn = 0.
Let r(λ) be a positive and monotonically increasing
function. Define r(L) =

∑n
i=1 r(λi)ψiψ

>
i .

Theorem 2. Let Q̂(KL) = Q̂(Lap) and p be a valid flow
on G, and let q be the reference flow induced by π. Let
fp(u) =

√∑
{w:(w,u)∈Ê} pwu. Then

KL(p‖q) ≤ ε ⇒ f>p r(L)fp ≤ r(2)(1 + (2ε ln 2)1/4)2.

We first quote a useful result from Information Theory
(Cover & Thomas, 1991, Lemma 12.6.1).
Lemma 3. Let p and q be two probability distribu-
tions over the same sigma algebra. Then KL(p‖q) ≥

1
2 ln 2‖p− q‖21.

Proof of Theorem 2. First note that π1/2 is an eigen-
vector of L with eigenvalue 0, i.e., ψn = π1/2. From
Lemma 3, we have that KL(p‖q) ≤ ε ⇒ ‖p − q‖21 ≤
2εln2. Let ε21 = 2εln2. Then ε1

≥
∑

(u,v)∈Ê

|puv − quv| =
∑
u∈V̂

∑
v:(u,v)∈Ê

|puv − quv|

≥
∑
u∈V̂

∣∣∣∑v:(u,v)∈Ê

(
puv − quv

)∣∣∣ = ∑
u∈V̂

∣∣fp(u)2 − π(u)
∣∣

≥
∑
u∈V̂

∣∣∣fp(u)−
√
π(u)

∣∣∣2 =
(
fp −

√
π
)> (

fp −
√
π
)

We now write fp in terms of the basis spanned by
eigenvectors of L, fp =

∑n
i=1 ciψi, and continue:

ε1 ≥

(
n∑

i=1

ciψi − ψn

)>( n∑
i=1

ciψi − ψn

)

=
n−1∑
i=1

c2i + (cn − 1)2 (4)

≥ (cn − 1)2, ∴ cn ≤ 1 +
√
ε1 (5)

Because all λi ≤ 2, we have f>r(L)f =
n∑

i=1

r(λi)c2i ≤ r(2)

(
n−1∑
i=1

c2i + (cn − 1)2 + 2cn − 1

)
≤ r(2) (ε1 + 2

√
ε1 + 1) = r(2)(1 +

√
ε1)2,

using (4) and (5).

Therefore, minimizing KL divergence from p to q
amounts to searching for a smooth scoring function.
While the optimization proposed in NetRank was in-
tuitive, Theorem 2 gives it theoretical justification.

4. Stability and generalization

It is reassuring that optimization (KL) seeks to also
smooth fp wrt L similar to (Lap), but, ideally, we pre-
fer a direct generalization proof for (KL). In this sec-
tion we will derive relative generalization bounds using
the Algorithmic Stability framework of Bousquet and
Elisseeff (2002). (In what follows, R,Remp, Rreg are
true, empirical and regularized risks over preference
pairs.) For convenience we modify the regularized ob-
jective (KL) superficially to line up with their notation
(their N is our KL):

Rreg(p) = 1
m

∑m
j=1 `rank(p, uj , vj)︸ ︷︷ ︸

Remp

+λKL(p‖q)
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where m = |≺|, the number of preference pairs, and
the ranking loss function is

`rank(p, u, v) =

{
φ(u)− φ(v), if φ(u) > φ(v)
0, otherwise

(6)

Note that, in keeping with (2), `rank does not include a
margin; we will return to this issue in Section 5. Recall
that edge flows {puv} induce node scores φ.
Following Bousquet and Elisseeff (2002), we wish to
show that an algorithm that finds p to minimize
Rreg(p) shows a small gap between empirical risk Remp

measured over training ≺ and true risk R averaged
over random draws of ≺, given our choice of `rank. To
this end we will show two results.
Theorem 4. For any m ≥ 1 and any δ ∈ (0, 1), the
following holds with probability at least 1 − δ over the
random draw of the sample ≺ of size m:

R ≤ Remp +
4 ln 2
λm

+
(

8 ln 2
λ

+ 1
)√

ln(1/δ)
2m

Theorem 4 does not restrict p in any way except to
insist that it is a valid flow. Closer scrutiny in Sec-
tion 4.2 shows that Theorem 4 can be strengthened by
restricting two parameters: the maximum outdegree
D in G, and the eccentricity ratio in Ĝ:

ρ = max
u∈V̂

maxv:(u,v)∈Ê puv

minv:(u,v)∈Ê puv
(Eccentricity)

Large ρ is bad; for reference flow q, ρ = 1.
Theorem 5. Suppose nodes in G have outdegree at
most D, and p is restricted to have eccentricity at most
ρ ≥ 1. Then for any m ≥ 1 and any δ ∈ (0, 1), the
following bound holds with a probability at least 1 − δ
over the random draw of the sample ≺ of size m:

R ≤ Remp + 2β + (4mβ + 1)

√
ln(1/δ)

2m
,

where β is a function of D, ρ, λ as given by (7).

If preference ui ≺ vi is dropped from the training set
to get m − 1 preference pairs ≺\i, then, instead of p
and φ, we get p\i and φ\i. Let ∆φ(u) = φ\i(u)−φ(u).
We can verify that |`rank(f1, u, v) − `rank(f2, u, v)| ≤
|f1(u)− f2(u)|+ |f1(v)− f2(v)|, and from this, we can
extend Lemma 20 of Bousquet and Elisseeff (2002) (by
setting t = 1/2 in their derivation) to the following
form suitable for us (we omit the proof):
Lemma 6. For i = 1, . . . ,m,

KL(p‖q) + KL(p\i‖q)− 2 KL
(

p+p\i

2

∥∥∥ q)
≤ 1

2λm
(|∆φ(ui)|+ |∆φ(vi)|) ≤

1
2λm

∥∥∥φ− φ\i
∥∥∥

1

Note that the lhs is in terms of p and p\i, whereas
the rhs is in terms of φ and φ\i. To demonstrate

generalization, we need to show that |`rank(p, u, v) −
`rank(p\i, u, v)| is uniformly small (stable).

4.1. No assumption about p

As indicated before, we will first use Lemma 3 and
triangle inequality to lower bound the lhs of (6) with
some function of φ and φ\i, which we will then com-
pare with the rhs 1

2λm

∥∥φ− φ\i
∥∥

1
so as to derive the

following upper bound.
Lemma 7.

∥∥φ− φ\i
∥∥

1
≤ 2 ln 2

λm .

Proof. KL(p‖q) + KL(p\i‖q)− 2 KL
(

p+p\i

2

∥∥∥ q)
= KL

(
p
∥∥ p+p\i

2

)
+ KL

(
p\i
∥∥ p+p\i

2

)
(Lemma 3)

≥ 1
2 ln 2

(∥∥∥∥p− p+ p\i

2

∥∥∥∥2

1

+
∥∥∥∥p\i − p+ p\i

2

∥∥∥∥2

1

)

= 1
4 ln 2

∥∥∥p− p\i
∥∥∥2

1
≥ 1

4 ln 2

∥∥∥φ− φ\i
∥∥∥2

1
.

Combining Lemma 6 with the above, we get

1
4 ln 2

∥∥∥φ− φ\2
∥∥∥2

1
≤ 1

2λm

∥∥∥φ− φ\2
∥∥∥

1
,

from which the desired result follows.

Proof of Theorem 4. From the definition (6) of `rank,
it can be seen that |`rank(p, u, v) − `rank(p\i, u, v)| ≤
|φ(u) − φ\i(u)| + |φ(v) − φ\i(v)| ≤

∥∥φ− φ\i
∥∥

1
, Hence

using the above stability of φ, we get that `rank is 2 ln 2
λm -

stable, which gives us the result.

Comparison with bipartite ranking: Agarwal
and Niyogi (2005) and Agarwal (2006) assume that
positive examples are sampled iid from X+, nega-
tive examples are sampled iid from X−, and then
all (u−, v+) pairs are instantiated (but the prefer-
ences are not iid over X × X). Their bounds involve
|X+||X−|/(|X+| + |X−|), signifying a loss of effective
sample size with class skew. Instead, we assume that
m pair-preferences are sampled iid from X×X, so our
bounds involve only m = |≺|.

4.2. Crucial parameters constraining p

To go beyond Theorem 4, we need to understand
the conditions that affect (KL)’s ability to general-
ize. Ĝ exerts very strong influence, and makes the
problem much more difficult than ranking feature vec-
tors. In Figure 1(a) (uniform teleport edges hidden
and {(u, v), (v, u)} shown as ↔), no training prefer-
ences between nodes other than 0 can help generalize
to any test nodes disjoint from training nodes. (KL)
can fit any consistent ≺ and support (n− 1)! total or-
ders. In contrast, not all Pagerank rankings are possi-
ble in Figure 1(b), e.g. the preference 1 ≺ 3 ≺ 2 ≺ 4.
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It might seem that the excessive overfitting power of
Figure 1(a) can be arrested by a degree bound D, but
Figure 1(c) shows that approximately (n/D)!D! rank-
ings are still possible. To avoid such scenarios, we also
need to keep p close to q in another sense: flows going
out of a given node should have low eccentricity ρ.

0

1 2

34

1 2

34

21

11

31 3k

1k

32

12 …

…

…

…

…

…

(a) (b)

(c)

Figure 1. Limits to generalization.

With both D and ρ constrained, we can show that
‖φ− π‖∞ ≤ 2αmin

{
(ρ−1)(D−1)

(D−1)ρ+1−αD ,
(ρ−1)(D−1)

D−1+ρ−αDρ

}
provided αmax

{
(ρ−1)(D−1)

(D−1)ρ+1−αD ,
(ρ−1)(D−1)

D−1+ρ−αDρ

}
≤ 1.

This suggests that ρ and D can be effective handles
on generalization.

4.3. p constrained by D and ρ

Lemma 8. Let p, p̃ be valid flows and φ, φ̃ be the cor-
responding node Pageranks. If p, p̃ are constrained by
D, ρ, then

KL(p‖p̃) ≥
∑
v∈V̂

φ(v)D
(D − 1)ρ+ 1

log
φ(v)(D − 1 + ρ)

φ̃(v)ρ((D − 1)ρ+ 1)

≥ D‖φ− φ̃‖21
((D − 1)ρ+ 1)2 ln 2

− D

(D − 1)ρ+ 1
log

ρ((D − 1)ρ+ 1)
D − 1 + ρ

Proof. Consider the flow puv through edge (u, v) ∈ Ê.
Then the flows through all other edges out of u are in
the interval [puv

ρ , ρpuv] by definition of ρ. Then we can
bound the flows as:

puv + (du − 1)ρpuv ≥ φ(u) ⇒ puv ≥
φ(u)

(du − 1)ρ+ 1

p̃uv + (du − 1)
p̃uv

ρ
≤ φ̃(u) ⇒ p̃uv ≤

φ̃(u)ρ
du − 1 + ρ

From which we get KL(p‖p̃) =
∑

(u,v)∈Ê puv log puv

p̃uv

≥
∑

(u,v)∈Ê

φ(u)
(du − 1)ρ+ 1

log
φ(u)

(du − 1)ρ+ 1
du − 1 + ρ

φ̃(u)ρ

=
∑
u∈V̂

φ(u)du

(du − 1)ρ+ 1
log

φ(u)(du − 1 + ρ)
φ̃(u)ρ((du − 1)ρ+ 1)

≥
∑
u∈V̂

φ(u)D
(D − 1)ρ+ 1

log
φ(u)(D − 1 + ρ)

φ̃(u)ρ((D − 1)ρ+ 1)
,

because du

(du−1)ρ+1 and du−1+ρ
(du−1)ρ+1 are both decreasing

function of du. Continuing,

. . . =
∑
u∈V̂

φ(u)D
(D − 1)ρ+ 1

log
φ(u)(D − 1 + ρ)

φ̃(u)ρ((D − 1)ρ+ 1)

=
D

(D − 1)ρ+ 1
KL(φ‖φ̃)+

D

((D − 1)ρ+ 1)
log

D − 1 + ρ

ρ((D − 1)ρ+ 1)
∑

u∈V̂ φ(u)︸ ︷︷ ︸
=1

,

which yields the result after another application of
Lemma 3 to KL(φ‖φ̃).

Proof of Theorem 5: Combining Lemma 8 (set p̃ = p\i

and φ̃ = φ\i) with Lemma 6, we get

1
2λm

∥∥∥φ− φ\i
∥∥∥

1
≥ D‖φ− φ\i‖21

((D − 1)ρ+ 1)2 ln 2
+

D

(D − 1)ρ+ 1
log

D − 1 + ρ

ρ((D − 1)ρ+ 1)
,

a quadratic inequality in ‖φ− φ\i‖1 that solves to

‖φ− φ\i‖1 ≤
c1
m

+ c2

√
1

4λ2m2
+ c3,

where c1 = ((D−1)ρ+1) ln 2
Dλ , c2 = 2λc1 (7)

and c3 = 2D2

((D−1)ρ+1)2 ln 2 log D−1+ρ
ρ((D−1)ρ+1) .

We note that, just like all the bounds derived by
Bousquet and Elisseeff (2002), these are relative loss
bounds. That is, we bound the probability of the ex-
pected loss being very different from the empirical loss
for our specific loss function `rank (6). This does not
imply a good loss function on some other loss such as
the 0-1 ranking loss that counts the number of inver-
sions between two rankings.
However, these bounds do serve to qualitatively jus-
tify the minimization of KL divergence from standard
Pagerank flow q. This is because the bounds worsen
as the eccentricity ρ increases. As Pagerank π is the
unique distribution which has the smallest possible
ρ = 1, it makes sense to minmize distance to obtain
better generalization. The bounds also get worse as
the largest outdegree D increases, which makes sense
in view of Section 4.2.

5. Additive margin in Markov flows

`rank (6) is not an upper-bound on the 0-1 loss, unlike
in most max-margin formulations which use a hinge
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loss to bound 0-1 loss, which would be

`hinge(f, u, v) =

{
f(u) + 1− f(v), f(u) + 1 ≥ f(v)
0, otherwise

for us. This would corresponding to modifying (2) to

∀u ≺ v : 1+
∑

(w,u)∈Ê

pwu −
∑

(w,v)∈Ê

pwv − suv ≤ 0 (8)

However, with the
∑
puv = 1 constraint, this would be

awkward on suv. An arbitrary additive margin, which
a SVM can satisfy through adjusting the norm of the
score vector, might not be feasible with (KL).
A natural solution would be to relax

∑
puv while keep-

ing {puv} proportional to a valid flow. As long as
‖p‖1 ≥ 1, this will not upset the (KL) optimization
(proof omitted):
Lemma 9. Let q be a probability distribution and p be
an unnormalized distribution, so that

∑
x p(x) = F .

Then:
1. KL(p‖q) ≥ 0 if F ≥ 1.

2. For a fixed F ≥ 1, arg minp KL(p‖q) = F q.

Given this fact, we can change objective (KL) to

min
{puv},{suv}

F≥1

∑
(u,v)∈E′

puv log puv

quv
+ C

∑
u≺v

suv + C1 F
2

and change (1) to
∑

(u,v)∈E′

puv − F = 0,

along with using (8) in place of (2). The modified
problem can also be solved in the dual using a box-
constrained Newton method (e.g., BLMVM). In Sec-
tion 7 we see that empirically this scheme gives better
accuracy than (KL) without margin, and even better
than (Lap).
Furthermore, using techniques similar to those in Sec-
tion 4, we can prove the following:
Theorem 10. Suppose that ‖p‖1 of allowed hypothesis
distributions p is at most κ ≥ 1. Then for any m ≥ 1
and any δ ∈ (0, 1), the following holds with probability
at least 1 − δ over the random draw of the sample ≺
of size m:

R ≤ Remp +

√
(κ+ 1)2 + 12(κ+ 1)mβ

2mδ
where β ≤ κ− 1 + r +

√
r(2(κ− 1) + r), r = κ ln 2

λm .

It should be noted here that this a polynomial bound
on the error |R−Remp| unlike the exponential bounds
reported in Section 4. A meaningful exponential
bound would be possible only if β = o(1/m). One
should not compare the generalization performances
of (KL) with and without margin using these bounds,
because they are relative to different loss functions
`rank and `hinge. `rank makes no connection with 0-1

loss, while `hinge gives an upper bound. Overall, it
is reassuring that increasing κ worsens generalization,
motivating the C1F

2 term in the new objective.

6. Cost sensitive ranking framework

Many recent papers (Matveeva et al., 2006; Rudin,
2006; Burges et al., 2006) address ranking applica-
tions where high precision at the top ranks is crucial.
A common approach is to penalize incorrect training
predictions for top-ranked items more severely. Un-
fortunately, this requires knowledge of absolute ranks.
Collecting ordinal targets (for ordinal regression) is
reasonable, but collecting absolute rank information
over large sets of instances is burdensome. Relative
preference pairs are easier to obtain from click-through
and eye-tracking data (Joachims, 2002).
Can we approach cost-sensitive ranking with only pair-
wise preferences? We build on the following intuition:
If our algorithm assigns a top rank to a node, it should
have high confidence, and pay more for a mistake.
Since high score is a surrogate for top ranks, we can
penalize the loss `(fu, fv) more if fu and/or fv is large.
As a general framework, we replace `(fu, fv) with a
function g(fu, fv, `(fu, fv)) that satisfies:

• g(fu, fv, `(fu, fv)) ≥ g(fu, fv, `
′(fu, fv)), if

`(fu, fv) ≥ `′(fu, fv), ∀u, v.
• g(fu, fv, `(fu, fv)) ≥ g(f

′

u, f
′

v, `(f
′

u, f
′

v)), if
`(fu, fv) = `(f

′

u, f
′

v) and h(fu, fv) ≥ h(f
′

u, f
′

v) for
some function h monotonic in fu, fv.

The first property enforces that g will be well-behaved
wrt the loss function. The second introduces cost-
sensitivity. The exact way in which differential penalty
is incurred depends on the functions h and g. In ad-
dition, we usually like g to be convex in fu and fv so
that we can perform efficient optimization.
If we further assume that there is a constant γ such
that g(fu, fv, `(fu, fv)) ≥ γh(fu, fv)`(fu, fv), then we
can easily prove that:

Pr(g(fu, fv, `(fu, fv)) ≥ ε) ≤ δ(ε) ⇒
Pr(`(fu, fv) ≥ ε ∧ h(fu, fv) ≥ θ) ≤ δ(εγθ) (9)

As the function δ would be decreasing in ε for any rea-
sonable g, the above result shows that the probability
of the loss being large on a pair with a high cost is
small, and thus an algorithm minimizing g would be
cost-sensitive.
One embodiment of the above general principle would
be gmax(fu, fv, `(fu, fv)) = (max(fu, fv) + `(fu, fv))2,
which satisfies both properties, with h(fu, fv) =
max(fu, fv), which demonstrates, via (9), that gmax

is cost-sensitive with γ = 2. To implement it, we in-
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troduce variable tuv, assert inequalities

∀u ≺ v : tuv ≥
∑

(w,u)∈Ê

pwu; tuv ≥
∑

(w,v)∈Ê

pwv,

and replace C
∑

u≺v suv by C
∑

u≺v(tuv + suv)2. The
function is clearly convex in all its arguments.
The generalization bounds for the loss function ` in the
stability setup carry over to the function g with the σ-
admissibility of ` replaced by that of g. Consider the
function gmax, for example. For functions f, f ′ taking
values in an interval [a, b], loss function in (6), gmax

satisfies |(max(fu, fv)+suv)2−(max(f
′

u, f
′

v)+s
′

uv)2| ≤
max{4(2b− a), 2(3b− a)}︸ ︷︷ ︸

=σ

(|fu − f
′

u|+ |fv − f
′

v|). This

gives us
∥∥g − g\i

∥∥
∞ ≤ 2σβ, where β is a bound on∥∥f − f\i

∥∥
∞. The latter can be bounded by plugging

the σ-admissibility of g in the techniques of Section 4.
Despite the desirable properties of gmax, the dual prob-
lem contains many equality constraints in this setup.
Taking a cue from augmented Lagrangian appraoches,
we add a quadratic penalty barrier for every constraint
to the objective function. A stiff penalty ensures that
a minimizer of the augmented objective is also approx-
imately feasible wrt the dual constraints.

7. Experiments

Synthetic graphs: We used RMAT (Chakrabarti
et al., 2004) to generate graphs with 1000–4000 nodes
and 4000–16000 edges resembling real social networks.

Real graphs: We also performed experiments on bi-
ological cellular networks used by Jeong et al. (2000).
The dataset consists of small directed graphs that re-
semble social networks in degree distribution.

Preferences: Our goal was to see how well the
learning algorithms can identify a hidden favored “per-
sonalized” community (Jeh & Widom, 2003) from ≺.
To this end, we first computed reference scores π.
Then we chose random hidden seed nodes and routed
a large (0.1–0.8) teleport into the seed. This gave us
the hidden ground truth φ∗ for all nodes, from which
we sampled pairs to prepare ≺ for training and test-
ing. To remove transitivity artifacts, we ensured these
are node-disjoint.

Evaluation: The algorithm must estimate φ and p
to induce a ranking. Accuracy is measured in terms of
the fraction of test pairs whose rankings violates the
hidden φ∗. Results are averaged over six randomly-
chosen hidden communities, and cross-validated for C
and/or C1.

Preference satisfaction results: Figure 2 shows
that (KL) with additive margin compares favorably
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Figure 2. Comparison over synthetic graphs of the accu-
racy of Laplacian- and KL-based approaches without and
with additive margin. The x-axis is the fraction of teleport
diverted into the hidden favored community.

with (Lap) in terms of accuracy. (KL) without addi-
tive margin performs poorly.
Our numbers for (Lap) cannot be compared with those
reported by Agarwal (2006), for two reasons. First,
Agarwal (2006) designed edge weights w(u, v) by hand,
with consideration to domain knowledge and node fea-
tures, to fix the Laplacian; in (KL), flows puv are es-
timated as part of learning from ≺. Second, Agarwal
(2006) optimized for ordinal regression (3- or 5-partite
ranking) tasks, while we generate arbitrary preference
pairs.
(KL) with additive margin works well also on cellular
networks, as shown in Figure 3. The training and test
preferences were generated synthetically as described
above.
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Figure 3. Accuracy of (KL) with additive margin for vari-
ous cellular graphs.

Cost-sensitive ranking results: In the cost-
sensitive setting, only pair preferences are presented
to the algorithm, even though the trainer knows the
ranks induced by φ∗. The algorithm estimates φ and
uses it for ranking. Let k be a rank cutoff, T ∗k the
true top-k nodes using φ∗, and Tk those reported us-
ing φ. The “precision at k” is defined as |Tu

k ∩ T̂u
k |/k.
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Figure 4. Effect of cost-sensitive optimization on three top-
k accuracy measures. The x-axis is the rank k up to which
accuracy is measured.

The “relative average goodness” or “RAG at k” is(∑
v∈Tk

φ∗(v)
) / (∑

v∈T∗
k
φ∗(v)

)
. We also measure

Kendall’s τ between (ordered) Tk and T ∗k . Figure 4
shows the results—cost-sensitive (Lap) is consistently
better than baseline (Lap) wrt all three criteria.

8. Conclusion

We analyzed and enhanced algorithms to learn
Pagerank-style random walks for ranking nodes in
graphs, and drew correspondences with a recent algo-
rithm that uses graph Laplacians. The latter does not
ensure Markov balance, essential for many Pagerank
optimizations, and involves the diagonalization of a
large matrix. Furthermore, generalization power of the
latter approach is expressed in terms of the somewhat
inscrutable quantity maxu L

+
uu, whereas, for Pagerank,

generalization can be expressed wrt intuitive param-
eters D and ρ. Pagerank learning uses a hypothesis
space that is a strict subset of the Laplacian smooth-
ing approach. This increased bias seems to help in
practice for the kind of ranking tasks we consider.
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