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Abstract

We develop a mixture-based approach to ro-
bust density modeling and outlier detection
for experimental multivariate data that in-
cludes measurement error information. Our
model is designed to infer atypical measure-
ments that are not due to errors, aiming to
retrieve potentially interesting peculiar ob-
jects. Since exact inference is not possible
in this model, we develop a tree-structured
variational EM solution. This compares fa-
vorably against a fully factorial approxima-
tion scheme, approaching the accuracy of a
Markov-Chain-EM, while maintaining com-
putational simplicity. We demonstrate the
benefits of including measurement errors in
the model, in terms of improved outlier de-
tection rates in varying measurement uncer-
tainty conditions. We then use this approach
for detecting peculiar quasars from an astro-
physical survey, given photometric measure-
ments with errors.

1. Introduction

The goal in robust unsupervised data modeling is to
capture the structure of the typical observations while
dealing with atypical or outlying observations in an
automated manner. Outliers can occur for various
reasons, such as unusually large measurement errors
or the existence of peculiar objects in a data set. If
atypical observations exist and are not properly dealt
with, they lead to biases in the parameter estimates
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and poor generalization of the structure inferred from
the data. Therefore, a great deal of effort has been in-
vested into modifying existing unsupervised methods
to provide them with robustness properties. In statis-
tics and statistical machine learning communities, the
Student t-distribution was put forth and adopted as a
robust building block, for clustering (Peel & McLach-
lan, 2000; Svensen & Bishop, 2005), visualization (Vel-
lido et al., 2006) and robust projections (Archambeau
et al., 2006). The t-distribution has heavy tails, hence
it gives non-zero probability to observations that are
far away from the bulk of the density.

Apart from the issue of robustness of the parameter
estimates, the ability of detecting outliers is of spe-
cial interest in certain scientific areas such as in As-
trophysics (Djorgovski et al., 2001), where finding pe-
culiar objects from large archives of multi-wavelength
astronomical images provide a unique means of identi-
fying candidates of possibly new types of objects that
deserve more detailed follow-up study (e.g. using spec-
troscopy). However, a bottleneck already anticipated
in Djorgovski et al. (2001) is ‘the likely overabun-
dance of interesting objects found’ – the interpretation
and understanding of which will necessitate costly de-
tailed analysis. Indeed, not every atypical observation
is truly interesting. One reason for this lies in measure-
ment errors resulting from uncertainties in instrument
calibration, physical limitations of devices and experi-
mental conditions. These errors are typically carefully
recorded in the case of scientific data and are avail-
able. Yet, most existing data analysis methods have
no natural ways of taking these into consideration. In
turn, neglecting the error information holds the risk of
compromising the accuracy with which genuine out-
liers can be detected, since there is nothing to prevent
us from confusing erroneous measurements with po-
tentially interesting rare or peculiar ones.
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In classical statistics, models known as ‘errors in vari-
ables’ exist, such as the total least square approach
for robust regression (Huffel & Lemmerling, 2002).
Probabilistic approaches able to propagate uncertainty
have also started to appear recently (Liu et al., 2006;
Girard et al., 2003) for certain problems, and their
benefits have been convincingly demonstrated. How-
ever we are aware of no work on including knowledge
of observational errors specifically for unsupervised ro-
bust density modeling. Due to the importance of this
issue in scientific data mining, this paper makes an
attempt to fill in this gap.

2. Robust Mixtures for Data with

Errors

Consider a data set in which each individual measure-
ment is an estimate of the form tin ± √

sin, where
n = 1, ..., N, i = 1, ..., d, N is the number of object
instances and d is the number of features. It is con-
ceptually justified to assume that the error associated
with these individual measurements is normally dis-
tributed (e.g.Taylor (1996)). Organizing the square of
errors into diagonal matrices Sn, for each measured d-
dimensional data point tn, the following heteroscedas-
tic noise model can be written.

p(tn|wn) = N (tn|wn,Sn); (1)

where N (tn|wn,Sn) denotes the normal distribution
with unknown mean wn and known diagonal covari-
ance matrix Sn.

The unknown mean values wn represent the clean,
error-free version of the data. Since these cannot be di-
rectly observed, we will treat them as latent variables.
The genuine outliers, in which we are interested, must
be those of the density of w rather than those of the
density of t. We will therefore model the hidden clean
density as a robust mixture of Student t-distributions

(MoT)1: p(w) =
K
∑

k=1

πkSt(w|µk,Σk, νk), where

St(w|µk,Σk, νk) =
Γ( νk+d

2
)|Σk|

−1/2
Γ( νk

2
)−1(νkπ)−

d

2

(

1 +
(w−µk)T Σ

−1

k
(w−µk)

νk

)

νk+d

2

By the use of t-densities, we make no assumptions
on the distribution of outliers. Outliers are instances
outside the high density ‘cluster’ regions.

As noted in Liu and Rubin (1995), with the in-
troduction of an auxiliary hidden variable u, the t-
distribution can be re-written as a convolution of a
Gaussian with a Gamma placed on its precisions,

St(w|µ,Σ, ν) =

∞
∫

0

N (w|µ,
Σ

u
)G(u|

ν

2
,
ν

2
)du; (2)

1The instance indices n will be dropped for convenience,
whenever their presence is obvious from the context.

where G is the Gamma density, G(u|a, b) =

baua−1 exp(−bu)
Γ(a) . This re-writing has been exploited for

developing an exact ML estimation algorithm for the
MoT model (Peel & McLachlan, 2000).

In our model, the distribution of the observed data t
can be obtained by integration over w. So we have:

p(t) =
∑

k

πk

∫∫

N (t|w, S)N

(

w|µk,
Σk

u

)

G

(

u|
νk

2
,

νk

2

)

dudw

(3)

Thus, given a set of training data Y = (t1, · · · , tN ),
the complete probability model of the observed vari-
able t and the latent variables w, u, z will have the
following factorized form:

LC =
∏

n

∏

k

[p(tn|wn)p(wn|un, zn = k)]δ(zn=k) ×

∏

n

∏

k

[p(un|zn = k)p(zn = k|π)]δ(zn=k) (4)

where δ(·) is the Kronecker delta. The plate diagram
representation of this model is shown on the right-hand
plot of Fig. 1, along with that of the MoT model.
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Figure 1. Plate diagrams of MoT (left), and the proposed

model (right).

3. A Structured Variational EM

Solution

Since the integration in Eq. (3) is not tractable, we
develop a generalized EM (GEM) algorithm (see e.g.
Hogg et al. (2005)), with approximate E-step. In gen-
eral terms, for each data point tn, its log-likelihood
can be written as follows, for any distribution q:

log p(tn|θ) =

∫

q(hn) log
p(hn, tn|θ)

q(hn)

q(hn)

p(hn|tn, θ)
dhn

≥

∫

q(hn) log
p(hn, tn|θ)

q(hn)
dh ≡ F(tn|q, θ)

where q is the free-form variational family (or varia-
tional posterior), F is called the variational free en-
ergy function, hn is the set of latent variables as-
sociated with tn, and θ is the set of parameters of
the model. In our case, hn = (zn,wn, un) and θ =
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({µk}, {Σk}, {νk}, π). The log-likelihood of the given
data set Y is then lower bounded by the free energy:

log p(Y|θ) =
∑

n

log p(tn|θ) ≥
∑

n

F(tn|q(hn), θ) (5)

In the E-step of the (k+ 1)-th iteration of a GEM al-
gorithm, we maximize F w.r.t the variational distribu-
tion q while fixing the parameters in the k-th iteration,
θk:

q
k+1(hn) = arg max

q
F(tn|q, θ

k). (6)

In the M-step, we maximize Eq. (5) w.r.t the param-
eters θ to obtain the new parameter values θk+1:

θ
k+1 = arg max

θ

∑

n

F(tn|q
k+1

, θ). (7)

3.1. Tree-structured Variational Distribution

Some tractable form needs to be chosen for q. The
most common choice is a fully factorial form (Jordan
et al., 1999). In our case, this would be q(w, u, z) ≡
q(w)q(u)q(z). In the context of robust mixtures, fully
factorial variational posterior distributions have been
employed in (Svensen & Bishop, 2005), though with a
slightly different model specification. Let us observe,
however, that under our model definitions, it is feasible
to keep some of the posterior dependencies by choosing
the following tree-structured variational distribution:

q(w, u, z = k) = q(z = k)q(w|z = k)q(u|z = k)

Structured variational distributions have been used
previously in the context of various other latent vari-
able models (Geiger & Meek, 2005; Bishop & Winn,
2003) and have been found more accurate compared
to the fully factorial choice. Yet, their use is still
not as popular as it could be. In the following, we
denote q(z = k) by q(k), q(w|z = k) by q(w|k)
and q(u|z = k) by q(u|k). Also, expectations w.r.t.
q(w|z = k) will be denoted by 〈.〉w|k and similarly,
those w.r.t. q(u|k) by 〈.〉u|k, and those w.r.t. the joint
q(w, u|k) = q(w|k)q(u|k) by 〈.〉w,u|k.

3.2. Deriving the GEM Algorithm

The free energy function F(t|q, θ) can be evaluated as

F(t|q, θ) =
∑

k

q(k)
[

〈log p(t,w, u, k)〉w,u|k

]

+H(q)

where H(q) is the entropy of the variational distribu-
tion: H(q) = −

∑

k q(k)
[

〈log (q(u|k)q(w|k)q(k))〉w,u|k

]

.
Defining At,k = 〈log p(t,w, u, k)〉w,u|k − 〈log q(u|k)〉u|k −
〈log q(w|k)〉w|k then we have:

F(t|q, θ) =
∑

k

q(k) [At,k − log q(k)] . (8)

3.2.1. Variational E-step

Now, in order to find the optimal functional form of the
posterior distribution terms, we take functional deriva-
tives of F(t|q, θ) w.r.t. the terms of q, i.e. q(w|k),
q(u|k) and q(k) respectively, and equate these to the
identically null function. We obtain the following:

q(w|k) =
exp〈log [p(t|w)p(w|u, k)]〉u|k

∫

exp〈log [p(t|w)p(w|u, k)]〉u|kdw
(9)

q(u|k) =
exp〈log [p(w|u, k)p(u|k)]〉w|k

∫

exp〈log [p(w|u, k)p(u|k)]〉w|kdu
(10)

q(k) =
exp(At,k)

∑

k′ exp(At,k′)
(11)

It can be seen that q(w|k) and q(u|k) depend only on
variables in their Markov blanket. However, the dis-
tribution q(k) depends on all other variables in the
graph. Conveniently, the quantities required for com-
puting Eq. (11) will be available from the computa-
tions that are needed for evaluating the free energy
function — which in turn is useful for monitoring the
convergence of the GEM iterations.

Due to the conjugacy properties of the distributions
we used, and after simplification, we now can obtain q
analytically. Let us define:

Σw|k = S

[

Σk

〈u〉u|k

+ S

]−1
Σk

〈u〉u|k

(12)

〈w〉k = Σw|k

(

〈u〉u|kΣ
−1
k µk + S

−1
t
)

(13)

ak =
νk + d

2
; bk =

νk + Ck

2
(14)

where

Ck = (〈w〉k − µk)T
Σ

−1
k (〈w〉k − µk) + Tr

(

Σ
−1
k Σw|k

)

.
(15)

Then we have:

q(w|k) = N (w|〈w〉k,Σw|k); q(u|k) = G(u|ak, bk). (16)

3.2.2. The variational likelihood bound

At,k can be evaluated as follows:

At,k = 〈log p(t|w)〉w|k + 〈log p(u|k)〉u|k + log πk +

〈log p(w|u, k)〉w,u|k − 〈log q(w|k)〉w|k −

〈log q(u|k)〉u|k

= Q1 +Q2 +Q3 +Q4 +Q5 +Q6 (17)

where

Q1 = −
d

2
log(2π) −

1

2
log |S| −

1

2
Tr(Σw|kS

−1)
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−
1

2

[

(〈w〉k − t)T
S
−1(〈w〉k − t)

]

;

Q2 = (
νk

2
− 1)〈log u〉u|k −

νk

2

ak

bk

+
νk

2
log(

νk

2
) − log Γ(

νk

2
);

Q3 = −
d

2
log(2π) −

1

2
log |Σk| +

d

2
〈log u〉u|k

−
1

2

ak

bk

[

(〈w〉k − µk)T
Σ

−1
k (〈w〉k − µk)

]

−
1

2

ak

bk
Tr(Σw|kΣ

−1
k );

Q4 = log πk;

Q5 =
d

2
+
d

2
log(2π) +

1

2
log |Σw|k|;

Q6 = −[(ak − 1)〈log u〉u|k + ak log bk − ak − log Γ(ak)];

and where 〈log u〉u|k = ψ(ak) − log bk and ψ(·) is the
di-gamma function.

In summary, given a data Y, the log likelihood bound
is computed cf. Eq. (8) as the following:

F =
∑

n

∑

k

q(zn = k) [Atn,k − log q(zn = k)] (18)

where Atn,k is computed as in Eq. (17) for each data
point tn. Eq. (18) is useful to monitoring the conver-
gence.

3.2.3. M-step

The parameter re-estimates are obtained by solving
the stationary equations of F w.r.t µk, Σk and πk,
which yields:

µk =

∑N
n=1 q(zn = k)〈un〉un|k〈wn〉wn|k

∑N
n=1 q(zn = k)〈un〉un|k

(19)

Σk =

∑N
n=1 q(zn = k)〈un〉un|kΣ̃n,k

∑N
n=1 q(zn = k)

(20)

πk =
1

N

N
∑

n=1

q(zn = k) (21)

where Σ̃n,k =
[

(µk − 〈wn〉k)(µk − 〈wn〉k)T + Σwn|k

]

.
Finally, νk is re-estimated by solving the following non-
linear equation.

∑

n

q(zn = k)[log(
νk

2
) + 1 + 〈log un〉k −

ank

bnk
− ψ(

νk

2
)] = 0.

3.3. Scaling

Considering the time complexity of the algorithm, per
iteration, computing the posterior mean and covari-
ance (〈w〉k and Σw|k) for each data point t takes
O(d3K) operations. The computation of the parame-
ters of q(u|k), ak and bk take O(d3K), and the respon-
sibility q(k) needs O(d3K) time as well. In total, this is

O(d3KN). For comparison, the maximum likelihood
estimation of MoT (Peel & McLachlan, 2000) takes
O(d3K) to compute p(u|k, t) and O(d3K) to compute
p(k|t), which totals a complexity of O(d3KN) — same
as that of proposed algorithm. Moreover, using a full
factorial approximation in our model also results in the
same theoretical complexity per iteration. So the only
extra burden of our proposed method is the computa-
tion of the posterior mean and covariance of the clean
data w. The most expensive operation appears to be
the matrix inversion, however, it should be noted, this
is only required when Σk are modeled as a full covari-
ances, which is feasible in relatively low-dimensional
problems (d � N). If this model was to be used on
high dimensional data, then a diagonal form Σk would
need to be taken — in which case the cubic operation
is no longer required since the matrices to be inverted
become diagonal.

3.4. Accommodating New Data Points

Since the model is fully generative, it can also be ap-
plied to new, previously unseen data from the same
source. For a given test data set, we need to calculate
the posterior distributions of wn and un associated
with each test point tn. To calculate these, we fix the
parameters µk, Σk and πk, 1 ≤ k ≤ K obtained from
the training set and perform the E-step iterations until
convergence. This typically converges at least an order
of magnitude faster than the full training procedure.

3.5. Determining the Number of Components

To determine the number of mixture components, we
can employ the minimum message length (MML) prin-
ciple (Figueiredo & Jain, 2002) by maximizing the fol-
lowing criterion:

L(θ,Y) = −
n̂

2

∑

k:πk>0

log

(

Nπk

12

)

−
knz

2
log

(

N

12

)

−
knz(n̂+ 1)

2
+ log p(Y|θ) (22)

where p(Y|θ) is the data log-likelihood, n̂ is the di-
mensionality of the parameters, knz is the number of
non-zero-probability components. The free parame-
ters involved in the proposed algorithm are the means
and the full covariance matrices of N (wn|un, zn = k).
Thus the dimensionality of the k-th parameter θk =
(µk,Σk), is d + d(d − 1)/2. We use our approxima-
tion to the data likelihood, given earlier in Eq. (5).
Replacing this in (22), leads to maximizing:

L(θ,Y) ≥ −
n̂

2

∑

k:πk>0

log

(

Nπk

12

)

−
knz

2
log

(

N

12

)

−
knz(n̂+ 1)

2
+

∑

n

F(tn|q, θ) ≡ L̃(Y|q, θ).
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This maximization is similar to the GEM presented in
Section 3.1 and algorithmically the only difference is in
computing the mixing proportions πk in the M-steps,
which is now:

πk =
max

{

0,
∑N

n=1 q(zn = k) − n̂
2

}

∑K
j=1 max

{

0,
∑N

n=1 q(zn = j) − n̂
2

} (23)

Of course, only the non-zero-probability components
of the mixtures will contribute to q(wn|zn), q(un|zn)
and q(zn).

4. The Outlier Detection Criteria

Since we modeled the clean, error-free data by a mix-
ture of t-distributions, we would expect that the model
can find outliers w.r.t the clean data, rather than
the contaminated data. Following Peel and McLach-
lan (2000), the posterior expectation of u is inter-
pretable as an outlierness indicator. Using our pos-
terior approximations described earlier (i.e. q(u, k) =
q(u|k)q(k) to approximate p(u, k|t)), then the varia-
tional expectation of u will be employed to infer out-
lierness. This is:

e ≡
∑

k

q(k)
νk + d

νk + Tr(Σ−1
k Σw|k) + ∆2

w|k

(24)

where ak and bk are defined in Eq. (14); and ∆
2
w|k =

(〈w〉w|k−µk)T
Σ

−1
k (〈w〉w|k−µk). Therefore, a data point

is considered to be an outlier if its corresponding e
value is sufficiently small.

In contrast, recall that for MoT, the outlier criterion
value (Peel & McLachlan, 2000) is

eMoT ≡
∑

k

p(k|t)
νk + d

νk + (t − µk)T Σ
−1
k (t − µk)

(25)

So we see that, instead of the Mahalanobis distance
between the mean µk and the data t, as in Eq. (25),
we have the distance between the center µk and the
expected value of the clean data w in (24).

Further, it can easily be seen, for consistency, that
in the limit of zero observation error, our outlierness
criterion reduces to that of MoT. Indeed, whenever
S = 0, Eqs. (12),(13) and (15) can be written as:

Σw|k = 0; 〈w〉w|k = t;

Ck = (t − µk)T
Σ

−1
k (t − µk);

Then replacing the above equations into Eqs. (10),
(19), (20) and (21), we can recover the posteriors as:

q(u|k) = p(u|t, k); q(k) = p(k|t);

and so, the update formulas of the MoT are recov-
ered (Peel & McLachlan, 2000).

If the size of the measurement error S (we can mea-
sure the size of S by its trace) is small, we expect

the difference between e and eMoT is relatively small
too. However, as the size of the measurement error
gets larger, the difference between the two outlierness
criteria becomes larger and consequently the ranking
they produce will be different. In particular, we can
gain more insights and see the effects of a misspecifi-
cation of the error by rewriting the data likelihood (3)
by integrating over w:

p(tn) =
∑

k

πk

∫

N

(

tn|µk,
Σk

un

+ Sn

)

G

(

un|
νk

2
,

νk

2

)

dun (26)

The posterior expectations 〈un〉 are data instance-
specific, ensuring the robustness of the parameter esti-
mates, even if the errors (diagonals of Sn) are misspec-
ified. However, this also implies that a data instance
with an underestimated Sn gets picked as a false ‘inter-
esting’ outlier (〈un〉 gets smaller). Clearly, if all errors
are specified at zero, our model reduces to MoT and
produces unwanted false detections.

5. Experiments and Results

To test the performance of the proposed algorithm,
first we experimentally assess the accuracy of the
structured factorization employed. Second, we per-
form a set of controlled experiments on synthetic and
semi-synthetic data sets, in order to demonstrate the
ability of detecting genuine outliers. Finally, we shall
present a real application of our approach in astron-
omy, for finding peculiar (high redshift) objects from
the SDSS quasar catalogue (York, 2000).

5.1. Synthetic Data & Illustrative Experiment

A synthetic data set is constructed comprising of error-
free values sampled from a mixture of three well sepa-
rated Gaussians and a uniform distribution simulates
the presence of genuine outliers. Then we add Gaus-
sian noise to all points, to simulate measurement er-
rors, and apply our algorithm to the resulting dataset.
The aim is to recover the genuine outliers (along with
the density of non-outliers), despite the Gaussian noise
added. The leftmost plot of Fig. 2 shows the error-
free data, with the Gaussian covariances of the clusters
of non-outliers superimposed. Different markers are
used for points in different clusters and the outliers are
marked with stars. The central plot shows the effect
of simulating measurement errors. The marker sizes
are proportional to the size of errors. Notice that due
to the errors, some outliers appear closer to the main
density regions while some of the non-outliers ‘jump’
away from the bulk of density. Thus the measurement
errors make the problem of recovering genuine outliers
much more challenging. The rightmost plot of Fig. 2
shows the result of our estimation procedure described
earlier, superimposed over the data with errors.
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Figure 2. A synthetic data set with cluster structure and

outliers. Left: Hidden error-free data with genuine out-

liers; Center: Data contaminated with measurement errors;

Right: The estimated grouping and detected outliers.

5.2. Comparison of Alternative Approximate

EM Methods

Now, we test the accuracy of the structured variational
EM method developed here, against a fully factorial
variational EM for the same model, and a Markov
Chain EM (MCEM) realized through Gibbs sampling,
the latter being considered to represent the ‘ground
truth’. Fig. 3 shows the approximation of the log
likelihood against iterations in a run on the synthetic
data set shown earlier. For Gibbs sampling MCEM,
M = 10, 000 samples were used for computing the pos-
terior estimates. The first 2000 samples were discarded
as burn-in. All algorithms were started from the same
initial parameter values. As expected, MCEM is supe-
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Figure 3. The optimization process of alternative approxi-

mate EM algorithms on the synthetic data set.

rior to variational methods, but at the price of a heavy
computational demand and difficulties in determining
its convergence. From the figures we also see the struc-
tured variational EM is closer to MCEM than the fully
factorial variational EM. Therefore we use this method
in the remainder of experiments reported2.

5.3. Assessing the Accuracy of Detecting

Genuine Outliers

To see how well we can detect genuine outliers, we
start by carrying out a set of controlled experiments,
varying the extent of measurement errors. We use our
synthetic data sets and define five different measure-
ment error levels: The diagonal elements of the error
variance matrix S will range between [0,0.01], [0,0.1],
[0,1], [0,10] and [0,100] respectively.

We perform receiver operating characteristics (ROC)
analysis (Fawcett, 2004) to measure the performance.
The area under the ROC curve (AUC) gives us the
probability that a genuine outlier is detected. The
MoT is employed as a baseline in our comparisons,
in two instances. i) MoT applied to the clean data
(which in real applications is not available) provides
an idealized upper limit; ii) MoT applied to the data
contaminated with observation errors provides a base-
line against of which we measure our improvements.
Fig. 4 summarizes the results obtained. For each of
the 5 error conditions, the mean and standard devia-
tion of the AUC values over repeated runs on 30 inde-
pendent realizations of the data are shown: The up-
per plot shows the in-sample performance whereas the
lower plot shows the out-of-sample performance, i.e.
the ability to detect genuine outliers in previously un-
seen data from the same density model. The results
are intuitive — we see a systematic and increasingly
statistically significant improvement w.r.t. MoT/base,
as the measurement uncertainty increases, both on is-
sample data and on out-of-sample data.

In order to test our method further on data with a
more realistic underlying density, while still being able
to evaluate the benefits of using measurement error in-
formation in a controlled manner, we now apply our
method on semi-synthetic data derived from real data,
the lymphography data set (Blake & Merz, 1998).
Originally, the data has four classes (148 data points
in total and 18 dimensions), but two of them are quite
small (2 and 4 data records), so we consider the two

2We also tested the variational methods, along with a
MAP approach for un (using conjugate gradient optimiza-
tion) for clustering accuracy, measured against the true
labels. We found the structured variational EM superior
and most stable in these tests as well.
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Figure 4. Comparison of MoT/idealized, MoT/base and

the proposed algorithm on data sets with different levels

of measurement error: in-sample (left) and out-of-sample

(right).

small classes as outliers. We added heteroscedastic
Gaussian noise with variances ranging between 0–0.1,
to each observation, in order to simulate errors.

The algorithms were run on 10 independent realiza-
tions of the measurement errors, and the average ROC
curves (Fawcett, 2004) and associated average AUC
were then computed. The in-sample (93 data points)
average AUC obtained by MoT/idealized is 0.9391,
by MoT/base is 0.9005, whereas the proposed algo-
rithm obtained 0.9555. The significance values of a
t-test between MoT/idealized and the proposed algo-
rithm was 0.39, while the value between the proposed
algorithm and MoT/base was 9.6 × 10−5. This sug-
gests that the proposed algorithm performs compa-
rably to MoT/idealized and significantly better than
MoT/base in this experiment. Moreover, the out of
sample (55 data points) performance is also of the
same quality, illustrated in Fig. 5. We can conclude
therefore, that knowledge of measurement errors is
useful and can be exploited with the use of our ap-
proach to achieve a more accurate detection of genuine
outliers.

5.4. Application to Detecting High-redshift

Quasars from the SDSS Quasar Catalogue

In astrophysical measurements, there is no error-free
situation (Taylor, 1996), but the measurement errors
can be estimated for each feature and each object,
from knowledge about observing conditions and in-
strumental limitations. Therefore, unlike above, error-
free data is not available, which precludes the valida-
tion against an absolute ground truth. The data set
analyzed here is extracted from a well-studied survey
in astrophysics, the SDSS quasar catalog (York, 2000),
which provides five magnitudes for a large number of
quasars, representing their brightness measured with

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e MoT/idealised

MoT/base
The proposed algorithm

Figure 5. Out of sample average ROC curves of

MoT/idealized, MoT/base and the proposed algo-

rithm on the lymphography data set. The error bars

represent one standard deviation.

five different optical filters u′ g′ r′ i′ and z′. From
these, to avoid bias with brightness, we construct four
features, each related to a color, by subtracting r′

(which is the most reliably measured) from each of
the others. In addition, spectroscopic redshift esti-
mates are available for the subset we have extracted
– these are not used within the algorithm, but are
useful to in validating our results. The redshift is re-
lated to the distance of the object from the Earth, and
very distant objects are rare. Given that with higher
redshift, the entire spectral pattern is systematically
shifted towards the redder end, there is physical rea-
son for the rare quasars at very high redshift to be per-
ceived as outliers in the overall density of quasars in
the color space. This observation has been exploited in
a number of previous studies for finding high redshift
quasars in 2D projections of the multi-filter photome-
try (Fan, 2006). However, a comprehensive approach
which both i) works in the multivariate feature space
and ii) takes principled account of the measurement
errors has not been available.

We apply our method to a sample of 10,000 quasars
and compute the AUC values against a varying red-
shift threshold. The resulting relationship is shown in
Fig. 6, for different choices of K. The optimal order
determined by MML was K = 2, nevertheless, from
the figure we see a remarkable robustness w.r.t. this
choice. The y-coordinate of each point on these curves
indicates the probability of detecting quasars of red-
shift greater than its x-coordinate. This plot shows
clearly that our principled method in four-color space,
using errors, can identify as outliers an overwhelm-
ing fraction of quasars already at a redshift of 2.5
(or higher), whereas the 2D projection methods, e.g.
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Fan (2006), can manage to identify only those with
z > 3.5, which are extremely rare, and obvious from
naive projections. By being able to identify the latter
category, when the SDSS galaxy catalogue is complete
with four-color magnitudes, our method promises to
retrieve an order of magnitude more interesting high-
redshift quasars than existing methods would.
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Figure 6. AUC versus possible redshift thresholds.

6. Conclusions

We propose a robust mixture model for multivariate
data that includes error information, employing com-
posite densities. We have derived a structured varia-
tional EM algorithm for inference and parameter es-
timation, which in the zero limit of the measurement
errors reduces to maximum likelihood estimation of
t-mixtures. Empirical results of a set of controlled ex-
periments have shown a systematic and statistically
significant improvement in terms of correct outlier de-
tection rates in high measurement uncertainty condi-
tions. Finally, a real application of our method to de-
tecting peculiar, high-redshift quasars from the SDSS
photometric quasar catalogue was demonstrated. Fur-
ther work may concern extensions to robust projection
models (Archambeau et al., 2006) and including an in-
teractive visual element into the analysis of outliers for
data with error information.
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