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Abstract

We study the problem of learning a classifica
tion task in which only a dissimilarity function
of the objects is accessible. That is, data are
not represented by feature vectors but in terms
of their pairwise dissimilarities. We investigate
the sufficient conditions for dissimilarity func-
tions to allow building accurate classifiers. Our
results have the advantages that they apply to
unbounded dissimilarities and are invariant to
order-preserving transformations. The theory
immediately suggests a learning paradigm: con-
struct an ensemble of decision stumps each de-
pends on a pair of examples, then find a convex
combination of them to achieve a large margin.
We next develop apractical algorithm called Dis-
similarity based Boosting (DBoost) for learning
with dissimilarity functions under the theoretical
guidance. Experimental results demonstrate that
DBoost compares favorably with several existing
approaches on a variety of databases and under
different conditions.

1. Introduction

In classification problems, objects are often represented by
feature vectors in a Euclidean space. The Euclidean fea-
ture space provides much more analytical tools for classi-
fication than any other representations. However, such a
representation requires the selection of features, which is
usually difficult and domain dependent. For example, in
the area of fingerprint analysis, it took scientists more than
one hundred yearsto discover useful featuresfor fingerprint
recognition (Maltoni et al., 2003). It isnot clear even today
what kind of features have good discrimination ability for
human face recognition, and the existing feature extraction
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algorithms are not reliable or accurate enough (Zhao et al.,
2003).

An alternative way is to describe the patterns using dissim-
ilarity functions. For some applications such as image re-
trieval, this representation has the advantage that it is more
convenient to define a dissimilarity measure than a set of
meaningful features (Jacobs et al., 2000; Jain & Zongker,
1997). In addition, dissimilarity functions can often be de-
fined on structured objects. This procedure thus provides a
bridge between classical and the structural approach to pat-
tern classification (Gragpel et al., 1999; Goldfarb, 1985).

The simplest method to classify objectsin dissimilarity rep-
resentations is the nearest neighbor (NN) rule. Despite of
the theoretical result linking its asymptotic error rate to the
Bayes optimal risk, NN suffers from a number of draw-
backs like high computational complexity, sensitive to the
choice of distance measure and intolerance of noisy data
(Breiman et al., 1984). Thisisdueto thefact that NN relies
entirely on the local topology. If the dissimilarity measure
is not perfect or there are noisy examples, the performance
of NN degrades significantly.

In contrast to NN, severa authors proposed more global
classification algorithms. The underlying ideaisthat global
decision rules are less sensitive to the choice of distance
measure and noise. One type of methods first embeds the
data into a (possibly pseudo) Euclidean space, then ap-
plies traditional Euclidean classification agorithms, with
modifications adapted to the pseudo Euclidean if neces-
sary (Pekalska et a., 2002; Graepel et a., 1999) . An-
other type of methods explicitly constructs feature repre-
sentations of the objects via their (dis)similarities to a set
of prototypes, and then runs standard linear separator al-
gorithms like SVM in the new space (Pekalska & Duin,
2002; Balcan et a., 2006; Balcan et al., 2004) . All these
algorithms demonstrate superior performance to NN on a
number of datasets.

More recently, Balcan and Blum (2006) devel oped atheory
of learning with similarity functions. They defined a no-
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tion of what it means for a pairwise function to be a good
similarity function, and give sufficient conditions for anor-
malized similarity function to allow oneto learn well. This
theory immediately suggests the algorithms of the second
type described above, and therefore provides a theoretical
explanation of their good empirical performances.

In this paper we study both theoretical and practical is-
sues of learning with dissimilarity functions. We first ex-
tend Balcan and Blum (2006) theory on normalized simi-
larity functions to unbounded dissimilarity functions. We
give sufficient conditions for dissimilarity functions to a-
low one learn well. One advantage of our result is that
our notions of good dissimilarity functions are invariant to
order-preserving transformations. Interestingly, the theory
suggests a learning paradigm different from all the afore-
mentioned algorithms: Construct an ensemble of decision
stumps of special forms and then find a convex combina-
tion of them to achieve a large margin. We then develop
more practical agorithms under this theoretical guidance.
In particular, boosting is adopted due to its ability on ob-
taining large margin distribution.

The paper is organized as follows: We describe our the-
ory in Section 2. In Section 3, a practical algorithm called
DBoost is proposed for learning with dissimilarity func-
tions as a consequence of the theory. We next provide ex-
perimental evidence of the benefits of our algorithm in Sec-
tion 4, and conclude in Section 5.

2. Theory
2.1. Notations

By dissimilarity we mean any nonnegative two parameter
function d(x, X') , where x, X € X, and X is an instance
space. The axioms of a metric, i.e. reflectivity, symmetry
and triangle inequality are not necessary for adissimilarity
function.

Labeled examples are represented by z Z,Z’--- , where
z=(xYy),xe Xandy € {-1,1} . The examples are drawvn
randomly and, either independently or conditionally inde-
pendently, from the underlying distribution P of the prob-
lemover X x {—1, 1}, these are aways clear from the con-
text. | denotes the indicator function, and sgn(x) = 1 if
x> 0and —1 otherwise.

It is worth while to point out that although we focus on
dissimilarity functions, extension to similarity functionsis
trivial. Let s(x, xX') denote a similarity function. Just re-
placing d(x,xX) < d(x,x”) by s(x,x) > s(x,x”’) in al
definitions and theorems obtains the theory for similarity
functions. Therefore, the theory is a unified framework for
learning with similarity and dissimilarity functions.

2.2. Sufficient Conditionsfor Learning with
Dissimilarity Functions

We proposein this section anumber of sufficient conditions
for adissimilarity function that are useful for learning, with
the main results established in Definition 4 and Theorem 5.

Wefirst give anotion of good dissimilarity function, which
is quite intuitive. This definition expresses that if most ex-
amples are more likely to be "close” to random examples
Z of the same class than to z’ of the opposite class, the
dissimilarity function is good.

Definition 1 A dissimilarity function d(x, X') is said to be
strongly (e,vy) -good for the learning problem, if at least
1 — & probability mass of examples z satisfy:

P(d(x.X) <d(x.x") |y =Y. Y =-y)21/2+y. (1)

where the probability is over random examplesZ = (X, Y')
andz’ = (X",y").

One advantage of this definition is that strongly (e,v)-
goodness of a dissimilarity function is invariant to order-
preserving transformations. Formally,

Proposition 2 Suppose that d(-,-) and D(-,-) are dissim-
ilarity functions and d(:,-) is strongly (e,v)-good. If for
arbitrary xi, X, X;, X5, d(X1, X2) >d(x], x5) iff D(x1, X2)>
D(x}, %) ,then D(,-) isalsostrongly (e,)-good. In par-
ticular, if ¢ isastrictly increasing function, thenD = g od
isstrongly (&,v)-good if dis.

The proposition is immediate from Definition 1.

The notion of strongly (&,y)-good dissimilarity function
suggests a simple learning algorithm: draw a number of
pairs of examples of different labels, and voting for which
class the test example is more likely to be close to. Thisis
summarized in the following theorem.

Theorem 3 If d isa strongly (eg,7)-good dissimilarity
function, then with probability at least 1— ¢ over the choice
of n = (1/9?) In(1/6) pairs of examples (z, z") with labels
y =1,y =-1,i=12---,n, thefollowing classifier
H(X) has an error rate of no morethane + 6 :

HO = san[F91, 109 = = 3" san[dx x') — d(x )1
i=1

Proof: The proof uses a technique in (Balcan & Blum,
2006). LetM be the set of examples satisfying (1). For
afixed z= (x,y) € M. Note that

P(d(xX)<d(x.x") | Y =y. Y =-y)

= (@ X)<dx X)) | Y =%y’ =)
= ZEGLAXX) ~d)] 1Y =Y. ¥ =y)+ 5.
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where the probability is over random examplesZ = (X, y’)
and Z’ = (X”,y”) . Thusinequality (1) is equivalent to

E(sgn[d(x. x") —d(x.X)] | Y =Y.y’ =-y) = 2y.
Chernoff bound then implies that:

n
Ply- 3" sonfdex x) — d(x )] < 0| < e,
i=1

Since the above inequality holds for every ze M , we can
take expectation over all ze M, resultsin that the expected
error is at most e 2™ . Next usi ng Markov inequality we
obtain that the probability that the error rate over the set
M is larger than 9 is at most e 2 /g for arbitrary 6 > 0.
Finally, setting 6 = e 2" /g and addi ng the & probability of
examples znot in M compl etes the proof. O

Although Definition 1 and its suggested algorithm are natu-
ral, the notion of strongly (e, y)-goodness is too restrictive.
Similar to the argument in (Balcan & Blum, 2006), one can
show that there are many examples which are strong learn-
able yet do not satisfy Definition 1. However, imposing
appropriate weighting functions over the instances would
make inequality (1) valid with respective to the new dis-
tribution and allows one to learn well in the same way as
described above. The following definition is at the core of
this work. In this definition we merely assume the exis-
tence of the weighting functions, which are not necessarily
known a priori. It will become clear that this assumption
alone is sufficient to learn an accurate classifier. Therefore
it captures a broad class of dissimilarity functions.

Definition 4 Denote by p(x |y = 1) and p(x |y = -1)
the conditional pdf of the learning problem. A dissimilar-
ity function d is said to be (&, v, B) -good for the learning
problemif:

1. There exist two conditional pdf p(x | y = 1) and
(x| y= 1) such that for all x € X
pixly=1)

P(x|y=-1)
pxly=1) = ' < VB

p(x|y=-1)
2. Atleast 1 - ¢ probability mass of examples z satisfy

P(d(x X) <d( XY =y,Y' = -y) = 1/2+y. (2)

where P is the probability with respect to p(x'|y’) and
p(xX’ly”’) . Thatis,
P(d(xx)<d(xx") | Y =y,y" =-)
= JJ11d0x x) < d(x )] B(X|y'=y) B(x"| y'==y) dxdx".
It is easily seen that (&, 7y, B)-goodness is aso invariant to

order-preserving transformations of the dissimilarity func-
tions.

The next theorem says that (e, v, B)-goodness guarantees
the existence of alow error large margin classifier, which
is aconvex combination of a number of base classifiers.

Theorem 5 If disa (g, v, B)-good dissimilarity function,
then with probability at least 1 — § over the choice of
n = 4B?%/y? In(1/6) pairs of examples (Z,Z’) with labels
y =Ly’ =-1i=12---,n, there exists a convex com-
bination classifier f(x) of n base classifiers h;(x)

=D ah(d, ) ai=1a 20,
i=1
hi(3) = sgn[d(x X") - d(x X)].

such that the error rate of the combined classifier at margin
v/Bisatmost & + 6. Thatis,

P(y-f(X) <vy/B)<e+d.

Proof: Denote
pixly=1) _ pxly=-1
p(xly=1)’ p(x|y=-1)
Let M be the set of examples satisfying (2). For a fixed
zZ=(Xy) e M,

IS( d(X, X/)< d(X, X") | y :y’ y" :_y)
= [ B 1Y =X’ |y’ =-y)I [d(x, X') <d(x, x")] dx'dx”
= [[wy(x) woy(X”) pIXTY =) POX'TY” = -Y)

{sgn [d(x, x") = d(x, X)] + l}dx dx’
2

= 3E {Wy(x’)ny(X”)Sgn [d(x, x")}=d(x, x)] | Y=Y, y”=_y} +1.

Hence

wi(X) =

w-1(X)

PA(xX) <dxX) | Y =Y.y =-y) > 12+y
isequivalent to
E {wy (X )W_y(x")sgn[d(x, X") - d(x, X)] | Y=y, y"=—y} >2y.

Note that 0 < wy(X)w_1(X”) < B, the above inequality
together with the Hoeffding inequality implies that:

P {y% Z wa (X)W_1(X)sgn [d(x, X")—d(x, X)] < y} < e

wa (X)) W-1(X)

Let aj = )
TR wa(X) wea (X))

we have:

Y < e,

PLy > ai son[d(x, X)-d(x )] <
i=1 El wi(X)) W1 (X))
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Since wy(X)w_1(X") < B, we obtain

" {y' 2,01 S0 [d(x X) = d(x X)) < J’/B} <e™/®
i=1

Take expectation over al z € M then use the Markov in-
equality as in the proof of Theorem 3, we complete the
proof. O

Theorem 5 suggests that if d is a (e, y, B)-good dissimilar-
ity function, in order to learn well one only needs to draw
anumber of pairs of examples to build an ensemble of de-
cision stumps, then use an independent set of examples to
train alarge margin convex combination of the base classi-
fiers. Note that boosting is especially suitable for comput-
ing alarge margin composite classifier (Schapire & Singer,
1999). In Section 3, we will adopt boosting to develop
more practical algorithms for learning with dissimilarities.

2.3. Discussion of the Sufficient Conditions

We require in our definitions of good dissimilarity func-
tions that most of the examples (at least 1 — & probability
mass) are more likely to be close to a random example of
the same class than to an example of the opposite class.
Another natural but weaker notion would be the following:

Definition 6 A dissimilarity function d(x, X') is said to be
pseudo y-good for the learning problem, if

P X) <dxx") | Y =Y.y =-y)>21/2+y. (3

where the probability is taken over the random examples
z=(xYy),Z =(X,y)and Z’ = (X",y").

One might expect that the pseudo goodness would also im-
ply learnable, possibly in aweak sense. However, we can
show that the majority voting scheme given in previous the-
orems, in general, does not guarantee any learnability, even
in the weakest sense. Thisresult means that our definitions
of good dissimilarity given in Section 2.2 can not be weak-
ened too much.

For simplicity, we assume in the next proposition that the
class probability isequd, i.e. P(y =1) = P(y =-1) = 1/2.

Proposition 7 There exists a learning problem and a
pseudo y-good (0 < y < 1/4) dissimilarity function for this
problem such that even if n — oo, it is till with high prob-
ability (close to 1) over the choice of n pairs of examples
(Z.z') with labelsy, = 1,y = -=1,i = 1,2,---,n, that the
error rate of the voting classifier ishigher than 1/2, that is,

Py- f(x) <0) > 1/2,

(00 == > sgnfdx x) — d(x )1
i=1

Proof Sketch: For afixed examplez = (x,y ), whenn —

oo, the law of large numbers gives that

1 /7 “
f09 =~ > san[d(x. x") - d(x. X)]
converges in probability to

E{sgn[d(x.x") —d(x.x)] | z.y =1y’ =-1}.

Note further that

E{sgn[d(x, X") —d(x,X)] | z,y =1,y = -1}
=2P{d(x,X) <d(x,x") | z,y =1y’ =-1} -1

It can be shown that when n is sufficiently large, with prob-
ability closeto 1, an error occurs, i.e. yf(x) < O if

P{d(x,x) <d(x,x") | z,y =y,y' =-y} < 1/2.
Denote

0@ = P(d(x, X)<d(xx") | 2,y =y,Y' =-y).

For 0 <y < 1/4, it iseasy to construct a distribution such
that the following two inequalities hold simultaneously:

Elg@] > 1/2+y
P <1/2)>1/2

The first inequality is equivalent to (3), meaning that the
dissimilarity function is pseudo y-good for the problem.
The second inequality implies that the error rate of the vot-
ing classifier islarger than 1/2. O

3. The DBoost Algorithm

In this section we propose apractical algorithm for learning
with dissimilarity functions under the previous theoretical
guidance. The algorithm is essentially Dissimilarity based
Boosting, and will be referred to as DBoost.

Our main theoretical result (Theorem 5) suggests that one
randomly draw alarge number of pairs of examplesto con-
struct base classifiers of the form:

" 1t d(xx) <d(xX’)
h.(x)_{ -1 otherwise

y=1 y' =-1

Then boosting can be adopted to train, by using an indepen-
dent set of examples, a convex combination of these h;(x)
such that the composite classifier f(X) = X a;hi(X) has a
large margin. In practice however, only limited examples
are presented, so we have to use the data effectively. In
our algorithm, we use al the data as training set and con-
sider al pairs of examples with different labels as candi-
dates to build the stump base classifiers. Another practical

. (4
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Table 1. Description of the 22 datasets from UCI repository.

DATA SET #CLASSES #EXAMPLES DATA SET  #CLASSES #EXAMPLES
BALANCE 3 625 LETTER 26 20000
BREAST 2 699 LIVER 2 345
CLEVELAND 2 297 MONK1 2 556
DIABETES 2 768 MONK?2 2 601
ECHO 2 106 MONK3 2 554
GERMAN 2 1000 SATIMAGE 6 6435
HAYES 3 160 VEHICLE 4 846
HEPATITIS 2 155 VOWEL 11 990
IMAGE 7 2310 WDBC 2 569
IONOSPHERE 2 351 WINE 3 178
IRIS 3 150 WPBC 2 194

issueisthat the base classifier (4) istoo weak, we therefore
strengthen its discrimination ability. These modifications
are described in detail asfollows.

Consider the base classifier given in (4). This is a deci-
sion stump which partitions the instance space X into two
subspaces X* and X~ defined as:

Xt ={x | d(x,x)—-d(x, x") <0},
X~ ={x | d(x,x) —d(x,x’) > 0}.
y =1 y'=-1

If the instance space X is a Euclidean space, the decision
surface of the decision stump is a hyperplane orthogonal to
thelinejoining X', xX” and bisectsthe line.

We suggest using as the base classifier the following deci-
sion stump, which partitions X into X* and X~ as:

Xt = x| d?(x,x) - d?(x,x") <V},
X" = {x | d®(x,x) - d’(x,x") > v,

©)

where v is a threshold introduced as a free parameter to
increase the discrimination ability of the base learner. If
X is a Euclidean space, the decision surface of the above
decision stump is also a hyperplane orthogonal to the line
passing through x’and x” but biased at v. Hence (5) is a
straightforward generalization of (4).

The most important issue for the design of our algorithmis
how to train the decision stump under the boosting frame-
work. Inthetraditional feature representation, boosting de-
cision stump weak learners has been extensively studied. A
stump is trained by exhaustively searching over all candi-
dates and sel ecting the one with minimum loss with respect
to the distribution of the current round (This algorithm is
caled FindAttrTest (Freund & Schapire, 1996)). In other
words, all attributes and al possible thresholds are consid-
ered. This method however, can not be used in our dissim-
ilarity setting without modifications. Because the imple-
mentation here needs O(n®) time, where n is the number of

training examples. This is intractable even for small size
tasks.

To reduce the computational cost yet maintain as much in-
formation as possible, we suggest the following strategy.

Strategy |: At round t of AdaBoost, we randomly select N
pairs of training examples with different labels. The selec-
tion of each example is according to the current distribu-
tion. Therefore, examples that are harder to classify have
higher probability to be selected. As't increases, the a-
gorithm concentrates on the “boundary” data, since they
are most difficult to recognize. The base classifier at each
round is obtained by selecting the best one among al de-
cision stumps determined by the N pairs of training exam-
ples. The search consumes only O(N - n) time.

We next consider the problem of the storage cost. It is easy
to see that the storage is mainly determined by the num-
ber of distinct examples selected by the training agorithm.
Note that the computational time for recognizing a new ex-
ample also depends on the number of distinct examples,
since we need to compute the dissimilarities between the
new instance and each of these examples. If boosting runs
a large number of rounds, this number may become large.
To control it we suggest an alternative strategy for training
the base classifier.

Strategy I1: We construct a prototype set S. Initially S is
empty. At each round of the boosting, we count the number
of elementsin S. If it isless than a predefined number C,
we train the base classifier using Strategy |, and then put
the two prototypes selected by the base learner in S. If at
some round, S has aready contained more elements than
C, then we generate N pairs of training examples with dif-
ferent labels, and each example is chosen randomly within
S according to their current weights. The base classifier is
obtained by choosing the best decision stump among those
determined by these N pairs of examples.
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Table 2. Comparison of the performances of the five algorithms on UCI datasets.

Dara Ser NN RLNC RQNC LSVM DBoost
BALANCE 214+ 34 115+22 137+28 83+ 36 23+19
BREAST 42+16 29+ 16 29+19 38+27 29+18
CreveLano  41.3+60 33.0+44 384+45 336+54 205+65
DIABETES 320+31 269+17 284+36 243+27 247+24
Ecno 142+73 95+60 142+6.7 95+58 171 +8.1
GERMAN 342+32 256+19 305+13 265+31 268+24
HavEes 306+82 181+53 219+44 168+36 244+71
HepaTITIS 197+70 203+7.0 183+08 190+66 163+84
IMAGE 39+08 52+04 40+ 33 51+06 23+05
lonospHERE 137 +4.2 7.7+32 6.0+ 1.3 51+32 6.8+ 1.2
IrIS 44+ 30 47+16 6.0+ 0.3 46+ 30 6.0+ 49
LETTER 43+03 23.0+04 84+85 6.1+0.2 25+0.2
L1ver 385+50 340+82 400+38 295+102 301+45
Monk 1 138+33 234+22 149+40 07+12 0.0+ 0.0
Monk2 208+42 347+16 75+06 15.6 + 4.3 23+20
Monk3 11.1+26 36+08 38+1.2 14+10 42+ 17
SATIMAGE 95+ 0.8 94+06 11.1+18 95+ 13 73+13
VEHICLE 349+30 266+32 439+04 234+14 252+13
VOWEL 15+09 91+18 61+174 34+07 28+08
Wobsc 84+24 6.1+25 261+87 6.8+ 1.9 25+17
WINE 265+74 275+43 286+47 268+14 22+23
Wesc 356+57 294+52 263+39 237+57 253+6.9
AVERAGE 19.3 17.8 18.2 13.8 11.6
H#WINs 2 2 0 8 10

Using this strategy, the algorithm selects at most C + 1 pro-
totypes.

In our implementation, the base classifiers are constructed
and combined by the real version AdaBoost agorithm
(Schapire & Singer, 1999), for which the decision stumps
output unbounded real values. Although our theory is for
binary classification, the DBoost algorithm applies to mul-
ticlass problems as well by simply using the multiclass
boosting algorithm AdaBoost.MH as the booster.

4. Experiments

In this section we evaluate our DBoost algorithm and com-
pare to several existing approaches for learning with dis-
similarity functions. In all the experiments we use Strategy
| to train the base classifiers. Because of the space, we can-
not provide the detailed data of Strategy |1, which usually
results in minor deficit in accuracy while the storage and
recognition time can be saved by 2/3. Findly, the number
of pairs of examples selected at each round of DBoost is set
to be 100.

The approaches we compare with are the nearest neighbor
(NN) rule, the RLNC/RQNC method (Pekalska & Duin,
2005) and the linear SVM (LSVM) agorithm (Balcan &
Blum, 2006). We give a brief description as follows.

RNLC/RNQC (Pekalska & Duin, 2005): This method rep-
resents each object x as a vector viaits dissimilaritiesto a
set of prototypes pi, pP2,- -, Pm - This can be viewed as a
mapping ¥ from the instance to am -dimensional space.

¥Y:.Xx— ( d(X, pl), d(X7 pZ), T d(X, pm) )

Then regularized linear/quadratic normal density-based
classifier (Ripley, 1996) is employed to classify the data.

LSVM (Bacan & Blum, 2006): This agorithm is sug-
gested by the theory in the same paper. After a mapping
like the one described above but via normalized similarity
functions, linear SVM isadopted to find alarge margin sep-
arator. In our experiment, the normalized similarity func-
tion K is obtained by transforming the dissimilarity func-
tiondasK = exp(—dz/o-). We use libsvm (Chang & Lin,
2001) for the SYM implementation. The parameters o- and
m (number of prototypes selected) are tuned on the training
Set.

Thefirst set of experimentsis conducted on 22 benchmark
datasets from UCI repository. Each dataset isused in afive-
fold cross validation fashion. The datasets are described
in Table 1. Although in these datasets objects are repre-
sented by feature vectors, we feed the algorithms only the
Euclidean distances between the data.
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Figure 2. Comparison of the algorithms using qualitative dis-
similarity functions on the USPS database.

The goal of this experiment is to compare the algorithms
on avariety of domains. The results are shown in Table 2.
DBoost outperforms all the other approaches both in terms
of the average error rate of the 22 databases and the num-
ber of datasets on which the algorithm achieves the best
performance.

In the next experiment we focus on image classification. As
mentioned earlier, it is more convenient to directly define
dissimilarities between images than to construct meaning-
ful features. Many dissimilarity measures of images have
been proposed in literature. We adopt in this experiment
three measures. Euclidean distance, Fuzzy Image Metric
(Li etal., 2002), and Tangent distance (Simard et a ., 1993).
Theaim of this experiment isto compare the algorithms us-
ing different dissimilarities. We perform the experiment on
the USPS database which consists of images of handwritten
digits. The dataset has been partitioned into a fixed train-
ing set and testing set, consisting of 7291 and 2007 exam-
ples respectively. The results are depicted in Figl. DBoost
has the best performance on the Euclidean distance and the
Fuzzy Image Metric. With the tangent distance which in-
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Figure 3. Comparison of the algorithms on the USPS
database with noise.

tellectually incorporates strong domain specific knowledge
and isbelieved to be a perfect distancefor thistask, DBoost
is not as good as NN but still outperforms the other three
algorithms.

We then consider the situation in which the dissimilarity is
far from accurate. For instance, when people make sub-
jective evaluation of the similarity between images, only
qualitative (discrete) values can be given. As an exam-
ple, similar, average and dissimilar are possible values of
athree-level qualitative dissimilarity. We compare the per-
formance of our algorithm to others on such qualitative
measures. To conduct the experiments, Euclidean distances
are quantized to 3 to 15 levels respectively. The results
on the USPS datasets are shown in Fig2. DBoost outper-
forms the other algorithms consistently on al the qualita-
tive levels. Observe that DBoost is the most insensitive to
the choice dissimilarity measures. Even with the 3-level
measures, for which the information of local topology has
been mostly lost, DBoost till has low error rate.

In the final experiment we evaluate the performance of our
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algorithm against noisy data. We add to the USPS images
Gaussian white noise with different Energies, and feed the
algorithms with the Euclidean distances. The results are
depicted in Fig3. DBoost isrelatively robust to noise.

5. Conclusion and Discussion

In this contribution we have given sufficient conditions for
dissimilarity functionsto allow one to learn well. Our def-
inition of good dissimilarities applies to unbounded func-
tions and is invariant to order-preserving transformations.
Thetheory immediately suggests asimple algorithm: using
boosting to construct and combine a large number of base
classifiers each depends on a pair of examples. We then
develop a more practical agorithm DBoost by generaliz-
ing the base learner and suggesting strategies for training
base classifiers to make the computation tractable. Our ap-
proach compares favorably with several existing algorithms
on avariety of databases.

Although we use stumps as the base classifiersin our algo-
rithm, one can useinstead decision trees by further splitting
each node as in (5). Incidentally, this splitting approach
for decision trees was previously suggested by Hinton and
Revow (1996) . It is expected that the use of decision tree
as base classifiers would bring additional benefits.
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