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Abstract

We show how to apply the efficient Bayesian
changepoint detection techniques of Fearnhead
in the multivariate setting. We model the joint
density of vector-valued observations using undi-
rected Gaussian graphical models, whose struc-
ture we estimate. We show how we can ex-
actly compute the MAP segmentation, as well
as how to draw perfect samples from the poste-
rior over segmentations, simultaneously account-
ing for uncertainty about the number and location
of changepoints, as well as uncertainty about the
covariance structure. We illustrate the technique
by applying it to financial data and to bee track-
ing data.

structure of the vector-valued observations using sparse
Gaussian graphical models, which scale to high dimensions
better than full covariance matrices. We estimate the struc
tures and the segmentation jointly. This allows us to seg-
ment based on a changing correlation structure, as well as
changing mean, variance, etc, which is particularly useful
in financial applications (Talih & Hengartner, 2005; Car-
valho & West, 2006). Furthermore, the sparse structure
within each segment is often interpretable.

Figure lillustrates the basic problem we are trying to solve
In the case of 1D time series, a segmentation might be in-
duced by a change of mean or variance or model order (in
the case of an autoregressive process). But in the case of
multidimensional time series, we can additionally segment
if the correlation structure changes. Such changes ane ofte

much harder to detect (see Figure 1(b) for example), but
oftem arise in practice, especially in areas such as finance.

1. Introduction Our model can segment data based on all of these kinds of

Time series segmentation (also known as changepoint d&hanges, as we will see.
tection) has many applications, and a large number of tech-
niques have been proposed to tackle this problem. On2. Previouswork

of the most difficult issues is estimating the number of . .
segments. As in other examples of model selection, thé* Product partition model (PPM) (Barry & Hartigan, 1992;

Bayesian approach is particularly appealing, since it auBaTy & Hartigan, 1993; Denison et al., 2002) is a density

tomatically captures a tradeoff between model complexity"°de! in which we assume we can partition the data into
(number of segments) and model fit. It also allows one2n Unknown numbek of partitions,, ..., 7, such that

to express uncertainty about the number, and location, df'® data is independent across segments:

changepoints.

K
In a series of papers (Fearnhead, 2004; Fearnhead & Liu, pyrrlm) = [] pyn)-
2005; Fearnhead, 2006), Fearnhead developed efficient dy- k=1
namic programming algorithms for exactly computing the(A dirichlet process mixture model is a special case of
posterior over the number and location of changepoints i PPM, in which we assume a specific form fofr)
time series. This improved upon earlier approaches, suc ahl, é003)_) If we assume that the partitions are non-
as (Punskaya et al., 2002), which relied on reversible jum verlapping partitions of the interval : T, then we can

MCMC. efficiently compute the posterior ovéf andr using dy-
All of the examples that Fearnhead considered were unipamic programming, as Fearnhead showed; we shall call
variate (one-dimensional) time series. In this paper, wesuch a partitioning a segmentation.

show how to apply Fearnhead's algorithms to mUItidimen'The marginal likelihood that data fromto ¢ is produced
sional time series. Specifically, we model the correlationby a single modein is given by
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Figure 1.Some examples of changepoint detecti¢a) Top Left: changing AR model order. Top right: changing regressiopes
Bottom left: changing noise variance. Bottom right: changing correlationChanging correlation structure between two time series.
In the first segment the components are positively correlated; in theleréédment, they are uncorrelated; in the final segment they
are anti correlated. We visualize the empirical covariance matrix of segiment by plotting contours of constant probability density,
assuming a Gaussian model.

Intuitively, if the segment grows to include data generatedithm that take€)(72) time and space if solved exactly, but
from different parameter regimes and/or different modelO(T") time and space if solved approximately (by pruning
types, the marginal likelihood will drop, and this will sug- hypotheses whose probability falls below a threshold, and
gest that we should introduce a changepoint, and use twonly keeping the most probable hypotheses).

models. We will give some specific forms for the likelihood
below. We shall assume that the prig(¥) is conjugate,
so that we can compute the marginal likelihood in closecﬁ
form.

The input to all three algorithms is (or more generally
(£)), and a function that can compute the marginal likeli-
00dp(ys.¢|m) for any data segment., given a modein;

we shall denote this function by obslik.;, m, ), where
In addition to the data likelihood, we need to specify a priora. are hyper-parameters used by the observation madel
on segment lengthgy(¢), which implicitly defines a prior In addition, we need to specify the class of possible models
on segmentations(r). Following Fearnhead, we shall as- M, and a prior over modelg(m), for m € M. Finally,
sume a geometric distribution with parameleso that the  for the approximate on-line algorithm, we need to specify
probability of a segment of lengthis p(¢) = A(1 — \)*~1. a pruning threshol@ and a number of particled’, (we
The number of segments depends Janbut also on the use¢ = 107%° and N,, = 50). Hence the interface to the
hyper-parameters: of p(6), as we shall see below. We segmentation function is

useX = 0.01.
K, ) =segmenty,.r, A, p(m), obslik(-, -, @), ¢, NV,
In (Fearnhead, 2004; Fearnhead, 2006), Fearnhead pro—( ) "W (m) ( ) 2

posed a dynamic programming algorithm to compute theJnfortunately we do not have the space to explain how this
MAP segmentation function works; see (Fearnhead & Liu, 2005) for details.

(K*,7) = arg max p(y|mur)p(m.x) In this paper, we fpcu_s on the prqblems of specifying suit-
K.mx able observation likelihood functions obslik(), and of-cre
as well as a way to draw perfect samples from this poste‘f-"tmg suitable hypot_he5|s spa_cM;. In particular, we pro-
: . L pose to use Gaussian graphical models (GGMSs) to repre-
rior. (Conditioned on any segmentation, it is of course pos-

- . d i -
sible to compute the posterior over models and paramete?semp(yzw’ m), wherey; € IR™ andm is the graph struc

. . . ..~ “ture, as we explain in Section 3 below. We estimate the
in each segmenp(m, 0|ys.;).) The algorithm is very simi- . . . L

oo . . graph structure using L1-penalized maximum likelihood
lar to the forwards-filtering backwards-sampling algarith (see Section 4)
(Scott, 2002) for HMMs, except the “hidden variable” is '
not a discretestateindex, but rather dime index encod- A closely related paper by Talih and Hengartner (2005)
ing where the last change point occurred. Hence the algaalso uses GGMs to segment multivariate time series, but
rithm takesO(T?) time andO(T) space. In (Fearnhead they cannot use dynamic programming, since their model
& Liu, 2005), Fearnhead and Liu present an on-line algo-4s not a PPM. Specifically, they assume that the graph struc-
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ture changes slowly over time (one arc addition or deletiorSupposey;; ~ N(0, UJQ») (we consider the case of
at each segment boundary), which violates the assumptiofion zero mean below) andf ~ X 2%(No,Vo;) =

that the parameters of each model in each segment are inde& (N, /2, Vo /2), whereVy, is our prior variance andV,
pendent. They then use reversible jump MCMC to estimatgs the strength of this prior. Then we can compute the inner
the segmentation and the (non-decomposable) structureigitegral to give

Our technique is much faster and can draw perfect samples

from the posterior (giveoV). Also, we estimate the num- 1/01\,’0/2 I'(No/2)~!

ber of segments, whereas Talih and Hengartner assume this P(Ysitj) = /2 (NjJrn)/z TN, o)1

is known. Vij ((No +n)/2)

It is interesting to compare the product partition modelwheren = ¢ — s + 1 is the length of the segmerit,,; =
(PPM) to a hidden Markov model (HMM) and an “infinite 1;; + Z::s y;;, andTl is the gamma function. We call
HMM” (IHMM) (Beal et al., 2002). In an HMM, we have this the “independent features model”. Unfortunatelys thi
a fixed number of stateS; we label each time step with a cannot capture correlations between the features, which is
state, which specifies which parameters to use to generatgucial for certain domains such as finance.

an observation. In a PPM, we have an unbounded number

of states; we label each time step with the corresponding.2. Full covariance model

parameter to use, but we can never re-use an old state la- . o i o

bel once we have left a segment, so the label sequence fsMOre expressive choice is to modghwith a multivariate
strictly increasing. An infinite HMM is a blend between Gaussiany; ~ N(0,%). We will use an inverse Wishart
these two models: we have an unbounded number of stateBfior, ¥ ~ IW(No, Vo) which is a generalization of in-
parameters, but we can revisit an old state at any time. ~ Verse chi-squared. Herg > d — 1 is the degrees of free-

_ o _ dom andVj is the scale matrix. The marginal likelihood is
Given these distinctions, it should be clear when to use —s follows

and when not to use — a PPM. In particular, if we think

each segment is generated from a “fresh” set of parameters _na V| No/2 Lq(No/2)~*
that we have not used before, a PPM is appropriate, but if PYse) = 77 [V, [No+m)/2 Ty ((Ny + n)/2) 1
we expect to return to an old parameter regime, an HMM or t

IHMM may be more appropriate. If the number of regimes V, = Vo+8, S= Z vyl

is known, we can use an HMM, which supports dynamic i—s

programming for inference, but if the number of regimes is n—1 .

unknown, we have to use an IHMM, for which more ex-  Ty(n) = =% V/*J]T(n— )

pensive techniques such as Gibbs sampling must be used i=0 2

for inference. The GGM version of the PPM presented in ) o .

this paper is an interesting compromise between these e¥¢here T'a(n) is the multivariate gamma function (so
tremes, since it assumes you can ‘“revisit’ slductures  11(1) = I'(n)). When we increase/decrease the segment
but you cannot revisit old parameters (since they are intePY One time step (as required by Fearnhead's algorithm),
grated out of each segment). This is possible because wW¥e can perform a rank-one update/downdats o over-

condition onM, and thus can share structures across time"?‘” the cost is dominated by computing the matrix deter-
We give more details below. minant|V,,|. We typically use the relatively uninformative

hyper parameter values &f, = d andV, = 621, where
. R 52 is the mean of the empirical variance pooled across all
3. Observation likelihood models the data. (Using this data-dependent prior is similar te pre

We now discuss several approaches for modefing..) processing the data by scaling.) Note that = d is the
wheny; € RY is the d-dimensional observation at time smallest value (weakest prior) we can use if the prior is to

We will compare their performance below. remain proper. We discuss the issue of hyperparameters in
more detail in Section 5.2.

3.1. Independent features model ) ]
3.3. Gaussian graphical model

When modeling multivariate time series, a simple ap-

proach is to assume each feature is independent (as in naifathough the full-covariance model works quite well
Bayes): for low-dimensional problems, the number of parameters

needed by this model i©(d?). A fully diagonal approx-
d ‘ ) imation to X results in the independent features model.

d
pst) = [ [ P(ysie ) = / p(yi;10,)]p(0;)db; Gaussian graphical models provide a gpod compromise
t E +3) H ( [g 5193 )1p(6;)d6 between these two extremes. We can either use directed
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graphs (i.e., Bayes nets; see e.g., (Geiger & Heckermarthe length of the segment,is the number of input features
1994)) or undirected models (see e.g., (Lauritzen, 1996per time slice),5 is aq x d matrix of regression parame-
Giudici & Green, 1999; Carvalho & West, 2006)). In this ters, and ~ N(0, I,,, 2), whereN (M, V, X) is the matrix
paper, we use undirected graphs, since there are very effGaussian distribution (Dawid, 1981)

cient procedures for estimating undirected graph strastur o

(see Section 4), which is needed to compute the model N(A; M,V,%) 1]

spaceM. T 2nV]2

Computing the marginal likelihood for non decomposable > exp(—ltr((A —M)TV A= MY)) (4)
graphical models cannot be done in closed form. Vari- 2

ous approximations have been proposed (Roverato, 2002)here A/ is an x d matrix representing the mearis, is

but these are slow. So we shall assume that the graph,, x », matrix representing covariance amongst the rows
structure is decomposable. Give a decomposable grapfime slices), and: is a d x d matrix representing co-
structureG, and assuming a hyper-inverse Wishart prioryariance amongst the columns (features). If we assume
Y ~ HIWg(by, Vy) (Dawid & Lauritzen, 1993), where B2 ~ N(0,D,%) where D = diag(é%,...,ég), and

by = No+1—d > Oisthe degree of freedom afdisthe s ~ 1/ (N,, V;), then the marginal likelihood is given
location parameter, the marginal likelihood can be writtenpy (Minka, 2000)

as follows (Dawid & Lauritzen, 1993; Giudici & Green,

. . 4
1999; Carvalho & West, 2006): ponr) = o <M|) I AROE T4(No/2)~!
(Yot G) = (2m)—na/2 TG b0, Vo) 1) ) (D) [Va|(+No)/2 Ty ((No + ) /2) 7
P\Ys:t = h(G,b0+n,Vn) M = (HTH—I—D_l)_l» P:(I—HMHT)
where Ve, = Vo+Y'PY
[Leo| "2/°|”C/2F|c|(bc/2)’1 Using this framework, we can model multivariate auto-

hG,b, V) =

I ‘|VS b2 (be/2) (2)  regressive processes. It is straightforward to combire thi
s€S 1 2 [s|\%s approach of modeling the mean with the earlier methods

whereC are the cliques and are the separators, ahd=  for graphical modeling oE, by multiplying Equation 1 by
btlel—1,by=b+|s| — 1. (fweuseC = {{1,...,d}y}  (IM|/[D])"/>.

andsS = {0}, then Equation 1 reduces to Equation 1.) The

cost of computing this equation &(w?), wherew is the 4, Estimating graph structures

treewidth of the graph. This can be much less than the

O(d?) required by the full covariance model. We typically How do we generate the hypothesis spad€ We face a

use the relatively uninformative hyperparameteys= 1  chicken and egg situation: if we knew the segmentation, we
(i.e., Ny = d) andV;, = 621, as in the full covariance case. could run a standard structure learning algorithm on each

i ~segment, but we need to know the structures in order to
If the structure of the graph is not known, we can marg'na"compute the segmentation.

ize it out, using

We propose the following iterative solution. First we cre-
P(Ysit) = Z p(ys:t|9)p(g) (3) ateM using a heuristic approach described below; we then
geM perform a segmentation using Fearnhead'’s algorithm; we
then re-compute\1, by applying the same structure learn-
where M is the space of possible models (graph struc-ing algorithm used in initialization, but to the td§ seg-
tures). We discuss how to computel in Section 4 be- mentations, as opposed to the heuristically chosen segmen-
low. Although computing this expression looks expensive tations. This is summarized in Algorithm 1. The whole
p(ys:tlg) decomposes into a sum of local terms (since thesigorithm can be thought of as approximate inference in a
graphs are decomposable), so much of the computation caflerarchical Bayesian model, whetd is at the top of the

be shared across graphs. hierarchy. The marginal likelihood of each segment is then
given by integrating over the parameters and by marginal-
3.4. Linear regression for the mean izing over all the models io\1.

So far we have assumed that each segment is zero mealg estimate a graph structure from a segmgnt we use

yi ~ N(0,%), and have concentrated on modelling thethe fact that absent edges correspond to zeros in the preci-
covariancex. However, we can also model the mgans-  sion matrixA (Lauritzen, 1996). We therefore compute the
ing multivariate linear regression. Specifically, we assum MAP estimate forA under a prior that encourages many
yst = HB + ¢, where H is an x ¢ design matrix ¢ is  entries to go to zero. We can pose this as the following
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Algorithm 1 Sketch of overall algorithm shifting byo = 0.1w at each step, to create a set candidate
1: Input: datay;.r, changepoint rate,, pruning thresh- segmentations. We then repeat this for different window
old ¢, number of particlesV,, regularization penalty ~Sizesw and shiftsc. The hope is that this oversegmenta-

p, observation model obslik(), observation hyper-tion will contain the “true” segments, or at least something

parameters similar. We then apply the structure learning algorithm to

2: Output: (K, 1.5, m1.K)- all of these windows and use this as our initial guesstf

3: Algorithm: . There is an obvious tradeoff between accuracy and speed.
4: § = make overlapping segments fromyr We set thew ando parameters so that they generate about
5 M = {estQy., p) : s € 5} 100 segments; the number of unique graphs that results
6: while not convergedio . (and hence the size ¢¥1) obviously depends on the data,

7 (K,m) = segmenlyr.r, A, 1/|M|, obslik(), ¢, Ny) but in our experiments is about 20—40. If the true struc-
8 M= {estQy,,p): m €} ture is not in the initial model set because we did not guess
9: end while . the correct segmentation boundary, it is possible that the
10: m; = argmax,, p(mly,,)fori=1: K

first iteration of the Fearnhead algorithm will neverthsles
recover a good segmentation, and that the true model will
be recovered in the second iteration. However, a limiting
factor is the ability to detect the true structure even given
max log det A — trace2A) — p||A]; (5) the correct segmentation. Obviously we could consider
A=0 other methods for structure learning besides MAP estima-
where¥ is the empirical covariance matrix derived from tion with an L1 prior, and we could lift the decomposable
Yot ||A[1 = 32,5 |As], andp > 0 is a regularization pa- graph assumption, but that is beyond the scope of this pa-
rameter which controls the sparsity of the graph. (We sePer.
p= 0_.2.) We solve t_his using the block coordinate _descentWe use a uniform prior on structuregg) = 1/|M|. Nev-
algorithm of (Banerjee et al., 2006), and denote this procegheess, due to the Bayesian Occam’s razor effect, the

dure byG' = estQy..., p). This takesO(Id") time, where  athod will not always pick the most complex graph for
I is the number of iterations. each segment.

convex optimization problem:

Other, faster methods exist for estimating sparse undidect

GGMs. One method that we tried is the following: com- 5 Experimental results

pute a shrinkage estimate &f, using the technique pf _ _ _

(Schaefer & Strimmer, 2005). From this, compute the pren the experiments below, we only performed one iteration

cision K = 3~! and the partial correlation coefficients ~ Of the algorithm, for simplicity. Preliminary results sug-

gest that re-estimating the structures after segmentditbn
pij = — (6)  notimprove results significantly, suggesting that ourahit
KiiKjj heuristic oversegmentation is adequate for recoveking

Then setedgé';; = 0if |p;;| < 6, wheref is some thresh-
old (we use 0.2); otherwise sét; = 1. A more prin- 1. Beedata

giple approach would use a Ioc_al false discovery rate Criteyye first applied our method to a 3 dimensional data set used
rion to pick the threshold adaptively (Schaefer & Strimmer,j, (Oh etal., 2006). This consists of ta@ndy coordinates

2005). However, we have not yet trigd this. Note that thisys 5 honeybee, and its head angjeas it moves around an
thresholding-based approach tak@éi®) time, so scales  gnciosure, as observed by an overhead cam&ame ex-
much better than the block_coordlnate descent methoq. |8mples of the data, together with a ground truth segmenta-
the future, we would also like to try L1-based regression;jgp, (created by human experts), are shown in Figure 2. We

methods (Meinshaus;n & Buhlmann, 2006) for estimating,|so show the results of segmenting this using a first-order
K, which are als@(d”). auto-regressive AR(1) model, using independent features

The above methods can learn arbitrary graph structure®r With a full covariance model. (Using a GGM gives simi-
Since our Computation of the margina| likelihood as- lar results to the full model in this low dimensional Settmg
sumes the graph is decomposab|e, we convert each none see that the independent features model oversegments,

decomposable graph in our sétl into its “closest” de- We preprocessed the data by repladngth sin # andcos 6;

composable approximation by computing a min-fill trian- this improves the results considerably, since there is no longer a
gulation (Cowell et al., 1999). discontinuity as the bee moves between andr. Surprisingly,

. ... we found it slightly better to include bottin § andcos 6 than to
To get the process started, we use the following heuristiGy|yde either one alone.

We slide a window of widthw = 0.27 across the data,
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Figure 2.Bee sequence fit with AR(1) model. The intermittent high frequency oBoilis. correspond to the bees’ “waggle dance”.
“Truth” refers to manual segmentation. “Indep” refers to the indepenfeatures model. “Full” refers to the full covariance model. The
histogram on the right is an estimate of the number of segments.

because each signal has too many small changes, wheré@&M model correctly identifies the three segments. Fur-
what matters is the coordinated change. thermore, the posterior over graph structures has very low
Note that other techniques also perform well on this datagntropy, and the resulting MAP gr_aphs have structures that
. oo are reasonably close to the truth (in terms of number of cor-
In particular, (Oh et al., 2006) use a switching latent Staterect/ incorrect edges)
space model. This has the additional advantage that the '
posterior over the discrete switch states can be used to clag/e obtained similar results with other experiments of this
sify (label) each segment. This model assumes that parankind. The full covariance method works for low dimen-
eters are stationary over time, so whenever a bee enters ts®ns (up to sayl = 5), but in higher dimensions, it per-
“waggle” state, its waggle parameters are the same as ttferms poorly, because there is not enough data to estimate a
last time it entered that state. This seems like a reasonabfall X in each segment (unless each segment is very long).
assumption for this domain. In contrast, the PPM will useNote that by performing Bayesian estimation, we avoid the

new parameters for each regime, which would be more apaumerical problems encountered with a maximum likeli-

propriate in a non-stationary environment. hood estimate of a fulE; however, the relatively uninfor-
mative prior we use does not overcome the statistical prob-
5.2. Synthetic data lem. The GGM approach is a more structured hypothesis

. space, which is helped by the fact that our heuristic way of
To test the ability of the method to recover structure, a%reatingM gets to look at the data first. In addition, we

yvell as its abi!ity to spale to larger dimensions, we appliedy, ;e found, in informal experiments, that the full covari-
it to a synthetic 20-dimensional dataset. The advantage af,ce model is much more sensitive to the hyperparameter
using syr_lthetu: data is that we know the ground truth abouvO than the GGM approach. (Setting priors for variance
the location of the changepoingd the structure of the 35 meters is known to be a delicate issue (Gelman, 2006),

generating model. We sampte = 100 data points from  gqpecially when considering model uncertainty.) In all the
3 different sparse decomposable Gaussian graphical mo%‘xperiments, we usell, — 621 as a reasonable default
els, and then concatenate the data: see Figure 3. We thep,

attempt to segment this data using Fearnhead’s algorithm

and 3 different likelihood models: the independent feature . .

model, the full covariance model, and the GGM, where the5'3' Financial data

set of possibleM is generated using the sliding window Finally we applied the method to some financial data, the
heuristic. As can be seen from Figure 3, the independeri30 industry portfolios” datasét. This consists of the
features model does very poorly (in this case, it thinks alF———— , _

the data comes from one segment), as does the full covari; The data is available fromhttp://nba.tuck.

: : dar t nout h. edu/ pages/ facul ty/ ken. french/
ance model (which heavily oversegments the data) but thga; 5 |j prary. htpmgl Y
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Figure 3.Results on synthetic 20 dimensional data. To save space, we only plostiteéi variablesy: 1.7 andys,1.7. We then show,

in order, the true segmentation boundarieg at100 and¢ = 200), and samples from the posterior over segmentations generated using
the independent model, the full covariance model, and the Gaussigincaemodel (GGM). To the right of each segmentation we plot
the posterior over the number of segmep{ds|y). We can see that the independence model thinks there is 1 segment'¢pikas’

occur on the plot on the left); the full covariance thinks there are magneets, and the GGM (correctly) thinks there are 3 segments.
For each of the three segments (as estimated by the GGM), we plot (¢8ecfram top left) the posterior over tha1| = 40 possible
model structureg)(G|ys::), the true structure (shown as an adjacency matrix), the MAP struGturer = arg maxg p(G|ys:¢), and

the marginal edge probabilities(G;; = 1|ys.¢), computed using Bayesian model averaging. (Gray squares eepregges about
which we are uncertain.)

valued-weighted monthly returns of 30 different industry GGMs for portfolio design can result in increased profits.
sectors over the period 1927-2006. (A similar, but smallefThey assumed the structure of the graph was constant over
(5 dimensional) dataset was analysed in (Talih & Hengarttime, and they estimate it offline using all the data. It is
ner, 2005).) The data is already approximately zero mearpossible that the techniques in this paper would provide a
but we take a log transform, to make the Gaussian assumpvay to extend their results to non-stationary environments
tion more reasonable. The results are shown in Figure 4lowever, we leave this to future work.

and take about 10 minutes to generate. (For this problem,

we use the threshold method to generate the list of cang Discussion

didate modelsM.) In this problem, we do not know the

ground truth segmentation, let alone the true graph strucve have shown how to apply Fearnhead'’s algorithms to
ture (if there is such a thing!). Nevertheless, our resultanultivariate time series, and also how to perform graphical
seem qualitatively reasonable, although there is no okvioumodel selection in each segment. In the future, we would
correspondence to known events of historical importance.like to investigate better ways to create the hypothesisespa
M, as well as ways to make the techniques work in an
Bnline setting, which is required for financial (and other)
plications.

Since the truth is unknown, it is hard to assess the qualit
of these results. Ultimately the validity of a model is de-
termined by its usefulness. Recent work by Carvahlo andP
West (Carvalho & West, 2006) has shown that using sparse
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Figure 4.The portfolios data for 30 industry types. We only show the data for 2 indssfor clarity. We show the estimated graph
structures for 3 of the segments, to illustrate their sparsity. The x-axislatin the form YYYYMM, for year and month.
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