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Abstract

We study the label complexity of pool-based
active learning in the agnostic PAC model.
Specifically, we derive general bounds on the
number of label requests made by the A2 al-
gorithm proposed by Balcan, Beygelzimer &
Langford (Balcan et al., 2006). This repre-
sents the first nontrivial general-purpose up-
per bound on label complexity in the agnostic
PAC model.

1. Introduction

In active learning, a learning algorithm is given access
to a large pool of unlabeled examples, and is allowed to
request the label of any particular example from that
pool. The objective is to learn an accurate classifier
while requesting as few labels as possible. This con-
trasts with passive (semi)supervised learning, where
the examples to be labeled are chosen randomly. In
comparison, active learning can often significantly de-
crease the work load of human annotators by more
carefully selecting which examples from the unlabeled
pool should be labeled. This is of particular interest for
learning tasks where unlabeled examples are available
in abundance, but labeled examples require significant
effort to obtain.

In the passive learning literature, there are well-known
bounds on the number of training examples necessary
and sufficient to learn a near-optimal classifier with
high probability (i.e., the sample complexity) (Vapnik,
1998; Blumer et al., 1989; Kulkarni, 1989; Benedek
& Itai, 1988; Long, 1995). This quantity depends
largely on the VC dimension of the concept space being
learned (in a distribution-independent analysis) or the
metric entropy (in a distribution-dependent analysis).
However, significantly less is presently known about
the analogous quantity for active learning: namely, the
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label complexity, or number of label requests that are
necessary and sufficient to learn. This knowledge gap
is especially marked in the agnostic learning setting,
where class labels can be noisy, and we have no as-
sumption about the amount or type of noise. Building
a thorough understanding of label complexity, along
with the quantities on which it depends, seems essen-
tial to fully exploit the potential of active learning.

In the present paper, we study the label complexity by
way of bounding the number of label requests made by
a recently proposed active learning algorithm, A2 (Bal-
can et al., 2006), which provably learns in the agnostic
PAC model. The bound we find for this algorithm
depends critically on a particular quantity, which we
call the disagreement coefficient, depending on the con-
cept space and example distribution. This quantity is
often simple to calculate or bound for many concept
spaces. Although we find that the bound we derive is
not always tight for the label complexity, it represents
a significant step forward, since it is the first nontriv-
ial general-purpose bound on label complexity in the
agnostic PAC model.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly review some of the related literature,
to place the present work in context. In Section 3, we
continue with the introduction of definitions and nota-
tion. Section 4 discusses a variety of simple examples
to help build intuition. Moving on in Section 5, we
state and prove the main result of this paper: an up-
per bound on the number of label requests made by
A2, based on the disagreement coefficient. Following
this, in Section 6, we prove a lower bound for A2 with
the same basic dependence on disagreement coefficient.
We conclude in Section 7 with some open problems.

2. Background

The recent literature on the label complexity of active
learning has been bringing us steadily closer to un-
derstanding the nature of this problem. Within that
literature, there is a mix of positive and negative re-
sults, as well as a wealth of open problems.
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While studying the noise-free (realizable) setting, Das-
gupta defines a quantity ρ called the splitting index
(Dasgupta, 2005). ρ is dependent on the concept
space, data distribution, and a (new) parameter τ he
defines, as well as the target function itself. It essen-
tially quantifies how easy it is to reduce the diameter
of the concept space. He finds that under the assump-
tion that there is no noise, roughly Õ(d

ρ) label requests

are sufficient (where d is VC dimension), and Ω( 1
ρ )

are necessary for learning (for respectively appropri-
ate τ values). Thus, it appears that something like
splitting index may be an important quantity to con-
sider when bounding the label complexity. However,
at present the only published analysis using splitting
index is restricted to the noise-free (realizable) case.
Additionally, one can construct simple examples where
the splitting index is O(1) (for τ = O(ǫ2)), but agnos-
tic learning requires Ω

(

1
ǫ

)

label requests (even when
the noise rate is zero). See Appendix A for an example
of this. Thus, agnostic active learning seems to be a
fundamentally more difficult problem than realizable
active learning.

In studying the possibility of active learning in the
presence of arbitrary classification noise, Balcan,
Beygelzimer, & Langford propose the A2 algorithm
(Balcan et al., 2006). The strategy behind A2 is to
induce confidence intervals for the error rates of all
concepts, and remove any concepts whose estimated
error rate is larger than the smallest estimate to a sta-
tistically significant extent. This guarantees that with
high probability we do not remove the best classifier
in the concept space. The key observation that some-
times leads to improvements over passive learning is
that, since we are only interested in comparing the er-
ror estimates, we do not need to request the label of
any example whose label is not in dispute among the
remaining classifiers. Balcan et al. analyze the number
of label requests A2 makes for some example concept
spaces and distributions (notably linear separators un-
der the uniform distribution on the unit sphere). How-
ever, other than fallback guarantees, they do not derive
a general bound on the number of label requests, ap-
plicable to any concept space and distribution. This
is the focus of the present paper.

In addition to the above results, there are a number
of known lower bounds, than which there cannot be a
learning algorithm guarateeing a number of label re-
quests smaller. In particular, Kulkarni proves that,
even if we allow arbitrary binary-valued queries and
there is no noise, any algorithm that learns to accu-
racy 1 − ǫ can guarantee no better than Ω(log N(2ǫ))
queries (Kulkarni et al., 1993), where N(2ǫ) is the size
of a minimal 2ǫ-cover (defined below). Another known

lower bound is due to Kääriäinen, who proves that in
agnostic active learning, for most nontrivial concept
spaces and distributions, if the noise rate is ν, then
any algorithm that with probability 1 − δ outputs a
classifier with error at most ν + ǫ can guarantee no

better than Ω
(

ν2

ǫ2 log 1
δ

)

label requests (Kääriäinen,

2006). In particular, these lower bounds imply that
we can reasonably expect even the tightest general up-
per bounds on the label complexity to have some term

related to log N(ǫ) and some term related to ν2

ǫ2 log 1
δ .

3. Notation and Definitions

Let X be an instance space, comprising all possi-
ble examples we may ever encounter. C is a set of
measurable functions h : X → {−1, 1}, known as
the concept space. DXY is any probability distri-
bution on X × {−1, 1}. In the active learning set-
ting, we draw (X, Y ) ∼ DXY , but the Y value is
hidden from the learning algorithm until requested.
For convenience, we will abuse notation by saying
X ∼ D, where D is the marginal distribution of
DXY over X ; we then say the learning algorithm (op-
tionally) requests the label Y of X (which was im-
plicitly sampled at the same time as X); we may
sometimes denote this label Y by Oracle(X). For
any h ∈ C and distribution D′ over X × {−1, 1},
let erD′(h) = Pr(X,Y )∼D′{h(X) 6= Y }, and for S =
{(x1, y1), (x2, y2), . . . , (xm, ym)} ∈ (X × {−1, 1})m,
erS(h) = 1

m

∑m
i=1 |h(xi) − yi|/2. When D′ = DXY

(the distribution we are learning with respect to), we
abbreviate this by er(h) = erDXY (h). The noise rate,
denoted ν, is defined as ν = infh∈C er(h). Our objec-
tive in agnostic active learning is to, with probability
≥ 1−δ, output a classifier h with er(h) ≤ ν+ǫ without
making many label requests.

Let ρD(·, ·) be the pseudo-metric on C induced by D,
s.t. ∀h, h′ ∈ C, ρD(h, h′) = PrX∼D{h(X) 6= h′(X)}.
An ǫ-cover of C with respect toD is any set V ⊆ C such
that ∀h ∈ C, ∃h′ ∈ V : ρD(h, h′) ≤ ǫ. We additionally
let N(ǫ) denote the size of a minimal ǫ-cover of C with

respect to D. It is known that N(ǫ) < 2
(

2e
ǫ ln 2e

ǫ

)d
,

where d is the VC dimension of C (Haussler, 1992).
To focus on learnable cases, we assume d <∞.

Definition 1. For a set V ⊆ C, define the region of
disagreement

DIS(V ) = {x ∈ X|∃h1, h2 ∈ V : h1(x) 6= h2(x)}.

Definition 2. The disagreement rate ∆(V ) of a set
V ⊆ C is defined as

∆(V ) = PrX∼D{X ∈ DIS(V )}.
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Definition 3. For h ∈ C, r > 0, let

B(h, r) = {h′ ∈ C : ρD(h′, h) ≤ r}

and define the disagreement rate at radius r

∆r = sup
h∈C

∆(B(h, r)).

Definition 4. The disagreement coefficient is the in-
fimum value of θ > 0 such that ∀r > ν + ǫ,

∆r ≤ θr.

The disagreement coefficient plays a critical role in the
bounds of the following sections, which are increasing
in this θ. Roughly speaking, it quantifies how quickly
the region of disagreement can grow as a function of
the radius of the version space.

4. Examples

The canonical example of the potential improvements
in label complexity of active over passive learning is
the thresholds concept space. Specifically, consider the
concept space of thresholds tz on the interval [0, 1] (for
z ∈ [0, 1]), such that tz(x) = +1 iff x ≥ z. Further-
more, suppose D is uniform on [0, 1]. In this case, it
is clear that the disagreement coefficient is at most 2,
since the region of disagreement of B(tz , r) is roughly
{x ∈ [0, 1] : |x − z| ≤ r}. That is, since the disagree-
ment region grows at rate 1 in two disjoint directions
as r increases, the disagreement coefficient θ = 2.

As a second example, consider the disagreement coef-
ficient for intervals on [0, 1]. As before, let X = [0, 1]
and D be uniform, but this time C is the set of in-
tervals I[a,b] such that for x ∈ [0, 1], I[a,b](x) = +1
iff x ∈ [a, b] (for a, b ∈ [0, 1], a ≤ b). In contrast to
thresholds, the space of intervals serves as a canonical
example of situations where active learning does not
help compared to passive learning. This fact clearly
shows itself in the disagreement coefficient, which is

1
ν+ǫ here, since ∆r = 1 for all r > ν + ǫ. To see this,
note that the set B(I[0,0], r) contains all concepts of

the form I[a,a]. Note that 1
ν+ǫ is the largest possible

value for θ.

An interesting extension of the intervals example is
the space of p-intervals, or all intervals I[a,b] such that
b − a ≥ p ∈ ((ν + ǫ)/2, 1/8). These spaces span the
range of difficulty, with active learning becoming easier
as p increases. This is reflected in the θ value, since
here θ = 1

2p . When r < 2p, every interval in B(I[a,b], r)
has its lower and upper boundaries within r of a and
b, respectively; thus, ∆r ≤ 4r. However, when r ≥ 2p,
every interval of width p is in B(I[0,p], r), so ∆r = 1.

As an example that takes a (small) step closer to realis-
tic learning scenarios, consider the following theorem.

Theorem 1. If X is the surface of the origin-centered
unit sphere in Rd for d > 2, C is the space of ho-
mogeneous linear separators1, and D is the uniform
distribution on X , then the disagreement coefficient θ
satisfies

1

4
min

{

π
√

d,
1

ν + ǫ

}

≤ θ ≤ min

{

π
√

d,
1

ν + ǫ

}

.

Proof. First we represent the concepts in C as weight
vectors w ∈ Rd in the usual way. For w1, w2 ∈
C, by examining the projection of D onto the sub-
space spanned by {w1, w2}, we see that ρD(w1, w2) =
arccos(w1·w2)

π . Thus, for any w ∈ C and r ≤ 1/2,
B(w, r) = {w′ : w · w′ ≥ cos(πr)}. Since the deci-
sion boundary corresponding to w′ is orthogonal to
the vector w′, some simple trigonometry gives us that

DIS(B(w, r)) = {x ∈ X : |x · w| ≤ sin(πr)}.

Letting A(n, R) = 2πn/2Rn−1

Γ( n
2 )

denote the surface area

of the radius-R sphere in Rn, we can express the dis-
agreement rate at radius r as

∆r =
1

A(d, 1)

∫ sin(πr)

−sin(πr)

A
(

d− 1,
√

1− x2
)

dx

=
Γ

(

d
2

)

√
πΓ

(

d−1
2

)

∫ sin(πr)

−sin(πr)

(

1− x2
)

d−2
2 dx (∗)

≤ Γ
(

d
2

)

√
πΓ

(

d−1
2

)2sin(πr)

≤
√

d− 2sin(πr) ≤
√

dπr.

For the lower bound, note that ∆1/2 = 1 so θ ≥
min

{

2, 1
ν+ǫ

}

, and thus we need only consider ν + ǫ <
1
8 . Supposing ν + ǫ < r < 1

8 , note that (∗) is at least

≥
√

d

12

∫ sin(πr)

−sin(πr)

(

1− x2
)

d
2 dx

≥
√

π

12

∫ sin(πr)

−sin(πr)

√

d

π
e−d·x2

dx

≥1

2
min

{

1

2
,
√

dsin(πr)

}

≥ 1

4
min

{

1, π
√

dr
}

Given knowledge of the disagreement coefficient for C

under D, the following lemma allows us to extend this
to a bound for any D′ λ-close to D. The proof is
straightforward, and left as an exercise.

1Homogeneous linear separators are those that pass
through the origin.
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Input: concept space C, accuracy parameter ǫ ∈ (0, 1), confidence parameter δ ∈ (0, 1)

Output: classifier ĥ ∈ C

Let n̂ = log2

(

64
ǫ2

(

d ln 8
ǫ + ln 8

ǫδ

))

log2
4
ǫ , and let δ′ = δ/n̂

0. V0 ← C, S0 ← ∅, i← 0, j1 ← 0, k ← 1
1. While ∆(Vi) (minh∈Vi UB(Si, h, δ′)−minh∈Vi LB(Si, h, δ′)) > ǫ
2. Vi+1 ← {h ∈ Vi : LB(Si, h, δ′) ≤ minh′∈Vi UB(Si, h

′, δ′)}
3. i← i + 1
4. If ∆(Vi) < 1

2∆(Vjk
)

5. k← k + 1; jk ← i
6. S′

i ← Rejection sample 2i−jk samples x from D satisfying x ∈ DIS(Vi)
7. Si ← {(x, Oracle(x)) : x ∈ S′

i}
8. Return ĥ = arg minh∈Vi UB(Si, h, δ′)

Figure 1. The A
2 algorithm.

Lemma 1. Suppose D′ is such that, ∃λ ∈ (0, 1] s.t.
for all measurable sets A ⊆ X , λD(A) ≤ D′(A) ≤
1
λD(A). If ∆r,θ,∆

′
r , and θ′ are the disagreement rates

at radius r and disagreement coefficients for D and D′

respectively, then λ∆λr ≤ ∆′
r ≤ 1

λ∆r/λ, and thus

λ2θ ≤ θ′ ≤ 1

λ2
θ.

5. Upper Bounds for the A
2 Algorithm

To prove bounds on the label complexity, we will ad-
ditionally need to use some known results on finite
sample rates of uniform convergence.

Definition 5. Let d be the VC dimension of C. For
m ∈ N, and S ∈ (X × {−1, 1})m, define

G(m, δ) =
1

m
+

√

ln 4
δ + d ln 2em

d

m
.

UB(S, h, δ) = min{erS(h) + G(|S|, δ), 1},
LB(S, h, δ) = max{erS(h)−G(|S|, δ), 0}.

By convention, G(0, δ) = 1. The following lemma is
due to Vapnik (Vapnik, 1998).

Lemma 2. For any distribution Di over X ×{−1, 1},
and any m ∈ N, with probability at least 1− δ over the
draw of S ∼ Dm

i , every h ∈ C satisfies

|erS(h)− erDi(h)| ≤ G(m, δ).

In particular, this means

erDi(h)− 2G(|S|, δ) ≤ LB(S, h, δ) ≤
erDi(h) ≤ UB(S, h, δ) ≤ erDi(h) + 2G(|S|, δ).

Furthermore, for γ > 0, if m ≥ 4
γ2

(

2d ln 4
γ + ln 4

δ

)

,

then G(m, δ) < γ.

We use a (somewhat simplified) version of the A2 algo-
rithm, presented by Balcan et. al (Balcan et al., 2006).
The algorithm is given in Figure 1.

The motivation behind the A2 algorithm is to maintain
a set of concepts Vi that we are confident contains any
concepts with minimal error rate. If we can guarantee
with statistical significance that a concept h1 ∈ Vi has
error rate worse than another concept h2 ∈ Vi, then
we can safely remove the concept h1 since it is subop-
timal. To achieve such a statistical guarantee, the al-
gorithm employs two-sided confidence intervals on the
error rates of each classifier in the concept space; how-
ever, since we are only interested in the relative differ-
ences between error rates, on each iteration we obtain
this confidence interval for the error rate when D is re-
stricted to the region of disagreement DIS(Vi). This
restriction to the region of disagreement is the primary
source of any improvements A2 achieves over passive
learning. We measure the progress of the algorithm
by the reduction in the disagreement rate ∆(Vi); the
key question in studying the number of label requests
is bounding the number of random labeled examples
from the region of disagreement that are sufficient to
remove enough concepts from Vi to significantly reduce
the measure of the region of disagreement.

Theorem 2. If θ is the disagreement coefficient for
C, then with probability at least 1− δ, given the inputs
C, ǫ, and δ, A2 outputs ĥ ∈ C with er(ĥ) ≤ ν + ǫ, and
the number of label requests made by A2 is at most

O

(

θ2

(

ν2

ǫ2
+ 1

) (

d log
1

ǫ
+ log

1

δ

)

log
1

ǫ

)

.

Proof. Let κ be the value of k and ι be the value
of i when the algorithm halts. By convention, let
jκ+1 = ι + 1. Let γi = maxh∈Vi(UB(Si, h, δ′) −
LB(Si, h, δ′)). Since having γi ≤ ǫ would break
the loop at step 1, Lemma 2 implies we always
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have |Si| ≤ 16
ǫ2

(

2d ln 8
ǫ + ln 4

δ′

)

, and thus ι ≤ (κ +

1) log2

(

16
ǫ2

(

2d ln 8
ǫ + ln 4

δ′

))

. ∆(Vi) ≤ ǫ also suffices
to break from the loop, so κ ≤ log2

2
ǫ . Thus, ι ≤

n̂. Lemma 2 and a union bound imply that, with
probability ≥ 1 − δ, for every i and every h ∈ C,
|erSi(h) − erDi(h)| ≤ G(|Si|, δ′), where Di is the con-
ditional distribution of DXY given that X ∈ DIS(Vi).
For the remainder of this proof, we assume that these
inequalities hold for all such Si and h ∈ C. In par-
ticular, this means we never remove the best classi-
fier from Vi. Additionally, ∀h1, h2 ∈ Vi we must have
∆(Vi)(erDi(h1) − erDi(h2)) = er(h1) − er(h2). Com-
bined with the nature of the halting criterion, this im-
plies that er(ĥ) ≤ ν + ǫ, as desired.

The rest of the proof bounds the number of label
requests made by A2. Let h∗ ∈ Vi be such that
er(h∗) ≤ ν +ǫ. We consider two cases: large and small
∆(Vi). Informally, when ∆(Vi) is relatively large, the
concepts far from h∗ are responsible for most of the
disagreements, and since these must have relatively
large error rates, we need only a few examples to re-
move them. On the other hand, when ∆(Vi) is small,
the halting condition is easy to satisfy.

We begin with the case where ∆(Vi) is large. Specifi-
cally, let i′ = max{i ≤ ι : ∆(Vi) > 8θ(ν + ǫ)}. (If no
such i′ exists, we can skip this case). Then ∀i ≤ i′, let

V
(θ)
i =

{

h ∈ Vi : ρD(h, h∗) >
∆(Vi)

2θ

}

.

Since for h ∈ Vi, ρD(h, h∗)/∆(Vi) ≤ erDi(h) +
erDi(h

∗) ≤ erDi(h) + ν+ǫ
∆(Vi)

, we have

V
(θ)
i ⊆

{

h ∈ Vi : erDi(h) >
1

2θ
− ν + ǫ

∆(Vi)

}

⊆
{

h∈Vi : erDi(h)− 1

8θ
> erDi(h

∗) +
3

8θ
− 2

ν + ǫ

∆(Vi)

}

⊆
{

h ∈ Vi : erDi(h)− 1

8θ
> erDi(h

∗) +
1

8θ

}

.

Let V̄i denote the latter set. By Lemma 2, Si of
size O

(

θ2
(

d log θ + log 1
δ′

))

suffices to guarantee ev-
ery h ∈ V̄i has LB(Si, h, δ′) > UB(Si, h

∗, δ′) in step 2.

V
(θ)
i ⊆ V̄i and ∆(Vi \ V

(θ)
i ) ≤ ∆∆(Vi)

2θ

≤ 1
2∆(Vi), so in

particular, any value of k for which jk ≤ i′ +1 satisfies
|Sjk−1| = O

(

θ2
(

d log θ + log 1
δ′

))

.

To handle the remaining case, suppose
∆(Vi) ≤ 8θ(ν + ǫ). In this case, Si of size

O
(

θ2 (ν+ǫ)2

ǫ2

(

d log 1
ǫ + log 1

δ′

)

)

suffices to make

γi ≤ ǫ
∆(Vi)

, satisfying the halting condition.

Therefore, every k for which jk > i′ + 1 satisfies

|Sjk−1| = O
(

θ2 (ν+ǫ)2

ǫ2

(

d log 1
ǫ + log 1

δ′

)

)

.

Since for k > 1,
∑jk−1

i=j(k−1)
|Si| ≤ 2|Sjk−1|, we have that

∑ι
i=1 |Si| = O

(

θ2 (ν+ǫ)2

ǫ2

(

d log 1
ǫ + log 1

δ′

)

κ
)

. Noting

that κ = O(log 1
ǫ ) and log 1

δ′
= O

(

d log 1
ǫ + log 1

δ

)

completes the proof.

Note that we can get an easy improvement to the
bound by replacing C with an ǫ

2 -cover of C, us-
ing bounds for a finite concept space instead of VC
bounds, and running the algorithm with accuracy pa-
rameter ǫ

2 . This yields a similar, but sometimes much
tighter, label complexity bound of

O

(

θ2

(

ν2

ǫ2
+ 1

)

log
N(ǫ/2) log 1

ǫ

δ
log

1

ǫ

)

.

6. Lower Bounds for the A
2 Algorithm

In this section, we prove a lower bound on the worst-
case number of label requests made by A2. As men-
tioned in Section 2, there are known lower bounds

of Ω
(

ν2

ǫ2 log 1
δ

)

and Ω (log N(2ǫ)), than which no al-

gorithm can guarantee better (Kulkarni et al., 1993;
Kääriäinen, 2006). However, this leaves open the ques-
tion of whether the θ2 factor in the bound is necessary.
The following theorem shows that it is for A2.

Theorem 3. For any C and D, there exists an oracle
with ν = 0 such that, if θ is the disagreement coeffi-
cient, with probability 1−δ, the version of A2 presented
above makes a number of label requests at least

Ω

(

θ2

(

d log θ + log
1

δ

))

.

Proof. The bound clearly holds if θ = 0, so assume θ >
0. By definition of disagreement coefficient, there is
some α0 > 0 such that ∀α ∈ (0, α0), ∃rα ∈ (ǫ, 1], hα ∈
C such that ∆(B(hα, rα)) ≥ ∆rα − α ≥ θrα − 2α > 0.
For some such α, let Oracle(x) = hα(x) for all x ∈ X .
Clearly ν = 0. As before, we assume all bound eval-
uations in the algorithm are valid, which occurs with
probability ≥ 1 − δ. Since LB(Si, hα, δ′) = 0 and
UB(Si, hα, δ′) = G(|Si|, δ′), if A2 halts without re-
moving any h ∈ B(hα, rα), then ∃i : UB(Si, hα, δ′) ≤

ǫ
∆(B(hα,rα)) ≤ ǫ

θrα−2α ≤ rα

θrα−2α . On the other hand,

suppose A2 removes some h ∈ B(hα, rα) before halt-
ing, and in particular suppose the first time this hap-
pens is for some set Si. In this case, UB(Si, hα, δ′) <

LB(Si, h, δ′) ≤ erDi(h) ≤ er(h)
∆(B(hα,rα)) ≤

rα

θrα−2α .

In either case, by definition of G(|Si|, δ′), we must

have |Si| = Ω

(

(

θ − 2α
rα

)2 (

d log
(

θ − 2α
rα

)

+ log 1
δ′

)

)

.

Since this is true for any such α, taking the limit as
α→ 0 proves the bound.
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Theorems 2 and 3 show that the variation in worst-case
number of label requests made by A2 for different C

and D is largely determined by the disagreement coef-
ficient (and VC dimension). Furthermore, they give us
a good estimate of the number of label requests made
by A2. One natural question to ask is whether Theo-
rem 2 is also tight for the label complexity of the learn-
ing problem. The following example indicates this is
not the case. In particular, this means that A2 can
sometimes be suboptimal.

Suppose X = [0, 1]n, and C is the space of axis-
aligned rectangles on X . That is, each h ∈ C can
be expressed as n pairs ((a1, b1), (a2, b2), . . . , (an, bn)),
such that ∀x ∈ X , h(x) = 1 iff ∀i, ai ≤ xi ≤ bi.
Furthermore, suppose D is the uniform distribution
on X . We see immediately that θ = 1

ǫ+ν , since
∀r > 0, ∆r = 1. We will show the bound is not tight
for the case when ν = 0.2 In this case, the bound value
is Ω

(

1
ǫ2

(

n log 1
ǫ + log 1

δ

))

.

Theorem 4. When ν = 0, the agnostic active learn-
ing label complexity of axis-aligned rectangles on [0, 1]n

with respect to the uniform distribution is at most

O

(

n log
n

ǫδ
+

1

ǫ
log

1

δ

)

.

A proof sketch for Theorem 4 is included in Ap-
pendix B. This clearly shows that the bound based
on A2 is sometimes not tight with respect to the true
label complexity of learning problems. Furthermore,
when ǫ < 1

en , this problem has log N(ǫ/2) ≥ n, so
the improvements offered by learning with an ǫ

2 -cover
cannot reduce the slack by much here (see Lemma 3
in Appendix B).

7. Open Problems

Whether or not one can modify A2 in a general way
to improve this bound is an interesting open prob-
lem. One possible strategy would be to adaptively set
the δ′ values for each bound evaluation individually,
and maintain several different types of bounds simul-
taneously. However, it seems that in order to obtain
the dramatic improvements needed to close the gap
demonstrated by Theorem 4, we need a more aggres-
sive strategy than sampling randomly from DIS(Vi).
The end of Appendix A contains another interesting
example that highlights this issue.

2In this particular case, the agnostic label complexity
with ν = 0 is within constant factors of the realizable com-
plexity. However, in general, agnostic learning with ν = 0
is not the same as realizable learning, since we are still in-
terested in algorithms that would tolerate noise if it were
present. See Appendix A for an interesting example.

One important aspect of active learning that has not
been addressed here is the value of unlabeled examples.
Specifically, given an overabundance of unlabeled ex-
amples, can we use them to decrease the number of
label requests required, and by how much? The split-
ting index bounds of Dasgupta (Dasgupta, 2005) can
be used to study these types of questions in the noise-
free setting; however, we have yet to see a thorough
exploration of the topic for agnostic learning, where
the role of unlabeled examples appears fundamentally
different (at least in A2).

Acknowledgments

I am grateful to Nina Balcan for helpful discussions.

This research was sponsored through a generous grant
from the Commonwealth of Pennsylvania. The views
and conclusions contained in this document are those
of the author and should not be interpreted as repre-
senting the official policies, either expressed or implied,
of the sponsoring body, or other institution or entity.

References

Balcan, M.-F., Beygelzimer, A., & Langford, J. (2006).
Agnostic active learning. Proc. of the 23rd Interna-
tional Conference on Machine Learning.

Benedek, G., & Itai, A. (1988). Learnability by fixed
distributions. Proc. of the First Workshop on Com-
putational Learning Theory (pp. 80–90).

Blumer, A., Ehrenfeucht, A., Haussler, D., & War-
muth, M. (1989). Learnability and the vapnik-
chervonenkis dimension. Journal of the Association
for Computing Machinery, 36, 929–965.

Dasgupta, S. (2005). Coarse sample complexity
bounds for active learning. Advances in Neural In-
formation Processing Systems 18.

Haussler, D. (1992). Decision theoretic generalizations
of the PAC model for neural net and other learning
applications. Information and Computation, 100,
78–150.
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A. Realizable vs. Agnostic with ν = 0

The following example indicates that agnostic active
learning with ν = 0 is sometimes fundamentally more
difficult than realizable learning.

Let ǫ < 1/4, N =
⌊

1
2ǫ

⌋

. Let X = Z, and define D
such that, for x ∈ X : 0 < x ≤ N , D(x) = ǫ

4N and

D(−x) = 1−ǫ/4
N . D gives zero probability elsewhere.

In particular, note that 3
2ǫ < D(−x) ≤ 4ǫ and ǫ2

2 ≤
D(x) ≤ ǫ2.

Define concept space C = {h1, h2, . . .}, where ∀i, j ∈
{1, 2, . . .}, hi(0) = −1 and

hi(−j) = 2I[i = j]− 1

hi(j) = 2I[j ≥ i]− 1.

Note that this creates a learning problem where infor-
mative examples exist (the x ∈ {1, . . . , N} examples)
but are rare.

Theorem 5. For the learning problem described
above, the realizable active learning label complexity is
O

(

log 1
ǫ

)

.

Proof. By Chernoff and union bounds, drawing
Θ

(

1
ǫ2 log 1

ǫδ

)

unlabeled examples suffices to guarantee,
with probability at least 1−δ, we have at least one un-
labeled example of x, for all x ∈ {1, 2, . . . , N}; suppose
this happens. Suppose f ∈ C is the target function.
If f /∈ {h1, h2, . . . , hN}, querying the label of x = N
suffices to show er(hN+1) = 0, so we output hN+1.
On the other hand, if we find f(N) = +1, we can
perform binary search among the {1, 2, . . . , N} to find
the smallest i > 0 such that f(i) = +1. In this case,
we must have hi = f , so we output hi after O(log N)
queries.

Theorem 6. For the learning problem described
above, any agnostic active learning algorithm requires
Ω

(

1
ǫ

)

label requests, even if the oracle always agrees
with some f ∈ C, (i.e., even if ν = 0).

Proof. Suppose A is a correct agnostic learning algo-
rithm. The idea of the proof is to assume A is guaran-
teed to make fewer than (1− 2δ)N queries with prob-
ability ≥ 1 − δ when the target function is some par-
ticular f ∈ C, and then show that by adding noise we
can force A to output a concept with error more than
ǫ-worse than optimal with probability > δ. Thus, ei-
ther A cannot guarantee fewer than (1− 2δ)N queries
for that particular f , or A is not a correct agnostic
learning algorithm.

Specifically, suppose that when the target function
f = hN+1, with probability≥ 1−δ A returns an ǫ-good
concept after making ≤ q < (1 − 2δ)N label requests.
If A is successful, then whatever concept it outputs la-
bels all of {−1,−2, . . . ,−N} as −1. So in particular,
letting the random variable R = (R1, R2, . . .) denote
the sequence of examples A requests the labels of when
Oracle agrees with hN+1, this implies that with prob-
ability at least 1 − δ, if Oracle(Ri) = hN+1(Ri) for
i ∈ {1, 2, ldots, min{q, |R|}}, then A outputs a concept
labeling all of {−1,−2, . . . ,−N} as −1.

Now suppose instead of hN+1, we pick the target func-
tion f ′ as follows. Let f ′ be identical to hN+1 on
all of X except a single x ∈ {−1,−2, . . . ,−N} where
f ′(x) = +1; the value of x for which this happens is
chosen uniformly at random from {−1,−2, . . . ,−N}.
Note that f ′ /∈ C. Also note that any concept in C

other than h−x is > ǫ-worse than h−x.

Now consider the behavior of A when Oracle an-
swers queries with this f ′ instead of hN+1. Let Q =
(Q1, Q2, . . .) denote the random sequence of examples
A queries the labels of when Oracle agrees with f ′.
In particular, note that if Ri 6= x for i ≤ min{q, |R|},
then Qi = Ri for i ≤ min{q, |Q|}.

Ef ′ [Pr{A outputs h−x}]
≤ ER [Prx{∃i ≤ q : Ri = x}] + δ < 1− δ.

By the probabilistic method, we have proven that
there exists some fixed oracle such that A fails with
probability > δ. This contradicts the premise that A
is a correct agnostic learning algorithm.

As an interesting aside, note that if we define Cǫ =
{h1, h2, . . . , hN}, dependent on ǫ, then the agnostic
label complexity is O

(

log 1
ǫδ

)

when ν = 0. This is
because we can run the realizable learning algorithm
to find f = hi, and then sampling Θ

(

log 1
δ

)

labeled
copies of the example −i; by observing that they are
all labeled +1, we effectively verify that hi is at most
ǫ-worse than optimal. To make this a correct agnostic
algorithm, we can simply be prepared to run A2 if any
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of the Θ
(

log 1
δ

)

samples of −i are labeled −1 (which
they won’t be for ν = 0). However, since the disagree-
ment coefficient θ = Θ

(

1
ǫ

)

, Theorem 3 implies A2 does
not achieve this improvement. See Appendix B for a
similar example.

B. Axis-Aligned Rectangles

Proof Sketch of Theorem 4. To keep things simple, we
omit the precise constants. Consider the following al-
gorithm.3

0. Sample Θ
(

1
ǫ log 1

δ

)

labeled examples from DXY

1. If none of them are positive,
return the “all negative” concept

2. Else let x be one of the positive examples
3. For i = 1, 2, . . . , n
4. Rejection sample unlabeled set Ui of size

Θ
(

n
ǫδ

(

log n
δ

)2
)

from the conditional of D given

∀j 6= i, xj −O
(

ǫδ
n log 1

δ

)

≤ Xj ≤ xj +O
(

ǫδ
n log 1

δ

)

5. Find b̂i = max{zi : z ∈ Ui∪{x}, Oracle(z) = +1}
by binary search in {zi : z ∈ Ui ∪ {x}, zi ≥ xi}

6. Find âi = min{zi : z ∈ Ui∪{x}, Oracle(z) = +1}
by binary search in {zi : z ∈ Ui ∪ {x}, zi ≤ xi}

7. Let ĥ = ((â1, b̂1), (â2, b̂2), . . . , (ân, b̂n))
8. Sample Θ

(

1
ǫ log 1

δ

)

labeled examples T from DXY

9. If erT (ĥ) > 0,
run A2 from the start and return its output

10.Else return ĥ

The correctness of the algorithm in the agnostic setting
is clear from examining the three ways to exit the al-
gorithm. First, any oracle with PrX∼D{Oracle(X) =
+1} > ǫ will, with probability ≥ 1−O(δ) have a pos-
itive example in the initial Θ

(

1
ǫ log 1

δ

)

sample. So if
the set has no positives, we can be confident the “all
negative” concept has error ≤ ǫ. If we return in step
9, we know from Theorem 2 that A2 will, with proba-
bility 1 − O(δ), output a concept with error ≤ ν + ǫ.
The remaining possibility is to return in step 10. Any
ĥ with er(ĥ) > ǫ will, with probability ≥ 1 − O(δ),

have erT (ĥ) > 0 in step 9. So we can be confident the

ĥ output in step 10 has er(ĥ) ≤ ǫ.

To bound the number of label requests, note that the
two binary searches we perform for each i (steps 5
and 6) require only O (log |Ui|) label requests each,
so the entire For loop uses only O

(

n log n
ǫδ

)

label re-
quests. We additionally have the two labeled sets

3To keep the algorithm simple, we make little attempt
to optimize the number of unlabeled examples. In partic-
ular, we could reduce |Ui| by using a nonzero cutoff in step
9, and could increase the window size in step 4 by using a
noise-tolerant active threshold learner in steps 5 and 6.

of size O
(

1
ǫ log 1

δ

)

, so if we do not return in step
9, the total number of label requests is at most
O

(

n log n
ǫδ + 1

ǫ log 1
δ

)

.

It only remains to show that when ν = 0, we do not re-
turn in step 9. Let f = ((a1, b1), (a2, b2), . . . , (an, bn))

be a rectangle with er(f) = 0. Note that er(ĥ) ≤
∑n

i=1 |ai − âi|+ |bi − b̂i|. For each i, with probability
1−O(δ/n), none of the initial Θ

(

1
ǫ log 1

δ

)

examples w

has wi ∈ [ai, ai+γ]∪[bi−γ, bi], where γ = O
(

ǫδ
n log 1

δ

)

.

In particular, if we do not return in step 1, with prob-
ability 1−O(δ), ∀j, xj ∈ [aj + γ, bj − γ]. Suppose this
happens. In particular, this means the oracle’s labels
for all z ∈ Ui are completely determined by whether
ai ≤ zi ≤ bi. We can essentially think of this as two
“threshold” learning problems for each i: one above
xi and one below xi. The binary searches find thresh-
old values consistent with each Ui. In particular, by
standard passive sample complexity arguments, |Ui| is
sufficient to guarantee with probability 1 − O(δ/n),

|bi − b̂i| ≤ O
(

ǫδ
n log 1

δ

)

and |ai − âi| ≤ O
(

ǫδ
n log 1

δ

)

.

Thus, with probability 1 − O(δ), er(ĥ) ≤ O
(

ǫδ
log 1

δ

)

.

Therefore, the probability ĥ makes a mistake on T of
size O

(

1
ǫ log 1

δ

)

is at most O(δ). Otherwise, we have

erT (ĥ) = 0 in step 9, so we return in step 10.

Lemma 3. If C is the space of axis-aligned rectangles
on [0, 1]n, and D is the uniform distribution, then for
ǫ < 1

en , log2 N(ǫ/2) ≥ n.

Proof. Since N(ǫ/2) is at least the size of any
ǫ-separated set, we can prove this lower bound
by constructing an ǫ-separated set of size 2n.
In particular, consider the set of all rectan-
gles ((a1, b1), (a2, b2), . . . , (an, bn)) satsifying ∀i, ai =
0, bi ∈

{

1− 1
n , 1

}

. There are 2n such rectangles.

For any two distinct such rectan-
gles ((a1, b1), (a2, b2), . . . , (an, bn)) and
((a′

1, b
′
1), (a

′
2, b

′
2), . . . , (a

′
n, b′n)), there is at

least one i such that bi 6= b′i. So the re-
gion in which these two disagree contains
{

x ∈ X : xi ∈
(

1− 1
n , 1

]

, ∀j 6= i, xj ∈
[

0, 1− 1
n

]}

,

which has measure
(

1− 1
n

)n−1 1
n ≥ 1

en > ǫ.


