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Abstract

Beamformers are spatial filters that pass source
signals in particular focused locations while
suppressing interference from elsewhere. The
widely-used minimum variance adaptive beam-
former (MVAB) creates such filters using a sam-
ple covariance estimate; however, the quality
of this estimate deteriorates when the sources
are correlated or the number of samples n is
small. Herein, a modified beamformer is de-
rived that replaces this problematic sample co-
variance with a robust maximum likelihood es-
timate obtained using the relevance vector ma-
chine (RVM), a Bayesian method for learning
sparse models from possibly overcomplete fea-
ture sets. We prove that this substitution has
the natural ability to remove the undesirable ef-
fects of correlations or limited data. When n be-
comes large and assuming uncorrelated sources,
this method reduces to the exact MVAB. Simula-
tions using direction-of-arrival data support these
conclusions. Additionally, RVMs can potentially
enhance a variety of traditional signal process-
ing methods that rely on robust sample covari-
ance estimates.

1. Introduction

Beamformers can be utilized to solve a general class of
nonlinear estimation problems frequently encountered in
signal and image processing. Suppose for a given time ¢
we are confronted with the generative model

U

s

y(t) = sk(t)f (Bx) + €(t), )

k=1
where y(t) € C% represents d,, observation points, s(t) =
[s1(t),...,sq,(t)]" € C is an unknown coefficient vec-
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tor, each 0 € O is a time-invariant set of parameters
(where at this point © is unspecified), f : © — C%
is a known nonlinear function, and €(t) is noise.! Given
y(t) collected over n time points, the goal here is to learn
5(t)|¢=1,... . and Ox|p=1, 4. A surprisingly large num-
ber of parameter estimation tasks, including many maxi-
mum likelihood (ML) problems, can be expressed in this
form. We will refer to this estimation problem as sourcelo-
calization, since often each 6y, corresponds with a location
in ©-space of some source (or signal) activity of interest.
The associated coefficient sy (¢) is then interpreted as the
temporally varying source amplitude and f(-) is a mapping
from a unit source at some @} to the observed data, pre-
sumably obtained using some sensor array. Note also that
ds may be unknown.

Assuming that f(-) is highly nonlinear and d is large, then
estimation of each s(¢) and 0}, can be intractable. Beam-
formers represent one possible solution to this problem by
learning a series of spatial filters, each tailored to different
values of the location parameter sampled over a fine grid in
O-space. The observed data is then applied to each filter,
and if significant energy is passed through, we assume that
the associated location in ©-space contains a source and the
filtered signal corresponds to s (t). While a wide variety
of beamformers exist for this task, here we will focus on
a particular variant, called the minimum variance adaptive
beamformer (MVAB), that has gained widespread popular-
ity (Van Veen et al., 1997). While simple to compute, the
quality of the MVAB spatial filters is highly dependent on
the number of samples n and temporal correlations present
between the unknown sources, with high correlations im-
pling a significant degradation in performance (Sekihara
et al., 2002; Zoltowski, 1988).

A variety of applications involve, either implicitly or ex-
plicitly, locating sources that are highly dependent or for
which reliable data can be difficult to obtain. Examples in-
clude direction-of-arrival (DOA) estimation for sonar/radar
applications, where © represents the possible angular di-
rections of signal waves impinging upon a sensor array

"For generality, we consider complex-valued data; however,
for many applications only real-valued quantities are required.
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(Manolakis et al., 2000; Van Veen & Buckley, 1988), and
neuroelectromagnetic source imaging (Baillet et al., 2001;
Van Veen et al., 1997), where © denotes the 3D space of
voxels within the brain where significant electrical activity
could potentially exist. Hence it would be very desirable to
somehow adjust the MVAB to mitigate the effects of source
correlations leading to more accurate spatial filtering. The
relevance vector machine (RVM) (Tipping, 2001a) offers
one very promising solution. Originally derived in the con-
text of regression and classification, in this paper we will
quantify how the RVM produces a data covariance esti-
mate that is particularly useful in the context of beamform-
ing. In the next section we will introduce the MVAB in
more detail along with some of its attendant weaknesses.
Section 3 will present a slightly more general version of
RVMs suitable for the task at hand and discuss its role in
robust covariance estimation. Section 4 then derives sev-
eral analytical properties of the RVM covariance estimate
that justify its use in handling source correlations. In par-
ticular, we show that in certain cases the RVM produces
a modified beamformer with all source correlations com-
pletely removed. In the limit as n becomes large and as-
suming uncorrelated sources, this method reduces to the
exact MVAB. Finally, empirical results showing the perfor-
mance improvement possible using RVMs are contained in
Section 5 while a brief conclusion and a discussion of re-
lated methods follows in Section 6.

2. Minimum Variance Adaptive Beamfor mer

The basic premise behind beamforming is to scan through
©-space with location-dependent spatial filters, w; € C%
for sample location 8;, that are sensitive to signals focused
near the respective ; but filter out energy originating from
elsewhere. Specifically, this implies that w y(t) should
have a large value if 0; is near to some 6}, from the genera-
tive model (1) and a small value everywhere else.” Implic-
itly, the beamformer can be viewed as operating under the
alternative (approximate) generative model

ds

y(t) =3 zi(t)p; +e(t) = da(t) +e(t), (@)

i=1

where ¢ = [¢17 ey qbdz], d)i = f(@l), :E(t) =
[#1(t),...,mq,(t)]T, and each z;(t) is the (possibly com-
plex) amplitude of a hypothetical latent source at location
0, (the relationship between x(t) and s(t) will be clarified
shortly). The 0;’s represent sampling points in ©-space
that hopefully pass near each 8;. Note that the source lo-
cations have been removed as explicit parameters to esti-
mate; rather, the value of each 6 can be inferred by ex-
amining which latent sources x;(t) have substantial (non-
zero) power as determined by the estimate of &(¢), which

2(-)H denotes the conjugate or Hermitian transpose.

the beamformer will provide using
i(t) = wily(t), Vi. 3)

The corresponding basis function ¢; will then reflect the
source location up to any quantization error. Likewise,
nonzero amplitudes in & (¢) should reflect the values of each
sk(t). So to clarify, x(t) represents source amplitudes over
a fixed sampling grid in ©-space, most entries of which are
zero-valued, while s(t) denotes only the source amplitudes
at active (nonzero) locations. The number of sample points
d, is assumed to be sufficiently high such that some de-
sired resolution can be obtained, but generally we assume
that d, > d, > d,. Additionally, we will treat d, as the
number of nonzero x;(t) values in the generative model (2).

Different beamformers are distinguished by the choice of
filters w; and therefore the &(¢) that results. Ideally, we
would like these filters to pass exactly zero power from lo-
cations where no source is present while passing unaltered
signals from source regions and nothing else. However, this
is generally not a tractable possibility. The MVAB provides
a viable approximation by designing the ¢-th filter to min-
imize the total output power subject to the constraint that
there is no attenuation of a hypothetical source at the i-th
location (Baillet et al., 2001). The output power is given by

2 LS 1 012 = wH S ws
v, = n;bcl(t)\ = w; Syw;, 4)

where

%é%mewH 5)

denotes the observed data covariance (assuming the
sources and noise have zero mean). Meanwhile the gain
constraint implies that a hypothetical unit source at 8; will
have unit power at the output of the filter, meaning that
w! ¢; = 1. This leads to the optimization problem:

w] = arg min leSwa— s.t. wZH(;’)Z- =1. 6)
w;
Using Lagrange multipliers, it is easily shown that the op-
timal w; is given by
1
dH Sy b’
(7

— H
'w:‘ ZViSy 1¢i; *)

*
v; = (w; )" Syw; =

)
where v; is the output power of the filter and is sometimes
called the gain factor. Each filter is then applied to the
data at every time point leading to a spatio-temporal map
of probable source activity. Assuming the source locations
are stationary across time (as is assumed in our generative
model), then simply evaluating v; over all 7 is a useful met-
ric for visualizing the source positions and intensities.

The fidelity by which all of this is accomplished depends
on a variety of factors such as SNR, source correlations,
and the number of time samples n. In particular, if
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the sources are highly correlated the performance of the
MVAB can be significantly compromised (Sekihara et al.,
2002; Zoltowski, 1988). Because the data covariance S,
collapses as correlations increase (meaning that the product
of its eigenvalues decrease), the minimum power constraint
no longer acts as a reasonable criteria for suppressing sig-
nals originating from locales other than the current eval-
uation point. Likewise, if the SNR is high and n is small,
then .Sy, may deviate sharply from the true covariance, lead-
ing to systematic estimation errors. Moreover, if n is small,
then even sources produced by an uncorrelated generative
model will appear correlated. Consequently, if some means
where available for obtaining a more robust version of .Sy,
it would greatly improve the MVAB and permit a wider
range of application domains.

3. Covariance Estimation Using the
Relevance Vector Machine

Originally designed as a Bayesian competitor to the pop-
ular support vector machine, RVMs are particularly well-
suited to estimating covariance structure useful for beam-
forming. This section will introduce the RVM ML covari-
ance estimate; the next section will show analytically why
it is a viable replacement for .S;,. The most basic formula-
tion of RVMs assumes real-valued data and a single vector
of observation data y used for training purposes (Tipping,
2001a). We will present a slightly more general version that
accommodates the complex data and multiple observation
vectors y(t) that are characteristic of many beamforming
applications.

We begin by defining Y £ [y(1),...,y(n)] and X =
[x(1),...,z(n)], which denote the composite observation
data and the associated unknown sources for all time points.
The assumed likelihood model of Y is a complex Gaussian
(Kay, 1993) given fixed sources X,

1
P10 = (o) exp (< 31Y ~ 0X13) . ®

where || - ||+ is the Frobenius norm. To provide a regular-
izing mechanism, the parameterized weight prior

p(X;7y) =7 %" " exp [—trace (X7T'X)], (9

is adopted, where I' = diag(y) and v = [v1,...,74,]  isa
vector of d,, hyperparameters controlling the prior variance
of each row of X. These hyperparameters (along with the
error variance A if necessary) can be estimated from the
data by marginalizing over the X and then performing ML
optimization. The marginalized distribution is given by

p(Ys7) = / (Y1 X)p(X;7)dX = [V (w(5);0,%,),

Cov [x(t)y(t); v ]

where ¥, 2 A+ T o, (10)

This procedure is referred to as evidence maximization
or type-II maximum likelihood (MacKay, 1992; Tipping,
2001a). Equivalently, and more conveniently, we may in-
stead minimize the cost function

L(y) = —logp(Y;7) =log|S,| + trace (5,5, ") (11)

using EM algorithm-based update rules. For the (k + 1)-th
iteration the E-step is given by

(Ey)(k)
E [X|Y: v

M + 9T (1) ®"

L@ (Zy) Y (12)
H -1

Ly =Ty ® (Zy)(k)q)r(k)

forallt=1,...,n

while the M-step is
1. "
V1) = E | diag(XXT) Y5y | - (13)

Other updates with potentially much faster convergence
are discussed in (Tipping, 2001a; Wipf, 2006). The per-
iteration complexity, after some manipulations, is only
O(dfldi), which is independent of n and only linearly de-
pendent on d,. This is very fortunate since d, can some-
times be O (105) or larger for some beamforming applica-
tions. Upon convergence to some ~yy , traditional RVMs
use the weight estimate X = E[X|Y’; vy ], computed us-
ing (12), to predict future (unseen) values of the data Y. In
contrast, for our purposes we will not be concerned with
predictions on novel test data. Rather, we will be replac-
ing the problematic data convariance estimate S, with the
RVM estimated model covariance X, obtained using .,
to improve beamforming results. (We can also utilize vy
as a gain factor, which is equivalent to using (12) directly
for localization as discussed in Section 4.3 below.)

4. Analysis

We have not, as of yet, provided any concrete reason why
the RVM model covariance ¥, should be preferred over
Sy. This section provides some theoretical rationale for
this preference. Returning to our original statements about
beamforming, a problem exists when there are substan-
tial temporal correlations between the latent sources s(t),
which translates into correlations in x(t) in the augmented
model (2). This will occur when the underlying generative
model for x(¢) is correlated or whenever n is small (e.g., if
n < dg, there will always be spurious correlations even if
the underlying sources are not). Were it available for mea-
surement, the sample correlation of x(t), S, £ %X XH
would display consequential off-diagonal elements, which
is the root of the problem from a beamforming perspective
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(Sekihara et al., 2002). Therefore, it would be desirable
to somehow zero these correlations out. This is precisely
what is accomplished by the RVM model covariance. To
see this we require some notation before proceeding to the
technical results.

4.1. Preliminaries

Define x; = [2;(1),...,2:(n)]T and let S,. denote the
value of S, with all off-diagonal elements set to zero,
meaning z7x; = 0 for i # j. Then define S,. =
oS5, ®H + S,, where S, is the sample noise covariance.
If our modeling assumptions are accurate, meaning ¢ has
been computed without errors and the noise is indepen-
dent of x(t), etc., then S, represents the ideal substitu-
tion for S,, or what ideally we would measure if it were
possible. It represents what S, would have been had the
sources been perfectly uncorrelated yet maintained equal
power and location. With regard to the dictionary @,
spark is defined as the smallest number of linearly depen-
dent columns (Donoho & Elad, 2003). By definition then,
2 < spark(®) < d, + 1.

4.2. Properties of the RVM Covariance Estimate

We now demonstrate several special cases that elucidate the
connection between the RVM covariance estimate >, and
the sample versions .Sy, and .Sy,.

Theorem 1. For any observed S, that was generated using
(2) with d; < spark(®) — 1 and S. — 0, the global mini-
mum of (11) is unique when A — 0, and the corresponding
RVM covariance matrix satisfies 3, = Sy..

Proof: For brevity, a sketch of the proof is as follows. In
the particular case where spark(®) = dy+1,n=1,and
all quantities are real, it has been shown that at the global
minimum of (11), 7; = z7 for all 4, where x; denotes the
i-th generative latent source (Wipf, 2006). This result can
be readily extended to handle arbitrary values of spark(®)
and n as well as complex-valued data. In this more gen-
eral situation, the unique global minimum can be shown to
satisfy

1 2
i = — |l 14
8 n”w ll5 (14

if the number of sources ds is less than spark(®) — 1.
Therefore by definition I' = S, and so 3, will equal S..
|

Consequently, the RVM produces a ML covariance ma-
trix that implicitly involves perfectly uncorrelated sources;
correlation among the actual sources has absolutely no ef-
fect on the RVM global minimum (at least in the limit of
high SNR), a very desirable feature from the perspective of
beamforming. This model covariance can then be used in
place of the measured one to improve performance when

data is limited and/or when sources are correlated. When
significant noise is present, Theorem 1 only holds approxi-
mately, to a degree which lessens as the noise is increased.
But empirically we can show that it is still a very effective
proxy (see Section 5).

The primary effect of correlations is with respect to local
minima as discussed in (Wipf, 2006). As correlations are
introduced, while the global minimum may not be affected,
convergence to local minima becomes possible. Even with
perfect correlations however, the global minimum (or a
good local minimum) is usually found in practical simula-
tions we have tested. Additionally, in the limit of perfectly
uncorrelated sources and infinite data samples to counteract
the effects of noise, all local minima vanish and the RVM
beamformer reduces to the standard MVAB. This can be
shown using the following result.

Theorem 2. If S, can be expressed as some non-negative
linear combination of the identity matrix I and the outer-
products ¢; f{ , then the RVM cost function is unimodal
and X, = S, at any minimizing solution.

See the Appendix for the proof. Two useful special cases
that connect the RVM to the MVAB are as follows.

Corollary 1. In the limit of high SNR and assuming the
generating sources satisfy mlH x; = 0 forall i # j, then
the RVM solution is guaranteed to satisfy ¥, = S, = Sy..
Additionally, if ds < spark(®) — 1, then the &(¢) obtained
by plugging this ¥, into the MVAB will equal the generat-
ing x(t).

Proof: Given the stipulated conditions, the observed data
satisfies Y = ®X and

]

1

where 02 £ L|z;||3. This satisfies the requirements
of Theorem 2, and so any RVM minimum must have
Yy = Sy«. Assuming the EM update rules can reach some
minimizing solution, then the first part of the corollary is
proven. For the second part, the spark restriction ensures
that this minimum will be unique with ||v||o = ds, where
I - llo equals a count of the number of nonzero elements
in . Such a solution is guaranteed to produce x(t) when

plugged into the MVAB filter expression (3). |

Corollary 2. If we relax the SNR assumption but allow
n — o0, then again, the RVM is guaranteed to produce a
covariance with satisfies £, = S, = Sy...

This follows because, in the limit as n — oo, the sample
noise covariance is proportional to the identity / and we can
apply the arguments from above. This assumes the noise
is generated isotropically. More general noise covariance
structure can be handled with some additional assumptions.
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These results indicate that the RVM beamformer will re-
duce to the standard MVAB given perfectly uncorrelated
sources and sufficient data to reduce the variability inher-
ent when noise is present.

4.3. Choosing the Gain Factor

Thus far, we have implicitly been assuming that X, can
simply be used to replace S, in (7), with all other com-
putations and assumptions proceeding exactly as with the
standard MVAB. But one significant alternative should be
considered as well. For the minimum power assumption
of the MVAB, the loop gain at the i-th location is v; =
(qbiH X 1(;57;)71 when using the RVM covariance. How-
ever, a natural alternative would be to replace this value
with v;, the RVM estimate of the source power at the i-th
location. This is equivalent to simply using the RVM pos-
terior mean estimate, given by (12), as our spatial filter. It
is also consistent with the interpretation of the MVAB as
a type of Wiener filter, where the prior source variances
replace the unit power constraint. We will refer to these
variants as RVM-v and RVM-v (the latter is really just the
standard RVM estimator).

In the limit as A — 0, these two gain factors are actually
equivalent assuming ||7y|lo < spark(®) — 1, so the RVM
posterior mean equals the MVAB output with ¥, replacing
Sy. To see this, first consider the case where v; = 0. By
the assumption about matrix spark, this implies that ¢; is
not in the subspace occupied by ®I'®# . Consequently,

1
I -
20 @F (M + TDH) ¢,

0. (16)

Now define I' and @ to be the subset of hyperparameters
that are nonzero and the associated columns of ®. Since
~ SOOI (U — -~ -
lim &7 (/\I + <I>F<I>H) o=T"1 (@F%)T &7
a7
it follows that the nonzero gain factors are also equiva-
lent. Hence when ) is small and a sufficient number of
v;’s are equal to zero, there is essentially no discrepancy
between the two possible selections for the gain factor. In
other cases the two methods will generally have different
gains, although they will still produce proportional spatial
filters (and therefore proportional time series estimates).
Regardless, a decision must be made as to which selection
is most appropriate. A significant factor influencing such
a decision stems from the fact that the learned ~ will be
highly sparse, meaning most elements will exactly equal
zero. If the sparsity profile of ~ is well-aligned with the
source locations, then using these hyperparameters as gain
factors could be highly desirable, zeroing out activity at all
other locations leading to a high resolution source image
and accurate time course estimates. However, when mis-
match occurs because modeling assumptions break down,

convergence to a bad local minimum, or low SNR, then ~
may completely attenuate valid source activity and replace
it with phantom sources. In contrast, using the v;’s as the
gain will smooth things considerably, potentially attenuat-
ing spurious peaks in the estimated spectrum. This occurs
because the sparsity of the hyperparameters can only im-
pact the reconstruction through the covariance ¥, which
spreads energy around to locations with similar ¢;, espe-
cially when ) is large. Therefore, an undesirable byproduct
will be that the resolution with which true sources can be
viewed will be much less in this situation.

The two methods also differ with respect to the in-
terpretability of the output power spectrum given by
Ldiag(X X*T). With RVM-v, this spectrum will be a good
representation of the actual peak power emanating from a
given source as well as the noise power from quiescent lo-
cations. This is a direct consequence of the unit gain con-
straint which does not attenuate any signal (or noise) power
originating from each location. In contrast, RVM-y will, in
general, provide a significantly lower estimate of the power
because it is essentially using a Tikanov regularized esti-
mate once +y is fixed (see (12)). This implies that &(¢) will
be shrunk in keeping with its role as a MMSE estimator
rather than as a means of estimating overall signal power.
These distinctions will be demonstrated empirically in the
next section.

Finally, a minor technical difference between RVM-v and
RVM-v exists that likely only affects very nuanced situa-
tions. For a wide range of applications, the learned decom-
position into covariance components given by (10) will be
unique, and so there will be a one-to-one correspondence
between ~ and the X, which results. However, when mod-
eling assumptions have been violated (e.g., ds > dy), d; is
extremely large, or a poor local minimum is found, it is the-
oretically possible that multiple values of « can lead to the
same Y. When using RVM-v, to the extent that X, is still
a reasonable estimate of S, the underlying v makes no
difference. This is unlike RVM-~, where using a different
- as the gain factor will always impact where the estimated
sources are perceived to exist. So errors estimating ~y could
potentially be more pronounced with RVM-~, although this
issue has never arisen in our experience.

The ultimate decision as to which variant of RVMs to use
may be application dependent. But regardless of which
gain vector is chosen, the results of this section show that
the RVM framework can act as a useful surrogate for the
MVAB by effectively decorrelating signals in source space.
Hence we would expect RVMs to outperform the MVAB in
applications where correlations between sources are signif-
icant. This will be shown empirically next using simula-
tions involving DOA.
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5. Empirical Results

Given an array of d,, omnidirectional sensors and a collec-
tion of dg signal waves impinging upon them, we would
like to estimate the (angular) direction of the wave sources
with respect to the array. This direction-of-arrival (DOA)
or source localization problem is germane to many sonar
and radar applications (Manolakis et al., 2000). For this
example, we consider the narrowband, far-field estimation
problem, which implies that the incoming waves are ap-
proximately planar and each source emanates from a single
point. Furthermore, we assume a linear, uniformly spaced
array geometry and a known propagation medium.

At each time instant ¢, we obtain a measurement vector
y(t) from the sensor array. The measurement vector ob-
tained at the sensors is formed from the superposition of
ds plane waves as described by the model (1), where s ()
characterizes the amplitude and phase of the k-th source at
time ¢ and

f(6r) = eiWUAI(Qk)’_“7eiw0Ady(9k):|T. (18)

In this expression, wy is the central temporal frequency and
A;(0), 3 = 1,...,d, is the array-geometry-dependent
time delay between a reference sensor and the j-th sen-
sor for a given angle 0;.> Each delay, which can be ana-
lytically computed based on the arrangement of the sensor
elements, is dependent on the corresponding DOA 6, €
[—7/2, 7/2]. More information on this model can be found
in (Manolakis et al., 2000).

Given n such measurements vectors over time, we would
like to estimate each DOA value 6. While the source sig-
nal amplitudes may change, we assume the locations are
stationary over small intervals of time, allowing us to col-
lect multiple data vectors. Several methods have arisen in
the signal processing literature for solving what amounts to
a challenging source localization problem; the MVAB of-
fers one possible solution that can be applied to general ar-
ray configurations. However, as discussed previously, cor-
related sources and limited data will cause problems.

In this section we will compare the MVAB with the two
RVM-modified beamformers discussed in the previous sec-
tion. First, we construct a dictionary ® such that the i-th
column represents the sensor array output from a hypothet-
ical source of unit strength at angular location 6;. Typically,
we choose d,, = 180 columns, allowing an angular resolu-
tion of 1° over the half circle. Such a dictionary is eas-
ily computable for any reasonable array configuration and
propagation medium. Given this construction and observa-
tion data Y = [y(1),...,y(n)], we would like to estimate
which coefficients x(t) show significant activity, thereby

3Note that in this expression, i refers to the imaginary unit
v/—1, not to be confused with the source index i.

Table 1. DOA angles and relative source powers used for experi-
ment.

DOA Angle  —42.6°
Source Power 6.16

—16.1° 34.9° 62.3°
14.19 7.53 1.97

allowing us to estimate both the number and angular direc-
tion of the sources. The underlying objective being to see
if the theoretical insights regarding RVMs actually translate
into improved performance over the standard MVAB.

To test this hypothesis, we conducted two experiments us-
ing a sensor array of size d, = 10. Each experiment pro-
ceeded as follows: First, ds = 4 sources are generated with
Gaussian distributed real and imaginary components, lead-
ing to Raleigh distributed source magnitudes. Source lo-
cations and magnitudes were selected according to Table
1. n = 200 measurement vectors are collected to form
Y, with complex Gaussian noise added to create an SNR
of 0dB. We should note that the angular locations of the
sources were not perfectly aligned with any one column of
® and therefore, additional quantization noise was present
that is not included in the SNR calculation. Each beam-
former is then presented with Y and ® and attempts to es-
timate the DOA angles using the resulting spatial power
spectrum %diag(f( XH) ¢ R0 that ideally aligns with
the true source directions. In the first experiment, the four
sources were all mutually uncorrelated. Figure 1 (Top)
shows the results using four different beamformers: RVM-
v, RVM-v, MVAB, and an idealized version of MVAB.
The latter involves replacing .S, with the data covariance
that would be obtained with zero quantization error, zero
sample correlations between sources, and infinite n. By
design of our experiment, this covariance can be computed
analytically. From this figure, we observe that the MVAB
and RVM-v both closely approximate the idealized beam-
former, all of which accurately reveal the locations of the
unknown sources. Likewise, by subtracting the peak power
from the minimum, we obtain an accurate estimate of the
power emitted by each source. With RVM-~, the locations
are very precise with high resolution, but the power esti-
mate of the sources is low as expected.

In the second experiment, we assume over 99% correlation
between sources. Figure 1 (Bottom) displays the results.
Here the performance of the MVAB has degraded dras-
tically, while both RVM beamformers maintain excellent
performance. So even with relatively high noise, the RVM
can still produce effective ML covariance estimates. Other
simulations (not shown) support this conclusion. For exam-
ple, RVM beamformers can be readily applied to the local-
ization of active brain sources from magnetoencephalog-
raphy (MEG) data (Sahani & Nagarajan, 2004; Sekihara
et al., 2002), where the dictionary ® can potentially be
quite large (e.g., 275 x 100, 000) and correlations can dis-
rupt standard beamforming methods.
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Figure 1. Estimated spatial power spectrums using ds = 4
sources, d,, = 10 uniformly spaced sensors, a 1° resolution sam-
pling density, n = 200 time points, and the inclusion of additive
white Gaussian noise to 0dB. This SNR does not include the im-
plicit quantization noise that occurs because the true source loca-
tions are imperfectly aligned with the sampling grid. Top: Sources
are mutually uncorrelated. Bottom: Sources are +99% correlated.

6. Discussion

Signal processing as a discipline addresses a wide range
of interesting problems in which machine learning can po-
tentially be applied. In this paper, we have examined par-
ticular shortcomings with the widely-used minimum vari-
ance adaptive beamformer by using the relevance vector
machine to find a useful, parameterized ML covariance ma-
trix involving a sparse collection of basis components. This
estimate resembles the ideal sample covariance with un-
desirable correlations between the latent sources removed.
As the noise level goes to zero, the RVM global minimum
converges to an ideal beamformer; in other cases it repre-
sents a good approximation. In contrast, with uncorrelated
sources and large sample sizes, the RVM reduces to the
standard MVAB with no local minima. In a more general
setting, using RVMs to find ML covariance estimates likely

has applicability well beyond beamforming. Other ubig-
uitous signal processing methodologies such as subspace
projection methods like the MUSIC algorithm rely heav-
ily on robust sample covariance estimates (Baillet et al.,
2001). Here the signal data is presumed to lie in some rel-
evant low-dimensional subspace that is determined by an
eigendecomposition of Y'Y #. RVMs could potentially be
applied to learn both the dimension and location of this sub-
space in a variety of applications.

Beamforming has been tackled using machine learning
methods in the past. For example, in (Sahani & Nagara-
jan, 2004) an empirical Bayesian model is proposed that
relies on a factorial variational approximation to explicitly
learn source correlations. This estimated correlation matrix
in turn can be used in place of the standard MVAB gain
factor to improve accuracy (the justification for this comes
from the alternative interpretation of the MVAB as an ap-
proximate Wiener filter). In comparing with the method
proposed in this paper, it is important to make a distinc-
tion between estimating the correlation between sources
and estimating the locations of corrrelated sources. We at-
tempt only the latter using the decorrelating mechanism of
RVMs, although actual source correlations could then be
estimated empirically using the #(¢) so obtained (which
are localized but not actually decorrelated). The simplic-
ity of this approach means that efficient update rules and
analyses of global and local minima are possible. In con-
trast, the added complexity involved in explicitly learning
source correlations using the method in (Sahani & Nagara-
jan, 2004) leads to expensive learning rules (quadratic in
d,) and some ambiguity regarding convergence properties
and the nature of minimizing solutions.

Parameterized covariance models that utilize sparsity have
also been developed in the context of PCA and factor anal-
ysis. Notable examples are Bayesian PCA (Bishop, 1999)
and sparse kernel PCA (Tipping, 2001b); however, the as-
sociated modeling assumptions differ substantially from
RVMs and are not directly applicable to source localiza-
tion or beamforming. With Bayesian PCA, there is no for-
ward model or dictionary ® from which covariance compo-
nents are constructed and then pruned; rather, the compo-
nents themselves (as well as associated hyperparameters)
are learned from the data using a approximation proce-
dure that is ultimately blind to source locations. Likewise,
sparse kernel PCA is also fundamentally different. Here
the model covariance is formed from the exact same (com-
plete) set of components that comprise the sample covari-
ance (in some kernel feature space). In our notation, this is
equivalent to approximating the sample covariance Y'Y 7
with the model \I + YT'Y7T. In contrast, with RVMs the
sample and model components are necessarily different and
overcomplete (see (10)). Unlike sparse kernel PCA, this
causes many covariance components to be pruned even if
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A = 0 (Wipf, 2006). Regardless of these differences, per-
haps the analyses contained herein could provide some in-
sight into these and related methods.
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Appendix: Proof of Theorem 2

To facilitate the analysis below, we define a d,, x rank(Y")
matrix Y such that YYH = Sy. Now suppose we are at
some local minimum of £(~) characterized by the covari-
ance ¥,. In the neighborhood of >, the RVM cost func-
tion can be written as

L(a,8) = log ’a?f/H —l—ﬁEy’
+ trace {??H (ozf’f/H +52y)1} (19)

where at the presumed local minimum, o = 0 and § = 1.
In contrast, by increasing «, we allow a contribution from
YYH to the overall covariance. That such a term exists is
possible by the assumption that S, and therefore YYH,
can be represented via a nonnegative linear combination of
available covariance components. Note that for simplicity,
we will henceforth assume that S, is full rank, and there-
fore any X, must be too. However, the general case can be
handled as well with a little extra effort.

If ¥, is a true local minimum of the original cost £(),
then it must also locally minimize £(«, ), necessary con-
ditions for which are

OL(a, B)

Oa

_, 0L@p)

>0,
a=1,8=0 86

a=1,8=0

(20)
where the gradient with respect to o need not actually equal
zero since o must be greater than or equal to zero. After
some manipulations, the first condition is equivalent to the
requirement

trace [??HZgl} =dy. 21

Likewise, the second condition is tantamount to the in-
equality

trace [VVA5,1 - VYAE VY5, 2 0. 22)

Using the eigendecomposition Y , 1y = VAVH, this
expression reduces to

dy

dy
=D N, (23)
i=1

=1

where the summation is over the d, eigenvalues defined
above. Also, because

dy
trace [??HZ;} = Z Ais 24)
i=1

the lefthand side of (23) equals d,. The only way then to
satisfy this inequality is if A; = 1 forall i = 1,...,d,,.
This is why we chose to reparameterize via Y, thus forcing
the number of eigenvalues to equal their sum. Furthermore,
this implies that

YOS WY =vvH =1 (25)
Solving (25) gives &, = YY# = n=1yYH,
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