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Abstract

Non-linear dimensionality reduction of noisy
data is a challenging problem encountered in
a variety of data analysis applications. Re-
cent results in the literature show that spec-
tral decomposition, as used for example by
the Laplacian Eigenmaps algorithm, provides
a powerful tool for non-linear dimensionality
reduction and manifold learning. In this pa-
per, we discuss a significant shortcoming of
these approaches, which we refer to as the
repeated eigendirections problem. We propose
a novel approach that combines successive 1-
dimensional spectral embeddings with a data
advection scheme that allows us to address
this problem. The proposed method does not
depend on a non-linear optimization scheme;
hence, it is not prone to local minima. Ex-
periments with artificial and real data illus-
trate the advantages of the proposed method
over existing approaches. We also demon-
strate that the approach is capable of cor-
rectly learning manifolds corrupted by signif-
icant amounts of noise.

1. Introduction

Dimensionality reduction is an important procedure in
various high-dimensional data analysis problems. Ap-
plications range from image compression (Ye et al.,
2004) to visualization (Vlachos et al., 2002). Often
the data lies on a low dimensional manifold embed-
ded in a high dimensional space and the dimension-
ality of the data can be reduced without significant
loss of information. However, in many cases the lower
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dimensional manifold is non-linear, which makes com-
mon linear approaches, such as principal component
analysis (PCA) (Jolliffe, 1986) and multidimensional
scaling (MDS) (Cox & Cox, 1994) unsuitable. A com-
mon example of a non-linear manifold embedded in a
high dimensional space is image vectors of an object
taken from different angles and lighting directions (Lin
et al., 2006). In such a case, the dimensionality is re-
stricted by the degrees of freedom of the physical con-
straints under which the images were taken. Whereas,
the data has a much greater dimensionality depend-
ing on the resolution of the image. Analysis of climate
data (Gámez et al., 2004) in geophysics or the study
of protein motions (Das et al., 2006) in computational
biology are other examples.

Isomap (Tenenbaum et al., 2000), chooses a lower di-
mensional embedding in which Euclidean distances ap-
proximate the geodesic distances on the manifold in
the high-dimensional space. While this method has
many desirable properties, such as distance preser-
vation and a closed-form solution, the geodesic dis-
tance approximation depends on the definition of lo-
cal connectivity for each data point and can be sen-
sitive to noise. Figure 1(top row) shows increasingly
noisy versions of a Swiss roll data set. The 2nd row
illustrates the 2-dimensional embedding obtained by
the Isomap algorithm. Tenenbaum et al. propose k-
nearest neighbors and ε-radius balls as two methods
of determining local connectivity. For data with mod-
erate and higher amounts of noise, we were unable to
fine tune the algorithmic parameters to recover the
correct manifold structure. This can be seen in the
2nd row of Figure 1 where the results for the noisier
data sets demonstrate the wrong neighborhood rela-
tionships in the lower dimensional embedding (differ-
ent colors next to each other). A more detailed discus-
sion of the topological stability of Isomap with noisy
data can be found in Balasubramanian and Schwartz
(2002). Other recent approaches, such as Laplacian
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Eigenmaps (Belkin & Niyogi, 2003), exploit proxim-
ity relations instead of geodesic distances and use el-
ements of spectral graph theory to compute a lower
dimensional embedding. We found that in compari-
son to Isomap, Laplacian Eigenmaps is more robust
in regard to noisy input data. This can be attributed
to the lack of a geodesic distance computation. Fig-
ure 1 (3rd and 4th row), shows the results of Laplacian
Eigenmaps and our method, respectively, on the noisy
Swiss roll data. Neighborhood relationships are cor-
rectly preserved by both methods for the noise levels
shown.

Noisy Swiss rolls

Isomap

Laplacian Eigenmaps

Proposed method

Figure 1. The Swiss roll (θ cos(θ), y, θ sin(θ)) is a 2D mani-
fold (parametrized by θ and y) in R3 that is commonly used
in dimensionality reduction experiments. Top row: Swiss
rolls colored by θ, viewed along the y-axis. Independent
normally distributed noise with variance increasing from
left to right was added. 2D embeddings, also colored by
θ, found by Isomap (2nd row), Laplacian Eigenmaps (3rd
row) and our approach in the (4th row).

Unfortunately, dimensionality reduction methods
based on spectral graph theory implicitly put severe
constraints on the shape of the low dimensional mani-
fold. The eigenvectors computed from the graph
Laplacian are orthogonal but not independent; in
other words, eigenvectors can be strongly correlated
locally. This is not sufficient enough to guarantee a

satisfactory parametrization. Figure 2 illustrates this
problem, which we refer to as repeated eigendirection.
The two eigenvectors computed from the graph Lapla-
cian and LLE methods recover only the first non-linear
dimension of the manifold. The second non-linear di-
mension is not discovered. The strong local correla-
tions between the two eigenvectors can also be seen
by plotting them on the plane (Figure 2, 3rd column).
The repeated eigendirection problem occurs when the
extent of the underlying non-linear dimensions of the
manifold differ significantly. We discuss this problem
in more depth in Section 3.

LLE

Laplacian Eigenmaps

Proposed method

Figure 2. Repeated eigendirection problem. The first two
columns show the first two eigenvectors colored on the
Swiss roll computed by LLE, Laplacian Eigenmaps our
approach. The last column plots the first against the
second eigenvector by each approach. The two eigenvec-
tors display strong local correlations using LLE and Lapla-
cian Eigenmaps, but are independent using the proposed
method. Note that the proposed method is also able to re-
cover approximate proportions of the manifold as discussed
further in Section 4.

We propose a method that successively collapses the
dimensions of the low dimensional manifold based on
an advection scheme driven by the eigenvector. The
term advection describes the process of transporta-
tion in fluids. In our setting we flow the individual
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points along the low dimensional manifold. The flow
on the low dimensional manifold is defined by a vec-
tor field based on the eigenvector computed from the
graph Laplacian. This collapses the dimension of the
low dimensional manifold defined by this eigenvector
and this dimension is therefore eliminated from subse-
quent eigenvector computations. Our algorithm con-
sists of computing an eigenvector based on the current
points, advect the points along the eigenvector and
then repeat these two steps (using the advected points)
until the embedding is uncovered. The eigenvectors
computed at each iteration as described above gives
the low dimensional parametrization. Our method re-
solves the repeated eigendirection problem and is capa-
ble of dealing with significant amounts of noise, while
still having the desirable properties of eigendecompo-
sition based methods, namely having a solution that
does not suffer from local minima. A significant draw-
back of this approach is the high computational cost
for the advection. For the Swiss roll example with
2000 points in 3 dimensional space in Figure 1, it takes
about 10 minutes to compute the complete low dimen-
sional embedding.

2. Related Work

Traditional methods such as PCA (Jolliffe, 1986) or
MDS (Cox & Cox, 1994) work well under the con-
dition that the lower dimensional manifold is close
to linear. Various methods have been developed for
the non-linear case. Recently there has been an in-
creased amount of interest in non-linear dimensional-
ity reduction methods that do not depend on an it-
erative minimization procedure that can be prone to
local minima. Laplacian Eigenmaps (Belkin & Niyogi,
2003) uses ideas from spectral graph theory, particu-
larly the eigendecomposition of the graph Laplacian
L, to preserve local neighborhoods in the low dimen-
sional embedding. LLE (Roweis & Saul, 2000) and
its variations (Zhang & Zha, 2005; Yang et al., 2005)
also try to find a neighborhood preserving low dimen-
sional embedding. LLE tries to preserve neighbor-
hood relations by first computing weights that describe
each point optimally from its nearest neighbors using
barycentric coordinates. Then an embedding is com-
puted that minimizes a quadratic error function based
on the computed weights. LLE and Laplacian Eigen-
maps are closely related; the optimization problem as
stated by LLE can be reformulated as trying to find the
eigenfunctions of L2 (Belkin & Niyogi, 2003). Hessian
Eigenmaps (Donoho & Grimes, 2003) addresses prob-
lems with non-convex manifolds by using the Hessian
instead of the Laplacian. We have found that all meth-
ods which depend solely on spectral decomposition of a

matrix that captures local interactions are susceptible
to the repeated eigendirection problem.

Other approaches that have closed form solutions in-
clude Isomap (Tenenbaum et al., 2000) a non-linear
extension to MDS based on approximate geodesic dis-
tances computed by shortest paths on a graph. Isomap
does not suffer from the repeated eigendirection prob-
lem but is sensitive to noise in the input as discussed
in Figure 1. Kernel PCA (Schölkopf et al., 1998) ex-
tends PCA to handle non-linear cases using the ker-
nel trick. It has been shown that spectral embedding
methods are directly related to kernel PCA (Bengio
et al., 2004). The difficulty in kernel based methods is
to choose an appropriate kernel. Recent work by Wein-
berger et al. (2004) addresses this problem and pro-
vides promising results.

Other approaches to non-linear dimensionality reduc-
tion use iterative optimization techniques. Self orga-
nizing maps (Kohonen, 1997) learn a mapping from
the high dimensional to a fixed lower dimensional
space, usually a 2-dimensional Cartesian grid. Topol-
ogy preserving networks (Martinetz & Schulten, 1994)
use aspects from computational geometry combined
with a neural network to find a low dimensional em-
bedding. Various other neural network based ap-
proaches that utilize bottleneck hidden layers have
been proposed (Bishop, 1995; Perantonis & v. Virvilis,
1999; Lluis Garrido, 1999; Lee & Verleysen, 2002;
Hinton & Salakhutdinov, 2006). Another approach
tries to minimize the Kullback-Leibler distance be-
tween a probability density function (PDF) defined in
the high dimensional and a PDF in the low dimen-
sional space (Hinton & Roweis, 2002).

3. Algorithm

The goal of dimensionality reduction is to find a set
of points Y ∈ Rl matched to a set of points X ∈ Rh,
where l << h, such that Y embodies the informa-
tion contained in X. A high level outline of out ap-
proach is shown in Algorithm 1 and Figure 3 shows the
progression of the algorithm. The first and second
step of the algorithm are closely related to the Lapla-
cian Eigenmaps approach; however, we compute only
one eigenvector corresponding to the smallest non-zero
eigenvalue, thereby avoiding the repeated eigendirec-
tion problem. The third step uses this eigenvector to
define a flow field on the manifold, which is integrated
by an advection scheme, Figure 3 (b)-(d). This step
collapses the dimension found by the eigenvector and
eliminates this dimension from subsequent eigenvector
computations.
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Algorithm 1 Successive Laplacian Eigenmaps

Set X̃1 = X
for i = 1 to l do

1. Build graph Laplacian from X̃i

2. Compute only the 1st (smallest non-zero eigen-
value) eigenvector from the graph Laplacian and
store it in f i

1.
3. Collapse the dimension found in step 2 by
performing advection along the eigenvector. This
leads to new points X̃i+1

end for
Construct l-dimensional embedding Y by

yi ← (f1
1 (i), . . . , f l

1(i))
T .

3.1. Laplacian Eigenmaps & Weight Selection

The Laplacian Eigenmaps approach is based on the ob-
servation that the solution to the minimization prob-
lem1

arg min
Y

∑
i

∑
j

(yi − yj)2wij (1)

can be computed by the eigensystem

Lf = λf , (2)

where L is the unnormalized graph Laplacian defined
by D−W. D is diagonal matrix with dii =

∑
i wji and

W is an adjacency matrix with an edge between i and j
if xj ∈ Ni with Ni is the set of neighbors of xi weighted
by a Gaussian kernel. Then the l-dimensional embed-
ding Y is constructed as yi ← (f1(i), . . . , fl(i))T , where
the fi are sorted by ascending λ. The first eigenvec-
tor f0 with λ = 0 is omitted because it is a constant.
Alternatively, one can use the normalized version of
the Laplacian (L = D−1/2LD−1/2), which amounts to
solving the generalized eigenvalue problem Lf = λDf .

For our approach we compute the weights as

wij = (1− α)G(‖ xi − xj ‖, σ) + αI(xi,xj) (3)

where G(x, σ) is a Gaussian function with zero mean
and standard deviation σ. I(xi, xj) is an indicator
function

I(xi,xj) =

{
1, if xj ∈ Ni or xi ∈ Nj ;
0, otherwise.

The standard deviation of the Gaussian kernel, σ,
plays an important role. If σ is to large, points that are
far apart in geodesic distances will get to much weight

1The notation follows closely as used in (Belkin &
Niyogi, 2003).

(a) (b) (c)

(d) (e) (f)

Figure 3. Progression of the algorithm for the Swiss roll.
(a) Input colored by first eigenvector. (b) - (d) Snapshots of
the advection colored by first eigenvector. (e) Completely
advected points colored by the new eigenvector computed
on the advected points. (f) Final solution formed with the
eigenvectors from (a) and (e).

and cause a short-circuit between separate parts of
the manifold. While rare for data lying on non-noisy
manifolds, this problem becomes extremely common in
noisy data. Figure 4 illustrates the problem: an out-
lier between two arms of the spiral can cause a short-
circuit if its connections are given large weights in
Equation (1). For this reason, using equal weights for
the k-nearest neighbors is not suitable for noisy data.
In contrast, using a Gaussian kernel with an appropri-
ate σ will place small weights for all edges connecting
to such outlier points, which reduces their influence in
Equation (1) allowing the correct parametrization to
be recovered. Furthermore, we have found that the
normalized Laplacian also amplifies the influence of
noisy points in Equation (1); hence, we use the unnor-
malized Laplacian.

We propose a method to compute σ directly from the
input data using ideas from kernel based density esti-
mation techniques. One can view the points x ∈ Rh as
drawn from a probability distribution function (PDF).
This PDF can be estimated using Parzen window den-
sity estimation as P (x) ≈

∑
i G(x− xi, σ). We choose

the σ that minimizes the entropy of this Parzen density
estimate. It can be shown that this choice of σ guar-
antees that as the number of points goes to infinity
the exact PDF is recovered (Awate & Whitaker, 2006;
Parzen, 1962). We have found this approach to be
robust in the presence of noisy input data. Typically,
outliers get very small edge weights with this approach
or can be disconnected from the rest of the points. The
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indicator function I is used to avoid (numerically) dis-
connected components. In all experiments, the weight
for the indicator function in Equation (3) is fixed at
0.01 which provides the regularization necessary for
avoiding disconnected components but does not overly
influence the rest of the data points in the solution of
Equation (1).

(a) (b)

Figure 4. (a) A noisy 2D spiral data set. (b) An outlier be-
tween adjacent arms of the spiral can cause a short-circuit
if its connections are given large weights in Equation (1).

3.2. Repeated Eigendirection Problem

To understand the repeated eigendirection problem,
we can analyze the cost function given in Equation (1).
Consider a regular n × m unit grid as shown in Fig-
ure 5. For simplicity assume the points px,y = (x, y)T

to be 4-connected with equal weights w. Consider the
eigenvector shown in Figure 5 (a,b). This eigenvector
can be approximated by a linear function f(px,y) =
sx. In this case, a vertical edge contributes 0 to
the cost function. The cost for a horizontal edge is
f(px+1,y)− f(px,y)w = (x + 1− x)sw = sw. We can
compute s by using the fact that the eigenvector is
constrained to have length 1, therefore

1 =
m∑

y=1

n∑
x=1

f(px,y)2 = m

n∑
x=1

(xs)2 = m(
n(n + 1)

2
s)2

and s =
√

2 (mn(n + 1))−1. The total cost for this

eigenvector is then (n − 1)m
√

2 (mn(n + 1))−1
w. An

eigenvector that causes the repeated eigendirection
problem is depicted in Figure 5 (c,d). Using the same
arguments as above and noting that the slope of the
eigenvector is approximately doubled, the total cost

is found to be 2(n − 1)m
√

2 (mn(n + 1))−1
w. Fi-

nally for an eigenvector in the vertical direction with
f(px,y) = ty as in Figure 5(e,f) the total cost is

n(m−1)
√

2 (nm(m + 1))−1
w. If n is sufficiently larger

than m, this cost will be larger than the cost of the

eigenvector in Figure 5 (c,d). Therefore, the eigen-
vector with the repeated direction problem, shown in
Figure 5 (c,d), will be preferred by the spectral decom-
position.

x

y

x

f

(a) (b)

x

y

x

f

(c) (d)

x

y

y

f

(e) (f)

Figure 5. Eigenvectors on a regular grid. 1st row: 1st
eigenvector colored on plane (a) and plotted against x (b).
2nd row: 2nd eigenvector colored on plane (c) and plotted
against x (d). 3rd row: Artificial eigenvector that corre-
sponds to horizontal cut colored on plane (e) and plotted
against y (f).

The repeated eigendirection problem can also be an-
alyzed from the viewpoint of spectral clustering. The
solution of the eigensystem in Equation (2) is the
central subject in the study of spectral graph the-
ory (Chung, 1994). Spectral clustering algorithms use
the eigenvectors found by this eigensystem to parti-
tion the data. In particular, it can be reasoned that
the solution found by (2) are approximate solutions to
finding the minimal normalized cut of a graph (Shi &
Malik, 2000). The normalized cut is defined as

Ncut(A1, . . . , Ak) =
k∑

i=1

cut(Ai, Ai)
vol(Ai)

with cut(A,B) =
∑

i∈A,j∈B wij and vol(A) =∑
i∈A dii If we analyze the Laplacian Eigenmaps with

this in mind, we can easily see how the repeated
eigendirection problem occurs. Figure 5 shows a regu-
larly sampled plane with height h and length 4h. As-
suming equal weights between all the 4-way connected
points as before, Ncut is much smaller if the second
eigenvector cuts the graph twice along the shorter side
than a single cut along the longer side of the plane.

3.3. Collapsing Dimensions by Advection

We use the first eigenvector computed as described in
Section 3.1 to construct a flow field on the data to col-
lapse the manifold along this direction. Successive rep-
etition of these steps uncover the dimensions of the low
dimensional manifold. This process not only avoids
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the repeated eigendirection problem, but can also be
used to recover approximate proportions of the lower
dimensional manifold. From the Laplacian Eigenmaps
itself it is not possible to infer this information.

The flow field is constructed to point along the direc-
tion of the gradient g of the eigenvector while con-
strained to the tangent space of the manifold. The
points are then advected towards the mean of the
eigenvector f by the iterative process

xi+i
k = t[f(xi

k)− fa]
g(xi

k)
‖ g(xi

k) ‖,

where xi
k is the kth point at the ith iteration of the ad-

vection procedure, t is an adaptive time step and fa is
the mean of the eigenvector values. For computational
efficiency purposes, we compute f(xk) and g(xk) only
on the original, unadvected points. Then, values for
the advected points can be computed by interpolation
using their nearest neighbors in the original point set.
Once g is computed, we use the Cash-Karp integra-
tion scheme (a Runge-Kutta variation) with adaptive
step size control (Press et al., 1992) for the advection.
Advection is performed until all points reach the mean
value of the eigenvector. Note that while advection is
an iterative process for numerical integration of a flow
field, it does not suffer from any local minima prob-
lems. The gradient direction of f at each point xk is
then computed by the following steps:

1. Define a local neighborhood for each point: Let Nk

be the set of n closest points to xk Perform PCA on the
local neighborhood Nk and build principal component
matrix from the eigenvectors corresponding to the l
largest eigenvalues V =

[
v0, . . . ,vl−1

]
, where l is the

dimensionality of the manifold. Transform x ∈ Nk

into principal components coordinates by x̃ = V T x.

2. Fit a linear function in Rl to eigenvector f de-
fined on x̃i using weighted linear least squares. We
use weights based on the Euclidean distance between
points and the distance of the eigenvector values of the
points. For x ∈ Nk we use the weights

w(x) = G(‖ x− xk ‖, σk)G(f(x)− f(xk), σf ) (4)

where G are Gaussian kernels with zero mean and
σk = maxxi∈Nk

‖xk−xi‖
3 and σf = max(f)−min(f)

10 . These
weights allow for larger neighborhoods which give
more faithful linear fits. Possible bridges between
points that have large geodesic distances on the low
dimensional embedding but small Euclidean distances
in the high dimensional space will still get small weight
due to the contribution from the second term in Equa-
tion (4), and therefore not distort the linear fit.

3. Compute the gradient of the linear function fit-
ted in the previous step to obtain g̃k and transform it
into ambient space gk = V g̃k, which is the advection
direction at point xk.

Note that the advection process described above de-
pends on l, the dimensionality of the target manifold.
In this paper, we do not address the problem of choos-
ing the dimensionality of the manifold.

4. Results

Properties of the proposed algorithm and its advan-
tages over other methods were previously discussed in
the context of experiments with artificial noisy data.
It could be argued that the repeated eigendirection can
be resolved by globally scaling the data. However, in
general, it is not possible to know the extent of the non-
linear dimensions of the manifold without knowing the
parametrization of the manifold itself. An example
of such a manifold, a plane rolled into a corkscrew
shape, is shown in Figure 6. In this case, Laplacian
Eigenmaps fails because of the repeated eigendirection
problem. Similarly, LLE exhibits the repeated eigendi-
rection problem. The amount of noise leads to short
circuits in the shortest path computation in Isomap.
The proposed algorithm is able to correctly recover
the lower dimensional manifold. Note that the dis-
tance traveled by points during the advection scheme
described in Section 3.3 allows us to recover the ap-
proximate proportions of the manifold as shown in Fig-
ure 6(e). In other words, the proposed algorithm is not
proven to preserve geodesic distances as in the case of
Isomap, but the distance traveled by a point in the
advection process can be used as an approximation.

The next experiment uses the artificial head image
data set from the Isomap website. This data set shows
a single computer rendered head from different vertical
and horizontal camera positions, and lighting direc-
tions varying from left to right. The intrinsic dimen-
sionality of the images should therefore be approxi-
mately three. Our algorithm finds these dimensions
as shown in Figure 7.

We performed a similar experiment on images of a real
head which we acquired with a fixed light source. In
this experiment, the head rotates ±90 degrees in the
left-right direction and a smaller range of rotations in
the up-down direction. The size of the 2-dimensional
manifold described by this movement has an aspect
ratio from about 3:1. Figure 8 shows the embeddings
found by Laplacian Eigenmaps and the proposed ap-
proach. In the Laplacian Eigenmaps results, the first
eigenvector finds the left to right dimension, but the
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(a) (b) (c) (d) (e)

Figure 6. Corkscrew plane (a) with a significant amount of independent normally distributed noise. The two images in
the two rows are colored by the two correct parameters of the underlying plane. Embeddings found by (b) Isomap, (c)
LLE, (d) Laplacian Eigenmaps and (e) proposed algorithm

(a) (b)

Figure 7. The plots show the 1st vs. 2nd and 1st vs 3rd
dimensions of the 3 dimensional embedding found by our
approach on the Isomap head data set. (a) The 1st vs.
2nd eigenvector recovers the left-right motion and the left-
right lighting. (b) The 1st vs. 3rd eigenvector reveals the
left-right and up-down motion.

second eigenvector repeats the same direction. The
proposed approach is able to find the left and right
and up and down directions. We believe that it also
recovers the approximate trajectories that the head
followed during the acquisition of the images.

(a) (b)

Figure 8. Real head images. Embeddings found by (a)
Laplacian Eigenmaps and (b) proposed method.

It is also informative to observe the advection process
that a single image from the data set undergoes, as

shown in Figure 9. This advection process is the same
as the advection on the Swiss roll depicted in Figure 3;
however, it is performed in a much higher dimensional
space. Observe that image at the end of the advection
shown in Figure 9 is recognizable as a face; therefore,
we can conclude that the data points remain on the
manifold during the advection. This observation sug-
gests the possibility for a new approach to a variety of
problems such as face alignment and recognition.

Figure 9. Sequence of a head image during the advection
with increasing duration from left to right.

A drawback of our algorithm is the performance. For
instance, the real head data set consists of 1041 im-
ages with a resolution of 64× 64 pixels. First, we use
PCA to reduce the 4096 dimensions to 1041 without
loss of information. On this reduced data set the algo-
rithm takes about 10 hours on a 3.2 GHz Intel Xeon
to collapse a single dimension. The bottleneck is the
advection process. The computational cost for solving
a ordinary differential equation for the advection with
accuracy e is exponential in ln(e) (Werschulz, 1991).
Roughly we can say, that the run time depends lin-
early on the input size, the size of the high-dimensional
space, the dimension of the manifold and the number
of steps during the advection, which is dependent on
the curvature and the length of the advection path.

5. Conclusions

In this paper, we demonstrated the repeated eigendi-
rection problem and proposed a novel approach to non-
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linear dimensionality reduction that resolves this prob-
lem. The proposed algorithm also offers significant ad-
vantages over existing methods such as Isomap in cases
with large amount of noise and where the topology of
the manifold is prone to short circuits, such as the
Swiss roll. A future research direction will be to inves-
tigate whether manifolds with such topologies are com-
mon in various real world applications. A drawback of
the algorithm is the large computational expense of
the advection process and the use of the dimension-
ality of the target manifold in the advection process.
Faster advection schemes which do not depend on this
knowledge will be another focus of future research.
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