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Abstract

In this paper we investigate the regulariza-
tion property of Kernel Principal Component
Analysis (KPCA), by studying its applica-
tion as a preprocessing step to supervised
learning problems. We show that perform-
ing KPCA and then ordinary least squares on
the projected data, a procedure known as ker-
nel principal component regression (KPCR),
is equivalent to spectral cut-off regulariza-
tion, the regularization parameter being ex-
actly the number of principal components to
keep. Using probabilistic estimates for inte-
gral operators we can prove error estimates
for KPCR and propose a parameter choice
procedure allowing to prove consistency of
the algorithm.

1. Introduction

Principal component analysis (Hastie et al., 2001) is a
very common statistical tool for dimensionality reduc-
tion and in its linear version it consists in the projec-
tion of the data on the directions of highest variance,
namely the principal components. A non-linear ver-
sion of the same procedure, namely kernel principal
component analysis (KPCA), has been also proposed
in Scholkopf et al. (1999) where the projection is per-
formed in a (possibly) high dimensional feature space
hence enabling to exploit nonlinearity of the data. The
free parameter in the algorithm is the number of com-
ponents to keep and a fundamental question is then
if it exists an ”optimal” number of components for a
given task.

This last question naturally leads to another question
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that is how to measure how effective is KPCA. If the
reconstruction error is used as a criterion, recent re-
sults (Shawe-Taylor et al., 2004; Zwald et al., 2007)
suggest that no such an optimal choice exists and the
more components we keep the better.

On the other hand it is worth noting that one of the
main uses of KPCA is as a preprocessing for supervised
learning algorithms. In this case one might expect the
dimensionality reduction step to influence also the gen-
eralization performance since some information is dis-
carded. Going further one might ask if, after KPCA,
any kind of regularization is needed at all since again
some shrinking of the available information already oc-
curred (see Scholkopf et al. (1999) and the discussion
in Blanchard et al. (2004)). These issues have been
recently addressed in Blanchard et al. (2004) where an
algorithm, called kernel projection machine, was pro-
posed which essentially amounts to a KPCA step and
then empirical risk minimization with hinge loss func-
tion on the projected data. Note that ERM is unpenal-
ized and the only free-parameter is the number of com-
ponents in the dimensionality reduction. In this case
the authors empirically show that indeed an optimal
number of components exists when we look at how the
generalization performance depends on the dimension-
ality reduction procedure. As a byproduct they also
argued that using some further regularization, for ex-
ample support vector machines, after KPCA is some-
what redundant and not really necessary.

The main idea of our study is to give a proof of such
empirical evidences. In fact considering a similar ap-
proach, with the hinge loss replaced by the square loss,
we can follow Bauer et al. (2006) and prove that in-
deed the number m of principal components kept is
a regularization parameter and that an optimal pa-
rameter choice exists. As a main mathematical tool
we use estimates of integral operators based on vector
valued law of large numbers, to derive the probabilis-
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tic error estimates which are the keys to understand
the role of m. Indeed such error estimates are made
by two error terms, sample and approximation errors,
and the best choice for m is the one balancing out the
two terms. Our results are indebted to Bauer et al.
(2006) and results of a similar flavor can also be found
in Massart et al. (1999) for the case of regression with
Gaussian white noise and fixed design (see also Blan-
chard et al. (2004)). Our analysis is developed in the
usual context of statistical learning where the design
is random and for the sake of simplicity we consider
bounded outputs, though more general kind of noise-
such as sub-Gaussian noise- can also be treated. A
related analysis can be found in Zhang (2005) who
considers empirical risk minimization in a reproducing
kernel Hilbert space. Indeed the results in such paper
show that the number of principal components controls
the performance of the algorithm yet the subject of
model selection via sample/approximation trade-off is
not considered. In this view we specialize and further
develop the above reasoning giving explicit parameter
choices leading to consistency. We also note that the
bound we obtain conveys the correct qualitative be-
havior of the error w.r.t. the number of components
and can be shown to be essentially optimal under the
given assumptions (cfr. Caponnetto & De Vito, 2006).
Nonetheless since the bound is basically distribution
independent in typical applications it will be too pes-
simistic. For this reason in the experiments section
we will consider data-driven model selection via cross
validation.

The use of principal component analysis for regres-
sion is standard in classical statistics where finite di-
mensional linear models are usually considered. The
kernel extension to the non linear case makes appar-
ent the relation with other algorithms such as SVM
or regularized least squares, still theoretical results on
regularization property of principal component regres-
sion in the learning setting were lacking so far. In the
usual statistical setting the input points are fixed so
that the problem of sample complexity is usually not
taken into account.

Interestingly the algorithm we consider, which was re-
cently proposed in Rosipal et al. (2000) and called
kernel principal component regression, can be shown
to be mathematically equivalent to truncated singular
value decomposition or spectral cut-off, which is pos-
sibly the most famous regularization scheme for linear
ill-posed problems.

Though we just considered the supervised case the con-
clusions we draw can be of interest in the context of
semi-supervised learning since recently proposed tech-

niques are based on the use of the principal compo-
nents of data driven kernel for function approximation
(Belkin & Niyogi, 2004; Coifman & Lafon, 2006). The
extension of our analysis in the case where unlabeled
data are available is an interesting direction for future
work.

The plan of the paper follows. In the next section we
introduce some notation and background on learning
theory. In section 3 we prove the equivalence between
principal component regression and truncated singu-
lar value decomposition (Engl et al., 1996), by showing
with simple algebraic tools that the solution of the two
algorithms are point-wise equal. In section 4 we derive
error estimates and prove the existence of an optimal
choice of the regularization parameter for KPCR as
well as consistency. In section 5 we present some nu-
merical experiments on real and simulated data that
confirm theoretical results from the previous section.
In the last section we discuss our results.

2. Setting

We consider the setting of supervised learning where
we have to find an unknown input-output relation
given a finite number of input-output instances. More
precisely we assume that a training set z = (x,y) =
(x1, y1), . . . , (xn, yn) is sampled according to an un-
known distribution ρ(x, y) = ρ(y|x)ρX(x), where x ∈
X ⊂ R

d and y ∈ Y = [−M,M ] ⊂ R. The idea is to
find a function f such that f(x) ∼ y and, considering
least squares, this can be formalized saying that we
look for a function with small expected error

E(f) :=

∫

X×Y

(y − f(x))2dρ(x, y).

Among all measurable functions one can easily show
that the one that minimizes the expected error is the
regression function fρ :=

∫

Y
ydρ(x, y). Then, given

a training set z, the goal is to build an estimator fz

whose error is close to E(fρ). In particular a first im-
portant property is (weak) consistency

lim
n→∞

Pr ( E(fz) − E(fρ) ≥ ε) = 0 ∀ε > 0

ensuring that, if we have enough data, we can eventu-
ally reach the best possible solutions for any probabil-
ity distribution. A second crucial property concerns
rate for the above convergence and is typically studied
via probabilistic error estimates such that with prob-
ability at least 1 − η

E(fz) − E(fρ) ≤ ε(n, η) (1)

where ε(n, η) is a suitable bound depending on the
number of samples and the confidence.
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We also recall that for classification problems rather
than the expected error we want to estimate the mis-
classification error

R(f) := Pr(yf(x) < 0)

whose minimizer R∗, namely the Bayes risk, is
achieved by the Bayes rule

b(x) =

{

+1 if p(1|x) > 1
2

−1 if p(1|x) ≤ 1
2 .

(2)

In this case we wish to find a classification rule such
that with probability at least 1 − η we have

R(fz) − R∗ ≤ ε(n, η) (3)

and derive convergence of the misclassification error of
our classification rule to the Bayes risk, namely Bayes
consistency. Finally, we note that considering least
squares estimates, a plug-in classification rule can be
obtained taking signfz and moreover, since y is ±1,
we get fρ(x) = 2ρ(1|x) − 1 so that the bayes rule is
simply signfρ. Interestingly the error measured via
expected error and the misclassification error are re-
lated (Bartlett et al., 2003)

R(f) − R∗ ≤
√

E(f) − E(fρ) (4)

so that consistency w.r.t. to expected errors implies
Bayes consistency.

2.1. Learning with Kernels

The search for possible solutions is often restricted to
an hypotheses space H. In the following we consider
hypotheses spaces that are reproducing kernel Hilbert
(RKH) spaces (Aronszajn, 1950). Recall that these
are Hilbert spaces of functions which are completely
determined by a symmetric positive definite function
K(x, s). In particular we make use of the following
well-known properties:

• reproducing property: for f ∈ H it holds

f(x) = 〈f,K(x, ·)〉H ; (5)

• feature map: we can consider a mapping Φ : X →
H which can be seen as a data parameterization
related to the kernel through the following equal-
ity

〈Φ(x),Φ(s)〉H = K(x, s), x, s ∈ X.

For technical reasons we will assume the kernel to be
continuous and bounded, i.e.

κ2 = sup
x∈X

K(x, x) < ∞.

It is interesting to recall the derivation of the solution
to empirical risk minimization (ERM) algorithm

fz = argmin
f∈H

1

n

n
∑

i=1

(yi − f(xi))
2, (6)

when H is a RKH space. If we consider the feature
map

Φ(x) = K(x, ·) =: Kx

the function in H can be written as f(x) = 〈w,Φ(x)〉
and we can simply differentiate the empirical risk with
respect to w to get a normal equation

1

n

n
∑

i=1

〈w,Φ(xi)〉H Φ(xi) =
1

n

n
∑

i=1

yiΦ(xi).

Interestingly if the data are centered then we have that

Tx :=
1

n

n
∑

i=1

Φ(xi)⊗Φ(xi)=
1

n

n
∑

i=1

〈·,Φ(xi)〉H Φ(xi) (7)

is simply the (uncentered) covariance operator and the
solution can be written as

w = T †
x
hz (8)

with hz = 1
n

∑n
i=1 yiΦ(xi) and T †

x
denotes the gen-

eralized inverse of the covariance operator. We use
this equation extensively in the next section, but we
note here that from a practical point of view when
the Hilbert space is not finite dimensional one usually
prefers to use the fact that the solution can also be
written as

f(x) =
n

∑

i=1

αiK(x, xi)

where α = K†y and K† is the generalized inverse of
the kernel matrix, [K]ij = K(xi, xj).

3. Principal Component Regression and

Spectral Cut-Off

In this section we show the equivalence between princi-
pal component regression (Rosipal et al., 2000) and the
regularization algorithm known as spectral cut-off or
truncated singular value decomposition (TSVD) (Engl
et al., 1996). First, we briefly recall the principal com-
ponent regression algorithm, or rather its kernel ver-
sion. Second we review TSVD regularization. Third
we discuss a straightforward connection between the
two.

We previously note that under our assumptions the
covariance operator in the feature space is known
to be positive and self-adjoint. In particular we let
(σi, vi)i∈I be the associated eigensystem1. We will as-
sume throughout the data to be centered in the feature
space so that the vi’s are the principal components.

1We always assume the eigenvalues to be arranged in
decreasing order.
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Remark 1. When the data are not centered we can-
not asses the equivalence between principal component
regression and truncated singular value decomposition
unless we consider a modified kernel which corresponds
to the features covariance operator

Tx → T̂x = (I − 1

n
1n1n)Tx(I − 1

n
1n1n).

Spectral cut-off on the non recentered kernel is still an
efficient algorithm but it is not evident its connection
with principal component analysis because the eigen-
vectors of Tx and T̂x may be different.

Again we note that from the computational point of
view rather than working with Tx one usually con-
siders the kernel matrix since it can be shown that
they share the same spectrum and their eigenfunc-
tions/eigenvectors are related. For theoretical pur-
poses it is convenient to consider simply Tx.

Kernel Principal component regression can be
seen as a two steps algorithm: the first step amounts
to an unsupervised dimensionality reduction via (ker-
nel) principal component analysis and the second step
is simply ERM on the projected data. As it is of-
ten done in practice we control the projection of the
data choosing a threshold λ on the magnitude of the
eigenvalues. In other words we only keep m = m(λ)
components corresponding to eigenvalues bigger than
λ. We will show in the following, that such a threshold
plays the role of regularization parameter controlling
the complexity of the KPCR solution. More in details
KPCR can be described in the following steps:

1. decomposition of Tx to obtain (σi; vi);

2. projection of the data on the first m components
such that σm > λ for fixed λ > 0,

Φ(x) → ~ϕm(x) =
m

∑

j=1

〈Φ(x), vj〉 ~ej

where ~ϕm(x) ∈ R
m and (~ej)j is a canonical basis

in R
m;

3. ERM,
min
~w∈Rm

1

n

n
∑

i=1

(yi − ~w · ~ϕm(xi))
2

whose solution is given by ~w ∈ R
m

~w =

m
∑

j=1

([(ϕ̂m) T ϕ̂m]†(ϕ̂m) T y)j ~ej =

=

m
∑

j=1

n
∑

i=1

yi

σj

〈Φ(xi), vj〉H ~ej

where [ϕ̂m]ij = ~ϕm
j (xi) and [(ϕ̂m) T ϕ̂m]ij =

σiδij (by the definition of (σi, vi)).

The KPCR solution can then be written as

f (PCR)
z

(x) =

n
∑

i=1

m
∑

j=1

yi

σj

〈Φ(xi), vj〉H 〈Φ(x), vj〉H .

We emphasize that in this case the solution ~w is an m

dimensional vector.

To describe the spectral cut-off regularization it
is convenient to remember that from the formulation
of ERM in the feature space we can rewrite the solu-
tion (8) on the spectrum of Tx to get

w =

∞
∑

j=1

n
∑

i=1

yi

σj

〈Φ(xi), vj〉H vj .

The above problem is possibly ill-posed (Engl et al.,
1996) and the TSVD regularization simply cuts-off un-
stable components, that is only m = m(λ) components
are kept corresponding to eigenvalues bigger than λ.
This way we get wm ∈ H such that

wm =

m
∑

j=1

n
∑

=i

yi

σj

〈Φ(xi), vj〉H vj . (9)

We emphasize that in this case wm is a function in a
possibly infinite dimensional space. The solution can
then be written as

f (TSV D)
z

(x) =

m
∑

j=1

n
∑

i=1

yi

σj

〈Φ(xi), vj〉H 〈Φ(x), vj〉H

which shows that the solution of principal component
regression and spectral cut-off are point-wise equal.
The theory of RKH spaces ensures that the obtained
solutions are identical, in fact for any g, f ∈ H the
reproducing property (5) ensures

f(x) = g(x) ∀ x ⇔ 〈f − g,Kx〉H = 0 ∀ x

and this implies that f and g are the same function.

4. Dimensionality Reduction and

Generalization

In this section we prove that if fρ ∈ H we can de-
rive error estimates of the form (4) as well as con-
sistency (and Bayes consistency) of KPCR. Alterna-
tively one should replace fρ with the best in the model
fH = minf∈H E(f) (see also Bauer et al. (2006)). To
this aim we note that the parameter we have to choose
is the threshold λ on the eigenvalues so that it is con-

venient to use the notation fλ
z

in place of f
(PCR)
z .

Theorem 1. We let n ∈ N and 0 < η ≤ 1. Moreover
we assume that fρ ∈ H and ‖fρ‖H ≤ R. Then with
probability at least 1 − η we have

E(fλn

z
)−E(fρ) ≤

16
√

2√
n

(κ2R2+(M+R)2) log
4

η
(10)
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where we choose

λn =
1√
n

2
√

2κ2 log
4

η
.

We give the proof in the next section and add some
comments. As we previously mentioned, an important
consequence of theorem 1 is the existence of an opti-
mal value mn for the number of principal components
which depends on the size of the training set and cor-
responds to the optimal choice for the parameter λ,
that is mn = m(λn). At first sight this may appear
in contrast with the results in Zwald et al. (2007),
where the authors discuss the behavior of the true
reconstruction error which should decrease with the
number of dimensions D, the parameter m in our con-
ventions. The reason for this apparent contrast is due
to the fact that the reconstruction error quantifies the
effect of PCA in an unsupervised setting whereas our
bound is on the expected error of a supervised prob-
lem. Indeed in a supervised setting if we keep too few
components we are oversmoothing whereas if we add
too many of them we risk to incur into overfitting thus
spoiling the generalization performance.

This result may look similar to the error bound pre-
sented in Massart et al. (1999) and recalled in Blan-
chard et al. (2004) where the authors investigate the
effect of regularization performed by (kernel) PCA
through dimensionality reduction. However it can be
noted that such result deals with Gaussian white noise
regression in a fixed design setting, whereas we con-
sider random design.

Finally as a direct consequence theorem 1 leads to
weak consistency for spectral cut-off regularization in
regression

lim
n→∞

Pr
(

E(fλn

z
) − E(fρ) ≥ ε

)

= 0 ∀ε > 0

and in classification

lim
n→∞

Pr
(

R(fλn

z
) − R∗ ≥ ε

)

= 0 ∀ε > 0

where we used (4).

4.1. Proof of the Error Estimates

In this section we give the proof of the main results.
We follow the same approach as in Bauer et al. (2006)
but the proofs adapted to our setting are consider-
ably simplified. We previously need some notation and
facts. First we note that, comparing the ERM solu-
tion (8) with (9), we can rewrite the solution of KPCR
as

fλ
z

= gλ(Tx)hz

where gλ can be seen via spectral theory as a function
on the spectrum of Tx such that gλ(σ) = 1

σ
if σ ≥ λ

and 0 otherwise. Second, we denote with

T :=

∫

X

〈·,Φ(x)〉Φ(x)dρX(x) = E[Tx]

the expected covariance operator and we also denote
with

h = Txfρ (11)

Third we recall the following lemma from Caponnetto
and De Vito (2006).

Lemma 1. Let κ = supx∈X ‖Kx‖H, ‖fρ‖H ≤ R and
y ∈ [−M,M ]. For 0 < η ≤ 1 and n ∈ N let

Gη = {z ∈ (X×Y )n : ‖h − hz‖H ≤ δ1, ‖T − Tx‖ ≤ δ2},

with

δ1 := δ1(n, η) =
1√
n

2
√

2κ(M + R) log
4

η

δ2 := δ2(n, η) =
1√
n

2
√

2κ2 log
4

η
.

then
Pr ( Gη) ≥ 1 − η.

Recalling De Vito et al. (2005) that we have

E(f) − E(fρ) =
∥

∥

∥

√
T (f − fρ)

∥

∥

∥

2

H
(12)

for all f ∈ H, in order to prove theorem Thm. 1

we first derive a bound on
∥

∥

∥

√
T (fλ

z
− fρ)

∥

∥

∥

2

H
for fixed

λ (Thm. 2) and then choose the value λn = λ(n)
optimizing the bound

Theorem 2. We let n ∈ N and 0 < η ≤ 1. We
assume that λ < 1 and

λ ≥ 1√
n

2
√

2κ2 log
4

η
. (13)

Moreover we assume that fρ ∈ H and ‖fρ‖H ≤ R.
Then with probability at least 1 − η we have

E(fλ
z
) − E(fρ) ≤ 8(λR2 +

C

λn
) (14)

where C = C(η, κ,M,R) = 8κ2(M + R)2(log 4
η
)2 does

not depend on λ and n.

Proof of Thm. 2. In this proof we use the inequalities
in the above lemma which holds with probability at
least 1−η with 0 < η ≤ 1. Recalling (12), we consider
the following error decomposition

∥

∥

∥

√
T (fλ

z
−fρ)

∥

∥

∥

2

H
≤ (15)

≤ 2
∥

∥

∥

√
T (fλ

z
−fλ)

∥

∥

∥

2

H
+ 2

∥

∥

∥

√
T (fλ−fρ)

∥

∥

∥

2

H
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where

fλ = gλ(Tx)h with h given by (11) .

We now separately bound the two terms in the right-
hand side. The first term can be decomposed as

√
T (fλ

z
− fλ) =

√
Tgλ(Tx)(hz − h) = (16)

=
√

Txgλ(Tx)(hz−h)+(
√

T−
√

Tx)gλ(Tx)(hz−h).

We note that the inequality

∥

∥

∥

√
T −

√

Tx

∥

∥

∥
≤

√

‖T − Tx‖ ≤
√

δ2 ≤
√

λ (17)

follows from Theorem 8.1 in Mathe and Pereverzev
(2002), lemma 1 and Ass. (13).
Moreover from the definition of operator norm and
standard results of spectral theory

‖g(A)‖ = sup
σ∈ Λ(A)

g(σ) (18)

where Λ(A) is the set of the eigenvalues of the operator
A : H → H, it is easy to see that

‖gλ(Tx)‖ ≤ 1

λ

∥

∥

∥

√

Txgλ(Tx)
∥

∥

∥
≤ 1√

λ
.

If we now take the norm in (16) we get

∥

∥

∥

√
T (fλ

z
− fλ)

∥

∥

∥

H
≤ 2√

λ
‖hz − h‖H ≤ 2√

λ
δ1. (19)

We now deal with the second term in the r.h.s. of (15).
We can write

√
T (fλ − fρ) =

√
T (I − gλ(Tx)Tx)fρ

=
√

Tx(I − gλ(Tx)Tx)fρ + (20)

+(
√

T −
√

Tx)(I − gλ(Tx)Tx)fρ.

We can bound this term recalling that by assumption
‖fρ‖H ≤ R and noting that definition (18) implies

‖I−gλ(Tx)Tx‖≤1 and
∥

∥

∥
(I−gλ(Tx)Tx)

√

Tx

∥

∥

∥
≤
√

λ.

We note that operator gλ(Tx)Tx is exactly the projec-
tion operator on the subspace spanned by the eigen-
vectors of Tx with eigenvalue greater or equal to λ,
whereas I − gλ(Tx)Tx is the projection operator on
the orthogonal subspace. We can now take the norm
of (20) and use (17) to get

∥

∥

∥

√
T (fλ − fρ)

∥

∥

∥

H
≤ 2

√
λR. (21)

The estimate in (14) follows plugging (21) and (19)
into (15) and using the definition of δ1.

We are now ready to give the proof of Thm. 1.

Proof of Thm. 1. The proof of the theorem is straight-
forward. In fact since the sample error increases with
λ while the approximation error decreases, in order to
get the best error we should take the value of λ which
gives a good trade-off between the two terms. To this
end we set the two terms to be of the same order

λn =
1

λnn
⇒ λn = O(

1√
n

).

Then, in order to be consistent with condition (13),
we can choose the following value for λn

λn =
1√
n

2
√

2κ2 log
4

η
.

Substituting λn in (14) we obtain the rate (10).

5. Numerical Experiments

In this section we present some numerical results to
illustrate the behavior of principal component regres-
sion on real and simulated data.

The real data experiments have been carried out on
two datasets available at http://www.ics.uci.edu/

~mlearn/MLSummary.html. In the first one we ana-
lyzed the Wisconsin diagnostic breast cancer database
on benign vs malignant classification. The dataset is
made of n = 569 examples divided in two classes and
described by d = 30 features. In the second experi-
ment we examined the SPECTF heart database. This
dataset is made of n = 267 instances (patients) and
d = 44 attributes per instance. Each of the patients is
classified into two categories: normal and abnormal.

In both experiments we first partitioned the dataset in
two balanced subsets, training and test set. As for the
parameter choice, despite optimality of the bound in
practice it is going to be too pessimistic to be used with
few examples. Indeed the theoretical results of sec. 4
highlight the regularization role of the number of di-
mensions but yet in practice we often need some data
driven procedure, such as cross-validation, to choose
it. Therefore we determined an optimal value for the
regularization parameter via 5-fold cross validation on
the training set. For each value of the parameter we
estimated the average misclassification error and the
median number of principal components that survived
the thresholding. Hence we obtained a curve describ-
ing an estimate of the expected error as a function
of either the regularization parameter λ or the corre-
sponding number of selected components m (see figure
1), choosing the optimal value of the parameter λn and
mn as the minimum of such curve. Finally we run the
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Figure 1. 5-fold cross validation error vs λ and m for the
brain cancer dataset(above) and for the SPECTF heart
dataset(below)

algorithm on the entire training set with the value for
λn provided by the 5-fold cross validation, and com-
puted the misclassification error on the test data. In
order to obtain a more precise estimate of the test
error we repeated the entire protocol for 50 different
splits of the total dataset in training and test set and
averaged the results on these repetitions.

Comparisons with the original results from these two
data sets show a lower prediction accuracy (96%
against 97.5%) for the breast cancer data set and a
higher prediction accuracy (80% against 77%) for the
SPECTF data set. However the main purpose of these
experiments has been to empirically demonstrate the
possibility of choosing an optimal value for the number
of components rather than searching for an accurate
predictor. In fact, figure 1 clearly indicates the exis-
tence of an optimal value for the threshold which corre-
sponds to an optimal number of principal components
to be used in the determination of the classifier. Tak-
ing into account more than mn components can only
increase the prediction error. We also investigated the
effect of spectral cut-off on a toy example based on a
Gaussian linear regression model y = βx + ε, where
x ∈ R

d and d = 40. We run the algorithm on train-
ing sets of increasing number of samples with different
values of the parameter λ and evaluated the error on a
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Figure 2. test error vs λ of TSVD(above) and of TSVD
with regularized Least Squares(below) for the toy example

test set of 5000 instances. As expected figure 2 clearly
shows that mn, corresponding to the minimum of the
test error for different n, reaches the maximum num-
ber of components only for large data sets, whereas a
limited number of training instances is better general-
ized with a limited number of principal components.
In order to better understand the effect of further reg-
ularization after KPCR, we evaluated the test error
committed by regularized least squares(RLS) on the
first mopt principal components. From figure 2 we can
see that RLS do not improve prediction performance
since the test error is always approximately equal or
greater than the error committed with just spectral
cut-off(λ = 0).

6. Conclusions

In this paper we have shown the equivalence between
principal component regression and spectral cut-off,
observing that the solutions of the two algorithms are
point-wise equal. Moreover we have emphasize the fact
that principal component analysis, as a preprocessing
step in supervised learning, is itself a regularization
step and does not need any further regularization. In-
deed (unpenalized) empirical risk minimization on the
projected data does not incur in overfitting if the pro-
jection step is suitably tuned.



Dimensionality Reduction and Generalization

We also observe that even though in principal com-
ponent regression the empirical risk minimization al-
gorithm deals with shorter vectors, that is the m-
dimensional projection of the data, most of the com-
putation is performed in the preprocessing step which
projects the data on the m principal component; there-
fore the benefit of dealing with smaller matrices is paid
with the drawback of the computationally demand-
ing projection. On the other hand, truncated singu-
lar value decomposition deals with possibly infinite di-
mensional vectors, but all the computation is confined
to the construction and diagonalization of the covari-
ance matrix or its dual kernel matrix.

Another important observation can be done on the
choice of the the number of dimensions to keep in
the dimensionality reduction step. In fact, we have
shown that, when KPCA is used as a preprocess-
ing to a supervised learning task, there exists an op-
timal value λn for the threshold on the eigenvalues
and hence a corresponding optimal number of dimen-
sions mn = m(λn) to be used in the projection step.
This result apparently goes against the intuition that
adding more dimensions, and therefore more informa-
tion from the distribution, the result should improve.
Indeed such an intuition is misleading when the data
are finitely sampled from a probability distribution;
in fact, from (14), we can observe that, when m in-
crease (that is λ decreases), the approximation error
decreases, but the sample error increases. Therefore
an optimal number of dimensions, mn, exists which
depends on the size of the training set and such that
using more than mn dimensions will cause a decrease
in the predicting power of the solution.
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