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Abstract

When monitoring spatial phenomena, such as
the ecological condition of a river, deciding
where to make observations is a challenging
task. In these settings, a fundamental ques-
tion is when an active learning, or sequen-
tial design, strategy, where locations are se-
lected based on previous measurements, will
perform significantly better than sensing at
an a priori specified set of locations. For
Gaussian Processes (GPs), which often accu-
rately model spatial phenomena, we present
an analysis and efficient algorithms that ad-
dress this question. Central to our analysis
is a theoretical bound which quantifies the
performance difference between active and a
priori design strategies. We consider GPs
with unknown kernel parameters and present
a nonmyopic approach for trading off ex-
ploration, i.e., decreasing uncertainty about
the model parameters, and exploitation, i.e.,
near-optimally selecting observations when
the parameters are (approximately) known.
We discuss several exploration strategies,
and present logarithmic sample complexity
bounds for the exploration phase. We then
extend our algorithm to handle nonstation-
ary GPs exploiting local structure in the
model. We also present extensive empirical
evaluation on several real-world problems.

1. Introduction

When monitoring spatial phenomena, such as the
ecological condition of a river as in Figure 1, it is
of fundamental importance to decide on the most
informative locations to make observations. However,
to find locations which predict the phenomena best,
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Figure 1. Top: Active sampling using the NIMS sensor
(Harmon et al., 2006) deployed at Merced River, CA. The
sensor can perform horizontal and vertical traversal. Bot-
tom: Samples of pH acquired along horizontal transect.

one needs a model of the spatial phenomenon itself.
Gaussian processes (GPs) have been shown to be
effective models for this purpose (Cressie, 1991;
Rasmussen & Williams, 2006). Most previous work
on observation selection in GPs has considered the
a priori design problem, in which the locations are
selected in advance prior to making observations (c.f.,
Guestrin et al. (2005); Seo et al. (2000); Zhu and
Stein (2006)). Indeed, if the GP model parameters
are completely known, the predictive variances do
not depend on observed values, and hence nothing is
lost by committing to sampling locations in advance.
This is logistically simpler, since optimization can be
carried without waiting for observations. In the case
of unknown parameters however, this independence is
no longer true. Key questions we strive to understand
in this paper are how much better a sequential algo-
rithm, taking into account previous observations, can
perform compared to a priori design when the param-
eters are unknown, and how can this understanding
lead to better observation selection methods.

Our main theoretical result is a bound which quanti-
fies the performance difference between sequential and
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a priori strategies in terms of the parameter entropy
of the prior over kernels. The lower the uncertainty
about the parameters, the less we can potentially
gain by using an active learning (sequential) strategy.
This relationship bears a striking resemblance to the
exploration–exploitation tradeoff in Reinforcement
Learning. If the model parameters are known, we can
exploit the model by finding a near-optimal policy
for sampling using the mutual information crite-
rion (Caselton & Zidek, 1984; Guestrin et al., 2005).
If the parameters are unknown, we present several
exploration strategies for efficiently decreasing the
uncertainty about the model, each of which has unique
advantages. Most approaches for active sampling of
GPs have been myopic in nature, in each step selecting
observations which, e.g., most decrease the predictive
variance. Our approach however is nonmyopic in
nature: we prove logarithmic sample complexity
bounds on the duration of the exploration phase, and
near optimal performance in the exploitation phase.

Often, e.g., in spatial interpolation (Rasmussen &
Williams, 2006), GP models are assumed to be
isotropic, where the covariance of two locations
depends only on their distance, and some (unknown)
parameters. Many phenomena of interest however
are nonstationary (Paciorek, 2003; Nott & Dunsmuir,
2002). In our river example (c.f., Figure 1), the pH
values are strongly correlated along the border, but
weakly in the turbulent inner region. Our approach
is applicable to both isotropic and nonstationary
processes. However, nonstationary processes are often
defined by a much larger number of parameters. To
address this issue, we extend our algorithm to handle
nonstationary GPs with local structure, providing
efficient exploration strategies and computational
techniques that handle high dimensional parameter
vectors. In summary, our contributions are:

• A theoretical and empirical investigation of the
performance difference between sequential and a
priori strategies for sampling in GPs;

• An exploration–exploitation analysis and sample
complexity bounds for sequential design;

• An efficient, nonmyopic, sequential algorithm for
observation selection in isotropic GPs;

• Extension of our method to nonstationary GPs;
• Empirical evaluation on several real-world spatial

monitoring problems.

2. Gaussian Processes

Consider, for example, the task of monitoring the
ecological state of a river using a robotic sensor, such
as the one shown in Figure 1. We can model the pH

values as a random process XV over the locations V,
e.g., V ⊂ R2. Hereby, the pH value at every location
y ∈ V is a random variable Xy. Measurements xA at
sensor locations A ⊂ V then allow us to predict the pH
value at uninstrumented locations y, by conditioning
on the observations, i.e., predicting E[Xy | XA = xA].

It has been shown, that pH values, temperatures and
many other spatial phenomena, can be effectively
modeled using Gaussian processes (GPs) (c.f., Shewry
and Wynn (1987); Cressie (1991)). A GP (c.f., Ras-
mussen and Williams (2006)) is a random process XV ,
such that every finite subset of variables XA ⊆ XV
has a (consistent) multivariate normal distribution:
P (XA = xA) = 1

(2π)n/2|ΣAA|
e−

1
2 (xA−µA)T Σ−1

AA(xA−µA),

where µA is the mean vector and ΣAA is the covariance
matrix. A GP is fully specified by a mean function
M(·), and a symmetric positive-definite kernel func-
tion K(·, ·). For each random variable Xu with index
u ∈ V, its mean µu is given by M(u), and for each
pair of indices u, v ∈ V, their covariance σuv is given
by K(u, v). We denote the mean vector of a set of vari-
ables XA by µA, where the entry for element u of µA
is M(u). Similarly, we denote their covariance matrix
by ΣAA, where the entry for u, v is K(u, v). The GP
representation allows us to efficiently compute predic-
tive distributions, P (Xy | xA), which, e.g., correspond
to the predicted temperature at location y after
observing sensor measurements XA = xA. The dis-
tribution of Xy given these observations is a Gaussian
whose conditional mean µy|A and variance σ2

y|A are:

µy|A = µy + ΣyAΣ−1
AA(xA − µA), (2.1)

σ2
y|A = K(y, y)− ΣyAΣ−1

AAΣAy, (2.2)

where ΣyA is a covariance vector with one entry for
each u ∈ A with value K(y, u), and ΣAy = ΣT

yA. An
important property of GPs is that the posterior vari-
ance (2.2) does not depend on the observed values xA.

In order to compute predictive distributions us-
ing (2.1) and (2.2), the mean and kernel functions
have to be known. The mean function can usually
be estimated using regression techniques. Estimating
kernel functions is difficult, and usually, strongly
limiting assumptions are made. For example, it
is commonly assumed that the kernel K(u, v) is
stationary, depending only on the difference between
the locations, or even isotropic, which means that
the covariance only depends on the distance between
locations, i.e., K(u, v) = Kθ(||u − v||2), where θ is a
set of parameters. A common choice for an isotropic
kernel is the exponential kernel, Kθ(δ) = exp(− |δ|

θ ),
or the Gaussian kernel, Kθ(δ) = exp(− δ2

θ2 ). Many
other parametric forms are possible.
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In Section 3, we address a general form (not necessarily
isotropic), where the kernel function is specified by a
set of parameters θ. We adopt a hierarchical Bayesian
approach and assign a prior P (θ) to the parameters
θ, which we assume to be discretized in our analysis.
Hence, P (Xy | XA) =

∑
θ P (Xy | XA, θ)P (θ | XA).

For clarity, we also assume that the prior mean func-
tion M(·) is zero. This assumption can be relaxed,
e.g., by assigning a normal prior to the mean function.

3. Observation Selection Policies

Entropy. The entropy criterion has been frequently
used to select observations in GPs (c.f., Seo et al.
(2000); Shewry and Wynn (1987)). Here, we select
observations A∗ ⊆ V with highest entropy:

A∗ = argmaxA⊆V H(XA), (3.1)

where H(XA) = −
∫

p(xA) log p(xA)dxA is the joint
(differential) entropy of the random variables XA. We
call (3.1) an a priori design criterion, as it does not
depend on the actual observed values, and can be op-
timized in advance. Maximizing (3.1) is NP-hard (Ko
et al., 1995), so usually, a myopic (greedy) algorithm
is used. Starting with the empty set, A0, at each step
i the location yi+1 = argmaxy∈V\Ai

H(Xyi+1 | XAi) is
added to the set of already selected locations Ai.

This a priori greedy rule can be readily
turned into a sequential algorithm, selecting
yi+1 = argmaxy∈V\Ai

H(Xyi+1 | XAi
= xAi

). Now, the
selected location yi+1 depends on the observations
xAi

. More generally, we define a policy for selecting
variables, which does not need to be greedy: For each
instantiation of the process XV = xV , such a sequen-
tial policy π can select a different set of observations
π(xV) ⊆ V. Hereby, the i-th element, πi, determinis-
tically depends on the observations made in the first
i−1 steps, i.e., on xπ1:i−1 . Hence, a policy can be con-
sidered a decision tree, where after each observation,
we decide on the next observation to make. If we apply
the greedy policy πH to our river example, πH,i would
select the location which has highest entropy for pre-
dicting pH, conditioned on the measurements we have
made so far. We write |π| = k to indicate that π selects
sets Xπ of k elements. In analogy to the definition
of H(XA), we can define the joint entropy of any se-
quential policy π as H(Xπ) ≡ −

∫
p(xV) log p(xπ)dxV ,

whereby π = π(xV) denotes the set of observations
selected by the policy in the event XV = xV . H(XA)
is the entropy of a fixed set of variables A. Since π
will typically select different observations in different
realizations XV = xV , H(Xπ) will measure the
“entropy” of different variables in each realization xV .

Mutual Information. Caselton and Zidek (1984)
proposed the mutual information criterion for observa-
tion selection, MI(XA) = H(XV\A) − H(XV\A | XA).
Guestrin et al. (2005) showed that this criterion
selects locations which most effectively reduce the
uncertainty at the unobserved locations, hence it
often leads to better predictions compared to the
entropy criterion. A natural generalization of mutual
information to the sequential setting is

MI(Xπ) = H(XV\π)−H(XV\π | Xπ)

= −
∫

p(xV)[log p(xV\π)− log p(xV\π | xπ)]dxV .

Hereby, for each realization XV = xV , V\π = V\π(xV)
is the set of locations not picked by the policy π. The
greedy policy πIE for mutual information, after some
algebraic manipulation, is given by:

πi+1 =argmaxy H(Xy |Xπ1:i =xπ1:i)−H(Xy |XV\{y,π1:i}),
(3.2)

where π1:i ≡ π1:i(xV) are the first i locations selected
by π when XV = xV . Hence, πIE selects the location
πi+1 which is uncertain given the previous observa-
tions (H(Xy|Xπ1:i=xπ1:i) is large) and relevant to the
unobserved locations (H(Xy |XV\{y,π1:i}) is small).

4. Bounds on the Advantage of Active
Learning Strategies

A key question in active learning is to determine
the potential for improvement of sequential strate-
gies over a priori designs, e.g., how much greater
max|π|=k H(Xπ) is than max|A|=k H(XA). If the GP
parameters θ are known, it holds that

H(Xy|XA=xA, θ)=
1

2
log 2πeσ2

Xy|XA=H(Xy|XA, θ), (4.1)

where σ2
Xy|XA is given by Eq. (2.2). Thus, the entropy

of a set of variables does not depend on the observed
values xA. Hence, perhaps surprisingly, in this case,
max|π|=k H(Xπ) = max|A|=k H(XA). More generally,
any objective function depending only on the predic-
tive variances, such as mutual information, cannot
benefit from sequential strategies. Note that for non-
Gaussian models, sequential strategies can strictly out-
perform a priori designs, even with known parameters.

In the case of GPs with unknown parameters,
H(XA) = −

∑
θ

∫
P (xA, θ) log

(∑
θ′

∫
P (xA, θ′)

)
dxA

is the entropy of a mixture of GPs. Since observed
values affect the posterior over the parameters
P (Θ|XA = xA), the predictive distributions now
depend on these values.

Intuitively, if we have low uncertainty about our pa-
rameters, the predictive distributions should be almost
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independent of the observed values, and there should
be almost no benefit from sequential strategies. The
following central result formalizes this intuition, by
bounding H(Xπ) (and similarly for mutual informa-
tion) of the optimal policy π by a mixture of entropies
of sets H(XA | θ), which are chosen optimally for each
fixed parameter (and can thus be selected a priori):
Theorem 1.

max
|π|=k

H(Xπ) ≤
∑

θ

P (θ) max
|A|=k

H(XA | θ) + H(Θ);

max
|π|=k

MI(Xπ) ≤
∑

θ

P (θ) max
|A|=k

MI(XA | θ) + H(Θ).

The proofs can be found in (Krause & Guestrin,
2007). Theorem 1 bounds the advantage of sequential
designs by two components: The expected advan-
tage of optimizing sets for known parameters, i.e.,∑

θ P (θ) max|A|=k MI(XA | θ), and the parameter
entropy, H(Θ). This result implies, that if we are able
to (approximately) find the best set of observations Aθ

for a GP with known parameters θ, we can bound the
advantage of using a sequential design. If this advan-
tage is small, we select the set of observations ahead
of time, without having to wait for the measurements.

5. Exploration–Exploitation Approach
towards Learning GPs

Theorem 1 allows two conclusions: Firstly, if the pa-
rameter distribution P (Θ) is very peaked, we cannot
expect active learning strategies to drastically out-
perform a priori designs. More importantly however,
it motivates an exploration–exploitation approach
towards active learning of GPs: If the bound provided
by Theorem 1 is close to our current mutual informa-
tion, we can exploit our current model, and optimize
the sampling without having to wait for further
measurements. If the bound is very loose, we explore,
by making observations to improve the bound from
Theorem 1. We can compute the bound while running
the algorithm to decide when to stop exploring.

5.1. Near-optimal Exploitation

Theorem 1 shows that in order to bound the value of
the optimal policy, it suffices to bound the value of
the optimal set. Guestrin et al. (2005) derived such a
bound for mutual information. They showed, that, if
the parameter Θ = θ is known, the a priori greedy al-
gorithm, which starts with the empty set A = ∅ and it-
eratively adds the element s = argmax MI(XA∪{Xs})
until k elements have been selected, finds a near-
optimal set. Their result uses the concept of submod-
ularity, an intuitive diminishing returns property: a

new observation decreases our uncertainty more if we
know less. Due to space limitations, we refer the reader
to (Guestrin et al., 2005) for details. Combining their
Theorem 6 with our Theorem 1, we have the following
result about exploitation using mutual information:
Corollary 2. Under sufficiently fine discretization V:

max
|π|=k

MI(Xπ) ≤ e

e− 1

∑
θ

P (θ) MI(X (θ)
AG

| θ)+kε+H(Θ),

where A(θ)
G is the greedy set for MI(XA | θ).

Here, ε depends polynomially on the discretization of
V. This result allows us to efficiently compute on-
line bounds on how much can be gained by following
a sequential active learning strategy. Intuitively, it
states that if this bound is close to our current mutual
information, we can stop exploring, and exploit our
current knowledge about the model by near-optimally
finding the best set of observations. We can also use
Corollary 2 as a stopping criterion: We can use explo-
ration techniques (as described in the next section) un-
til the bound on the advantage of the sequential strat-
egy drops below a specified threshold η, i.e., we stop if

e
e−1

∑
P (θ) MI(X (θ)

AG
|θ)+kε+H(Θ)−MI(XAG

|Θ)
MI(XAG

| Θ)
≤η,

where AG is the greedy set for MI(XA | Θ). Hereby,
MI(XA | Θ) =

∑
θ P (θ)MI(XA | θ). We can then use

the greedy a priori design to achieve near-optimal mu-
tual information, and obtain performance comparable
to the optimal sequential policy. This a priori design
is logistically simpler and easier to analyze. Hence,
the stopping criterion interpretation of Corollary 2
has strong practical value, and we are not aware of
any other approach for actively learning GPs which
allow to compute such a stopping criterion.

5.2. Implicit and Explicit Exploration

In order to practically use Corollary 2 as a stopping
criterion for exploration, we have to, for each parame-
ter θ, solve the optimization problem maxA H(XA | θ).
The following Theorem shows, that if the parameter
entropy is small enough, the contribution of the
term

∑
θ P (θ)max|A|=k MI(XA | θ) to the bound

diminishes quickly, and hence, we should concentrate
solely on minimizing the parameter entropy H(Θ).

Theorem 3. Let M = maxA maxθ1,θ2
MI(XA|θ1)
MI(XA|θ2)

< ∞.
Let K = maxθ maxA MI(XA | θ), H(Θ) < 1. Then

MI(XA∗ | Θ)−H(Θ)≤MI(Xπ∗)≤MI(XA∗ | Θ)+CH(Θ),

where A∗ = argmaxA MI(XA | Θ) and

π∗ = argmaxπ MI(Xπ), and C =
(

1 + MK
log2

1
H(Θ)

)
.
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As a function of H(Θ), C converges to 1 very quickly
as H(Θ) decreases. Theorem 3 hence provides the
following computational advantage over Corollary 2:
once the parameter entropy is small enough, we do not
need to compute the term

∑
θ P (θ) MI(X (θ)

AG
| θ) de-

termining the stopping point. Hence, in the following,
we concentrate on directly decreasing the parameter
uncertainty, H(Θ), as required by Theorem 3. We
describe three natural strategies for this goal. As we
show in Section 7, none of these strategies dominates
the other; whichever is more appropriate depends on
the particular application.

Explicit Exploration via Independence Tests
(ITE). In many cases, the unknown parameter of an
isotropic GP is the bandwidth of the kernel, effectively
scaling the kernel over space. Let θ1 < · · · < θm

be the possible bandwidths. In the exponential
kernel, Kθ(δ) = exp(− |δ|

θ ), or the Gaussian kernel,
Kθ(δ) = exp(− δ2

θ2 ), the correlation between two
variables at distance δ decreases exponentially with
their distance δ. Hence, there is an exponentially large
gap between the correlation for bandwidths θi and
θi+1: There will be a distance δ̂, for which two random
variables within this distance will appear dependent
if the true bandwidth θ is at least θ ≥ θi+1, and
(roughly) independent if θ ≤ θi. Our goal is to exploit
this gap to efficiently determine the correct parameter.

Note that if we can separate θi from θi+1, we effectively
distinguish any θj , for j ≤ i, from θl, for l ≥ i+1, since
the bandwidths scale the kernels. Let Ii be a function
of Θ, such that (Ii | Θ) = 0 if Θ ≤ θi, and (Ii | Θ) = 1
if Θ ≥ θi+1. Assume we have tests Ti, using N̂
samples, such that P (Ti 6= Ii | θ) ≤ α for all θ. We
can then perform binary search to find the true band-
width with high probability using at most N̂dlog2 me
samples. Let πG◦ITE be the policy, where we first
explore using ITE, and then greedily select the set AG

maximizing MI(XAG
| Θ,xπIT E

). Let xπIT E
be the

observations made by ITE, and let A(θ)
G be the solution

of the greedy algorithm for optimizing MI(XA | θ).
Theorem 4. Under the assumptions of Corollary 2
for sets of sizes up to k + N̂dlog me, if we have tests
Ti using at most N̂ samples, such that for all θ:
P (Ti 6= Ii | θ) ≤ α/(dlog me2(maxθ |MI(XπG◦IT E

|
Θ)−MI(XA(θ)

G

|θ)|)), then it holds that

ET [MI(XπG◦IT E
| Θ)] ≥ (1−1/e) max

|π|=k
MI(Xπ)−kε−α.

In order to make use of Theorem 4, we need to find
tests Ti such that P (Ti 6= Ii | θ) is sufficiently small
for all θ. If only the bandwidth is unknown, we can
for example use a test based on Pearson’s correlation

coefficient. Since this test requires independent
samples, let us first assume, that the kernel function
has bounded support (c.f., Storkey (1999)), and
that the domain of the GP is sufficiently large, such
that we can get independent samples by sampling
pairs of variables outside the support of the “widest”
kernel. The number of samples will depend on the
error probability α, and the difference ρ̂ between
the correlations depending on whether Θ ≤ θi or
Θ ≥ θi+1. This difference will in turn depend on the
distance between the two samples. Let

ρ̂i = max
δ

min
j≤i,l≥i+1

∣∣Kθj
(δ)−Kθl

(δ)
∣∣ , and

δ̂i = argmax
δ

min
j≤i,l≥i+1

∣∣Kθj
(δ)−Kθl

(δ)
∣∣ .

ρ̂i is the maximum “gap” achievable for separating
bandwidths at most θi from those at least θi+1. δ̂i is
the distance at which two samples should be taken
to achieve this gap in correlation. If several feasible
pairs of locations are avaible, we choose the one which
maximizes mutual information.
Theorem 5. We need N̂i = O

(
1

ρ̂i
2 log2 1

α

)
indepen-

dent pairs of samples at distance δ̂i to decide between
θ ≤ θi or θ ≥ θi+1 with P (Ti 6= Ii | θ) ≤ α for all θ.

In the case of kernels with non-compact support, such
as the Gaussian or Exponential kernel, we cannot
generate such independent samples, since distant
points will have some (exponentially small) correla-
tion. However, it can be shown that these almost
independent samples still suffice to get logarithmic
sample complexity bounds (Krause & Guestrin, 2007).

Note that while this discussion focused on detecting
bandwidths, the technique is general, and can be used
to distinguish other parameters, e.g., variance, as well,
as long as appropriate tests are available.

This hypothesis testing exploration strategy gives us
sample complexity bounds; guaranteeing that with a
small number of samples we can decrease the param-
eter uncertainty enough such that, using Theorem 3
as stopping criterion, we can switch to exploitation.

Explicit Exploration based on Information
Gain (IGE). As the bound in Theorem 3 directly
depends on H(Θ), another natural exploration
strategy is to select samples which have highest
information gain about the parameters, H(Θ). More
formally, this strategy, after observing samples
Xπ1:i = xπ1:i , selects the location πi+1 such that
πi+1 = argmaxy H(Θ | xπ1:i)−H(Θ | Xy,xπ1:i).

Implicit Exploration (IE). Considering the near-
optimal performance of the greedy heuristic in the a
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priori case, a natural implicit exploration strategy is
the sequential greedy algorithm. Using Eq. (3.2), IE
considers the previous observations, when deciding on
the next observation. Using an argument presented
in (Krause & Guestrin, 2007), it can be shown that,
in expectation, IE implicitly decreases H(Θ).

6. Actively Learning Nonstationary GPs

Many spatial phenomena are nonstationary, being
strongly correlated in some areas of the space and
very weakly correlated in others. In our river example,
we consider the pH values in the region just below the
confluence of the San Joaquin and Merced rivers. The
former was dominated by agricultural and wetland
drainage, whereas, in contrast, the latter was less
saline. The data (c.f., Figure 2(a)) is very nonstation-
ary. There is very high correlation and low variance
in the outer regions. The turbulent confluence region
however exhibits high variance and low correlation.

Modeling nonstationarity has to trade off richness
of the model and computational and statistical
tractability. Hence, often a parametric form is chosen.
In this case, Corollary 2 holds without additional
assumptions; the major difference is that H(Θ) can be
much larger, increasing the potential for improvement
of the active strategy over the a priori design. An
example of a parametric form for nonstationary is
given by Nott and Dunsmuir (2002), who suggest to
model nonstationarity by a spatially varying linear
combination of isotropic processes.

Motivated by the river monitoring problem, we par-
tition the space into disjoint regions V(1), . . . ,V(m),
specified by the user. With each region V(i), we
associate a stationary process X (i)

V , with parameters
Θ(i), which are assumed to have independent priors.
We define our GP prior for the full space V as a linear
combination of the local GPs: Xs =

∑
i λi(s)X (i)

s .
Note that such a linear combination is still a valid GP.
We want to choose the weights λi(s) such that the
model behaves similar to process X (i)

V within region
i, and interpolates smoothly between regions. Hence,
we associate a locally supported weighting function
νi(s) with each region, which achieves its maximum
value in region i and decreases with distance to
region i. In our river example, we set the weighting
functions as indicated in Figure 2(a). We can then set

λi(s) =
√

νi(s)∑
i′ νi′ (s)

, which ensures that the variance
at location s is a convex combination of the variances
of the local GPs, with contribution proportional to
νi(s). If each X (i)

V has zero mean, and kernel Ki(s, t),
then the new, nonstationary GP XV has the kernel

∑
i λi(s)λi(t)Ki(s, t). Note that, contrary to the GP

Mixture of Experts approach (c.f., Tresp (2000)),
where the marginal distributions are mixtures of
Gaussians, our construction uses a linear combination
of GPs, hence, for fixed parameters, our nonstationary
model is still a GP. While the decomposition into
prespecified regions might appear restrictive, in many
applications, as in the river monitoring setting, a
good decomposition can be provided by an expert.

Note, that if the number of regions m is large, the (dis-
cretized) joint distribution Θ requires exponentially
many parameters. In (Krause & Guestrin, 2007), we
describe a variational, KL-divergence minimizing ap-
proach which allows efficient approximate inference
in this model, by finding a factorized approximation
to the posterior P (Θ | XA = xA) after observations
XA = xA have been made. There it is also shown
that even under this variational approach, Corollary 2
remains valid, and hence exploration never stops early.

We can apply Corollary 2 to this nonstationary model
in order to determine when to switch from exploration
to exploitation. While it is not clear how to generalize
the hypothesis testing (ITE) approach to the non-
stationary setting, the information gain exploration
(IGE) can be readily applied. Hence, our active
learning strategy for nonstationary GPs is similar
to the stationary case: We explore until Corollary 2
proves that the advantage of the sequential strategy
is small enough, and then we switch to exploitation.

7. Experiments

River Monitoring. We consider one high-
resolution spatial scan of pH measurements from
the NIMS sensor (Figure 1) deployed just below
the confluence of the San Joaquin and the Merced
rivers in California (denoted by [R]) (Harmon et al.,
2006). We partition the transect into four regions,
with smoothing weights indicated in Figure 2(a),
and we use 2 bandwidth and 5 noise variance levels.
Figure 2(a) illustrates the samples chosen by implicit
exploration (IE) using the entropy criterion. The
bars indicate the sequence of observations, and larger
bars correspond to later observations (i.e., based on
more knowledge about the model). We can observe
that while the initial samples are roughly uniformly
distributed, the later samples are mostly chosen
in the weakly correlated, high variance turbulent
confluence region. In parentheses, we display the
estimated bandwidths and noise standard deviations.
Figure 2(b) presents the results from our algorithms.
The sequential algorithm leads to a quicker decrease
in Root Mean Squared (RMS) error than the a priori
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Figure 2. Results on pH [R] and temperature [T] data. (a) Top: sampling locations chosen by active learning algorithm.
Larger bars indicate later, more informed, choice. Bottom: Smoothing functions for spatial partitioning. (b) IE on the
nonstationary model eventually achieves 50% lower prediction error. (c,e) IE decreases prediction error fastest, but the
bound (d) on the potential advantage of the sequential algorithm (Corollary 2) and parameter entropy (f) slowest.

design. Initially, the isotropic model with two pa-
rameters provides a better fit than the nonstationary
model with 8 parameters, but, after about 15 samples,
the situation is inverted, and the nonstationary model
drastically outperforms the isotropic model, providing
more than 50% lower error.

Temperature Data. We consider temperature
data [T] from a sensor network deployment with 54
sensors at Intel Research Berkeley. Our 145 samples
consist of measurements taken every hour by the
sensors over 5 days. We modeled the data as an
isotropic process with unknown variance and an
Exponential kernel with unknown bandwidth. We
discretized the variance in σ2 ∈ {12, 22, 32, 42, 52}, and
the bandwidth in {3, 5, 7, 9, 11, 13, 15} meters based
on expert knowledge. We compared the performance
of the active learning strategies, each using a different
exploration strategy. Figure 2(c) shows the RMS
prediction error, and Figure 2(d) presents the poten-
tial relative advantage obtained by Corollary 2 (our
stopping criterion). While IE leads to the best pre-
diction, followed by the independence test exploration
(ITE), information gain exploration (IGE) tightens
the bound on the sequential advantage the fastest.
For example., if we decide to stop exploring once the
sequential advantage drops below η = 35%, 5 samples

suffice for IGE, 8 for ITE and 12 for IE. This analysis
(which is also supported by other data sets) indicates
that none of the exploration strategies dominates each
other, their differences can be well-characterized, and
the choice of strategy depends on the needs of each
application. Hence, if the goal is to switch to a priori
design as quickly as possible, IGE might be the right
choice, whereas if we can afford to always perform the
logistically more complex sequential design, IE would
decrease the predictive RMS error the fastest. ITE
performs well with respect to both criteria, and has
theoretical sample complexity guarantees.

We also modeled the temperature data using a non-
stationary GP, with the space partitioned into four
regions, each modeled as an isotropic GP. We adopted
a softmax function with smoothing bandwidth 8 me-
ters to spatially average over the local isotropic GPs.
The results in Figure 2(e) show that the nonstationary
model leads to reduced prediction error compared to
the isotropic model. All active learning models drasti-
cally outperform random selection. Since the parame-
ter uncertainty is still very high after 20 samples, IGE
leads to worse prediction accuracy than IE. However,
IGE decreases parameter entropy H(Θ) (Figure 2(f))
the fastest, which is consistent with the isotropic case.
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8. Related Work

Previous work on active learning in GPs mostly
focused on the case where the model is completely
specified (Seo et al., 2000; Guestrin et al., 2005).
Gramacy (2005) presents a nonstationary, hierarchical
Bayesian GP approach based on spatial partitioning,
where the spatial decomposition is integrated out us-
ing MCMC methods, which however does not provide
any theoretical performance guarantee. Zhu and Stein
(2006) present an approach for a priori design for
spatial prediction in the case of unknown parameters.
While their criterion accomodates parameter uncer-
tainty, they do not consider the benefit of sequential
over a priori designs. The potential of active learning
for improving sample complexity has been studied
(c.f., Balcan et al. (2006)), however these approaches
usually make assumption which do not apply to GPs,
e.g., the availability of i.i.d. samples. Castro et al.
(2005) provide a near-optimal algorithm for learning
Hoelder-smooth functions; their method however does
not apply in the case of learning a GP. There is also
a large body of work on kernel learning (c.f., Ong
et al. (2005)). We are however unaware of any results
on nonmyopic sample complexity guarantees in this
area. Gretton et al. (2006) proposed a kernel based
hypothesis testing approach which could potentially
be used for exploration in the nonstationary setting.

9. Conclusions

In this paper, we presented a nonmyopic analysis for
active learning of Gaussian Processes. We proved
bounds on how much better a sequential algorithm can
perform than an a priori design when optimizing ob-
servation locations under unknown parameters. Our
bounds show that key potential for improvement is
in the parameter entropy, motivating an exploration–
exploitation approach to active learning, and provide
insight into when to switch between the two phases.
Using submodularity of mutual information, we pro-
vided bounds on the quality of our exploitation strat-
egy. We proposed several natural exploration strate-
gies for decreasing parameter uncertainty, and proved
logarithmic sample complexity results for the explo-
ration phase using hypothesis testing. We extended
our algorithm to handle nonstationary GP, exploiting
local structure in the model. Here, we used a varia-
tional approach to address the combinatorial growth
of the parameter space. In addition to our theoretical
analyses, we evaluated our algorithms on several real-
world problems, including data from a real deployment
for monitoring the ecological condition of a river. We
believe that our results provide significant new insights

on the potential of sequential active learning strategies
for monitoring spatial phenomena using GPs.
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