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Abstract
Markov decision processes are an effective tool
in modeling decision-making in uncertain dy-
namic environments. Since the parameters of
these models are typically estimated from data,
learned from experience, or designed by hand,
it is not surprising that the actual performance
of a chosen strategy often significantly differs
from the designer’s initial expectations due to
unavoidable model uncertainty. In this paper,
we present a percentile criterion that captures
the trade-off between optimistic and pessimistic
points of view on MDP with parameter uncer-
tainty. We describe tractable methods that take
parameter uncertainty into account in the process
of decision making. Finally, we propose a cost-
effective exploration strategy when it is possible
to invest (money, time or computation efforts) in
actions that will reduce the uncertainty in the pa-
rameters.

1. Introduction
Markov decision processes (MDPs) are an effective tool
in modeling decision-making in uncertain dynamic envi-
ronments (e.g., Putterman, 1994). Since the parameters
of these models are typically either estimated from data,
learned from experience or designed by hand, it is not sur-
prising that, in some applications, unavoidable modeling
uncertainty often causes the long term performance of a
strategy to significantly differ from the model’s predictions
(refer to experiments by Mannor et al., 2007). For this rea-
son, criteria that address parameter uncertainty in general
and specifically in MDPs are of interest (e.g., Silver, 1963;
Ben-Tal & Nemirovski, 1998).
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To date, most efforts have focused on the study of robust
MDPs (e.g., Givan et al., 2000; Iyengar, 2005; Nilim & El
Ghaoui, ), a framework in which one makes the assumption
that parameters can only lie in a bounded uncertainty set.
Although this formulation for the MDP problem remains
tractable under mild conditions, it suffers from relying on
the union bound for bounding probabilistic events1 and of-
ten generates overly conservative strategies.

In this paper we offer a more practical way of handling un-
certainty in the parameters. Following some recent work
by Mannor et al. (2007) that studied the effect of parameter
uncertainty on the mean and variance of value function esti-
mates, we consider the parameters as random variables and
take a Bayesian point of view on the question of decision-
making when faced with this extra layer of uncertainty in
the MDP model. The Bayesian framework naturally leads
to a performance measure we call the percentile criterion,2

which is both conceptually natural and representative of
the trade-off between optimistic and pessimistic strategies
when facing parameter uncertainty. Unlike robust meth-
ods, our approach reasons directly about the effect of this
uncertainty on the total cumulative reward itself. This in
turn leads to the notion of a cost-effective exploration strat-
egy when given the option to invest in the reduction of this
uncertainty.

The percentile criterion (or chance constraint) that is
widely studied for single-period optimization problems
(e.g., Charnes & Cooper, 1959; Prékopa, 1995; Calafiore
& El Ghaoui, 2006) will be generalized in Section 2 to
infinite-horizon MDPs. Although general percentile op-
timization problems are suspected to be “severely com-
putationally intractable” (Nemirovski & Shapiro, 2006),

1As the size of the state space grows, one needs to consider
larger uncertainty sets for each parameters to accommodate a
probabilistic constraint.

2Note that Filar et al. (1995) introduced the percentile crite-
rion as a risk-adjusted performance measure for “average reward”
MDPs. However, their study did not address the question of pa-
rameter uncertainty.
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in Section 3 we demonstrate that the problem of reward
uncertainty can reduce to a deterministic second order
cone program (c.f., Lobo et al., 1998) and that transi-
tion uncertainty can be addressed approximately. Sec-
tion 4 presents a proposed cost-efficient strategy for the
exploration-exploitation dilemma in the context of MDPs
with non-negligible observation costs and compare its per-
formance against popular exploration schemes.

2. Background
In the context of an MDP with parameter uncertainty, cur-
rent methods either disregard parameter uncertainty, or pre-
pare for the worse case. Our research focuses on a criterion
that trades off between the two conflicting views.

2.1. The Nominal MDP Problem

We consider an infinite horizon Markov decision process
described as follows: a finite state spaceS with |S| states, a
finite action spaceA with |A| actions, a transition probabil-
ity matrix P ∈ R

|S|×|A|×|S| with P (s, a, s′) = P(s′|s, a),
an initial distribution on statesq, and a reward vector
r ∈ R

|S|. For reasons of tractability, we will limit our
attention to the set of mixed stationary Markov policies,
which is denoted byΥ. When considering an infinite hori-
zon, an optimal discounted reward stationary policyπ is a
solution to the following optimization problem:

max.
π∈Υ

Ex(
∑∞

t=0 αtr(xt)|x0 ∝ q, π) ,

whereα ∈ [0, 1) is the discount factor.3

The nominal problem is known to be easily solvable us-
ing value iteration. However, it does not take into account
any uncertainty in the choice of the parametersP andr.
In practice, this uncertainty is unavoidable and using the
most likely (or expected) parameters can actually lead to
a significant bias in the performance of the chosen policy
(see Mannor et al., 2007).

2.2. The Robust MDP Problem

The most common approach to account for uncertainty in
the parameters of an optimization problem is to use robust
optimization. This framework assumes that the uncertain
parameters are constrained to lie in a given set (hopefully
convex) and optimizes the worse case scenario over this set.
In the case of discounted reward MDP, where the rewards
rt for each time step and the transition matrixP are known
to lie in a setR andP respectively, the robust problem thus

3Although our analysis will consider the case where the re-
ward only depends on the current state, the results presented in
this work can easily be extended to a reward function of the form
r(s, a, s′). They can also be extended to the average reward cri-
terion.

becomes:

max.
π∈Υ

min
P∈P,r0∈R,r1∈R,...

Ex(
∞
∑

t=0

αtrt(xt)|x0 ∝ q, π) . (1)

There are two types of uncertainty that are of interest. In
the first type, termed fixed uncertainty,r andP are drawn
once and remain fixed for all time steps. In the second type,
termed repeated uncertainty,r andP are repeatedly drawn
from their feasible set at each time step. In both cases, the
optimal policyπ∗ for Problem (1) can be found efficiently
(see Nilim & El Ghaoui, ).

2.3. The Percentile MDP Problem

Consider a Bayesian setup where the random reward vector
r̃ and random transition matrix̃P are known to be indepen-
dent and have joint probability distribution functionsf(r̃)
andf(P̃ ) respectively. In such a scenario, unless the dis-
tributions are supported over a “small” bounded subset of
their domain, formulating Problem (1) withR = {r|f(r) 6=
0} andP = {P |f(P ) 6= 0} is no longer pertinent (e.g., if
r̃ ∝ N (µr̃,Σr̃), thenR = R

|S| and (1) is−∞). Even if the
optimization is performed over a restricted bounded subset
(e.g., ellipsoids representing a 95% confidence), there is
no clear method to select this uncertainty set since the real
concern is the level of confidence in the total cumulative
reward and not in the individual parameters. Instead, it is
much more relevant to express the risk adjusted discounted
performance of an uncertain MDP in the followingper-
centile form:

max.
y∈R,π∈Υ

y (2a)

sub. to P (E(
∑∞

t=0 αtr̃t(xt)|x0 ∝ q, π) ≥ y) ≥ η , (2b)

where the probabilityP is the probability of drawing the
reward vectorr̃t for each time step independently from
f(r̃t) and the transition matrix̃P from f(P̃ ), and where
E(·|x0 ∝ q, π) is the expectation of the trajectory given a
concrete realization of̃r andP̃ , a policyπ, and a distribu-
tion of the initial stateq. For a given policyπ, the above
percentile problem gives us anη guarantee thatπ will per-
form better thany∗, the optimal value of Problem (2), un-
der the influence of̃r and P̃ . Note that, whenη = 1,
Problem (2) and Problem (1) are equivalent; thus,1 − η
is a measure of risk of the policy doing worse thany∗. In
what follows, we will present the details from a Bayesian
point of view in order to preserve the clarity of our deriva-
tions. However, frequentist extensions follow naturally as
in Mannor et al., 2007. Section 3 will initially focus on how
to find an optimal policy to Problem 2 with either reward
or parameter uncertainty. Later, in Section 4, the percentile
criterion will be used to guide exploration.
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3. Decision Making under Parameter
Uncertainty

We first present solution methods for the percentile prob-
lem with fixed uncertainty.4 Under the assumption of Gaus-
sian rewards, solving the percentile MDP is not harder than
solving the nominal MDP. We will then present a second
order approximation for the problem of transition uncer-
tainty with Dirichlet priors. Because of space constraint,
we refer the reader to a full version of this paper for proofs
and extensions of the presented solution methods to other
distributions.

3.1. The Case of Reward Uncertainty

The Gaussian assumption on reward uncertainty,r̃ ∝
N (µr̃,Σr̃), is a standard assumption in many applications
as it allows the modeling of correlation between the reward
obtained in different states. In what follows, we will show
that finding an optimal stationary policy for the problem
of maximizing theη-percentile of the total expected dis-
counted reward (i.e., Problem 2) under fixed Gaussian un-
certainty in the reward can be explicitly expressed as a sec-
ond order cone program (c.f., Lobo et al., 1998). The first
step is to convert the Constraint (2b) to a form where the
expectation operator is expanded.5

Pr̃(

∞
∑

t=0

qT(αΠP )tr̃t ≥ y) ≥ η . (3)

Using the assumption of fixed uncertainty, the following
form is equivalent to Constraint (3):

Pr̃(υ
Tr̃ ≥ y) ≥ η (4a)

qT

∞
∑

t=0

(αΠP )t = υT . (4b)

Lemma 3.1 : (Theorem 10.4.1 of Prékopa, 1995) Suppose
ξ ∈ R

n has a multivariate Gaussian distribution. Then the
set ofx ∈ R

n vectors satisfying

P(xTξ ≤ 0) ≥ p

is the same as those satisfying

xTµξ + Φ−1(p)
√

xTΣξx ≤ 0 ,

whereµξ = E(ξ), Σξ is the covariance matrix of the ran-
dom vectorξ, p is a fixed probability such that0 ≤ p ≤ 1,
andΦ is the cumulative distribution function ofN (0, 1).

4Although this work focuses on fixed uncertainty, similar
methods can be derived for the problem of repeated uncertainty.

5Here, Π ∈ R
|S|×|S|×|A| such that Π(s1, s2, a) =

π(s1, a)11{s1 = s2} and the matrix multiplicationΠP is carried
alongR

|S|×(|S| |A|) × R
(|S| |A|)×|S|.

Using Lemma 3.1, Constraint (4a) can be converted into the
equivalent deterministic convex constraint given thatη ≥
0.5:

υTµr̃ − Φ−1(η)‖
[

υTΣ
1

2

r̃

]

‖2 ≥ y .

Lemma 3.2 : Using the change of variablesρ = υTΠ,6

Constraint(4b) is equivalent to:

υT = qT + α
∑

a ρT

aPa

υT =
∑

a∈A ρT

a , ρT

a ≥ 0 , ∀ a ∈ A ,

whereρa is thea-th column ofρ, and from feasible point
(υ, ρ), an equivalent pair(υ,Π) feasible according to Con-
straint (4b)can be retrieved using:

Π(s, s′, a) =

{

0 if υ(s′) = 0
ρa(s′)
υ(s′) 11{s = s′} otherwise.

The following theorem is proven using the constraint
replacement technique presented in Lemma 3.1 and
Lemma 3.2.

Theorem 3.3 : For any η ∈ [0.5, 1), the discounted re-
ward percentile Problem 2 with fixed Gaussian reward un-
certainty is equivalent to the convex second order cone pro-
gram

max.
ρ∈R|S|×|A|

∑

a ρT

aµr̃ − Φ−1(η)‖
∑

a ρT

aΣ
1

2

r̃ ‖2 (6a)

sub. to
∑

a ρT

a = qT +
∑

a αρT

aPa (6b)

ρT

a ≥ 0 , ∀ a ∈ A , (6c)

where given an optimal assignmentρ∗, an optimal policy
π∗ can be retrieved using:

π∗(s, a) =

{

1
|A| if

∑

a ρ∗a(s) = 0
ρ∗

a
(s)

∑

a
ρ∗

a
(s) otherwise.

Solving a second order cone program (SOCP) is often con-
sidered to be not much more computationally demanding
than solving a linear program of comparable size (i.e., it is
feasible to solve problems of103-104 variables).7 This is
an appealing feature for the percentile problem which is ac-
tually preserved under different reductions of the Gaussian
assumption. However, one can show that the NP-complete
3SAT problem can be reduced to solving Problem 2 with a
discrete distribution on the rewards. Hence,

Theorem 3.4 : Solving the percentile MDP Problem 2
with general uncertainty in the reward parameters is NP-
hard

6By ρ = υTΠ, we refer toρ ∈ R
|S|×|A| such thatρ(s′, a) =

(υTΠ)(s′, a) =
∑

s
υ(s)Π(s, s′, a).

7In our implementation, we used a toolbox developed for Mat-
lab: “CVX: Matlab Software for Disciplined Convex Program-
ming” by Michael Grantet al.
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3.2. The Case of Uncertainty in Transition Parameters

We now focus on the problem of transition uncertainty.
This type of uncertainty is naturally present in applications
where one does not have a physical model of the dynam-
ics of the system. In this case,P must be estimated from
experimentation and contains inherent uncertainty. Unfor-
tunately, as was the case for reward uncertainty, one can
show that the percentile problem is computationally hard
in general.

Corollary 3.5 : Solving percentile MDP Problem 2 for
general uncertainty in the transition parameters is NP-
hard.

Because we cannot expect to solve this problem with gen-
eral transition uncertainty, our analysis makes the Dirichlet
assumption and proposes a solution method that generates
near optimal solutions given a sufficient number of samples
drawn fromP̃ .

Unlike in the case of reward uncertainty, where the opti-
mal policy can be found using the nominal problem, find-
ing a policy that simply minimizes the expected return
EP̃ ,x(

∑∞
t=0 αtr(xt)|x0 ∝ q, π) under transition uncer-

tainty P̃ is already non-trivial. More specifically, as pre-
sented in (Mannor et al. 2007), the expected return can be
expressed as

E(
∞
∑

t=0

αtr(xt)|x0 ∝ q, π) =

E(qT

∞
∑

k=0

αk(XπΠ∆P̃ )kXπr) ,

where∆P̃ = P̃ −E(P̃ ), andXπ = (I−αΠE(P̃ ))−1. The
matrix Xπ is always well defined sincẽP can only gener-
ate stochastic matrices, thus ensuring thatI − αΠE(P̃ ) is
nonsingular.8 The expressionE(

∑∞
t=0 αtr(xt)|x0 ∝ q, π)

therefore depends on all the moments of the uncertainty in
P̃ . Because we expect the higher order moments ofP̃ to
decay quickly with the number of samples drawn from̃P ,
it is reasonable to focus on second order approximation

E(

∞
∑

t=0

αtr(xt)|x0 ∝ q, π) ≈ qTXπr + α2qTXπΠQXπr ,

whereQ ∈ R
|S|×|A|×|S|, such that

Q(i,a,j) =
(

E(∆P̃XπΠ∆P̃ )
)

(i,a,j)
= π(i,a)Σ

(i,a)
(j,·) Xπ

(·,i) .

This is under the assumption that the rows ofP̃ are inde-
pendent and usingΣ(i,a) to represent the covariance be-
tween the terms of the transition vector from statei with
actiona.

8Refer to footnote 5

Let F(π) be the second order approximation of the ex-
pected return under transition uncertainty, such that

F(π) = qTXπr + α2qTXπΠQXπr .

In order to show that minimizingF(π) leads to a near-
optimal percentile policy, we make the assumption thatP̃
behaves according to a Dirichlet distribution. This allows
us to bound the approximation error in terms of number of
observed transitions. One can then show, using Markov’s
inequality, that the following theorem holds.

Theorem 3.6 : Given state transition samples
{(s1, a1, s

′
1), ..., (sM , aM , s′M )} and suppose that

Ma∗

i∗ = mini,a M (i,a), andη ∈ [0.5, 1), policy

π̂ = arg max
π

F(π)

is o(1/
√

(1 − η)Ma∗

i∗ ) optimal according to the percentile
MDP Problem 2 with known rewards, where the probability
P is the probability of drawing̃P from the posterior Dirich-
let distribution given thatM (i,a) transitions were observed
from each statei and actiona.

3.3. A Machine Replacement Problem with Dirichlet
Uncertainty in the Transition Parameters

We have chosen the machine replacement problem as an
application for our methods. Let us assume that we are in-
terested in the repair cost that is incurred by a factory that
holds a large number of machines, given that each of these
machines are modeled with the same underlying MDP for
which the transition parameters are not known with cer-
tainty. In such a setting, it would be natural to apply a
repair policy uniformly on all the machines with the hope
that, with probability higher thanη, this policy will have a
low maintenance cost on average. This is exactly what the
percentile criterion quantifies.

Our experiment uses a version of the machine replacement
problem with 10 states, 4 actions, a discount factor of 0.8, a
uniform initial state distribution and transition uncertainty
modeled with a Dirichlet distribution. States 1 to 8 describe
the normal aging of the machine, while statesR1 andR2
represent two possible stages of repairs:R1 being normal
repairs with a cost of 2, andR2 a more involved one with
a cost of 10. A cost of 20 penalizes reaching an age of
8. In each of these states, one has access to three repair
services for the machine. We assume a Dirichlet model
for all transitions. In the case of each of the three repair
options, we use slightly perturbed versions of a reference
Dirichlet model that is presented in Figure 1. In this figure,
the expected transition parameters are presented given that
M transitions are observed from each state and action.

We apply three solution methods to this decision problem.
First, the nominal problem is formulated using the expected
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Figure 1.Instance of a machine replacement problem with Dirich-
let uncertainty in the transition parameters.
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Figure 2.Performance comparisons between the optimal policies
according to the nominal, robust and percentile criteria on 10000
runs of the machine replacement problem as the uncertainty is
reduced.

transition probabilities. Then, we apply the robust method
presented in Section 2.2, for which we choose to use as
uncertainty set a box inR|S|×|A|×|S| that containsP̃ with
90% confidence.9 Finally, we use the “2nd order approx-
imation” performance measure presented in Section 3.2 to
find an optimal policy for this machine replacement prob-
lem.10

Figure 2 shows the mean and 90th percentile performances
of the different methods on this problem as uncertainty in
the parameters decreases (orM increases). It is interesting
to see that the policy obtained by the 2nd order approxima-
tion method outperforms the policy obtained using the ro-
bust method and nominal method for a range of uncertainty
levels (low to high). This is mainly due to the fact the 2nd
order approximation method returns a policy that uses, in
states 8 andR1, a mixed strategy over the repair options in

9Implementation details: using 10000 samples drawn fromP̃
and a givenγ ratio, for each parameterP(i,a,j) we chooseA(i,a,j)

andB(i,a,j) so that they include a ratio ofγ of the random sam-
ples. A search overγ is done to find the minimalγ that leads to a
boxA(i,a,j) ≤ P(i,a,j) ≤ B(i,a,j) containing 90% of the samples
drawn fromP̃ . We do not discuss the validity of this method as it
is purely illustrative of the difficulties involved in the choice of an
90% uncertainty set for̃P .

10Implementation details: Matlab’s optimization toolbox was
used to solve this constrained non-convex optimization ofF(π).

order to reduce the transition variance and, indirectly, the
overall expected cost.

4. Efficient Exploration using Percentile
Optimization

In many practical situations, one has the possibility of in-
vesting (money, time or computation efforts) in actions that
will reduce one’s uncertainty in the model. This gives rise
to the so-called exploration-exploitation dilemma, one of
the most studied issues in reinforcement learning. In a
more popular version of this problem, an agent must de-
cide at each point of time between actions with known re-
turn or actions with unknown return but with the potential
of even better return. Methods such as R-max and model
based interval estimation (see Strehl & Littman, 2005), lead
with high-probability to near-optimal policies in polyno-
mial time. We are interested in a slightly different frame-
work. We assume that, before committing to an exploita-
tion strategy (such as a repair policy for the problem de-
scribed in Section 3.3), one has the option to buy observa-
tions of the reward vector (or of transitions) for any state
and action pair(i, a) of the system. In this context, a valid
exploration strategy needs to provide either a pair(i, a) that
it wishes to observe or commit to a full exploitation strategy
for the system. We believe that this framework is particu-
larly well suited for problems of short horizon compared to
the size of the state space.

In order to provide guidance in this decision, we apply the
concept of value of information (see Howard, 1966) to the
percentile framework. Given a probabilistic prior on the
model parameters̃r andP̃ , and a risk-sensitive measure of
returnG(π, r̃, P̃ ) for stationary policiesπ ∈ Υ, we define
the value of sampling̃r andP̃ at (i, a) as

V(i, a) = E

(

max
π′

G(π′, r̃′, P̃ ′)
)

− max
π

G(π, r̃, P̃ ) , (7)

wherer̃′ and P̃ ′ are the posterior distribution of̃r and P̃
respectively given random reward and transition samples
from statei with action a, and the expectation is taken
over the prior distribution of reward and transition param-
eters. Intuitively,V(i, a) gives the expected increase in re-
turn given that one would know more about the parameters
related to(i, a). The learning strategy we propose selects
(i, a)∗ = arg maxV(i, a) as the most cost effective loca-
tion for a new observation, and decides to stop investing in
uncertainty reduction when the maximumV(i, a) achiev-
able is smaller then the observation cost. In what follows,
we apply this simple learning strategy on the percentile
problem with Gaussian priors on rewards, or Dirichlet pri-
ors on transitions.

4.1. Efficient Learning of Gaussian Rewards

We start by studying the case where we know the transition
parameters of the MDP exactly but where we have uncer-
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tainty about the rewards. We assume that we have the op-
tion of buying noisy measurements of the rewardsr̂(i, a) =
r(i, a)+ ν(i, a), whereν(i, a) ∝ N (0, σν). Using a Gaus-
sian prior to represent the uncertainty inr(i, a), one can
easily solve the percentile problem (see Section 3.1) to find
an optimal risk-sensitive policy, the question is: is it worth
buying more information about the MDP before commit-
ting to a policy of this form?

Given a measurement̂r(i, a) and a prior distribution on
r̃(i, a) ∝ N (µ(i,a), σ

2
(i,a)), we can evaluate the posterior

distribution r̃′(i, a) ∝ N (µ′
(i,a), σ

′2
(i,a)).

11 The value of
informationV(i, a), with G(π, r̃) set as the optimal value
of percentile Problem 6, can therefore be estimated using
Monte Carlo methods. To reduce computation, our ap-
proach relies on computing a lower bound forV(i, a) by
evaluatingV(i, a) = E(G(π∗, r̃′r̂(i,a))) − maxπ G(π, r̃) ,

whereπ∗ = arg maxπ G(π, r̃). It turns out that this ap-
proximation forV(i, a) can be computed in closed-form
givenπ∗:

V(i, a) = E(G(π∗, r̃′r̂(i,a))) − G(π∗, r̃)

= E

(

∑

a

ρ∗a
Tµr̃′

)

− Φ−1(η)‖
∑

a

ρ∗a
TΣ

1

2

r̃′‖2 − G(π∗, r̃)

= Φ−1(η)

(

‖
∑

a

ρ∗a
TΣ

1

2

r̃ ‖2 − ‖
∑

a

ρ∗a
TΣ

1

2

r̃′‖2

)

,

since the posterior update forσ(i, a) is independent of̂r
and sinceE (µr̃′) = µr̃ for such a Gaussian model. In
this framework, theη parameter for the percentile problem
studied in Section 3.1 controls how conservative the policy
is during the exploitation stage.

The following experiments compare percentile based sam-
pling to random sampling and the model based interval es-
timation (MBIE) strategy12 on a set of 1000 randomly gen-
erated MDPs with reward uncertainty. Each model has 10
states, 2 actions, a discount factor of 0.8, initial reward un-
certaintyr̃(i, a) ∝ N (µr̃(i, a), 1) and measurement noise
ν ∝ N (0, 1). For a given model, each(i, a) has a deter-
ministic transition drawn uniformly from the set of states
and hasµr̃(i, a) drawn fromN (0, 1). Figure 3 presents
the average percentile and average mean performances over
this set of uncertain MDPs given a number of observations
chosen by the different strategies (no observation cost). In
each run, once a strategy ran out of observations, the pos-
terior uncertaintỹr′ was computed and used to evaluate the

11The posterior updates areµ′
(i,a) = σ′

(i,a)(µ(i,a)/σ(i,a) +

r̂(i, a)/σν) andσ′
(i,a) = (σ−1

(i,a) + σ−1
ν )−1. Note thatσ′

(i,a) is
independent of the observedr̂(i, a).

12Being an online method, MBIE only provides a rule,
given a state, for choosing the action with highest exploration-
exploitation potential. To adapt this method to our framework, we
first draw a state randomly and then select the action with MBIE.
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Figure 3.Average percentile and mean performances of sampling
strategies on a set of 1000 random MDPs with reward uncertainty
(free observations).
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Figure 4.Average total percentile return on the MDPs of Figure 3
for a range of observation costs.

mean and percentile return of the strategy through optimiz-
ing the nominal problem and the percentile MDP problem
given the uncertain reward̃r′. We note that the percentile
strategy clearly outperforms both MBIE and random sam-
pling for percentile return and, when restricted only to a
small number of observations, even in terms of mean re-
turns. Figure 4 shows the average total percentile cost (fi-
nal percentile return added to cost of extracted samples)
of our learning strategy given different observation prices.
Since MBIE and random sampling do not provide a stop-
ping criterion for exploration, average total percentile cost
cannot be directly evaluated for them. Instead, we com-
puted a lower bound on this performance by selecting in
each run, given the observation cost, the most profitable
point to start exploitation. We see that the percentile cri-
terion based strategy outperforms even this performance
bound for both random and MBIE sampling.

4.2. Efficient Learning of Dirichlet Transitions

In the case where we have transition uncertainty, we model
our uncertainty using a Dirichlet prior and now have the op-
tion of buying state transition observations. The same prob-
lem arises in this framework: when should one stop paying
for these observations and start exploiting the system as one
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knows it? GivenM transition observations from statei us-
ing actiona, one can update the Dirichlet prior as suggested
in the Bayesian framework (see Gelman et al., 2003). Us-
ing G(π, P̃ ) = F(π), the 2nd order approximation to the
expected return presented in Section 3.2, the value of infor-
mationV(i, a) can therefore be estimated with Monte Carlo
methods. Here, computing the lower bound forV(i, a) as
in Section 4.1 largely reduces the computational complex-
ity of the Monte Carlo method by sparing us from perform-
ing the optimization inside the expectation term of Equa-
tion (7).

Our experiments compare the percentile learning rule to
random sampling and model based interval estimation
strategy on a set of 1000 randomly generated MDPs with
transition uncertainty. Each model has 10 states, 4 actions,
a discount factor of 0.8. For a given model, the rewards are
generated fromN (0, 1) for each state, and the initial un-
certainty in a transition from(i, a) is generated by select-
ing 3 possible next states uniformly, drawing the Dirichlet
parameters uniformly in the [0,1] interval and normalizing
them to sum to1. As in Section 4.1, Figure 5 presents the
average percentile and mean performances over the set of
uncertain MDPs given a number of observations chosen by
the different strategies (no observation cost). Again, the
percentile rule outperforms on average random sampling
and MBIE in the choice of observations to make. Figure 6
shows the average total percentile cost of our learning strat-
egy given different observation prices. Unlike the case of
reward uncertainty, the stopping criterion does not outper-
form the lower bounds on other methods but we expect it
to perform well against any reasonable stopping criterion
based on random or MBIE sampling.

5. Discussion
In the context of high cost observations, the results of Sec-
tion 4 demonstrate that random sampling and MBIE are
less efficient exploration methods comparing to the pro-
posed value of information exploration. This is mainly due
to the fact that these methods disregard the cost of observa-
tions, but focus entirely on reaching anε-optimal policy in
the long term. Methods such as theE3 algorithm (Kearns
and Singh 1998) and the R-max algorithm (Brafman and
Tennenholtz 2003) suffer similarly. When observations
incur a non-negligible cost, the exploration-exploitation
dilemma takes the shape of a problem better expressed
through value of information. Ideally, one needs to reason
about sequences of observations that will have a high ex-
pected impact on percentile return while preserving a low
observation cost. Unfortunately, because this problem is
intractable, we settle for a strategy that acts greedily with
respect to a single decision. Such a strategy is therefore
subject to aborting exploration when no single observation
can lead to an immediate useful reduction of uncertainty
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Figure 5.Average percentile and mean performances on a set of
1000 random MDPs with transition uncertainty (free observa-
tions).
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Figure 6.Average total percentile return on the MDPs of Figure 5
for a range of observation costs.

although a series of them might. This phenomenon can be
observed in Figure 3 where the percentile strategy does not
lead in general to the optimal policy of the underlying MDP
as more samples are used. However, in applications where
one can only afford a small number of observations (com-
pared to the size of the state space), Figure 4 shows that the
percentile strategy is the best option.

The application of value of information to the exploration-
exploitation dilemma is not new (see Dearden et al., 1999).
However, previous work only applied this concept to the
MDP in its nominal form without considering the value
of risk-sensitive policies. Also, these methods have been
considered to be impractical since they are confronted to

the problem of evaluatingE
(

maxπ′ G(π′, r̃′, P̃ ′)
)

with

G(π′, r̃′, P̃ ′) being the optimal value of the nominal prob-
lem for each pair(i, a). This can only be done using
Monte Carlo methods and the computation requirements
grow quickly with the dimension of the state space, as one
needs to solve an MDP for each Monte Carlo sample of
each(i, a) pair. By studying the percentile problem, we
obtain a form forV(i, a) which can be approximated ef-
ficiently using the lower bounds presented in Section 4.1
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Figure 7.Uncertain MDP where 90th percentile based sampling
is risk tolerant and chooses actionb.

and 4.2.13

It is important to note that the success of our exploration
strategy relies on the formulation of an adequate prior over
the parameters and of a percentile threshold that truly re-
flects risk tolerance. Consider the uncertain MDP pre-
sented in Figure 7. If prior knowledge indicates that the
system MDP “A” is with 90% probability, a 90th percentile
based sampling chooses to exploit using actionb without
sampling any state. This might seem sub-optimal since by
sampling the reward in state3 it is possible to completely
determine the system and then choose the policy that avoids
the negative reward. Percentile based sampling disregards
the risk related to this negative event since, based on the
prior distribution, the risk is tolerated by the target per-
centile. In this example, one might feel more comfortable
using a 99th percentile.

Finally, we believe that percentile based exploration strat-
egy should naturally extend to model based online learning.
We also expect that many important problems that have
been addressed using standard MDP models and “naive”
exploration methods, should be revisited and better re-
solved using the proposed risk-sensitive percentile crite-
rion.
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