
Simpler Core Vector Machines with Enclosing Balls

Ivor W. Tsang IVOR@CSE.UST.HK

Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong

Andras Kocsor KOCSOR@INF.U-SZEGED.HU

Research Group on Artificial Intelligence, Hungarian Academy of Sciences and University of Szeged, Hungary

James T. Kwok JAMESK@CSE.UST.HK

Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong

Abstract

The core vector machine (CVM) is a recent ap-
proach for scaling up kernel methods based on
the notion of minimum enclosing ball (MEB).
Though conceptually simple, an efficient imple-
mentation still requires a sophisticated numerical
solver. In this paper, we introduce the enclosing
ball (EB) problem where the ball’s radius is fixed
and thus does not have to be minimized. We de-
velop efficient(1 + ǫ)-approximation algorithms
that are simple to implement and do not require
any numerical solver. For the Gaussian kernel
in particular, a suitable choice of this (fixed) ra-
dius is easy to determine, and the center obtained
from the (1 + ǫ)-approximation of this EB prob-
lem is close to the center of the corresponding
MEB. Experimental results show that the pro-
posed algorithm has accuracies comparable to
the other large-scale SVM implementations, but
can handle very large data sets and is even faster
than the CVM in general.

1. Introduction

Large margin methods have been highly successful in su-
pervised learning. In particular, support vector machines
(SVM) have obtained outstanding performance in many
machine learning problems such as classification, regres-
sion, and ranking. Traditionally, SVM training is formu-
lated as a quadratic programming (QP) problem, which is
then optimized by some numerical solver. However, a naive
implementation takesO(n3) time andO(n2) space, where
n is the number of training examples, and is thus computa-

Appearing inProceedings of the24 th International Conference
on Machine Learning, Corvallis, OR, 2007. Copyright 2007 by
the author(s)/owner(s).

tionally expensive even on medium-sized data sets. Hence,
in practical applications, it is imperative to use more so-
phisticated techniques and a careful implementation.

A powerful approach to scale up SVM training is by using
decomposition methods (Osuna et al., 1997), which break a
large QP problem into a series of manageable QP subprob-
lems. In recent years, various other scale-up strategies have
been proposed. For example, Vishwanathan et al. (2003),
in their SimpleSVM algorithm, use greedy working set se-
lection strategies to identify support vectors for incremental
update of the kernel sub-matrix. Bordes et al. (2005) use
online SVM learning together with active example selec-
tion in their LASVM algorithm. Sonnenburg et al. (2006)
exploit special data structures for fast computations of the
kernel in their chunking algorithm. Moreover, instead of
maximizing the dual problem as is usually done, Chapelle
(2007) propose to directly minimize the primal problem.

In this paper, we focus on another recent algorithm called
the core vector machine (CVM) (Tsang et al., 2005a),
which combines techniques from computational geometry
with SVM training. By reformulating SVM’s QP as a min-
imum enclosing ball (MEB) problem, they then apply an
efficient(1 + ǫ) approximation algorithm (based on the so-
called core-sets) to obtain a close-to-optimal SVM solu-
tion. As pointed out in (Har-Peled et al., 2007; Tsang &
Kwok, 2007), these core-set algorithms are similar to the
cutting-plane algorithm used in (Joachims, 2006) and the
column generation method commonly used in large-scale
linear programming. Experimentally, the CVM has demon-
strated good performance in classification (Asharaf et al.,
2006; Tsang et al., 2005a), regression (Tsang et al., 2005b)
and semi-supervised learning (Tsang & Kwok, 2007). Be-
sides, this connection between SVM and MEB has also
been used for one-class classification with arbitrary Breg-
man divergence (Nock & Nielsen, 2005), support vector
ordinal regression (Shevade & Chu, 2006), and agnostic
learning in the presence of outliers (Har-Peled et al., 2007).

Simpler Core Vector Machines with Enclosing Balls

However, though conceptually simple, each iteration of the
CVM algorithm involves a QP subproblem defined on the
core-set. Thus, this again requires the use of a sophisticated
numerical solver for efficient implementation. Moreover,
for data sets that are very large or complicated, the size of
the core-set can also be large and so this internal optimiza-
tion problem can become computationally expensive.

Recall that the CVM is closely related to theminimumen-
closing ball, and thus some optimization appears inevitable.
In this paper, we propose to solve instead the simpleren-
closing ball(EB) problem, where the radius of the ball is
fixed. We propose efficient(1 + ǫ)-approximation algo-
rithms that are simple to implement and do not require nu-
merical solvers. Moreover, with a convenient choice of the
radius, it can be shown that the center obtained from the
(1 + ǫ)-approximation of this EB problem is close to the
center of the corresponding MEB. Thus, the approximate
SVM solution obtained is also close to the truly optimal
SVM solution, especially asǫ is typically small in practice.
Experimental results show that the proposed algorithm has
accuracies comparable to the other large-scale SVM imple-
mentations, but can handle very large data sets and is even
faster than the CVM in general.

The rest of this paper is organized as follows. Section 2
first gives a short introduction to the CVM. Section 3 then
describes the proposedball vector machine(BVM) algo-
rithm. Experimental results are presented in Section 4, and
the last section gives some concluding remarks.

2. Core Vector Machine

Let ϕ be the feature map corresponding to kernelk. Given
a set ofϕ-mapped points1 Sϕ = {ϕ(x1), . . . , ϕ(xn)}, its
MEB, denotedB(c∗, R∗) with centerc∗ and radiusR∗, is
the smallest ball that encloses all these points:

(c∗, R∗) = arg min
c,R

R2 : ‖c − ϕ(xi)‖2 ≤ R2 ∀i. (1)

Its dual is the QP:maxλi≥0

∑n
i=1 λikii−

∑n
i,j=1 λiλjkij :

∑n
i=1 λi = 1, wherekij = k(xi,xj) = ϕ(xi)

′ϕ(xj).
Conversely, any QP of this form can be regarded as a MEB
problem. In particular, whenk satisfies2

k(x,x) = κ, (2)

a constant, this form includes the QPs associated with many
kernel methods. For example, the two-class L2-SVM using
kernelk can be transformed to a MEB problem with the
feature map̃ϕ((xi, yi)) = [yiϕ(xi), yi,

1√
C
e
′
i]
′ (whereei

1In the sequel, we will simply writeSϕ asS if ϕ is clear from
the context.

2Note that condition (2) is satisfied by many kernels, including
the commonly used isotropic kernel (e.g., Gaussian kernel) and
any normalized kernel.

is then-dimensional vector with all zeroes except that the
ith position is equal to one), and the corresponding trans-
formed kernel is (Tsang et al., 2005a)

k̃ij = yiyj(kij + 1) + δij/C. (3)

After transforming the QP to a MEB problem, the CVM
uses an iterative(1 + ǫ)-approximation algorithm to obtain
a near-optimal solution (Algorithm 1). Its basic idea is to
maintain a core-setSt, which is a subset ofS, and its MEB
B(ct, Rt) at each iterationt. The ballB(ct, Rt) is ex-
panded by including a point falling outsideB(ct, (1+ǫ)Rt)
into the core-set. This is repeated until all the points inS
are covered byB(ct, (1+ǫ)Rt). After obtaining an(1+ǫ)-
approximate solutionB(c, R) of the MEB, the primal vari-
ables associated with the SVM (i.e., weightw, biasb, and
slack errorsξ) can be recovered from

c = [w′ b
√

Cξ′]′, (4)

whereC is the regularization parameter in the SVM.

Algorithm 1 CVM algorithm.

1: Initialize S0 = {ϕ(z0)}, c0 = ϕ(z0) andR0 = 0.
2: Terminate if noϕ(z) falls outsideB(ct, (1 + ǫ)Rt).

Otherwise, letϕ(zt) be such a point. SetSt+1 = St ∪
{ϕ(zt)}.

3: Find MEB(St+1)
4: Incrementt by 1 and go back to Step 2.

3. Ball Vector Machine (BVM)

The CVM is tightly coupled to the MEB problem. Here,
instead of finding theminimumenclosing ball, we consider
the simpler problem of finding an enclosing ball (EB) with
its radius given in advance.

Definition 1. (Enclosing ball EB(S, r)) Given the radius
r ≥ R∗, find a ballB(c, r) that encloses all the points in
S, i.e.,‖c − ϕ(zi)‖2 ≤ r2 for all ϕ(zi)’s in S.

In Section 3.1, we first propose an(1 + ǫ)-approximation
algorithm for solving the EB problem, which is then im-
proved by a more efficient, multi-scale version in Sec-
tion 3.2. The radius of the EB can also be reduced automat-
ically as shown in Section 3.3. Finally, the issues of how to
set the EB’s radius and how this EB problem is related to
the solving of the SVM are addressed in Section 3.4.

3.1.(1 + ǫ)-Approximation Algorithm for EB(S, r)

The proposed iterative algorithm is shown in Algorithm 2.
It follows from a similar MEB algorithm in (Panigrahy,
2004), whereϕ(zt) in Step 2 is further required to be the
point furthest fromB(ct, r); while here it only has to be

Simpler Core Vector Machines with Enclosing Balls

outsideB(ct, (1 + ǫ)r)). The ball’s center is updated such
that the new ball just touchesϕ(zt). The whole procedure
is repeated until no point falls outsideB(ct+1, (1 + ǫ)r).
Obviously, this produces an(1 + ǫ)-approximation.

Algorithm 2 (1+ǫ)-approximation algorithm for EB(S, r).

1: Initialize c0 = ϕ(z0).
2: Terminate if noϕ(z) falls outsideB(ct, (1+ǫ)r). Oth-

erwise, letϕ(zt) be such a point.
3: Find the smallest update to the center such that

B(ct+1, r) touchesϕ(zt).
4: Incrementt by 1 and go back to Step 2.

3.1.1. EFFICIENT UPDATING OF THEBALL ESTIMATE

Unlike the CVM, the update in Step 3 can be performed
efficiently without the use of any numerical optimization
solver. Mathematically, we want to find thec such that
minc ‖c − ct‖2 : r2 ≥ ‖c − ϕ(zt)‖2. The Lagrangian
is L = ‖c − ct‖2 − α(r2 − ‖c − ϕ(zt)‖2), whereα is
the Lagrangian multiplier. On setting its derivative to zero,
and substituting the result back to the optimality condition
‖c − ϕ(zt)‖2 = r2, we obtainα = 1/βt − 1, where

βt = r/‖ct − ϕ(zt)‖ (≥ 0). (5)

Thus, the new center is

ct+1 = ϕ(zt) + βt(ct − ϕ(zt)), (6)

which is a convex combination ofct andϕ(zt). Conse-
quently, for anyt > 0, ct is always a combination ofc0

andSt = {ϕ(zi)}t
i=1. Note that this step is also similar to

the update rule of the passive-aggressive algorithm (Cram-
mer et al., 2006) used for online learning.

3.1.2. EFFICIENT DISTANCE COMPUTATIONS

After the update, Step 2 in the next iteration requires com-
puting the distance betweenct+1 and any patternϕ(z).
This can also be done efficiently. Note that

‖ct+1‖2 = ‖βtct + (1 − βt)ϕ(zt)‖2

= βt‖ct‖2 + (1 − βt)‖ϕ(zt)‖2 + (β2
t − βt)‖ct − ϕ(zt)‖2,

and so can be computed inO(|St+1|) time by caching
‖ct‖2 in the last iteration. Moreover, from (6), the expan-
sion coefficients ofct+1 in terms of theϕ(zt)’s can also be
computed inO(|St+1|) time. Hence,‖ct+1 − ϕ(z)‖ (for
anyz) can be computed inO(|St+1|) time.

3.1.3. CONVERGENCE

As mentioned in Section 3.1, Algorithm 2 is modified from
the MEB algorithm in (Panigrahy, 2004) by relaxing the
requirement thatϕ(zt) in Step 2 has to be the furthest point.
Despite this, convergence of Algorithm 2 still follows from

a weaker result in the proof of Theorem 1 in (Panigrahy,
2004). For completeness and later reference in the sequel,
the proof is shown here.

Proposition 1. Algorithm 2 obtains an (1 + ǫ)-
approximation of EB(S, r) in O(1/ǫ2) iterations.

Proof. The update ofct is shown in Figure 1. From (6),
ct+1 must be alongct andϕ(zt). As ‖ct+1 − ϕ(zt)‖ = r,
we have‖ct − ct+1‖ > ǫr. Denote‖ct − c

∗‖ by δt. As
‖c∗ − ϕ(zt)‖ ≤ R∗ ≤ r, ∠c

∗
ct+1ct is obtuse, and so

δ2
t ≥ δ2

t+1 + ‖ct − ct+1‖2 > δ2
t+1 + ǫ2r2, or

δ2
t+1 < δ2

t − ǫ2r2. (7)

In other words,δ2
t decreases by at leastǫ2r2 in each iter-

ation. Thus, the algorithm terminates in a finite number
(say,T) of iterations. Summing (7) over theT iterations,
we haveδ2

T ≤ δ2
0 − Tǫ2r2 and so

Tǫ2r2 ≤ δ2
0 ≤ r2. (8)

Thus,T ≤ 1/ǫ2.

r

r

−<r

ϕ

c
t+1

t

ε
c

c
tδ

δt+1

>

(z)t

*

Figure 1.Update ofct at the
tth iteration.

Moreover, it can be shown
that Algorithm 2 only takes
O(1/ǫ4) time andO(1/ǫ2)
space (not including the
O(n) space for storing the
training patterns). These
are thus independent of the
number of training exam-
ples for a fixedǫ, and can
also be seen to be lower
than those of the CVM.

3.2. Faster, Multi-Scale EB(S, r) Approximation

If the furthest point were used asϕ(zt) in Step 2 of Algo-
rithm 2, a tighter analysis in (Panigrahy, 2004) shows that
Algorithm 2 converges inO(1/ǫ), rather thanO(1/ǫ2), it-
erations. However, computing such a point takesO(n|St|)
time and so is computationally expensive for largen.

In this section, we propose a faster version of Algorithm 2
that still only requiresϕ(zt) to be any point lying outside
B(ct, (1 + ǫ)r). Assume that2−1 ≤ ǫ = 2−M for some
positive integerM . The idea is that instead of using this
smallǫ from the very beginning, we start with a much larger
ǫ′ = 2−1. After an(1 + ǫ′)-approximation of EB(S, r) has
been obtained by Algorithm 2,ǫ′ is reduced by half and the
process repeated untilǫ′ = ǫ (Algorithm 3).

Next, we first show the following proposition:

Proposition 2. Let B(ĉ, (1 + ǫ)r) be any (1 + ǫ)-
approximation of EB(S, r), then

‖ĉ − c
∗‖

R∗ ≤
√

(

1 +
√

2
) (

(1 + ǫ)
r

R∗ − 1
)

. (9)

Simpler Core Vector Machines with Enclosing Balls

Algorithm 3 Multi-scale (1 + ǫ)-approximation algorithm
for EB(S, r).

1: Initialize cEB0
= ϕ(z0).

2: Form = 1 to M do
3: Set ǫm = 2−m. Find (1 + ǫm)-approximation of

EB(S, r) using Algorithm 2, withcEBm−1
as warm

start.

Proof. Assumec∗ 6= ĉ (otherwise, (9) is trivial). LetH
be the halfspace passing throughc

∗ that is perpendicular
to the line joiningc

∗ and ĉ but not containinĝc. Us-
ing Lemma 2 in (Kumar et al., 2003), there is at least
a point ϕ(z) in H such that its distance toc∗ is R∗.
Let δ = ‖ĉ − c

∗‖. Using cosine law,‖ĉ − ϕ(z)‖ ≥
√

(R∗)2 + δ2 = R∗
√

1 + δ2

(R∗)2 . As B(ĉ, (1 + ǫ)r) is an

(1 + ǫ)-approximation, the distance betweenĉ and every
ϕ(zi) is ≤ (1 + ǫ)r. Also, δ

R∗
≤ 1. Thus,(1 + ǫ)r ≥

‖ĉ − ϕ(z)‖ ≥ R∗
(

1 + δ2

(1+
√

2)(R∗)2

)

and so (9).

In the special case wherer = R∗ (i.e., the radius of the
MEB is known in advance), (9) reduces to

‖cT − c
∗‖ ≤ R∗

√

(

1 +
√

2
)

ǫ. (10)

Moreover, on using (4), we have

‖cT −c
∗‖2 =‖wT −w

∗‖2+(bT −b∗)2+C‖ξT −ξ∗‖2. (11)

On using (11) andκ in (2), the difference between
f∗(x) = w

∗′ϕ(x) + b∗ andfT (x) = w
′
T ϕ(x) + bT is

|fT (x)− f∗(x)| ≤
√

‖wT −w∗‖2+(bT −b∗)2
√

κ+1 =
√

‖cT −c∗‖2−C‖ξT −ξ∗‖2
√

κ+1. Thus, the bound in
(10) guarantees that the predictionfT (x) is close tof∗(x),
particularly whenǫ is small.

Proposition 3. Algorithm 3 obtains an (1 + ǫ)-
approximation of EB(S, R∗) in O(1/ǫ) iterations.

Proof. Let EBm = B(cEBm
, R∗) be an (1 + ǫm)-

approximation of EB(S, R∗). Then,δ0 ≡ ‖c0 − c
∗‖ =

‖cEBm−1
− c

∗‖. From (10),δ0 ≤ R∗
√

(1 +
√

2)ǫm−1.
Using (8), we have

Tmǫ2mr2 ≤ (1 +
√

2)ǫm−1(R
∗)2 ≤ (1 +

√
2)ǫm−1r

2

⇒ Tm ≤ (1 +
√

2)ǫm−1/ǫ2m = (1 +
√

2)2m+1.

The total number of iterations is then
∑M

m=1 Tm = 22 +
∑M

m=2(1 +
√

2)2m+1 = O(2M) = O(1/ǫ).

This is thus an improvement over Algorithm 2, which con-
verges inO(1/ǫ2) iterations. Note, however, that while
Proposition 1 holds for anyr ≥ R∗, Proposition 3 only

holds forr = R∗. Nevertheless, it is obvious that Algo-
rithm 3 always converges (asm takes finite values and each
iteration of Algorithm 2 converges). We conjecture that for
r > R∗, it converges inO(1/ǫ) to O(1/ǫ2) iterations. We
leave a formal analysis to a future occasion.

3.3. Obtaining a Smaller Enclosing Ball

With an initialr, we show in this section how a smaller EB
can be obtained. The machinery is similar to that used in
(Crammer et al., 2006). First, definec =

√

r2 − (R∗)2

and rewrite the distance constraint in the MEB problem (1)
as‖c − ϕ(z)‖2 + (r2 − (R∗)2) ≤ r2. This can then be
seen as an EB(S̃, r) problem‖c̃ − ϕ̃(zi)‖2 ≤ r2, with
S̃ = {ϕ̃(zi)} = {[ϕ(zi)

′ 0]′} and center̃c = [c′ c]′. After
initializing c̃0 = [c′0 c0]

′, wherec0 = ϕ(z0) for some
ϕ(z0) ∈ S andc0 = r, either Algorithm 2 or 3 can be used
to obtain an (1 + ǫ)-approximation of this EB.

When it terminates at, say, theT th iteration, all the points
are insideB(c̃T , (1 + ǫ)r). In other words,‖cT −
ϕ(zi)‖2 ≤ (1 + ǫ)2r2 − c2

T for all ϕ(zi)’s. Note, on the
other hand, that the original approximate EB problem only
guarantees‖cT ′ − ϕ(zi)‖2 ≤ (1 + ǫ)2r2 on termination.
As cT ≥ 0, we may now obtain a smaller ball of radius
r′ =

√

(1 + ǫ)2r2 − c2
T . Indeed, if thisr′ < r, we can re-

peat the procedure and thus find an even smaller EB(S, r′);
otherwise, we should haver ≤ r′ or c2

T ≤ (2ǫ + ǫ2)r2 and
we stop. The whole procedure is shown in Algorithm 4.

Algorithm 4 Obtaining a smaller enclosing ball.

1: Initialize c̃0 = [c′0 c0]
′ wherec0 = ϕ(z0) andc0 = r.

2: Use Algorithm 2 or 3 to obtainB(c̃T , (1 + ǫ)r).
3: Terminate whenc2

T ≤ (2ǫ + ǫ2)r2.
4: Setr =

√

(1 + ǫ)2r2 − c2
T , and go to Step 1.

3.4. Linking EB with SVM

We first address the question of how to set the EB’s ra-
dius in the context of finding a SVM solution. Recall from
Section 2 that the two-class L2-SVM using kernelk corre-
sponds to a MEB problem with kernelk̃ defined in (3). As
in (Tsang et al., 2005a), we assume that the kernelk satis-
fies condition (2). It is easy to see thatk̃ii = κ + 1

C
≡ κ̃ is

also a constant. In the corresponding EB(Sϕ̃, r) problem,
we can then setr =

√
κ̃ because of the following lemma.

Lemma 1.
√

κ ≥ R∗, whereR∗ is the radius of MEB(Sϕ̃).

Proof. From the KKT conditions of (1),

(R∗)2 = κ̃ −
n

∑

i,j=1

λiλjkij ≤ κ̃ (12)

as the kernel̃k is psd.

Simpler Core Vector Machines with Enclosing Balls

Noting thatλ∗
i ≥ 0 and

∑

i=1 λ∗
i = 1, we have from (12)

that(R∗)2 ≥ κ̃− 1
n2

∑

ij k̃ij ≥ κ̃− 1
nC

− ℓ2

n2 − 1
n2

∑

ij kij ,
whereℓ =

∑

i yi. Assume that the datax ∈ R
D is gen-

erated from the normal distributionN(0, σ2
I). With the

use of the Gaussian kernelk(x,x′) = exp
(

−‖x−x
′‖2

2σ2

)

,

we replace 1
n2

∑

ij kij by E[k(x,x′)] = 1
3D/2

. Substitut-
ing back into the previous equation, we obtain(R∗)2 ≥
κ̃ − 1

nC
− ℓ2

n2 − 1
3D/2

. As yi ∈ {±1}, son ≫ ℓ unless
the two classes are very imbalanced. Whenn → ∞ and
D → ∞, we obtainR∗ ≥

√
κ̃. Finally, on combining

with Lemma 1, we haveR∗ =
√

κ̃. Thus, this justifies the
choice ofr =

√
κ̃. In the sequel, this approach of solving

the SVM via the EB(Sϕ̃,
√

κ̃) problem will be called the
ball vector machine(BVM) procedure.
Moreover, withr =

√
κ̃ = R∗, the bound in (9) reduces to

that in (10). In other words, whenǫ is small, the center ob-
tained from the (1 + ǫ)-approximation of this EB(Sϕ̃,

√
κ̃)

problem is close to the center of MEB(Sϕ̃). Recall that
one can use (4) to recover SVM’s weight and bias from the
ball’s center. Thus, the obtained BVM will also be close
to the truly optimal SVM solution and has comparable per-
formance, especially asǫ is typically small. This will be
verified experimentally in Section 4.

4. Experiments

Experiments are performed on ten data sets3 (Table 1). The
proposed BVM (using Algorithm 4)4 is compared with:5 1.
CVM; 2. LIBSVM; 3. LASVM; 4. SimpleSVM. All are
implemented in C++, except for SimpleSVM which is in
Matlab. Hence, some measurements reported here may not
be directly comparable with the SimpleSVM. Moreover,
unless otherwise specified, SVM’sC parameter is always
set to 1. We use the Gaussian kernelexp(−‖x − z‖2/β),
where β is the average squared distance between train-
ing patterns. All experiments are performed on an AMD
Athlon 4400+ PC with 4GB of RAM running Windows XP.

4.1. Varying ǫ

We compare BVM and CVM at different values ofǫ on
a large (letter) and a very large (usps) data set. Figure 2
shows that both have high accuracies forǫ ∈ [10−8 : 10−3].

3optdigits, satimage, pendigits are from UCI
machine learning repository; reuters from
http://www.daviddlewis.com/resources/testcollections/reuters21578/;
w3a, letters, web (obtained by combiningw1a to w8a), ijcnn1 are
from http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/; usps and
intrusion are fromhttp://www.cse.ust.hk/∼ivor/cvm.html.

4For simplicity, there is only one iteration of Algorithm 4 in
the current implementation.

5CVM (v1.1) is from http://www.cse.ust.hk/∼ivor/cvm.html, LIB-
SVM (v2.83) fromhttp://www.csie.ntu.edu.tw/∼cjlin/libsvm/, LASVM
(v1.0) from http://leon.bottou.org/projects/lasvm, and SimpleSVM
(v2.31) fromhttp://asi.insa-rouen.fr/∼gloosli/simpleSVM.html.

When ǫ is increased further, their performance begins to
deteriorate. Moreover, the training time and number of
support vectors for both algorithms become stable forǫ ≤
10−4. On both data sets, BVM and CVM have comparable
numbers of support vectors, but training a BVM is faster
than CVM (by almost an order of magnitude).

4.2. Varying C

We perform experiments on two medium-sized data sets
(w3a andreuters) and a large data set (usps), with C in the
range[10−1 : 104]. Results are shown in Figure 3. In gen-
eral, BVM attains almost the same accuracies as LIBSVM
for the differentC ’s, except that it deteriorates on thew3a
data when the relatively largeǫ = 10−3 is used. Moreover,
the training time and number of support vectors obtained
by BVM (with ǫ ≥ 10−4) are comparable with those of
LIBSVM, even though these data sets are only of medium
size. On the other hand, LASVM also has comparable per-
formance as LIBSVM for most of theC ’s, though it seems
to deteriorate with largeC ’s.

4.3. Varying the Training Set Size

We perform experiments on theweb data with the standard
partitioning (w1a, w2a, . . . , w8a). Here, we show the re-
sults withǫ = 10−3 and10−4 (Figure 4). Atǫ = 10−4,
both BVM and CVM have comparable testing accuracies
as the other implementations; whereas a largerǫ = 10−3

leads to poor performance (as in Sections 4.1 and 4.2).

As theweb data is not very large, almost all implementa-
tions scale well except for the SimpleSVM which has to
be terminated early. We speculate that this might be partly
because a Matlab implementation is used.

4.4. Comparisons on all Data Sets

We perform experiments on all data sets in Table 1. By
default, we setC = 1 which yields good performance ex-
cept for theintrusion data where we haveC = 106 instead.
As the previous sections have indicated thatǫ = 10−3 is
not appropriate for the BVM, we only reportǫ values of
10−4, 10−5, and10−6 here. Methods that cannot be run
(either because of not enough memory and/or the training
time is longer than 10,000 seconds) are indicated by “–”.

Table 2 shows that BVM and CVM have accuracies compa-
rable with the other SVM implementations6. In terms of the
training speed, Table 3 shows that BVM is usually faster
than CVM for the same value ofǫ, and is faster / compa-
rable with the other implementations. Onusps (the second
largest data set), BVM is faster than LIBSVM and LASVM

6The LASVM implementation does not support multi-class
classification, and so the corresponding entries in Tables 2 – 4
are marked “N/A”.

Simpler Core Vector Machines with Enclosing Balls

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
00

20

40

60

80

100

ε

te
st

in
g

ac
cu

ra
cy

 (
in

 %
) BVM

CVM

(a) letter.
10

−8
10

−7
10

−6
10

−5
10

−4
10

−3
10

−2
10

−1
10

010
−2

10
0

10
2

10
4

ε

C
P

U
 ti

m
e

(in
 s

ec
on

ds
) BVM

CVM

(b) letter.

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
010

2

10
3

10
4

10
5

ε

su

pp
or

t v
ec

to
rs

BVM
CVM

(c) letter.

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
050

60

70

80

90

100

ε

te
st

in
g

ac
cu

ra
cy

 (
in

 %
) BVM

CVM

(d) usps.

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
010

−2

10
0

10
2

10
4

ε

C
P

U
 ti

m
e

(in
 s

ec
on

ds
) BVM

CVM

(e) usps.

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
010

0

10
2

10
4

ε

su

pp
or

t v
ec

to
rs

BVM
CVM

(f) usps.
Figure 2.Performance at differentǫ’s on letter andusps.

even withǫ = 10−6. Moreover, only BVM and CVM (but
neither LIBSVM nor LASVM) can work onintrusion, the
largest data set used in the experiment. In contrast, Sim-
pleSVM can work on medium-sized data sets only, as its
rank-one update involves the inverse of a kernel sub-matrix
defined on all the support vectors. This causes problems
when there are a lot of support vectors. Note that the ac-
curacy of BVM is quite insensitive to the value ofǫ (in our
range[10−6 : 10−4]), but both its training time and number
of support vectors increase asǫ gets smaller. This suggests
ǫ = 10−4 is a reasonable choice in practice.

Table 1.Data sets used in the experiments.
data sets #class dim #train patns. #test patns
optdigits 10 64 3,823 1,797
satimage 6 36 4,435 2,000

w3a 2 300 4,912 44,837
pendigits 10 16 7,494 3,498
reuters 2 8,315 7,770 3,299
letter 26 16 15,000 5,000
web 2 300 49,749 14,951

ijcnn1 2 22 49,990 91,701
usps 2 676 266,079 75,383

intrusion 2 127 4,898,431 311,029

The numbers of support vectors obtained7 are shown in
Table 4. As can be seen, all of them obtain comparable
numbers of support vectors. In particular, LIBSVM, which
uses second order information for working set selection,
can identify a smaller number of support vectors on most

7For multi-class problems, the same pattern may appear as
support vectors in different binary classifiers in the current Sim-
pleSVM implementation. To avoid confusion, the number of sup-
port vectors obtained by SimpleSVM is not reported here.

medium-sized data sets. On the large data sets (such as
reuters, web, ijcnn1, usps and intrusion), CVM and, even
better, BVM can have fewer support vectors.

5. Conclusion

Motivated by the minimum enclosing ball (MEB) prob-
lem, we introduce in this paper the easier enclosing ball
(EB) problem where the ball’s radius is fixed. Three effi-
cient(1 + ǫ)-approximation algorithms are developed that
are simple to implement and do not require any numeri-
cal solver. For the Gaussian kernel in particular, a suitable
choice of this (fixed) radius is easy to determine, and the
center obtained from the (1 + ǫ)-approximation of this EB
problem is expected to be close to the center of the cor-
responding MEB. Experimental results show that the pro-
posed algorithm has accuracies comparable to the other
large-scale SVM implementations, but can handle very
large data sets and is even faster than the CVM in general.

Acknowledgments

This research has been partially supported by the Research
Grants Council of the Hong Kong Special Administrative
Region under grant 615005.

References

Asharaf, S., Murty, M., & Shevade, S. (2006). Cluster
based core vector machine.Proceedings of the Sixth
International Conference on Data Mining(pp. 1038–
1042).

Bordes, A., Ertekin, S., Weston, J., & Bottou, L. (2005).

Simpler Core Vector Machines with Enclosing Balls

10
−1

10
0

10
1

10
2

10
3

10
40

20

40

60

80

100

C

te
st

in
g

ac
cu

ra
cy

 (
in

 %
)

BVM(1e−3)
BVM(1e−4)
BVM(1e−5)
BVM(1e−6)
LIBSVM
LASVM

(a) w3a.

10
−1

10
0

10
1

10
2

10
3

10
410

−1

10
0

10
1

10
2

10
3

10
4

C

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

BVM(1e−3)
BVM(1e−4)
BVM(1e−5)
BVM(1e−6)
LIBSVM
LASVM

(b) w3a.
10

−1
10

0
10

1
10

2
10

3
10

410
0

10
1

10
2

10
3

10
4

C

su

pp
or

t v
ec

to
rs

BVM(1e−3)
BVM(1e−4)
BVM(1e−5)
BVM(1e−6)
LIBSVM
LASVM

(c) w3a.

10
−1

10
0

10
1

10
2

10
3

10
40

20

40

60

80

100

C

te
st

in
g

ac
cu

ra
cy

 (
in

 %
)

BVM(1e−3)
BVM(1e−4)
BVM(1e−5)
BVM(1e−6)
LIBSVM
LASVM

(d) reuters.
10

−1
10

0
10

1
10

2
10

3
10

410
−1

10
0

10
1

10
2

10
3

10
4

C

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

BVM(1e−3)
BVM(1e−4)
BVM(1e−5)
BVM(1e−6)
LIBSVM
LASVM

(e) reuters.
10

−1
10

0
10

1
10

2
10

3
10

410
0

10
1

10
2

10
3

10
4

C

su

pp
or

t v
ec

to
rs

BVM(1e−3)
BVM(1e−4)
BVM(1e−5)
BVM(1e−6)
LIBSVM
LASVM

(f) reuters.

10
−1

10
0

10
1

10
2

10
3

10
494

95

96

97

98

99

100

C

te
st

in
g

ac
cu

ra
cy

 (
in

 %
)

BVM(1e−3)
BVM(1e−4)
BVM(1e−5)
BVM(1e−6)
LIBSVM
LASVM

(g) usps.
10

−1
10

0
10

1
10

2
10

3
10

410
−1

10
0

10
1

10
2

10
3

10
4

C

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

BVM(1e−3)
BVM(1e−4)
BVM(1e−5)
BVM(1e−6)
LIBSVM
LASVM

(h) usps.
10

−1
10

0
10

1
10

2
10

3
10

410
0

10
1

10
2

10
3

10
4

C

su

pp
or

t v
ec

to
rs

BVM(1e−3)
BVM(1e−4)
BVM(1e−5)
BVM(1e−6)
LIBSVM
LASVM

(i) usps.
Figure 3.Performance at differentC ’s onw3a, reuters andusps.

10
3

10
4

10
597

97.5

98

98.5

99

99.5

training set size

te
st

in
g

ac
cu

ra
cy

 (
in

 %
)

BVM(ε=1e−3)
BVM(ε=1e−4)
CVM(ε=1e−3)
CVM(ε=1e−4)
LIBSVM
LASVM
SimpleSVM

(a) testing accuracy (in %).

10
3

10
4

10
510

−2

10
0

10
2

10
4

10
6

training set size

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

BVM(ε=1e−3)
BVM(ε=1e−4)
CVM(ε=1e−3)
CVM(ε=1e−4)
LIBSVM
LASVM
SimpleSVM

(b) CPU time.
10

3
10

4
10

510
2

10
3

10
4

training set size

su

pp
or

t v
ec

to
rs

BVM(ε=1e−3)
BVM(ε=1e−4)
CVM(ε=1e−3)
CVM(ε=1e−4)
LIBSVM
LASVM
SimpleSVM

(c) # support vectors.
Figure 4.Performance with different training set sizes onweb.

Table 2.Testing accuracies (in %) of the various SVM implementations.
data BVM CVM LIBSVM LASVM SimpleSVM

ǫ = 10
−4 ǫ = 10

−5 ǫ = 10
−6 ǫ = 10

−4 ǫ = 10
−5 ǫ = 10

−6

optdigits 96.38 96.38 96.38 96.38 96.38 96.38 96.77 N/A 96.88
satimage 89.35 89.60 89.60 89.55 89.55 89.60 89.55 N/A 89.65

w3a 97.89 97.88 97.88 97.80 97.81 97.82 97.70 97.72 97.42
pendigits 97.97 97.94 97.91 97.85 97.85 97.85 97.91 N/A 97.97
reuters 96.75 96.78 96.75 96.96 96.96 96.96 97.15 97.09 –
letter 94.47 94.47 94.47 94.12 94.10 94.10 94.25 N/A 94.23
web 99.13 99.13 99.08 99.09 99.07 99.08 99.01 98.93 –

ijcnn1 97.58 98.38 98.25 98.67 98.11 98.23 98.19 98.42 94.10
usps 99.42 99.52 99.52 99.52 99.52 99.51 99.53 99.53 –

intrusion 91.97 91.97 91.97 81.68 92.44 92.44 – – –

Simpler Core Vector Machines with Enclosing Balls

Table 3.CPU time (in seconds) used in SVM training.
data BVM CVM LIBSVM LASVM SimpleSVM

ǫ = 10
−4 ǫ = 10

−5 ǫ = 10
−6 ǫ = 10

−4 ǫ = 10
−5 ǫ = 10

−6

optdigits 1.65 1.76 1.87 24.86 26.07 26.25 1.79 N/A 81.15
satimage 1.82 2.67 3.54 14.81 19.15 19.67 1.06 N/A 221.01

w3a 0.85 1.31 1.75 13.82 30.71 35.12 1.46 1.54 1384.34
pendigits 1.31 1.40 1.45 12.10 13.31 13.43 0.82 N/A 41.22
reuters 6.32 7.78 8.25 63.51 136.04 162.89 9.76 13.81 –
letter 19.87 24.84 28.40 215.73 244.25 250.43 10.85 N/A 1290.55
web 32.59 235.26 576.95 54.46 670.28 1235.32 168.84 178.73 –

ijcnn1 99.95 1019.58 2385.14 62.78 433.35 784.78 57.96 140.25 2201.35
usps 150.46 319.20 324.17 288.96 998.96 1753.12 1578.27 753.09 –

intrusion 0.73 0.73 0.73 0.51 0.84 0.70 – – –

Table 4.Numbers of support vectors obtained by the various SVM implementations.
data BVM CVM LIBSVM LASVM

ǫ = 10
−4 ǫ = 10

−5 ǫ = 10
−6 ǫ = 10

−4 ǫ = 10
−5 ǫ = 10

−6

optdigits 1583 1594 1595 2154 2191 2197 1306 N/A
satimage 1956 2048 2058 2333 2581 2611 1433 N/A

w3a 694 952 1060 1402 2118 2269 1072 979
pendigits 1990 2006 2008 2827 2925 2926 1206 N/A
reuters 925 1059 1076 1496 2217 2389 1356 1359
letter 10536 10658 10673 12440 12820 12843 8436 N/A
web 2522 4786 6263 2960 9986 12984 4674 5718

ijcnn1 4006 7409 7981 3637 9041 11097 5700 5525
usps 1524 2128 2163 2576 4224 4429 2178 1803

intrusion 99 100 100 26 44 51 – –

Fast kernel classifiers with online and active learning.
Journal of Machine Learning Research, 6, 1579–1619.

Chapelle, O. (2007). Training a support vector machine in
the primal.Neural Computation, 19, 1155–1178.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., &
Singer, Y. (2006). Online passive-aggressive algorithms.
Journal of Machine Learning Research, 7, 551–585.

Har-Peled, S., Roth, D., & Zimak, D. (2007). Maximum
margin coresets for active and noise tolerant learning.
Proceedings of International Joint Conference on Arti-
ficial Intelligence(pp. 836–841).

Joachims, T. (2006). Training linear SVMs in linear time.
Proceedings of the International Conference on Knowl-
edge Discovery and Data Mining(pp. 217–226).

Kumar, P., Mitchell, J., & Yildirim, A. (2003). Approxi-
mate minimum enclosing balls in high dimensions using
coresets.ACM Journal of Experimental Algorithmics, 8.

Nock, R., & Nielsen, F. (2005). Fitting the smallest enclos-
ing Bregman ball. Proceedings of the 16th European
Conference on Machine Learning(pp. 649–656).

Osuna, E., Freund, R., & Girosi, F. (1997). An improved
training algorithm for support vector machines.Proceed-
ings of the IEEE Workshop on Neural Networks for Sig-
nal Processing(pp. 276–285).

Panigrahy, R. (2004). Minimum enclosing polytope in high
dimensions.CoRR cs.CG/0407020.

Shevade, S., & Chu, W. (2006). Minimum enclosing
spheres formulations for support vector ordinal regres-
sion. Proceedings of the Sixth International Conference
on Data Mining(pp. 1054–1058).

Sonnenburg, S., R̈atsch, G., Scḧafer, C., & Scḧolkopf, B.
(2006). Large scale multiple kernel learning.Journal of
Machine Learning Research, 7, 1531–1565.

Tsang, I. W., & Kwok, J. T. (2007). Large-scale sparsi-
fied manifold regularization.Advances in Neural Infor-
mation Processing Systems 19. Cambridge, MA: MIT
Press.

Tsang, I. W., Kwok, J. T., & Cheung, P.-M. (2005a). Core
vector machines: Fast SVM training on very large data
sets. Journal of Machine Learning Research, 6, 363–
392.

Tsang, I. W., Kwok, J. T., & Lai, K. T. (2005b). Core vector
regression for very large regression problems.Proceed-
ings of the Twenty-Second International Conference on
Machine Learning(pp. 913–920).

Vishwanathan, S., Smola, A., & Murty, M. (2003). Sim-
pleSVM. Proceedings of the Twentieth International
Conference on Machine Learning(pp. 760–767).

