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Abstract

For large-scale classification problems, the
training samples can be clustered before-
hand as a downsampling pre-process, and
then only the obtained clusters are used for
training. Motivated by such assumption, we
proposed a classification algorithm, Support
Cluster Machine (SCM), within the learning
framework introduced by Vapnik. For the
SCM, a compatible kernel is adopted such
that a similarity measure can be handled not
only between clusters in the training phase
but also between a cluster and a vector in the
testing phase. We also proved that the SCM
is a general extension of the SVM with the
RBF kernel. The experimental results con-
firm that the SCM is very effective for large-
scale classification problems due to signifi-
cantly reduced computational costs for both
training and testing and comparable classifi-
cation accuracies. As a by-product, it pro-
vides a promising approach to dealing with
privacy-preserving data mining problems.

1. Introduction

Researchers have made great efforts to improve the
efficiency of SVM for large-scale classification prob-
lems via various approaches, e.g., decomposition meth-
ods (Osuna et al., 1997; Joachims, 1999; Platt, 1999;
Collobert & Bengio, 2001; Keerthi et al., 2001), in-
cremental algorithms (Cauwenberghs & Poggio, 2000;
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Fung & Mangasarian, 2002; Laskov et al., 2006), par-
allel techniques (Collobert et al., 2001; Graf et al.,
2004), and employing an approximate formula (Fung
& Mangasarian, 2001; Lee & Mangasarian, 2001).

Another approach, in which only the representatives
are used for training, also aims at large-scale classi-
fication problems. Active learning (Schohn & Cohn,
2000) chooses the representatives simply by the heuris-
tic. CB-SVM (Yu et al., 2003) recursively selects the
centroids of the clusters as the representatives along
the hierarchical clustering tree. In (Sun et al., 2004), it
is assumed that the samples residing on the boundaries
of the clusters are critical data, thus only these sam-
ples are used for training. Core Vector Machine (Tsang
et al., 2005) chooses the core set by solving a minimum
enclosing ball problem. In (Boley & Cao, 2004; Yuan
et al., 2006), the potential support vectors (SVs) are
first identified by an approximate classifier trained on
the centroids of the clusters, and then, the clusters
are replaced by the SVs (Boley & Cao, 2004), or the
non-SVs are removed (Yuan et al., 2006).

In this paper, we propose the Support Cluster Ma-
chine (SCM) to effectively deal with large-scale clas-
sification problems. The proposed algorithm follows
the learning framework introduced by (Vapnik, 1998),
and addresses the difficulties in the kernel space. The
main idea of the SCM is as follows. The training sam-
ples (feature vectors) are clustered beforehand as a
downsampling pre-process, and the obtained clusters
are taken as the training units, whereas the testing
samples are still the original feature vectors. Then, a
compatible kernel is employed for the SCM such that
a similarity measure can be handled not only between
clusters in the training phase but also between a clus-
ter and a vector in the testing phase. Thus, the sup-
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port clusters obtained in the training phase can be di-
rectly used in the decision function. The experiments
carried out on the toy dataset and large-scale datasets
confirm the effectiveness of the proposed algorithm
by providing the comparable classification accuracies
as well as by significantly reducing the computational
costs for both training and testing. Besides, the SCM
can be interestingly applied to the privacy-preserving
data mining tasks.

Compared to the existing related algorithms, the SCM
has the following advantages: (a) it is able to achieve
a comparable classification accuracy, but with signif-
icantly reduced computational and spatial costs for
both training and testing; (b) it compresses the train-
ing samples by adopting the generative models as the
training units, which are able to keep the complete sta-
tistical information of the original data, rather than
selecting a set of representatives; and (c) it is easily
implemented.

The remainder of the paper is organized as follows.
In Section 2, the learning framework of the proposed
SCM and the probability product kernel is firstly de-
scribed, and then the proposed SCM is presented in de-
tail including the training and the testing phases. Sec-
tion 3 reports the experimental results for large-scale
classification problems and privacy-preserving prob-
lems. Finally, we make the conclusion and the dis-
cussion on the work in Section 4.

2. The Proposed Algorithm

The training samples are given as N = N+ + N~ pairs
L = {(xi,y:)}X,, where the feature vector x; € R
and the label y; € {1,—1}.

For the SCM training, N positive and N~ nega-
tive samples are clustered, respectively. Then, the
K = Kt 4+ K~ training clusters can be obtained. We
assume that these clusters follow Gaussian distribu-
tions, then the training clusters can be denoted as a
set of training pairs C = {(O, yx) }_,, where the gen-
erative model Oy = (P, ps, Xx) comprises the prior
(weight), the mean, and the covariance matrix, of the
kth cluster. In the case of training units being clus-
ters, all the training clusters should satisfy the follow-
ing constraints:

Y (W' ¢(Or) +0) > 1 &,

where ¢(+) is a mapping function that projects the gen-
erative model into the infinite dimensional space of
probability distributions.

Like the SVM, the SCM also follows the principle of
Structural Risk Minimization (SRM) by introducing a

k=1,....K (1)

regularization term into the cost function to minimize
the VC bound, i.e., maximize the margin between the
positive and the negative clusters:

K

1

min ~w'w 4 C Z P&y (2)
wb§ 2 k=1

where the slack & is multiplied by the weight P, (the

prior of the kth cluster) such that a misclassified clus-

ter with more samples could be given heavier penalty.

Incorporating the constraints (1) and the constraints
& >0,k=1,..., K, to the cost function (2), the con-
strained optimization problem is formulated into the
primal Lagrangian. Then, the primal is transformed
to the dual problem following the same steps as in the
SVM. For the space limitation, we directly give the
dual representation of the SCM as follows:

K | KK
mgxzak ~3 Zzykylakal¢(®k)T¢(®l) (3)
=1

k=11=1

s.t. 0< ap < PC,

K
Z apyr = 0.
h—1

k=1,... K

In the testing phase, we treat the testing sample x as
an extreme case of the cluster ©4 when its covariance
matrix vanishes, i.e., Ox = (Px = 1, u, = x, X5 = 0).
After solving the above dual problem, the coefficients
ag,k = 1,..., K, can be obtained. Then, a testing
sample x can be predicted by using the following de-
cision function:

K
f(x) = sgn( Z apyed(Or) T (Ox) +b).  (4)

k=1

It is worth noting that the SCM has the same frame-
work as in the SVM. However, the dual optimization
problem (3) and the decision function (4) of the SCM
have shown that, the remaining difficulties lie in find-
ing a compatible kernel which is able to measure the
similarity not only between two clusters in the training
phase but also between a cluster and a sample vector
in the testing phase. In the following subsections, we
will give the details for addressing these difficulties.

2.1. Probability Product Kernel

One valid kernel which satisfies the requirements of the
SCM is derived from the probability product kernel.
Here, we only give a brief introduction to the proba-
bility product kernel with the Gaussian distribution.
For details, one can refer to (Jebara et al., 2004).
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The probability product kernel between two distribu-
tions pr and p; is defined as:

Ko(Dk, 1) = /R . prpydx (5)

where &, (pk, p1) is positive definite, and the exponen-
tial p leads to a set of candidate kernels. We choose
p = 1 in order to facilitate the application of the un-
derlying kernel to the testing phase. The interesting
result induced by setting p = 1 is given in Section 2.3.

When py and p; are both Gaussian distributions, i.e.,
Pk = Pep(x|pg, Bi) and py = Pip(x|py, i), £(pr. pi)
can be written as k(©y,©;), which is a function of
two generative models. Then, x(O,0;) can be com-
puted directly using the corresponding parameters of
two models to avoid integrating the probability distri-
butions in the entire input space. Hence, we have:

x(Ok, O1) (6)
— PP [ i Splxla B
R
= PeP(2m) E (S ) RS R

~—1_

1 re L
exp (= 5 (g B g+l B — B'S i)

~ 1 ~
where 8 = (7' + 57 o=y + 57 .

2.2. Training Phase

To learn support clusters for the SCM, a cluster-
ing technique (e.g., K-Means (Hartigan & Wong,
1979), the Expectation Maximization (EM) algo-
rithm (Dempster et al., 1977), hierarchical cluster-
ing (Zhang et al., 1996)) should be applied on the
training samples beforehand. This is the first step of
the training phase. After clustering, (3) is exploited
for the SCM learning. This consists of the second step
of the training phase. In what follows, the two steps
will be discussed in detail.

2.2.1. CLUSTERING

In this step, we can select a proper clustering tech-
nique for the task observed. For the SCM, clustering
is employed to compress the training samples, where a
generative model is used to represent a local subset of
the training samples. Accordingly, the clusters are not
necessary to fit the density of the data very well. For
large-scale classification problems, it is also crucial to
reduce the computational complexity. Therefore, any
efficient clustering technique, which is able to approx-
imately describe the data layout in the input space,
can be adopted for the SCM.

In our work, we adopt a clustering technique named
Threshold Order-Dependent (TOD) algorithm (Fried-
man & Kandel, 1999). The main idea of the TOD algo-
rithm is as follows. The training samples {x1, Xa, ...}
are fed sequentially. For the given sample x;, if the
longest distance from x; to the centers of the existing
clusters exceeds a predefined threshold, a new cluster
with the center x; is created; otherwise, x; belongs to
the cluster whose center is closest to it. The TOD al-
gorithm has two attractive properties: 1) a linear com-
putational complexity, and 2) being able to deal with
sequential data with a negligible spatial complexity.
We also used the EM algorithm for comparison. On
the analysis of the experimental results in Section 3.3,
one can see that the TOD algorithm is more appropri-
ate for the SCM.

2.2.2. SCM LEARNING

After clustering, the training clusters {(Oy,vx)}r_,
are obtained. Like in the SVM, the inner product

in (3) can be replaced by the kernel (6). Hence, we
can get the following objective function:
K | KK
m&X;ak - 5;;yky1akam(@k7@z)- (7)

In practice, we can simply use the diagonal en-
tries of the covariance matrices, ie., Xp =

diaug((o,(cl)f7 ce (J,&D))Q), to avoid computing the in-
verse matrices in (6). Thus, the kernel becomes:

k(O, ©y)
_ 1 (™) }
= P.Pe p{ 2; (Ui(cd))2+(al(d))2 /
D 2 d)\2
I 2 (1) + 7)) ®
d=1

The priors of the training clusters are defined in the
following two ways corresponding to different cluster-
ing techniques: 1) hard ownership (e.g., the TOD algo-

rithm): Py = %; 2) soft (probability) ownership (e.g.,
. PINT PN~
the EM algorithm): P, = ~*5— (P = %), where

P;F (P;) denotes the normalized weight in the original
positive (negative) GMM obtained in the first step.

2.3. Testing Phase

The proposed algorithm is able to measure the simi-
larity between a cluster and a vector by employing a
compatible kernel. Here, the testing sample x can be
viewed as the extreme case of the Gaussian distribu-
tion, where the prior is fixed and the covariance matrix
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vanishes, i.e., Ox = (Px = 1, u,, = x, X% = 0). Thus,
the support clusters obtained in the SCM learning step
can be directly used in the decision function.

Theorem 1. Given two Gaussians, O and Oy, if the
prior P, = 1, and the covariance matriz 3; vanishes,
i.e., 3y — 0, then, the limit of the kernel function (6)
becomes the posterior probability of p; given O.

Proof. By setting the exponential p = 1 (see Sec-
tion 2.1), the kernel (6) can be written in the form
of the expectation of py under p;, i.e., E,, [pg]. Then,
the limit of the expectation as X; vanishes gives:

lim E, [p
o :Dz[ k]
= PuPip(plpy, ) lim p(x[py, Bp)dx
214>0 Ij/,‘
= Pup(pylpy, Zi) 9)

where pf is the e-neighborhood of p;, i.e., the open
D-ball with radius € centered at p;, € > 0. Vx €
5, the probability density, p(x|py,, k), can be viewed
as the constant value p(p;|py, Xr). As 3; — 0, the
probability integral of p(x|pu;, 3;) over x in pf equals
to 1, and the result can be derived. ]

We replace O; in (9) by the testing sample Oy, and
get the kernel for the SCM testing;:

K(Ok, Ox) = Prp(x|py,, Xi) (10)

which is the posterior probability of x given ©. By
substituting (10) for the inner product in (4), then the
decision function of the SCM gives:

K

f(x) = sgn( Zakykpkp(x\ﬂka k) +b). (11)
=1

For simplicity, like in the training phase we can also
use the diagonal entries of the covariance matrices in
the testing phase. We replace 0; in (8) by O, and set
O',((d) =0,d=1,...,D. Then, we also get the posterior
probability of x given O:

(O, Ox) (12)
D D (d) (d) 2
1 1 (i~ —x'9) }
= P —exXpy — = —_— 7.
I o] 1% "oy

2.4. Connection with SVMs

Since the proposed SCM and the SVM with the RBF
kernel both handle the basic training units with Gaus-
sian distributions, there should exist an underlying
connection between these two algorithms.

Lemma 1. If the covariance matrices of two clusters
take Xy = X; = o1, then (6) becomes the Radius
Basis Function (RBF) kernel (Jebara et al., 2004):

PP,

. Huk—uzllg . 13
(47702)% p( ) (13)

H(@k, @l) = 40_2
Theorem 2. The SVM with the RBF kernel is the
extreme case of the SCM when each training cluster in
the SCM comprises only one sample.

Proof. In the case that each training cluster comprises
only one sample, both the training clusters and the
testing sample should be viewed equally as such Gaus-
sians, where P, = Py = 1, and ), = 4 = 0?Lk =
1,..., K. Then, the kernel both for the SCM training
and testing becomes the RBF kernel:

K(O, 1) = Nexp(—|ly, — p]1*) (14)
where A\ = (471’(72)_% and v = ﬁ are constants. In
addition, the SCM follows the same learning frame-
work as the SVM does. Thus, the SCM in the extreme
case reduces to the SVM with the RBF kernel. ]

As aforementioned, the SCM can be viewed as a gen-
eral extension of the SVM with the RBF kernel by in-
troducing the size (prior) and the shape (covariance)
information into a training unit.

3. Experimental Results

We have performed sets of experiments on a toy
dataset and two real databases to demonstrate the
effectiveness of the SCM: (a) Toydata. This syn-
thetic dataset was randomly generated for visualizing
the learning result of the SCM in the 2-D space. (b)
MNIST!. This is a large-scale benchmark database
with 10 classes of handwritten digits for classification
tasks. (c) Adult?. This is also a large-scale bench-
mark database and the task is to predict whether in-
come exceeds $50K /yr based on census data. Based on
this database, we simulated a privacy-preserving task
to show an interesting application of the SCM.

For comparison, we adopted three state-of-the-art im-
plementations for SVM, i.e., libsvim (SMO-type algo-
rithm) (Chang & Lin, 2001), SVMTorch (Collobert
& Bengio, 2001), SvMlight (Joachims, 1999), and
CVM (Tsang et al., 2005). All the experiments were
performed on a 3.0GHz CPU.

! Available at http://yann.lecun.com/exdb/mnist/.
2 Available at http://www.ics.uci.edu/mlearn/
MLRepository.html.
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(a) (b)

Figure 1. (a) Samples. (b) Learning result of the SCM on
the 2-D toydata; the ellipses in black bold denote the sup-
port clusters, and the gray area denotes the margin.

3.1. Model Selection

For the SCM, the training clusters have already had
covariances, it is not required to select v in the
training phase, thus there remains only one param-
eter C for the model selection by grid search. For
the four comparing methods, there are two parame-
ters, C' and v, we selected the optimal pair by grid
search. In our experiments, we adjusted C in the
range of {107%,10°,10',102,10%}, and ~ in the range
of {1071,1072,1073,10*}.

3.2. Toydata

We generated a two-class 2-D synthetic dataset for vi-
sualizing the learning result of the SCM. For each class,
2500 samples were generated by following a mixture of
Gaussian distributions which was predefined (cf. Fig-
ure 1(a)). We first employed the TOD algorithm to
cluster the positive and the negative samples respec-
tively, and obtained 25 positive and 25 negative clus-
ters. Then, we calculated the means, the weights (pri-
ors), and the covariance matrices for the clusters. In
Figure 1(b), the clusters are denoted by ellipses, whose
sizes are proportional to the weights.

We used the proposed algorithm to learn a classifier
on the training clusters. In Figure 1(b), the support
clusters are labeled in black bold, which determine the
margin of the SCM (light gray area —1 < f(x) < 0,
deep gray area 0 < f(x) < 1). One can see that the
SCM also tries to maximize the margin between two
classes like that the SVM does.

3.3. Large-scale Dataset: MNIST

MNIST is a large-scale benchmark database which is
usually used for evaluating classification performance.
The dataset comprises 10 classes, handwritten digits
‘0’—9’, in total 60000 samples for training (about 6000
for each class) and 10000 samples for testing. In our

Table 1. The average performance of the SCM on the
MNIST database compared to three SVMs and CVM. Note
that the training time by the SCM comprises both the clus-
tering time and the SCM learning time.

Methods Training (s) Testing (s) FError (%)
libsvm 5.78 1.77 0.31
SVMTorch  3.96 7.20 0.31
SVM™“" 195 4.46 0.31
CVM 27.9 1.21 0.31
SCM+TOD 0.78 0.27 1.07
SCM+EM  9.50 0.08 1.47

experiments, we investigated the characteristics of the
SCM by analyzing the average results of 45 binary
classifiers. We also compared the results obtained by
the SCM with those by the four comparing methods.

Table 1 reports the training times, the testing times,
and the average testing errors obtained by the four
comparing methods as well as the SCMs with differ-
ent clustering algorithms (i.e., the TOD algorithm and
the EM algorithm). Since the number of the train-
ing clusters and the support clusters in the SCMs are
both fewer than that of the training samples and the
SVs in the SVMs, the learning and the testing time
for the SCMs are significantly less than the one for
the SVMs. For the SCM, the clustering technique has
significant influence on training times and testing er-
rors. By analyzing Table 1, one can see that the SCM
with the TOD algorithm takes the least training time
(i.e., 0.78s) and testing time (i.e., 0.27s), and obtains a
comparable testing error 1.07%. In contrast, the SCM
with the EM algorithm does not work as well as the
one with the TOD algorithm. Due to the higher com-
putational cost of the EM algorithm, we set a smaller
K and obtained only about 50 training clusters, which
are insufficient to describe the data layout in the in-
put space. Therefore, the TOD clustering algorithm is
more effective for the SCM.

Let us look closer on the results obtained by the SCM
with the TOD algorithm. Figure 2(a) plots the aver-
age testing error with respect to the number of train-
ing clusters K. In our experiments, K was adjusted
by tuning the threshold of the TOD algorithm. With
K increasing, the average testing error reduces gradu-
ally, whereas the average time for the SCM learning in-
creases polynomially (cf. Figure 2(b)) and the average
number of the support clusters increases sublinearly
(cf. Figure 2(c)). Ideally, these curves will keep their
trends until arrive at K = N, i.e., the extreme case
that each cluster comprises only one sample. However,
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Figure 2. Average testing results of the SCM on the MNIST database: (a) average testing error rate; (b) average CPU
time for training and testing; (c) average number of support clusters (SCs).

at the point around 280 clusters, the SCM is able to
achieve the testing errors about 1.0%, which are com-
parable to the results obtained by the SVMs. In the
meanwhile, by analyzing the curves in Figure 2, one
can observe that the regularization parameter C' has no
significant influence on the classification results. This
confirms the robustness of the proposed algorithm.

It is worth noting that in the high-dimensional space,
the number of the training clusters is always equal to
or even less than the number of dimensions of the input
space. In this case, a higher ratio of the training clus-
ters can not be surrounded by the other training clus-
ters of the same class, i.e., are located on the boundary,
hence they are more likely to work as the support clus-
ters; whereas in the low-dimensional space, the ma-
jority of the training clusters can be surrounded by
few support clusters, e.g., the toydata in Figure 1(b).
The above analysis explains why there exists relatively
higher ratio of the number of support clusters to the
number of training clusters in Figure 2(c).

3.4. Privacy-preserving Dataset: Adult

Adult database contains 30162 training samples and
15060 test samples (the samples with unknown values
were removed ), and the percentage of the positive sam-
ples is 24.78%. We used the Adult database to simu-
late a common task in privacy-preserving data mining
on the horizontally® partitioned data, i.e., to learn a
prediction rule from a set of databases without disclos-
ing the individual samples from one party to the others
(and the public). We partitioned the training samples
into three subsets in an equal size (cf. Table 2), which
are viewed as the databases of three parties. Since each
party would not like to disclose the individual informa-
tion, one cannot simply combine the three databases

3Each party has a subset of the data with full attributes.

for training.

The proposed SCM can be used to deal with such ob-
served privacy-preserving tasks. With the aid of the
SCM, each party is only required to offer a set of
training clusters (represented by generative models)
for training. In the simulated task, we first used the
TOD algorithm to cluster the training samples from
three datasets respectively, and obtained three posi-
tive and three negative GMMs. Then, we combined
the positive and the negative GMMs into one positive
and one negative GMM, by resetting the priors of the
training clusters as follows:

A(m) P N (m)
o) "
where P,gm) denotes the prior of the kth cluster in the
mth database, and N(™) denotes the number of train-
ing samples in the mth database. Finally, we used
the proposed algorithm to learn the classifiers on the
combined training clusters.

Besides the result obtained by the SCM on the parti-
tioned datasets, we also provides the results obtained
by the SCM and the four comparing methods on the
complete (non-partitioned) Adult database, which are
reported in Table 3. One can see that the SCM is
able to preserve the data privacy, in the meanwhile,
achieves comparable classification accuracy provided
by the state-of-the-art implementations for SVM.

4. Conclusion and Discussion

In this paper, we have proposed the Support Clus-
ter Machine (SCM) to address large-scale classification
problems. Moreover, it also can be applied to privacy-
preserving data mining problems. The SCM deals with
these two kinds of problems by compressing the train-
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Table 2. The Adult database is partitioned into three sub-
sets to simulate three databases from three parties.

Party Positive Negative
1 2463 7587
2 2493 7557
3 2552 7510

Table 3. The classification results on the Adult database.
Note that (p) indicates the SCM is applied to the simulated
privacy-preserving task.

Methods Database partitioned? Error (%)
libsvm X 16.27
SVMTorch X 16.51
SVMioht X 15.70
CVvM X 15.98
SCM X 16.66
SCM (p) YV 16.83

ing samples in order to 1) downsample the data for the
large-scale problems, and 2) hide the individual infor-
mation for the privacy-preserving problems. The pro-
posed algorithm compresses the training samples via
a new approach, i.e., taking generative models as the
training units; consequently, the SCM can be viewed
as a general extension of the SVM with the RBF kernel
by introducing the size (prior) and the shape (covari-
ance) information into a training unit. The remaining
difficulty, i.e., measuring the similarity between a clus-
ter and a vector, has also been addressed by adopting
a compatible kernel which is derived from the proba-
bility product kernel; thus, the support clusters can be
directly used in the prediction function.

The SCM is different from the existing related methods
in the following aspects: (a) For the SCM, the train-
ing units are generative models while the testing units
are vectors; however, for the other methods, both the
training and the testing units are vectors or “super-
vectors” (e.g., GMMs (Moreno et al., 2003; Campbell
et al., 2006)). (b) In the SCM, the training units con-
tain the complete statistical information of the original
data; whereas in the “selective sampling” methods, the
selected representatives may lose the statistical infor-
mation. (c¢) In the SCM, there is only one parameter
C for model selection; but in the other methods, there
are usually two or even more parameters. (d) The
proposed algorithm can be easily implemented; while
most of the existing algorithms are more complicated.

correct
O decision SCM
boundary

e‘a . centroid-
ineorrect | hased SYM e

_____________ decision

boundary | With RBF
‘ kernel

() (b)

Figure 3. The advantages of using (a) covariances and (b)
priors in the SCM. In (b), although the SCM has more mis-
classified clusters than the centroid-based SVM, its loss is
smaller since the misclassified clusters in the SCM usually
comprise fewer data.

By employing the covariances (second-order informa-
tion) and priors of clusters, the SCM can improve the
accuracy compared to the SVM which only uses the
centroids of clusters as the representatives. The ad-
vantage of using covariances is that they can lead to a
more accurate similarity measure between clusters (cf.
Figure 3(a)). The advantage of using priors is that
they can force the learner to concern more the clusters
which comprise more data (cf. Figure 3(b)). However,
since the SCM uses covariances in place of widths in
RBF kernels, the VC dimension can not be adjusted
like using RBF kernel (larger width leads to lower VC
dimension). Therfore, we will further investigate the
generalization ability of the SCM in the future work.
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