
Winnowing Subspaces

Manfred K. Warmuth manfred@cse.ucsc.edu

Computer Science Department, University of California - Santa Cruz

Abstract

We generalize the Winnow algorithm for
learning disjunctions to learning subspaces of
low rank. Subspaces are represented by sym-
metric projection matrices. The online al-
gorithm maintains its uncertainty about the
hidden low rank projection matrix as a sym-
metric positive definite matrix. This ma-
trix is updated using a version of the Ma-
trix Exponentiated Gradient algorithm that
is based on matrix exponentials and matrix
logarithms. As in the case of the Winnow
algorithm, the bounds are logarithmic in the
dimension n of the problem, but linear in the
rank r of the hidden subspace. We show that
the algorithm can be adapted to handle arbi-
trary matrices of any dimension via a reduc-
tion.

1. Introduction

Assume we want to label unit vectors as to whether
they are “close to” a r dimensional subspace that is
hidden from the learner. We will give a polynomial
online algorithm that does this with a small number
of prediction mistakes without ever producing an r di-
mensional subspace that determines the labels. Our
algorithm is a matrix variant of the Winnow algo-
rithm for learning disjunctions. In the noise-free case
the number of mistakes of our algorithm is O(r log n

r),
where n is the dimension of the instances and r the
rank of the hidden subspace. Whereas the original al-
gorithm maintains a non-negative weight vector and
is designed to learn as well as the best disjunction of
size r, the new matrix version maintains a symmetric
positive definite matrix as its parameter. This ma-
trix summarizes the uncertainty about the hidden r
dimensional subspace.

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

The algorithm and its mistake bounds are presented
in an online setting. Standard conversion algorithms
lead to bounds for batch learning models when the
examples are drawn independently at random accord-
ing to a fixed distribution (See e.g. (Littlestone, 1989;
Cesa-Bianchi & Gentile, 2006)).

The original Winnow algorithm uses a linear threshold
function as its hypothesis. In the matrix version the
dot product between vectors is replaced by the trace
between matrices. In this conference paper we only de-
scribe the algorithm in its simplest deterministic form
and only prove bounds for the noise-free case. The al-
gorithm and bound retain the case of disjunctions as
a special case.

We leave it to the reader to adapt the fancier algo-
rithms and bounds developed for the disjunction case
to the matrix case: versions that can handle shifted
and scaled versions of the problem as well as noisy
data, a randomized version that has an expected mis-
take bound that is half of the mistake bound of the
deterministic algorithms and modifications of the al-
gorithms that learn well when the subspace shifts over
time (Auer & Warmuth, 1998). Finally, the algorithms
can also be kernelized (as was done in (Kuzmin & War-
muth, 2007) for principal component analysis).

Our first algorithm, Symmetric Matrix Winnow,
learns well when the labels indicate closeness to a
low rank subspace in Rn. A subspace is represented
as a (symmetric) projection matrix P =

∑r
i=1 uiu

T
i ,

where ui are the r orthogonal directions defining the
subspace. The algorithm maintains its uncertainty
about the hidden projection matrix as an n×n dimen-
sional symmetric positive definite matrix. It assumes
that the instance matrices are symmetric n×n matri-
ces with eigenvalues in [0, 1]. In Figure 3 we visualize
the regions produced by thresholding a trace between
a projection matrix and an instance matrix of the form
xx> where x is a unit vector (or direction). At the
end of the paper we give a second algorithm that can
handle the case of arbitrary m×n dimensional instance
matrices (with bounded maximum singular value) that

Winnowing Subspaces

Figure 1: The symmetric matrix A is depicted as the in-
ner ellipse: The curve of the ellipse is plot of vector Au ,
where u is unit vector. The lines connect the correspond-
ing points on the outer unit circle and the ellipse. The
eigenvectors correspond to the axes of the ellipse.

are labeled whether they are close to rank r matrix of
dimension m × n that has r non-zero singular values
of value one. The generalization is achieved via a re-
duction from the symmetric case.

1.1. Related Work

There has been a number of papers where the expo-
nentiated gradient algorithms (Kivinen & Warmuth,
1997) for vector parameters have been generalized to
matrix parameters. Instead of maintaining a vector of
non-negative numbers, the algorithm now maintains
a symmetric positive definite matrix.1 The linear re-
gression case and a generalization to Boosting appears
in (Tsuda et al., 2005) and the expert setting of on-
learning has been “lifted” to the matrix case in (War-
muth & Kuzmin, 2006a; Arora & Kale, 2007). Also
in (Warmuth & Kuzmin, 2006b; Kuzmin & Warmuth,
2007) the methodology was used to derive on-line al-
gorithms for principal component analysis.

Note that in all of the above cases where symmet-
ric positive definite matrices are used as a parameter,
there is always an original problem where the parame-
ter of the algorithm and the instances are vectors. The
original problem is retained as a special case when the
parameter matrix and instance matrices are restricted
to be diagonal matrices. Curiously enough the bounds
are always the same for the general symmetric ma-
trix case as for the vector/diagonal matrix case. This

1Closely related is the case when the parameter vector is
a density matrix (i.e. a symmetric positive definite matrix
whose trace is normalized to one).

phenomenon has been dubbed the “free matrix lunch”
(Warmuth, 2007). In particular, our bound for learn-
ing the Close to Subspace problem is the same as the
bounds for the original disjunction problem.

In this paper we “lift” the Winnow algorithm for learn-
ing disjunctions to the symmetric matrix case. This is
particularly interesting because it lets us learn well
when the data is close to a low rank subspace. Many
algorithms have been proposed for learning low-rank
matrices. However, with the notable exception of prin-
cipal component analysis, generalization bounds are
often hard to obtain for these algorithms. In this pa-
per we address a very simple problem where the target
is a subspace of low rank (i.e. all eigenvalues defining
the low-rank object are the same). In this simple case
we are able to prove bounds and show how they carry
over to general matrices of arbitrary shape. As for
principal component analysis, the bounds are linear in
the rank of the subspace but logarithmic in the feature
dimension.

2. Notation and Some Linear Algebra

A dyad is an outer product uu>, where u is a unit
vector (i.e. a direction). Any linear combination
of dyads (with real coefficients) is a symmetric ma-
trix and any symmetric matrix A of dimension n al-
ways has an eigendecomposition, i.e. it can be ex-
pressed as a linear combination of n orthogonal dyads:
A =

∑n
i=1 λiuiu

>
i , where the linear coefficients λi are

the real eigenvalues and the ui are the orthonormal
eigenvectors. We depict a symmetric matrix as an el-
lipse which is an affine transformation of the unit ball
(See Figure 1). A dyad is a degenerate ellipse that has
exactly one eigenvector with eigenvalue one and all
other eigenvalues are zero. In other words a dyad can
be viewed as an axis of length two that goes through
the origin at the half point. The parameter of our al-
gorithm will be a symmetric positive definite matrix,
i.e. now the λi must be non-negative.

Alternatively, we can view the symmetric positive def-
inite matrix A as a covariance matrix of some random
cost vector c ∈ Rn, i.e.

A = E
(
(c− E(c)(c− E(c))>

)
The variance along any vector u is then

V(c>u) = E(
(
c>u− E(c>u)

)2
)

= u> E
(
(c− E(c)(c− E(c))>

)︸ ︷︷ ︸
A

u.

Winnowing Subspaces

Figure 2: Plot of the variance: The outer figure eight is

direction u times the variance u>Au. The inner red curve
is matrix A represented as an ellipse. The partial green arc
is part of the unit circle.

We often express the variance as a trace2:

u>Au = tr(u>Au) = tr(A uu>) ≥ 0.

For an eigenvector, this variance equals the eigenvalue
and touches the ellipse (See Figure 2).

3. Staying Close to a Subspace

Consider for example the 2 out of 5 literal monotone
disjunction v1 ∨ v3, which is represented by the bit
vector w = (1, 0, 1, 0, 0)>. The disjunction evaluates
to true on the bit vector x = (0, 1, 1, 0, 0)> because
w · x ≥ 1

2 .3 In general, an r literal disjunction is
modeled as a bit vector with r ones and the disjunction
is true if d · x ≥ 1. Note that if the vectors d and x
are viewed as diagonal matrices, then the dot product
becomes a trace: d · x = tr(diag(d) diag(x)).

When we generalize our setup to matrices then dis-
junctions naturally correspond to subspaces. A sub-
space P is defined by a rank r projection matrix,
P =

∑r
i=1 uiu

>
i , where the ui are r orthogonal di-

rections defining the subspace. An instance is a posi-
tive definite symmetric matrix X with eigenvalues in
the range [0..1] and P labels X as 1 if it is “close to”
P and 0 otherwise. Here closeness is measured with
the trace tr(PX) which can be rewritten as a sum of
variances over the r directions defining P :

tr(PX) = tr(
r∑

i=1

uiu
>
i X) =

r∑
i=1

u>i Xui︸ ︷︷ ︸
variance in dir.ui

.

2The trace of a square matrix is the sum of the diagonal.
For two such matrices A, B, tr(AB) =

P
i,j Ai,jBj,i =

tr(BA). This inner product can also be denoted as A>•B.
3The dot product with a positively labeled bit vector is

≥ 1 and with a negative bit vector is 0. The threshold of 1
2

is right in the middle of the gap between the positive and
negative bit vectors.

Since the eigenvalues of X lie in [0,1], the variance
along each direction is at most one. The “generalized
disjunction” evaluates to one if the total variance along
all directions is above a threshold. In the simplest
case the instance matrices Xt are dyads xtx

>
t . See

Figure 3 for a visualization of the regions produced by
the threshold tr(P xx>) ≥ 1

2 when P is a projection
matrix.

Close to Subspace Problem
Input: A sequence of examples (Xt, yt), where the
instances Xt are symmetric matrices with eigenvalues
in [0,1], the labels yt are ±1, and there is a projection
matrix P of rank r s.t. ∀ t

tr(PXt) =
{
≥ 1

2 if yt = 1
0 if yt = −1

Output: A symmetric positive definite matrix W of
rank r s.t. ∀t

tr(WXt) =
{
≥ 1

2 if yt = 1
0 if yt = −1

We don’t know whether the Close to Subspace prob-
lem is NP-hard. However, this is easy to show if we
augment the problem with a fixed set of additional lin-
ear constraints that must hold for both the consistent
projection matrix P and the output matrix W .4

Theorem 1. The Close to Subspace problem with lin-
ear side constraints is NP-hard.

Proof. Given an instance of the Set Cover problem: a
family of subsets Si of a fixed set of n elements and a
cover size r. The size r becomes the rank constraint
of the corresponding CSP instance. Represent each
set Si as a positive example (Xi,+1) where Xi is a
binary diagonal instance matrix s.t. whose j diago-
nal element is 1 if the j-th element lies in Si (and 0
otherwise). Add O(n2) additional constraints to the
CSP instance that explicitly force all off-diagonal ele-
ments to be zero: tr(WXi,j) = 0, where Xi,j is the
n × n dimensional 0 matrix with positions (i, j) and
(j, i) replaced by 1.

Clearly, any cover of size r can be encoded as a diag-
onal matrix W with r ones and n− r zeros along the
diagonal. Also if a symmetric positive definite matrix
W has rank r and satisfies the side constraints then it
must be a diagonal matrix with r non-zero entries in
the diagonal. Wlog the non-zero elements are all 1’s
and in this case W corresponds to a cover.

4NP-hardness reductions from Maximum Cut are also
possible (already for r = 1). In this case no side constraints
are needed but the Close to Subspace problem needs to
be scaled in various ways. Here we only give a simple
reduction that uses side constraints.

Winnowing Subspaces

Algorithm 1 Symmetric Matrix Winnow(η, θ, w0, n)
η > 0, θ, w0 ∈ R, n ∈ N

Initialize W 1 = w0 I
n×n

for t = 1 to T do
Receive instance Xt

n×n
with eigenvalues in [0, 1]

Predict with

ŷt =
{

+1 if tr(W tXt) ≥ θ
−1 otherwise

Receive label yt

Update

W t+1 =
{

W t if ŷt = yt

exp(log W t + η ytXt) otherwise
(1)

end for

4. The Algorithm

Consider the following online protocol: In each trial
the algorithm is given an instance matrix Xt. The
algorithm then produces a prediction ŷt ∈ {0, 1} based
on its internal parameters and receives a label yt ∈
{+1,−1}. Finally, the algorithm incurs a mistake if
ŷt 6= yt and updates its parameters.

The Symmetric Matrix Winnow algorithm never out-
puts a projection matrix of low rank that predicts well.
Instead it maintains a symmetric positive definite ma-
trix W t (of full rank) as its parameter and produces a
binary prediction ŷt based on thresholding tr(W tXt).
The parameter matrix is updated using the matrix log
and exponential.5 As the original Winnow algorithm,
the parameter is only updated when a prediction mis-
take occurs.6 Note that the matrix log and exponen-
tial of a symmetric matrix are computed by first com-
puting the eigendecomposition of the argument matrix
and then applying the function to all eigenvalues.

5. The Bound

We bound the number of mistakes made by our algo-
rithm with similar methods as were used for the Win-
now algorithm (see e.g. (Auer & Warmuth, 1998)).

5The normalized version of Symmetric Matrix Winnow
scales the trace of the resulting matrix to the desired value.

6Such updates are called conservative in (Littlestone,
1988). The algorithm can be interpreted as a Matrix Ex-
ponentiated Gradient algorithm (Tsuda et al., 2005) wrt
a hinge loss. In trials when no mistake occurs, the gradi-
ent of this hinge loss is zero, which results in no update
(Gentile & Warmuth, 1998).

The original Winnow handles the special case when
all matrices are diagonal. As customary for this type
of analysis7 with symmetric positive definite matrix
parameters, we use the quantum relative entropy (see
e.g. (Nielsen & Chuang, 2000)) between such matrices
V and W as our measure of progress:

∆(V,W) = tr(V(logV − log W) + W −V).

As before, log A of the symmetric positive definite ma-
trix A is defined as a spectral function which applies
the logarithm to the eigenvalues of A but leaves eigen-
system unaltered.

The proof follows the methodology developed in
(Tsuda et al., 2005; Warmuth & Kuzmin, 2006a) ex-
cept that here we work with arbitrary symmetric posi-
tive definite matrices instead of density matrices which
have the additional requirement that their trace is 1.
We make use of the Golden Thompson inequality (see
e.g. (Bhatia, 1997)), which holds for arbitrary sym-
metric matrices

tr(exp(A + B)) ≤ tr(exp(A) exp(B))

We also need two lemmas from (Tsuda et al., 2005):

Lemma 1. For any symmetric matrix X, such that
0 � X � I and any constant a ∈ R, the following
holds:

exp(aX) � I − (1− exp(a))X.

Lemma 2. For any positive semidefinite matrix A
and any symmetric matrices B and C, B � C implies
tr(AB) ≤ tr(AC).

We are now ready to prove our main result. For the
sake of simplicity this theorem only handles the noise-
free case.

Theorem 2. Given any sequence of examples (Xt, yt)
such that the instances Xt are symmetric positive def-
inite matrices with eigenvalues in [0,1], the labels yt

are ±1, and there is a projection matrix s.t.

tr(PXt) =
{
≥ 1

2 if yt = +1
0 if yt = −1 (2)

Then the online algorithm Symmetric Matrix Winnow
makes at most

7.18 r ln
n

r

mistakes on this sequence, when η ≈ 1.28, θ ≈ .19 and
w0 = r.

Proof. We lower bound the per trial progress

∆(P ,W t)−∆(P ,W t+1)

7Alternatively, tr(W t) can be used as a potential.

Winnowing Subspaces

towards a comparator matrix P , which is any pro-
jection matrix P satisfying the constraints (2). If
no mistake occurs in trial t, then W t+1 = W t and
the progress is zero. Otherwise, W t+1 is updated to
exp(log W t + ηytXt) and

∆(P ,W t)−∆(P ,W t+1)
= tr(P (log W t+1 − log W t) + W t −W t+1)
(1)
= ηyttr(PXt) + tr(W t − exp(log W t + ηytXt))
G.Th.
≥ ηyttr(PXt) + tr(W t − exp(log W t) exp(ηytXt))

= ηyttr(PXt) + tr(W t(I − exp(ηytXt))
Le.1&2
≥ ηyttr(PXt) + (1− exp(ηyt)) tr(W tXt)

If yt = −1 and ŷt = +1, then tr(PXt) = 0, 1 −
exp(ηyt) > 0 and tr(W tXt) ≥ θ. Thus the progress
is lower bounded by

(1− exp(−η))θ.

Similarly, if yt = +1 and ŷt = −1, then tr(PXt) ≥ 1
2 ,

1−exp(ηyt) < 0 and tr(W tXt) ≤ θ. Now the progress
is lower bounded by

η

2
+ (1− exp(η))θ.

By setting both cases equal we obtain

θ =
η

2(exp(η)− exp(−η))
.

With this choice of θ, the progress per mistake is
η

2+2 exp(η) and this is optimized at η ≈ 1.28. This
choice of η makes θ ≈ .19 and the progress ≈ .14. By
summing over trials we get

∆(P ,

rI︷︸︸︷
W 1)︸ ︷︷ ︸

r ln n
r

−∆(P ,W T+1)︸ ︷︷ ︸
≥0

≥ .14M,

where M is the number of mistakes. This implies that
M ≤ 7.18 r log2

n
r .

Tightness of the Bound: The Vapnik-
Chervonenkis dimension of r out of n monotone
disjunctions is at least rblog2

n
r c (Littlestone, 1988).

In other words, there are this many bit vectors xt of
dimension n with the property that for each possible
labeling there is a consistent monotone disjunction
of r of the n variables. By feeding the instances
diag(xi) to any algorithm that solves the Close to
Subspace problem and contradicting the prediction
of the algorithm each time, we can force any such
algorithm to make rblog2

n
r c mistakes. The sequence

of examples will have a consistent disjunction of size
r which is represented as a bit vector d with r ones.
This means that the r dimensional projection matrix
diag(d) with the identity eigensystem will label the
matrix instances consistently. Thus the upper bound
proven above for Symmetric Matrix Winnow cannot
be improved by more than a constant.

Time Complexity: Given that you have the eigen-
decomposition of W t, then the expensive part in com-
puting W t+1 is producing the eigendecomposition of
the exponent log W t+ηytXt of update (1). This costs
O(n3) time per update. The algorithm of the next
section is based on the singular value decomposition,
which has similar complexity. In some applications
one might get away with not updating at every trial.
However, at this point the methods presented here are
only applicable to small matrices. Nevertheless, they
show what kind of bounds are possible if computation
time is cheap.

Noisy Case: In this paper we kept things simple and
only focused on the noise-free case. The bounds for
learning noisy linear threshold functions with Winnow
when the loss function is the hinge loss (see e.g. (Gen-
tile & Warmuth, 1998)) immediately carry over to the
matrix case. For example this leads to bounds in terms
of the hinge loss of the best subspace.

Linear Side Constraints: Now the parameter ma-
trix is projected onto the linear side constraints after
the main update (1). Using the Bregman projection
methods of (Herbster & Warmuth, 2001) one can show
that the bounds stay the same provided that the target
satisfies the constraints.8

Generalization Bounds: Any mistake bounded on-
line algorithm can easily be converted to a generaliza-
tion bound for the case when the instances are gener-
ated independently at random by a fixed but unknown
distribution (Littlestone, 1989; Cesa-Bianchi & Gen-
tile, 2006). One of the simplest conversion algorithm
for a conservative on-line algorithm might be the fol-
lowing (Floyd & Warmuth, 1995). Draw a batch of m
examples and in some default order on the instances do
one pass over the examples with the mistake bounded
on-line algorithm. If the on-line algorithm is guar-
anteed to make at most M mistakes then the subset
of at most M examples where mistakes were made
represents a consistent hypothesis. In other words
a mistake bound of size M leads to a “compression
scheme” of size M . This immediately implies that for
any ε, δ ∈ [0, 1], O(1

ε (M log 1
ε +log 1

δ)) examples suffice

8Actually projections onto an arbitrary convex region
can be used.

Winnowing Subspaces

to guarantee the following about the produced consis-
tent hypothesis: its probability of predicting wrongly
is at most ε with probability at least 1− δ.

6. Non-square Instance Matrices

Now the instances X are non-square matrices of di-
mension m × n, where m ≥ n for the purpose of dis-
cussion. We use the standard trick (see e.g. (Golub &
Loan, 1996)) to embed9 such matrices into a symmet-
ric matrix of dimension (m + n)× (m + n):(

0
n×n

XT

n×m

X
m×n

0
m×m

)
.

Note that 0 always denotes a square zero matrix of the
appropriate dimension. From now on we also use bold
greek letters to denote square diagonal matrices.

If X has the singular value decomposition
U

m×m
(σ

0) V>
n×n

= U1
m×n

σ
n×n

V>, where U1 consists

of the first n columns of U , then the corresponding
symmetric matrix has the following eigendecomposi-
tion (Golub & Loan, 1996):(

0 XT

X 0

)
(m+n)×(m+n)

= Q
(

σ 0 0
0 −σ 0
0 0 0

)
Q> = Q̂

(
σ 0
0 −σ

)
(2n)×(2n)

Q̂>

where Q
(m+n)×(m+n)

=
1√
2

(
V V 0
U1 −U1

√
2U1

)
and Q̂

(m+n)×(2n)

=
1√
2

(
V V
U1 −U1

)
.

We can now run Symmetric Matrix Winnow with the
embedded instances

(
0 X>

t

Xt 0

)
and the initial param-

eter matrix W 1 = w0

(
0 I>

I 0

)
, where w0 = r and I

denotes the m × n dimensional identity matrix. Our
update produces a symmetric positive definite matrix
W t of the form

1
2

exp
(

0 R>t
Rt 0

)
=

1
2

(eV eVeU1 −eU1

)(
exp(eσ) 0

0 exp(−eσ)

)(eV eVeU1 −eU1

)>
where Rt is a linear combination of the instances
X1 . . .Xt−1 that has the singular value decomposition
Ũ1
m×n

σ̃
n×n

ṼT . We can rewrite W t as

1
2

(eVcosh(eσ) eV> eVsinh(eσ) eU>1eU1 sinh(eσ) eV> eU1 cosh(eσ) eU>1
)>

9The reduction is different from the EG± reduction of
(Kivinen & Warmuth, 1997) which would embed X as`

X 0
0 −X

´
, which is unfortunately not symmetric.

Algorithm 2 General Matrix Winnow(η, θ, w0,m, n)
η > 0, θ, w0 ∈ R,m, n ∈ N

Initialize R1 = w0 I
m×n

for t = 1 to T do do
Receive instance Xt

m×n
with singular values in [0, 1]

Predict with

ŷt =
{

+1 if tr(RtXt) ≥ θ
−1 otherwise

Receive label yt

Update

Rt+1 =
{

Rt if ŷt = yt

sinh(arcsinh(Rt) + ηXt) otherwise

end for

where sinh and cosh are the diagonalized versions of
the scalar sinh and cosh functions.10 This lets us write
the trace which is used for forming the prediction as
follows:

tr
(
W t

(
0 X>

t

X 0

))
= tr(Ũ1 sinh(σ̃)Ṽ> X>

t).

The General Matrix Winnow11 algorithm 2 reformu-
lates the entire algorithm sketched above using the
original m×n dimensional instances Xt and an m×n
dimensional parameter matrix Rt. For any m × n di-
mensional matrix A with singular value decomposi-
tion Uσ̃VT , the matrix function sinh(A) applies the
scalar sinh function to the diagonal elements of σ̃ and
arcsinh(A) is defined similarly based on the inverse of
the scalar sinh function. The bounds for this algorithm
follow from the symmetric case via the above embed-
ding. The symmetric projection matrices of rank r
are now generalized projection matrices of the form
P =

∑r
i=1 siuiv

>
i , where si ∈ {+1,−1} and the ui

are a set of r orthogonal m-dimensional unit vector
and the vi are a set of r orthogonal n-dimensional
unit vectors.

7. Conclusion

It is unknown how to handle rank constraints. When
linear side constraints are added, the Close to Sub-
space problem is hard even if we allow the output ma-
trix W to be any positive symmetric matrix of low
rank. We follow the route taken by the original Win-
now algorithm and bypass the hardness by never pro-

10sinh(x) := exp(x)−exp(−x)
2

, cosh(x) := exp(x)+exp(−x)
2

.
11The normalized version scales with the trace norm.

Winnowing Subspaces

ducing a hypotheses of a certain form (here low rank).
The algorithm maintains a positive definite parameter
matrix of full rank instead. Nevertheless it is guaran-
teed to make few prediction mistakes if the instances
are labeled based on a low rank projection matrix. The
update of the algorithm is a special case of the Matrix
Exponentiated Gradient algorithm and is motivated
by regularizing the hinge loss on the linear trace with
a quantum relative entropy. Note that the original
Winnow is motivated along the same lines (see e.g.
(Gentile & Warmuth, 1998)).

More generally the following picture is emerging. In
the vector case the algorithms related to the original
Winnow algorithm learn with a thresholded dot prod-
uct between the weight vector and instance vector. In
the noise-free case there has to be a gap between the
positive and negative examples, and a threshold can
be placed in this gap for the purpose of classifying
the examples. For the original Winnow algorithm, the
weight vectors are measured by the one-norm and this
is also the norm by which the margin of the examples
is normalized. For the instance vectors the range of the
components (essentially the infinity norm) is crucial.

In the matrix case the dot product becomes a trace and
the parameter matrices are measured by their trace
norm (sum of singular values). This norm also natu-
rally normalizes the margin of the examples. The in-
stance matrices are naturally measured by the matrix
2-norm (maximum singular value).

Acknowledgment

Thanks to Dima Kuzmin for many brainstorming ses-
sions and for preparing all the plots of this paper. Also
thanks to Amin Coja-Oghlan and Elad Hazan for valu-
able discussions.

References

Arora, S., & Kale, S. (2007). A combinatorial primal-
dual approach to semidefinite programs. Proc. 39th
Annual ACM Symposium on Theory of Computing.
ACM. To appear.

Auer, P., & Warmuth, M. K. (1998). Tracking the best
disjunction. Machine Learning, 32, 127–150. Earlier
version in 36th FOCS, 1995.

Bhatia, R. (1997). Matrix analysis. Berlin: Springer.

Cesa-Bianchi, N., & Gentile, C. (2006). Improved risk
tail bounds for on-line learning. Advances in Neural
Information Processing Systems 18 (NIPS 05). MIT
Press.

Floyd, S., & Warmuth, M. (1995). Sample compres-
sion, learnability, and the Vapnik-Chervonenkis di-
mension. Machine Learning, 21, 269–304.

Gentile, C., & Warmuth, M. K. (1998). Hinge loss and
average margin. In Advances in Neural Information
Processing Systems 11 (NIPS*98).

Golub, G. H., & Loan, C. F. V. (1996). Matrix compu-
tations (third edition). The John Hopkins University
Press.

Herbster, M., & Warmuth, M. K. (2001). Tracking the
best linear predictor. Journal of Machine Learning
Research, 1, 281–309.

Kivinen, J., & Warmuth, M. K. (1997). Additive ver-
sus exponentiated gradient updates for linear pre-
diction. Information and Computation, 132, 1–64.

Kuzmin, D., & Warmuth, M. K. (2007). Online Ker-
nel PCA with entropic matrix updates. ICML ’07:
Proceedings of the 24rd international conference on
Machine learning. Corvallis, Oregon: ACM Press.

Littlestone, N. (1988). Learning quickly when irrele-
vant attributes abound: A new linear-threshold al-
gorithm. Machine Learning, 2, 285–318.

Littlestone, N. (1989). From on-line to batch learn-
ing. Proceedings of the Second Annual Workshop on
Computational Learning Theory (pp. 269–284). San
Mateo, CA: Morgan Kaufmann.

Nielsen, M., & Chuang, I. (2000). Quantum computa-
tion and quantum information. Cambridge Univer-
sity Press.

Tsuda, K., Rätsch, G., & Warmuth, M. K. (2005).
Matrix exponentiated gradient updates for on-line
learning and Bregman projections. Journal of Ma-
chine Learning Research, 6, 995–1018.

Warmuth, M. K. (2007). When is there a free ma-
trix lunch. Proc. of the 20th Annual Conference
on Learning Theory (COLT 07). San Diego, CA:
Springer. Open problem, to appear.

Warmuth, M. K., & Kuzmin, D. (2006a). Online vari-
ance minimization. Proceedings of the 19th Annual
Conference on Learning Theory (COLT 06). Pitts-
burg: Springer.

Warmuth, M. K., & Kuzmin, D. (2006b). Randomized
PCA algorithms with regret bounds that are loga-
rithmic in the dimension. Advances in Neural In-
formation Processing Systems 19 (NIPS 06). MIT
Press.

Winnowing Subspaces

Figure 3: Depiction of a threshold of trace tr(Pxx>): Top left: The projection matrix P has dimension one. It is a

single (red) dyad along the x-axis, i.e. P = e1e
>
1 , where e1 = (1, 0, 0)>. The blue double cloud is a plot of the variance

tr(Pxx>) for all unit directions x. Recall that in dimension 2 the variance has figure eight shape (see blue curve in
Figure 2). The green ball has radius 1

2
and the threshold tr(Pxx>) ≥ 1

2
is satisfied if direction xx> is close to the red

axis, i.e. in the blue minus the green region. It is instructive to see what happens if the threshold (radius of the green
ball) is raised to 1. Then the region labeled one (blue - green) just consists of the two tips of the red dyad e1e

>
1 . That

is, tr(Pxx>) ≥ 1 iff x = ±e1. Top right: The same picture but now P is the dyad e2e
>
2 corresponding to the y-axis.

Bottom left: Now P is the sum of the previous two dyads, i.e. P = e1e
>
1 + e2e

>
2 depicted as the red degenerate

ellipse (disk) in the xy plane. The variance is a blue donut around this ellipse. The green ball again has radius 1
2

and

the threshold tr(Pxx>) ≥ 1
2

labels all directions xx> as one that are close to the red ellipse, i.e. lie in the blue donut
minus the green ball. If the radius of the green ball is raised to 1, then the blue minus the red region shrinks to the circle
where the donut touches the disk. Bottom right: Now the inner red 3-dimensional ellipse is sum of three directions, i.s.
P = 6 e1e

>
1 + e2e

>
2 + e3e

>
3 . The variance is the blue handle and the threshold (green ball) is 2.

