
Online Kernel PCA with Entropic Matrix Updates

Dima Kuzmin dima@cse.ucsc.edu
Manfred K. Warmuth manfred@cse.ucsc.edu

Computer Science Department, University of California - Santa Cruz

Abstract

A number of updates for density matrices
have been developed recently that are moti-
vated by relative entropy minimization prob-
lems. The updates involve a softmin calcu-
lation based on matrix logs and matrix ex-
ponentials. We show that these updates can
be kernelized. This is important because the
bounds provable for these algorithms are log-
arithmic in the feature dimension (provided
that the 2-norm of feature vectors is bounded
by a constant). The main problem we focus
on is the kernelization of an online PCA al-
gorithm which belongs to this family of up-
dates.

1. Introduction

The are two main families of updates in machine learn-
ing when the parameter of the algorithm and the in-
stances are vectors. The first family maintains a pa-
rameter vector that is a linear combination of the in-
stances and for the second family the component-wise
logarithm of the parameter vector is a linear combina-
tion of the instances. Family one is based on regular-
izing with the squared Euclidean distance and family
two uses relative entropy as the regularization (Kivi-
nen & Warmuth, 1997). Both families have their ad-
vantages. Family one can be kernelized, i.e. the in-
stances x can be expanded into a feature vector φ(x)
and the algorithm can be computed efficiently pro-
vided the kernel function k(x,x′) = φ(x) · φ(x′) can
be computed efficiently. The advantage of family two
is that it allows for bounds that are logarithmic in
the dimension of the instances (see e.g. (Warmuth &
Vishwanathan, 2005) for an extended discussion).

More recently the entropic family of updates has been

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

generalized to the case when the instances are symmet-
ric matrices X and the parameter is a density matrix
(Tsuda et al., 2005; Warmuth & Kuzmin, 2006a; War-
muth & Kuzmin, 2006b; Arora & Kale, 2007). The
regularization is now the quantum relative entropy for
density matrices instead of the regular relative entropy
for probability vectors, and the matrix logarithm of the
density matrix parameter is essentially a linear combi-
nation of the instance matrices. We show in this paper
that if the instances X are outer products of feature
vectors,1 i.e. X

n×n
= φ(x)

n×1
φ(x)>

1×n
, then the matrix gen-

eralization of the entropic updates can be kernelized. If
there is an efficient kernel function available, then the
most expensive operation in computing the generalized
updates is the computation of the eigendecomposition
of the kernel matrix.

2. Offline Kernel PCA

Principal Component Analysis (PCA) is a well-known
algorithm that chooses a low-dimensional linear sub-
space that best approximates the data (See Offline
PCA Algorithm 1).

The Offline PCA Algorithm can be kernelized (see Of-
fline Kernel PCA Algorithm 2): That is, the instances
x can be transformed into feature vectors φ(x), the
individual features of the instances never need to be
accessed, and the entire computation can be done via
calls to a kernel function (Schölkopf et al., 1998). For
the sake of simplicity, we assume in this paper that
the data is centered (in feature space) and deal with
uncentered case in the full paper.

In the kernel setting, the m columns of the data ma-
trix X are the expanded instances φ(xi) ∈ RN , where
the number of features N is typically much larger than
the dimension n of the original instances xi. If we ran
PCA in feature space, then we would need the eigen-
decomposition of C = XX>

N×N
and this is too expensive

when N is large. However there is a related matrix
1Such outer products are called dyads

Online Kernel PCA with Entropic Matrix Updates

Algorithm 1 Offline PCA Algorithm
Input: Data matrix X

n×m
having the data points

xi ∈ Rn as columns, dimension r
Compute covariance matrix C

n×n
= XX>

Compute eigendecomposition of the covariance ma-
trix

C =
n∑

i=1

λiuiu
>
i

Let U r
n×r

be the column matrix of eigenvectors for the

r largest eigenvalues. Also, P
n×n

= U rU
>
r

Projection: U>
r x is the r-dimensional compres-

sion vector for x and Px is the projection into the
original space
Approximation error:

‖x− Px‖22 = tr((I − P)xx>)

K = X>X
m×m

of the same rank called the kernel matrix

because Kij = φ(xi)>φ(xj) = k(xi,xj). Kernel PCA
gets away with computing only the eigendecomposi-
tion of this smaller matrix and the projection onto the
principal components can also be obtained via kernel
computations. The following lemma relates the eigen-
systems of the two matrices.

Lemma 1. If the kernel matrix K has eigenvalues λi

and eigenvectors ui, then the covariance matrix C has
the same eigenvalues λi and orthonormal eigenvectors
Xui√

λi
.

Proof. Since

C Xui = XX>Xui = XKui = λiXui,

the eigenvalues λi for K are also eigenvalues for C.
The orthogonality of the eigenvectors ui and uj of K
implies that Xui and Xuj are also orthogonal:

(Xui)>(Xuj)=u>i X>Xuj =u>i Kuj =λju
>
i uj =0.

Finally, the 1√
λi

factor makes our eigenvectors have
norm 1:

‖Xui√
λi

‖22 =
1
λi

(Xui)>(Xui)=
1
λi

u>i Kui =
1
λi

λiu
>
i ui.

We conclude that the vectors Xui√
λi

form an orthonor-
mal eigensystem for C.

Algorithm 2 Offline Kernel PCA Algorithm
Input: Data points x1, . . . ,xm, dimension r, kernel
function k
Compute kernel matrix Kij

m×m

= k(xi,xj)

Compute eigendecomposition of the kernel matrix

K =
m∑

i=1

λiuiu
>
i

Let U r
m×r

be the matrix with the top r eigenvectors

as columns and let Λr
r×r

be the diagonal matrix of the

top r eigenvalues
Compute P̃

m×m
= U rΛ−1

r U>
r

For a new data point x compute the kernel vector

yi
m×1

= k(xi,x)

Projection: Λ−1
r U>

r y is the r-dimensional com-
pression vector for x
Approximation error:

k(x,x)− tr(P̃ yy>)

3. Online Kernel PCA Algorithm

Online algorithms often maintain a parameter which
expresses the uncertainty of the algorithm over which
choice is good. For example, in the expert setting,
Weighted Majority Algorithm maintains a probability
vector over the experts. The algorithm hedges its bets
by using a softmin function on the experts’ losses so
far, since committing to the best expert can be easily
exploited by an adversary.

In the case of PCA the uncertainty over the r-
dimensional subspace can be represented as a density
matrix. The Online PCA Algorithm in (Warmuth &
Kuzmin, 2006b) uses this idea and has good worst-case
loss bounds. It uses the density matrix update based
on matrix logs and exponentials like the one used in
(Tsuda et al., 2005; Warmuth & Kuzmin, 2006a; Arora
& Kale, 2007) but with the additional constraint that
the eigenvalues are upper bounded (capped). Density
matrices are symmetric, positive definite matrices of
trace one. Thus their eigenvalues form a probability
vector and the whole matrix can be seen as a mixture
of the dyads formed by its eigenvectors.

A subspace of dimension r is characterized by a pro-
jection matrix P of rank r. We need to work with
the complementary subspace which is characterized by

Online Kernel PCA with Entropic Matrix Updates

the projection matrix I − P of rank n − r. The ma-
trix I − P is the sum of n − r orthogonal dyads and
the scaled projection matrix 1

n−r P is a density ma-
trix with n−r non-zero eigenvalues of value 1

n−r . The
Online PCA Algorithm maintains a mixture of scaled
rank n− r projection matrices and such mixtures are
density matrices with the constraint that each eigen-
value is at most 1

n−r . Crucially, every convex combina-
tion of rank n− r projection matrices is a constrained
density matrix and every such density matrix can be
written as convex combination of at most n rank n−r
projection matrices, thus making capped density ma-
trices the natural objects for representing uncertainty
over subspaces.

The parameter matrix W t of the Online PCA Algo-
rithm at trial t is a capped density matrix. The para-
meter update involves matrix logs and exponentials as
well as a step that caps the eigenvalues of the updated
matrix. At each trial the online algorithm produces a
rank r projection matrix P t for compressing the cur-
rent data point xt by decomposing the capped density
matrix W t into a mixture of scaled projection matrices
of rank n − r. From this mixture it is easy to prob-
abilistically choose a single projection matrix of rank
n−r and then choose its complement as the projection
matrix P t used for compressing at trial t. The decom-
position and the capping can be done efficiently via
algorithms 4 and 5, respectively. Note that capping in
this context doesn’t mean that we just set any compo-
nents above the threshold to the threshold value, since
this would result in a vector that does not sum to one
anymore. More details on the Decomposition Algo-
rithm 4 are provided in (Warmuth & Kuzmin, 2006b)
and a linear time implementation of the Capping Algo-
rithm 5 is given in (Herbster & Warmuth, 2001). The
Online PCA Algorithm 3 gives a summary of all the
steps. Here a corner is a diagonal matrix with n − r
of the diagonal elements set to 1

n−r and the rest set to
zero.

An important property of the standard PCA problem
is that the 2-norm approximation error is linear in the
matrix parameter space:

‖x− Px‖22 = tr((I − P)xx>)

This means that the expected loss of the online
algorithm that chooses a subspace probabilistically
based on the decomposed density matrix W =

1
n−r

∑
i pi(I − P i) will be equal to the linear loss of

the matrix parameter W :∑
i

pi‖x− P ix‖22 = (n− r)tr(Wxx>).

(We need to multiply by n − r because the density

Algorithm 3 Online PCA Algorithm

Input: Dimension r and initial density matrix W 1

with eigenvalues at most 1
n−r , learning rate η > 0

for t = 1 to T do
Perform eigendecomposition W t = UλU>

Decompose λ into a mixture of n corners using
the Decomposition Algorithm 4: λ =

∑n
j=1 pjcj ,

where the pj are the mixture coefficients and cj

the corners.
Draw a corner c = cj with probability pj

Form a matrix corner R = U diag(c)U>

Form a rank r projection matrix

P t = I − (n− r)R

Let U t
r be a column matrix of those r eigenvectors

that correspond to zero entries in c
Receive data instance vector xt

Projection: (U t
r)
>xt is the r-dimensional com-

pression vector for xt

Approximation error:

‖xt − P txt‖22 = tr((I − P t)xt(xt)>)

Expected approximation error:

(n− r)tr(W txt(xt)>)

Update:

Ŵ
t
=

exp(log W t − η xt(xt)>)
Zt

,

where Zt normalizes the trace to 1
W t+1 is obtained from Ŵ

t
by capping the eigen-

values to at most 1
n−r using the Capping Algo-

rithm 5.
end for

Algorithm 4 Decomposition Algorithm
Input probability vector w, max(w) ≤ 1/k
repeat

Pick a k-corner r whose components correspond
to non-zero components of w and contain all the
components of w that are equal to |w|

k
Let s be the smallest of the k components in w
Let l be the largest of the remaining n − k com-
ponents

w := w −

p︷ ︸︸ ︷
min(m s, |w| −m l) r

output p r
until w = 0

Online Kernel PCA with Entropic Matrix Updates

Algorithm 5 Capping Algorithm
Input ω probability vector, 1/k capping constant
Let ω↓ index the vector in decreasing order, i.e.
ω↓1 = max(ω)
if max(ω) ≤ 1/k then

Return ω
end if
i := 1
repeat

Set first i largest components to 1/k and normal-
ize the rest:
ω̄ := ω
ω̄↓j := 1/k, j = 1 . . . i

ω̄↓j := k−i
k

ω̄↓j
Pn

l=i+1 ω̄↓l
, j = i + 1 . . . n

i := i + 1
until max(ω̄) ≤ 1/k
Return ω̄

matrix is a mixture of scaled projection matrices.) One
might want to solve a PCA-like problem, where the
approximation error is measured by something other
than a 2-norm. Online learning techniques exist for
dealing with very many different loss functions (see e.g.
(Kivinen & Warmuth, 1999)), but only for the case of
linear loss will the expectation of the losses equal the
loss of the expected parameter. Thus, for other loss
functions the algorithm might have good bounds, but
it won’t produce an actual low-dimensional subspace
as a prediction.

Our new Online Kernel PCA Algorithm uses tech-
niques from the Offline Kernel PCA Algorithm and
makes use of the relationship between the offline and
online PCA algorithms. Note that offline PCA picks
the eigenvectors corresponding to the top k eigenval-
ues of the covariance matrix. Online PCA can be seen
as a different way of choosing k eigenvectors from the
eigensystem of the data covariance matrix: Probabilis-
tically choose a rank n−k subspace based on a softmin
function of the eigenvalues and then use the comple-
mentary subspace of rank k as the subspace for com-
pression. Online kernel PCA uses a softmin function
on the kernel matrix instead of the covariance matrix.

First note that if we drop the capping constraint and
initialize with W 1 = 1

nI, then the density matrix at
step t of the Online PCA Algorithm 3 has the form

W t =
exp(−η

∑t−1
i=1 xi(xi)>)
Zt

.

Thus in this case, the parameter matrix W t has the
same eigensystem as the covariance matrix and its
eigenvalues are obtained by applying a softmin func-

tion to the eigenvalues of the covariance matrix. By
Lemma 1 which relates the eigensystems of the covari-
ance and kernel matrices, all the information needed
to compute W t is given by the eigendecomposition of
the smaller kernel matrix. The capped version2 of the
above W t will be the crucial parameter matrix implic-
itly maintained by our Online Kernel PCA Algorithm
6. Our algorithm differs from the Offline Kernel PCA
Algorithm only in the way it chooses k eigenvectors
from the kernel matrix for forming the projection ma-
trix: instead of taking the eigenvectors corresponding
to the maximum k eigenvalues, it picks n − k eigen-
vectors probabilistically based on a softmin function of
the eigenvalues and then chooses the complementary
k eigenvectors as the projection matrix. This more
complicated procedure assures the expected compres-
sion error for all sequences of examples is not too much
larger than the compression error of the offline algo-
rithm.

The next section discusses how the proof of the original
loss bound for online PCA needs to be altered to work
with this kernelized version.

4. Relative Loss Bounds for Online
Kernel PCA

We begin by recalling the motivation for the online
PCA update as a solution of some optimization prob-
lem. The regularization used in this optimization is the
quantum relative entropy for density matrices, which
is defined as:

∆(V ,W) = tr(V (log V − log W))− tr(V) + tr(W).

The update of the Online PCA Algorithm 3 is deter-
mined as

W t+1 = argmin
tr(W)=1

W� 1
N−r I

(
∆(W ,W t) + η tr(Wxt(xt)>)

)
.

(1)
We can’t kernelize the above update because the iter-
ative capping complicates things.3 Instead we always
go back to the beginning, which allows us to define

2Note that in the Online Kernel PCA Algorithm 6 the
kernel matrix is capped with 1

t−r
whereas in the original

Online PCA Algorithm the covariance matrix is capped
with 1

N−r
. It can be shown that the two types of capping

have the same effect.
3Specifically, the accumulated capping Lagrangians can

make the eigenvectors of the resulting density matrix differ-
ent from the eigenvectors of the data covariance matrix. If
you look at equation (4) in the proof of Theorem 1 later in
this section, you can deduce the form of W t for the above
update: W t ∼ exp(−η

P
xi(xi)> −

P
Γi). In general,

this is no longer a spectral function of the data covariance

Online Kernel PCA with Entropic Matrix Updates

Algorithm 6 Online Kernel PCA Algorithm
Input: dimension r, kernel function k, initial r data
points x1, . . . ,xr ∈ Rn, learning rate η
for t = r + 1 to T do

Compute kernel matrix on data so far:

Kt
ij

(t−1)×(t−1)

= k(xi,xj)

Eigendecompose the kernel matrix

Kt =
t∑

i=1

λi uiu
>
i = U tΛt(U t)>

Transform the eigenvalues:

λ̄i ←
e−ηλi

Z
, Z =

t−1∑
j=1

e−ηλj

Cap values in vector λ̄ to at most 1
t−1−r using the

Capping Algorithm 5
Decompose λ̄ as

∑
j pjcj , where cj are corners of

size t− 1− r using the Decomposition Algorithm
4
Draw the corner c = cj with probability pj

Form matrix U t
r

(t−1)×(r)

with the columns being

those eigenvectors of Kt that correspond to zero
values in the selected corner c.
Let Λt

r be the diagonal matrix of the eigenvalues
of Kt associated with eigenvectors in U t

r.

P̃
t
= U t

r(Λ
t
r)
−1(U t

r)
>

W̃
t
= U t(I − (t− 1− r) diag(λ̄))(Λt)−1(U t)>

Receive data instance vector xt

Compute kernel vector yt
i = k(xi,x

t)
Projection: (Λt

r)
−1(U t

r)
>yt is the r-

dimensional compression vector for xt

Approximation error:

k(xt,xt)− tr(P̃
t
yt(yt)>)

Expected approximation error:

k(xt,xt)− tr(W̃
t
yt(yt)>)

end for

W t+1 by a single capping:

W t+1 = argmin
tr(W)=1

W� 1
N−r I

(
∆(W ,

1
N

I)+η
t∑

i=1

tr(Wxi(xi)>)
)
.

(2)
We will use Ct+1 to denote the covariance matrix used
in obtaining W t+1, i.e Ct+1 =

∑t
i=1 xi(xi)>. The

resulting density matrix used by the algorithm looks
like this:

W t+1 = cap
(

exp(−ηCt+1)
Z

)
This is a spectral function of Ct+1 and thus allows for
easy kernelization. With some additional effort, we
were able to prove the same loss bound for the update
(2) as was proven in (Warmuth & Kuzmin, 2006b) for
the update (1). This is done in the following theorem,
which says that the loss incurred by the algorithm over
a sequence of trials is not much larger than the loss
incurred by the offline algorithm that is given all of
the data in advance. In our case this offline algorithm
is the standard PCA for the entire data. Note that
with our representation of mixtures of subspaces as
density matrices, the expected loss of algorithm (i.e.
the expected approximation error) at trial t has the
form (N − r)tr(W txt(xt)>). The expectation is wrt
the internal randomization of the algorithm, the bound
itself makes no probabilistic assumptions on the data.

Theorem 1. For any sequence of data x1, . . . ,xT ∈
Rn, such that the squared 2-norm of each instance is
bounded by 14 , positive learning rate η and arbitrary
capped comparator density matrix V , the following rel-
ative loss bound holds:

T∑
t=1

(N − r)tr(W txt(xt)>) ≤

(N − r)
η

∑T
t=1 tr(V xt(xt)>) + ∆(V , 1

N I)
1− exp(−η)

.

Proof. As was mentioned before, the update we use is
different from online PCA described previously, and
thus the proof of (Warmuth & Kuzmin, 2006b) does
not apply. The old proof relied on bounding the
progress of the algorithm in terms of the quantum rel-
ative entropy and then using generalized Pythagorean

matrix. On the other hand, capping once only affects the
eigenvalues of the capped matrix as shown in (Warmuth &
Kuzmin, 2006b).

4The bound can be generalized based on the assumption
that the squared norm of the expanded instances φ(xt) is
upper bounded by some constant Q.

Online Kernel PCA with Entropic Matrix Updates

theorem for Bregman projections to deal with the cap-
ping constraints. Here we adopt a somewhat different
approach which makes use of the dual optimization
problem of the update (2). Let F t(W) be the objec-
tive function of this update, i.e.

F t(W) = ∆(W ,
1
N

I) + η tr(WCt)

Following (Kivinen & Warmuth, 1999), we use the op-
timum value of F t(W) as a potential, i.e.

P t := min
tr(W)=1

W� 1
N−r I

F t(W)

We would like to lower bound the per trial drop of the
potential in terms of the loss of the algorithm.

P t+1 − P t (3)

We use strong duality (Boyd & Vandenberghe, 2004)
to compute the potential as a maximum of the dual
problem. The purpose of going to the dual problem is
only to help us analyze the algorithm, the algorithm
itself is fully determined by the optimization problem
in (2) and kernelization of the resulting density matrix
computations. We begin by formulating a Lagrangian
with δ as the dual variable for the trace constraint and
the symmetric positive definite matrix Γ as the dual
variable for the capping constraint. For the relevant
derivatives see (Tsuda et al., 2005).

Lt(W ,Γ, δ) = tr(W (log W + lnN I))− tr(W)

− lnN + ηtr(WCt) + δ(tr(W)− 1) + tr((W − 1
r
I)Γ)

∂Lt

∂W
= log W + lnN I + ηCt + δI + Γ.

The extra constant lnN can be rolled into δ, i.e. δ′ =
δ + lnN . Setting the above to zero we get:

W = exp(−ηCt − δ′I − Γ). (4)

We substitute this form of W into Lt and en-
force the tr(W) = 1 constraint by choosing δ′ =
ln tr(exp(−ηCt−Γ)). After numerous simplifications
we arrive at the dual optimization problem

max
Γ�0

Lt(Γ) = − ln tr
(
exp(−ηCt − Γ)− 1− 1

r
tr(Γ)

)
Let Γt be the maximizer of the dual optimization prob-
lem for Lt and define Γt+1 similarly. Strong duality
holds for our problem. We now want to lower bound
the rewritten drop of the potential (3) by the same ex-
pression that was used in (Warmuth & Kuzmin, 2006a)
for their proof:

Lt+1(Γt+1)− Lt(Γt) ≥
− ln tr(exp(log W t − ηxt(xt)>)).

(5)

We begin by substituting the solution

W t = exp(−ηCt − ln tr(exp(−ηCt − Γt))I − Γt)

into the rhs and rewrite it as follows:

− ln tr(exp(−ηCt+1 − Γt)) + ln tr(exp(−ηCt − Γt))
= Lt+1(Γt)− Lt(Γt).

By substituting this rhs into (5) and simplifying, we
get that inequality (5) holds iff

Lt+1(Γt+1)− Lt+1(Γt) ≥ 0.

However this inequality trivially hold, since Γt+1 max-
imizes Lt+1(Γ).

We now lower bound the rhs of (5) in term of the
loss of the algorithm in the usual way (Warmuth &
Kuzmin, 2006a):

r.h.s. ≥ tr(W txt(xt)>)(1− e−η)

Finally we sum the drop of the potential (5) over t.
Telescoping occurs and we get the following bound:

PT+1 −

0︷︸︸︷
P 1 = LT+1(ΓT+1)− L1(Γ1)

≥
T∑

t=1

tr(W txt(xt)>)(1− e−η)

Since
PT+1 ≤ ∆(V ,

1
n

) + ηtr(V CT+1),

the bound follows.

We now set η as a function of N , r, the maximum 2-
norm Q of the instances φ(xt) and an upper bound on
the loss of the best r-projection L̂ (Freund & Schapire,
1997):

η =
ln(1 +

√
2r ln N

r

L̂
)

Q2
. (6)

This tuning of η results in the following bound for
the Online Kernel PCA Algorithm, that holds for all
sequences with 2-norm of expanded instances φ(xt)
bounded by Q and that have the loss of the best r-
projection bounded by L̂:

(expected loss of alg.) - (loss best r-projection)

≤ Q

√
2L̂ r ln

N

r
+ rQ2 ln

N

r
. (7)

Note that the dependence on the feature dimension
N is logarithmic. Therefore we can accommodate a
large number of features without degrading the bound

Online Kernel PCA with Entropic Matrix Updates

substantially. For example for the polynomial kernel
of degree d, lnN = d lnn, and if the feature vectors
have bounded 2-norm then the bound is still reason-
able. The current analysis is not directly applicable
to the infinite-dimensional kernels. To handle that
case we need a different way to bound the entropy of
the comparator ∆(V , 1

nI). Intuitively, the compara-
tor V will only use the the finite dimensional subspace
spanned by the past expanded instances and thus the
entropy remains bounded (probably by O(log T)), but
we haven’t worked out the details yet.

5. Experiments

We implemented the Online Kernel PCA Algorithm
and tested it on a simple synthetic dataset generated
as follows: A point was picked at random on a cone
defined by the equation x2 + y2 − z2 = 0. These three
dimensions were embedded into R20 by padding with
zeros. Finally Gaussian noise was added to all dimen-
sions. The value of z was constrained to the range
[−0.6 : 0.6], which had the effect of bounding the 2-
norm in feature space to at most 1. The resulting
dataset is visualized in Figure 1.

Since the cone is a quadratic surface, PCA without
kernelization is not able to pick up the 2-dimensional
structure of this dataset. A polynomial kernel of de-
gree 2 (i.e., k(x,y) = (x · y)2) is more suitable (the
dimension N of the feature space in this case is 400).
Figure 2 shows the total loss of our Online Kernel PCA
Algorithm 6 and compares it to the total loss of the Of-
fline Kernel PCA Algorithm 2 whose projection matrix
is formed based on the entire dataset. As we can see
the online algorithm is not too much worse. We also
plotted the upper bound of Theorem 1 which not very
tight on this random data set. (Note that our bounds
hold for worst-case sequences.) Figure 3 shows the av-
erage “regret” per time step of our Online Kernel PCA
Algorithm, i.e. the difference in total losses between
the online and offline kernel PCA algorithms divided
by the number of iterations so far.

While implementing the algorithm we found some nu-
merical stability issues that need to be addressed.
First, the theoretical guarantee for the algorithm al-
lows us to assume an arbitrary bound Q on the 2-norm
of expanded instance vectors φ(xt). In practice, how-
ever, large norms of the data instances lead to overly
large eigenvalues of the kernel matrix, which then
cause problems during exponentiation for the softmin
computation. This difficulty is specific to our Online
Kernel PCA Algorithm 6, which at trail t uses the ker-
nel matrix formed by the past t− 1 instances and the
eigenvalues of this matrix may diverge. Appropriate

scaling of the instance avoids this problem.

Second, the Capping Algorithm 5 may encounter the
case where the remaining portion of the probability
vector is all zeros due to the exponentiation of large
numbers. In that case, a division by zero can occur.
The proper approach in this case is to set enough of
the remaining zeros to the capping constant, so that
the whole vector sums to one again.

We also did some preliminary experiments using hu-
man face datasets and the Gaussian kernel. While
we don’t yet have a theoretical guarantee for infinite-
dimensional feature spaces, the algorithm still seems
to work in practice.

6. Conclusion

The question of whether kernels can be applied to up-
dates that are motivated with relative entropy regu-
larizations has generated great interest (See e.g. dis-
cussion in (Warmuth & Vishwanathan, 2005)). Only
very few cases have been found for applying kernels
with entropic updates when the instances are vectors
(Takimoto & Warmuth, 2003). In this paper we show
how the matrix generalizations of these updates can be
kernelized when the instance matrices are of the form
φ(xt)φ(xt)>. We chose the online PCA problem as
our example problem for working out the details. The
crucial property needed is that the exponent must be a
linear combination of the outer products φ(xt)φ(xt)T .
The other crucial property is that the exponential of
this linear combination only depends on the eigenval-
ues of the linear combination and keeps the eigensys-
tem unchanged. All applications of the Matrix Ex-
ponentiated Gradient Algorithm (Tsuda et al., 2005;
Warmuth & Kuzmin, 2006a; Warmuth & Kuzmin,
2006b) have these properties and generalizations are
straightforward to families of algorithms defined by
other Bregman divergences.

In this paper we only considered bounds compared to
the best fixed off-line comparator. However these on-
line algorithms can be adapted to the case when the
comparator shifts with time (See e.g. (Bousquet &
Warmuth, 2002)). A thorough experimental analysis
of these extensions would be useful.

Online Kernel PCA with Entropic Matrix Updates

Figure 1. Our synthetic dataset
is a sample of a 3-dimensional
cone embedded in R20 with added
Gaussian noise. We depict the key
3 of the 20 dimensions.

Figure 2. Plots of the total losses the al-
gorithms and our bound versus the itera-
tion number. Lowest (dashed) line: total
loss of the Offline Kernel PCA Algorithm
2 (based on the entire dataset). Solid line
right above: total loss of our Online Kernel
PCA Algorithm with tuned learning rate
(6) (for this dataset η = 1.5). Flat dotted
line: tuned theoretical bound (7) on the
total loss of the Online Kernel PCA Algo-
rithm 6.

Figure 3. The average per-trial re-
gret of the online algorithm con-
verges to zero (Here η was set to 1).

References

Arora, S., & Kale, S. (2007). A combinatorial primal-
dual approach to semidefinite programs. Proc. 39th
Annual ACM Symposium on Theory of Computing.
ACM. To appear.

Bousquet, O., & Warmuth, M. K. (2002). Tracking a
small set of experts by mixing past posteriors. Jour-
nal of Machine Learning Research, 3, 363–396.

Boyd, S., & Vandenberghe, L. (2004). Convex opti-
mization. Cambridge University Press.

Freund, Y., & Schapire, R. E. (1997). A decision-
theoretic generalization of on-line learning and an
application to Boosting. Journal of Computer and
System Sciences, 55, 119–139.

Herbster, M., & Warmuth, M. K. (2001). Tracking the
best linear predictor. Journal of Machine Learning
Research, 1, 281–309.

Kivinen, J., & Warmuth, M. K. (1997). Additive ver-
sus exponentiated gradient updates for linear pre-
diction. Information and Computation, 132, 1–64.

Kivinen, J., & Warmuth, M. K. (1999). Averaging ex-
pert predictions. Computational Learning Theory,
4th European Conference, EuroCOLT ’99, Nord-
kirchen, Germany, March 29-31, 1999, Proceedings
(pp. 153–167). Springer.

Schölkopf, B., Smola, A. J., & Müller, K.-R. (1998).
Nonlinear component analysis as a kernel eigenvalue
problem. Neural Computation, 10, 1299–1319.

Takimoto, E., & Warmuth, M. K. (2003). Path ker-
nels and multiplicative updates. Journal of Machine
Learning Research, 4, 773–818.

Tsuda, K., Rätsch, G., & Warmuth, M. K. (2005).
Matrix exponentiated gradient updates for on-line
learning and Bregman projections. Journal of Ma-
chine Learning Research, 6, 995–1018.

Warmuth, M. K., & Kuzmin, D. (2006a). Online vari-
ance minimization. Proceedings of the 19th Annual
Conference on Learning Theory (COLT 06). Pitts-
burg: Springer.

Warmuth, M. K., & Kuzmin, D. (2006b). Randomized
PCA algorithms with regret bounds that are loga-
rithmic in the dimension. Advances in Neural In-
formation Processing Systems 19 (NIPS 06). MIT
Press.

Warmuth, M. K., & Vishwanathan, S. (2005). Leav-
ing the span. Proceedings of the 18th An-
nual Conference on Learning Theory (COLT 05).
Bertinoro, Italy: Springer. Journal version:
http://www.cse.ucsc.edu/ manfred/pubs/span.pdf.

