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Abstract

We present a family of incremental
Perceptron-like algorithms (PLAs) with
margin in which both the “effective” learn-
ing rate, defined as the ratio of the learning
rate to the length of the weight vector, and
the misclassification condition are entirely
controlled by rules involving (powers of)
the number of mistakes. We examine the
convergence of such algorithms in a finite
number of steps and show that under some
rather mild conditions there exists a limit
of the parameters involved in which conver-
gence leads to classification with maximum
margin. An experimental comparison of
algorithms belonging to this family with
other large margin PLAs and decomposition
SVMs is also presented.

1. Introduction

Maximising the margin of the solution hyperplane,
which plays an important role in the generalisation
ability of a learning machine, is a central objective
of Support Vector Machines (SVMs) (Vapnik, 1998;
Cristianini & Shawe-Taylor, 2000). Their efficient im-
plementation, however, is somewhat hindered by the
fact that they require solving a quadratic program-
ming problem.

The ambition to surpass the implementational difficul-
ties associated with SVMs while retaining all the bene-
fits of the large margin solutions led to a revival of the
interest in alternative large margin classifiers which
are able to operate directly on the primal maximal
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margin problem instead of its dual. Such algorithms
include the standard Perceptron with margin (Duda
& Hart, 1973), the aggressive ROMMA (Li & Long,
2002) and ALMA2 (Gentile, 2001) which are all vari-
ants of the classical Perceptron algorithm (Rosenblatt,
1958). Here we address the maximal margin classifica-
tion problem in an incremental setting within the con-
text of Perceptron-like algorithms (PLAs) which, how-
ever, differ from the above variants in that the “effec-
tive” learning rate (Tsampouka & Shawe-Taylor, 2006)
and the misclassification condition do not depend on
the length of the weight vector at all but, instead, are
entirely controlled by rules involving (powers of) the
number of mistakes. This novel (class of) algorithm(s)
will be called Mistake-Controlled Rule Algorithm(s)
(MICRA). Under certain conditions MICRA converges
in a finite number of steps to an approximation of the
optimal solution which keeps improving as the parame-
ters of the algorithm follow a specific limiting process.

An introductory discussion of Perceptron-like large
margin classifiers leading to the construction of
MICRA can be found in Section 2. MICRA is de-
scribed in Section 3 together with an analysis regard-
ing its convergence. Section 4 contains some experi-
ments while Section 5 our conclusions.

2. Perceptron-Like Large Margin

Classifiers

In what follows we assume that we are given a training
set which, even if initially not linearly separable can,
by an appropriate feature mapping into a space of a
higher dimension (Vapnik, 1998; Cristianini & Shawe-
Taylor, 2000), be classified into two categories by a
linear classifier. This higher dimensional feature space
in which the patterns are linearly separable will be the
considered space. By adding one additional dimension
and placing all patterns in the same position at a dis-
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tance ρ in that dimension we construct an embedding
of our data into the so-called augmented space (Duda
& Hart, 1973). The advantage of this embedding is
that the linear hypothesis in the augmented space be-
comes homogeneous. Throughout our discussion a re-
flection with respect to the origin in the augmented
space of the negatively labelled patterns is assumed in
order to allow for a uniform treatment of both cate-
gories of patterns. Also, R ≡ max

k
‖yk‖, with yk the

kth augmented pattern. Obviously, R ≥ ρ.

The relation characterising optimally correct classifi-
cation of the training patterns yk by a weight vector
u of unit norm in the augmented space is

u · yk ≥ γd ≡ max
u

′:‖u
′‖=1

min
i
{u′ · yi} ∀k . (1)

The quantity γd will be referred to as the maximum
directional margin. It coincides with the maximum
margin in the augmented space with respect to hy-
perplanes passing through the origin if no reflection
is assumed. Between γd and the maximum geometric
margin γ in the original space the inequality

1 ≤ γ/γd ≤ R/ρ (2)

holds. In the limit ρ → ∞, R/ρ → 1 and from (2)
γd → γ (Tsampouka & Shawe-Taylor, 2005).

We concentrate on algorithms that update the aug-
mented weight vector at by adding a suitable positive
amount in the direction of the misclassified (according
to an appropriate condition) training pattern yk. The
general form of such an update rule is

at+1 = (at + ηtftyk)N−1
t+1 , (3)

where ηt is the learning rate which could depend (usu-
ally explicitly) on the number t of updates that took
place so far and ft an implicit positive and bounded
function of the current step (update) t, possibly involv-
ing at and/or yk. We also allow for a normalisation
of at+1 through a factor Nt+1. For the Perceptron
ηt = η is constant, ft = 1 and Nt+1 = 1. Each time
the misclassification condition is satisfied by a training
pattern, that is a mistake occurs, the algorithm pro-
ceeds to the update of at. We adopt the convention of
initialising t from 1.

A sufficiently general form of the misclassification con-
dition is

ut · yk ≤ C(t) , (4)

where ut ≡ at/ ‖at‖ and C(t) > 0 if we require that
the algorithm achieves a positive margin. If a1 = 0

we treat the first pattern in the sequence as misclassi-
fied. In the case that C(t) is bounded from above by a

strictly decreasing function of t which tends to zero the
minimum directional margin required by such a condi-
tion becomes lower than any fixed value provided t is
large enough. Such algorithms have the advantage of
achieving some fraction of the unknown margin pro-
vided they converge. An example is the Perceptron
with margin where C(t) = b/‖at‖ (b is a positive con-
stant) is suppressed due to the growth of ‖at‖.
Another important quantity characterising algorithms
with the perceptron-like update rule (3) is the “effec-
tive” learning rate

ηeff t ≡ ηtR‖at‖−1

which controls the impact that an update has on the
direction ut of the current weight vector

ut+1 =
ut + ηeff tftyk/R

‖ut + ηeff tftyk/R‖ . (5)

In the most well-known cases ηeff t is bounded from
above by a strictly decreasing function of t which tends
to zero like in the case of the Perceptron where ηt = η
and ηeff t is suppressed due to the growth of ‖at‖.
From the above discussion it becomes obvious that a
PLA with the additive update (3) is uniquely deter-
mined by the functions C(t), ηeff t and ft. In particu-
lar, it does not depend on ‖at‖ as long as the above
functions are ‖at‖-independent. If this is the case the
update (3) of at can be replaced by the update (5)
of ut. Our purpose here is to examine the sufficiently
large subclass of such algorithms with ft = 1 and C(t),
ηeff t inversely proportional to powers of the number of
mistakes t and determine sufficient conditions under
which algorithms in the above subclass converge as-
ymptotically to the optimal solution. The rather spe-
cial case of a constant ηeff is the CRAMMA algorithm
of (Tsampouka & Shawe-Taylor, 2006).

3. The Mistake-Controlled Rule

Algorithm MICRA
ǫ,ζ

We consider algorithms having an update rule given
by (5) with ft = 1, an effective learning rate

ηeff t = ηt−ζ (6)

and a misclassification condition

ut · yk ≤ βt−ǫ . (7)

Here η, ζ, β and ǫ are positive constants. We assume
that the initial value u1 of ut is in the direction of the
first pattern. Then,

ut · u > 0 . (8)
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This is true given that, on account of (5), ut is a linear
combination with positive coefficients of the yk’s all of
which satisfy yk · u > 0 because of (1). The above
(family of) algorithm(s) parametrised in terms of the
exponents ǫ and ζ will be called the Mistake-Controlled
Rule Algorithm(s) MICRAǫ,ζ .

Theorem 1 The MICRAǫ,ζ algorithm converges in a
finite number of steps provided ζ ≤ 1. Moreover,
if η is given a dependence on β through the relation
η = η0 (β/R)

−δ
the directional margin γ′

d that the algo-
rithm achieves tends in the limit β/R→∞ to the max-
imum directional margin γd provided 0 < ǫδ + ζ < 1.

Proof Taking the inner product of (5) with the optimal

direction u, expanding ‖ut + ηeff tyk/R‖−1
and using

the inequality (1 + x)−
1
2 ≥ 1− x/2 we have

ut+1 · u ≥
(

ut · u + ηeff t
y

k
·u

R

)

(

1− ηeff t
y

k
·ut

R
− η2

eff t

‖yk‖2
2R2

)

.

Thus, we obtain for D ≡ ut+1 · u− ut · u

R

ηeff t

D ≥ yk · u− (ut · u)(yk · ut)− ηeff t

(

ut · u ‖yk‖2

+ 2(yk · u)(yk · ut)
)

/2R− η2
eff t ‖yk‖2 yk · u/2R2.

Then, by employing (1), (7) and (8) we get

D ≥ ηeff t

(

γd

R
− ηeff t

2
− η2

eff t

2

)

−ηeff t (1 + ηeff t)
β

R
t−ǫ .

(9)
From (7) it is obvious that convergence of the algo-
rithm is impossible as long as βt−ǫ > γd. Thus, we

may assume that t > t0 ≡ (β/γd)
1
ǫ . A repeated ap-

plication of (9) t − [t0] times, where [t0] denotes the
integer part of t0, yields

ut+1 · u− u[t0]+1 · u ≥ η
γd

R

t
∑

m=[t0]+1

m−ζ

−η2

2

t
∑

m=[t0]+1

m−2ζ − η3

2

t
∑

m=[t0]+1

m−3ζ

−η
β

R

t
∑

m=[t0]+1

m−(ζ+ǫ) − η2 β

R

t
∑

m=[t0]+1

m−(2ζ+ǫ).

Noticing that 1 ≥ ut+1 ·u−u[t0]+1 ·u because of (8),
employing

∫ t

t0+1

m−θdm ≤
t

∑

m=[t0]+1

m−θ ≤
∫ t

t0

m−θdm + t−θ
0

for θ > 0 and introducing τ ≥ 0 through the relation

t = t0 (1 + τ) = (β/γd)
1
ǫ (1 + τ) , (10)

we finally obtain

(

ηt1−ζ
0

)−1 (γd

R

)−1

(1 + ω) ≥ g(τ) ≡ (1 + τ)
1−ζ − 1

1− ζ

− (1 + τ)
1−(ζ+ǫ) − 1

1− (ζ + ǫ)
− R

2γd
ηt−ζ

0

(1 + τ)
1−2ζ − 1

1− 2ζ

− R

2γd
η2t−2ζ

0

(1 + τ)
1−3ζ − 1

1− 3ζ
−ηt−ζ

0

(1 + τ)
1−(2ζ+ǫ) − 1

1− (2ζ + ǫ)
.

(11)
Here

ω ≡ γd

R
ηt−ζ

0

(

2 + ηt−ζ
0

)

+
1

2
η2t−2ζ

0

(

1 + ηt−ζ
0

)

> 0 .

For ζ = 1 the first term of g(τ) becomes ln(1 + τ).
Since 0 < ζ ≤ 1, g(τ) (with τ ≥ 0) is unbounded from
above. Moreover, its derivative g′(τ) satisfies

(1 + τ)ζg′(τ) = 1− (1 + τ)−ǫ − R

2γd
ηt−ζ

0 (1 + τ)−ζ

− R

2γd
η2t−2ζ

0 (1 + τ)−2ζ − ηt−ζ
0 (1 + τ)−(ζ+ǫ) .

The r.h.s. of the above equation is a monotonically
increasing function of τ which is negative at τ = 0 and
tends to 1 as τ → ∞. Therefore g′(τ) has a single
root at τ = τmin which corresponds to a minimum of
g(τ) with g(τmin) < 0. Moreover, the l.h.s. of (11) is
positive. Thus, given that g(0) = 0, there is a single
value τb of τ where (11) holds as an equality which
provides an upper bound on τ satisfying τb > τmin > 0.
Then, from (10) using τ ≤ τb we obtain the upper
bound on the number of updates

t ≤ tb ≡ (β/γd)
1
ǫ (1 + τb) (12)

proving that the algorithm converges in a finite num-
ber of steps. From (12) and taking into account (7) the
margin γ′

d achieved satisfies γ′
d ≥ β(tb + 1)−ǫ. Thus,

for the fraction f ≡ γ′
d/γd of γd achieved we have

1 ≥ f ≥ fb ≡ (β/γd)(tb + 1)−ǫ =
(

1 + τb + t−1
0

)−ǫ
.

(13)
Let us assume that β/R → ∞ in which case from

η = η0 (β/R)
−δ

and given that 0 < ǫδ + ζ < 1 we

have ηt1−ζ
0 ∼ (β/R)

1−ζ−ǫδ
ǫ → ∞ whereas ηt−ζ

0 ∼
(β/R)

− ζ+ǫδ
ǫ → 0. Consequently, the l.h.s. of (11)

vanishes in the limit β/R→∞ whereas g(τ) becomes
a strictly increasing function for τ > 0 (i.e. τmin → 0)
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since (1 + τ)ζg′(τ) = 1 − (1 + τ)−ǫ > 0. Obviously,
(11) holds as an equality only for τ = 0. Therefore,

τb → τmin → 0 as β/R→∞ . (14)

Combining (13) with (14) and noticing that t−1
0 → 0

as β/R→∞ we conclude that f → 1 or

γ′
d → γd as β/R→∞ .

Remark 1 In the case that ζ + 2ǫ = 1 with ζ > 1/2
we may obtain explicitly an upper bound tb on the
number of updates and a lower bound fb on the frac-
tion f of the margin that the algorithm achieves. First
we observe that since 1 − 2ζ, 1 − 3ζ and 1 − (2ζ + ǫ)
are negative it is allowed to set the terms (1 + τ)1−2ζ ,
(1 + τ)1−3ζ and (1 + τ)1−(2ζ+ǫ) to zero in the r.h.s. of
(11). Then, the resulting inequality with ζ = 1 − 2ǫ
becomes

A2 ≥ ((1 + τ)ǫ − 1)
2

(15)

where

A2 =
2ǫ

η

(

Rγd

β2

)

(1 + ω) +
ǫη

1− 4ǫ

(

R

β

)(

γd

β

)
1
ǫ
−3

+
ǫη2

2− 6ǫ

(

R

β

)(

γd

β

)
2
ǫ
−5

+
2ǫη

1− 3ǫ

(

γd

β

)
1
ǫ
−2

.

Notice that ǫ < 1/4 if ζ > 1/2. By solving (15) as
an equation we obtain explicitly the bounds tb and fb.
They are the ones of (12) and (13), respectively with

τb = (1 + |A|)
1
ǫ − 1 .

Here 0 < ǫδ + ζ < 1 is equivalent to 2 − 1
ǫ

< δ < 2.

Then, with η = η0 (β/R)
−δ

as β/R→∞ we get |A| →
0 leading to τb → 0. This demonstrates explicitly
the statement of Theorem 1. It is worth emphasising,
however, that |A| may be small even if β/R is not large
if γd/R and ǫ are sufficiently small.

Example 1 If ǫ = ζ = 1/2 and moreover δ = 0, i.e.
η is β-independent, ǫδ + ζ = 1/2 and the condition of
Theorem 1 is satisfied. Therefore, such an algorithm
attains asymptotically as β/R→∞ the maximum di-
rectional margin. The above algorithm is a version of
ALMA2 in which the weight vector instead of being
confined within a ball centered at the origin is nor-
malised to a constant length which remains fixed dur-
ing the asymptotic procedure. Thus, ALMA2 can be
thought of as belonging to the MICRA family. Then,
the analysis of (Gentile, 2001) confirms our conclusion
regarding asymptotic convergence to the optimal so-
lution hyperplane in this special case. In the case, in-
stead, that ǫ = ζ = 1/2 but δ = 1, i.e. η = η0 (β/R)

−1
,

ǫδ + ζ = 1 and the condition of Theorem 1 is violated.
This case would correspond to a version of ALMA2

with the function C(t) entering the misclassification
condition (4) given by C(t) = β2/

(

‖at‖
√

t
)

and the
weight vector normalised to the constant length β
which, however, does not remain fixed during the as-
ymptotic procedure β/R→∞. Since the condition of
Theorem 1 is violated we are unable to prove asymp-
totic convergence of such an algorithm to the maximal
margin solution. The same conclusion is reached if the
technique of (Gentile, 2001) is employed which gives

the lower bound fb =
(

1 + η0
−1 + 2η0(R/β)2

)−1
on

the fraction of γd achieved. As β/R → ∞ we get
fb → η0/(1 + η0) < 1. We see that a “slight” modifi-
cation of the asymptotic procedure is able to affect the
ability of a PLA to attain the solution with maximum
margin. We believe that the inability in some cases of
the Perceptron algorithm with margin, in contrast to
ALMA2, to approach the maximal margin solution is
due to such “slight” differences between the two algo-
rithms regarding the asymptotic procedure.

Efficient Implementation: A completely equivalent
formulation of MICRA is obtained if the update rule
(3) with ft = Nt+1 = 1 and ηt = ‖at‖ ηeff t/R is em-
ployed and the misclassification condition (7) is reex-
pressed as at · yk ≤ ‖at‖βt−ǫ. Such a formulation
apart from bearing a close resemblance to the Percep-
tron algorithm has the additional advantage of being
computationally more efficient. A pseudocode imple-
menting this formulation is given below.

Algorithm 1 MICRAǫ,ζ

Input: A linearly separable augmented set with
reflection assumed S =(y1, . . . , yk, . . . , ym)
Fix: η, β
Define: R = max

k
‖yk‖ , qk = ‖yk‖2 , η̄ = η/R

Initialise: t = 1, a1 = y1, ‖a1‖ = ‖y1‖ ,
η1 = ‖a1‖ η̄, β1 = ‖a1‖ β
repeat

for k = 1 to m do

ptk = at · yk

if ptk ≤ βt then

at+1 = at + ηtyk

‖at+1‖ =

√

‖at‖2 + ηt (2ptk + ηtqk)
t← t + 1
ηt = ‖at‖ η̄t−ζ , βt = ‖at‖βt−ǫ

end if

end for

until no update made within the for loop

In order to further reduce the computational cost we
may form a reduced “active set” of patterns consist-
ing of the ones found misclassified during each epoch
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Table 1. Results for the sonar dataset. The directional margin γ′

d achieved and the number of updates (upds) are given
for the Perceptron, agg-ROMMA and MICRA0.05,0.9. For MICRA we choose η = 50.

Perceptron agg-ROMMA MICRA0.05,0.9

b
ηR2 103γ′

d upds δ 103γ′
d upds 103 β

R
103γ′

d upds

3.9 7.27 820,261 0.2 7.28 778,412 3.59 7.29 327,468
30 7.85 5,930,214 0.1 7.85 1,546,595 4.04 7.86 706,274
100 7.91 19,599,882 0.05 8.19 2,716,711 4.43 8.19 1,932,165
500 7.93 97,717,549 0.01 8.37 14,079,715 4.95 8.37 11,610,899

Table 2. The number of updates (upds) required to achieve γ′

d ≃ 0.00819 in the sonar dataset with MICRA and ALMA2.
For MICRA various ǫ, ζ values are considered and the η employed is given.

ǫ, ζ 0.005, 0.99 0.05, 0.9 0.1, 0.8 0.15, 0.7 0.2, 0.6 0.2, 0.5 0.5, 0.5
ALMA2

η 190 60 17 4.4 1.2 0.28 0.35
upds/106 1.53 1.86 2.32 2.89 3.57 3.74 7.54 53.4

which are then cyclically presented to the algorithm
for N mini-epochs unless no update occurs during a
mini-epoch. Subsequently, a new full epoch involv-
ing all the patterns takes place giving rise to a new
active set. The algorithm terminates only if no mis-
take occurs during a full epoch. This procedure clearly
amounts to a different way of sequentially presenting
the patterns to the algorithm and does not affect the
applicability of Theorem 1. The MICRA algorithm in-
corporating the above procedure will be referred to as
the “reduced” MICRA or red-MICRA.

4. Experiments

A comparison of MICRA with other classifiers will rely
on their ability to achieve fast convergence to a certain
approximation of the “optimal” hyperplane in the fea-
ture space where the patterns are linearly separable.
Although it is straightforward to formulate MICRA
in dual space we will treat it here, unless otherwise
specified, as a primal space algorithm. For linearly
separable data our feature space will be the initial in-
stance space. For linearly inseparable data, instead, a
space extended by as many dimensions as the instances
will be considered where each instance is placed at a
distance ∆ from the origin in the corresponding dimen-
sion. The justification for this construction relies on
the well-known fact that the hard margin optimisation
in this extended space is equivalent to the soft margin
optimisation in the original instance space with objec-
tive function ‖w‖2 + ∆−2

∑

iξi
2 involving the weight

vector w and the 2-norm of the slacks ξi (Cristianini &
Shawe-Taylor, 2000). To obtain a meaningful compar-
ison we follow the above approach, i.e. linear kernels
and 2-norm soft margin, for both PLAs and SVMs.

Comparison with PLAs: We begin with experi-
ments on several UCI datasets aiming at verifying our
analysis and evaluating the performance of MICRA
relative to the Perceptron with margin and aggres-
sive ROMMA. For MICRA we use a β-independent
η (δ = 0) and ǫ, ζ values for which, in most cases, the
analysis of Remark 1 applies. Our goal in this com-
parison involving only PLAs will be to obtain a given
value of the margin in as few updates as possible.

First we analyse the training dataset of the sonar
classification problem (104 instances, 60 attributes)
as originally selected for the aspect-angle dependent
experiment. Here the augmented space parameter is
set to the value ρ = 1 leading to R ≃ 3.8121 and
γd ≃ 0.00841. The results of our comparative study
of the Perceptron, agg-ROMMA1 and MICRA0.05,0.9

algorithms are presented in Table 1. We observe that
MICRA is certainly the fastest. Moreover, the Per-
ceptron does not seem able to approach the maximum
margin arbitrarily close. We also present in Table 2
the number of updates required to achieve a margin
γ′
d ≃ 0.00819 using MICRA with several ǫ, ζ values

and ALMA2. For ALMA2 the accuracy parameter α
was set to α = 0.1527 with the remaining parameters
chosen to correspond to the ones of the Theorem in
(Gentile, 2001) if the data are normalised such that
the longest pattern has unit length. From Table 2 it
becomes clear that small ǫ’s combined with relatively
large ζ’s lead to faster convergence.

We additionally analyse the linearly separable dataset
WBC−11 (672 instances, 9 attributes). It is con-

1The parameter δ ∈ (0, 1] in agg-ROMMA controls the
accuracy to which the maximum margin is approximated.
It should not be confused with δ in Theorem 1.
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Table 3. Results for the WBC−11 dataset. For MICRA the choice η = 2.3 is made.

Perceptron agg-ROMMA MICRA0.1,0.8

b
ηR2 102γ′

d upds δ 102γ′
d upds 103 β

R
102γ′

d upds

1.8 2.197 4,980,423 0.2 2.195 5,784,868 1.85 2.198 267,145
4.1 2.321 10,761,773 0.1 2.318 13,931,792 2.07 2.324 467,369
45 2.415 113,406,210 0.01 2.415 174,388,827 2.70 2.415 4,533,155

Table 4. Results for the WBC dataset (extended with ∆ = 1). For MICRA we choose η = 20.

Perceptron agg-ROMMA MICRA0.05,0.9

b
ηR2 102γ′

d upds δ 102γ′
d upds 103 β

R
102γ′

d upds

3.5 11.905 206,469 0.1 11.916 169,588 7.02 11.957 105,964
8.1 12.462 457,334 0.05 12.468 409,956 7.54 12.470 183,643
700 12.837 38,336,601 0.01 12.928 1,554,492 8.40 12.949 734,629

structed from the Wisconsin Breast Cancer (WBC)
dataset by first omitting the 16 instances with miss-
ing attributes and subsequently removing from the
dataset containing the remaining 683 instances the 11
instances having the positions 2, 4, 191, 217, 227, 245,
252, 286, 307, 420 and 475. The value ρ = 30 is cho-
sen for the augmented space parameter ρ leading to
R =

√
1716 and γd ≃ 0.0243. The results of our com-

parative study of the Perceptron, agg-ROMMA and
MICRA0.1,0.8 are presented in Table 3. The superior-
ity of the performance of MICRA is remarkable.

Finally, we turn to the linearly inseparable full WBC
dataset which, after ignoring the 16 instances with
missing attributes, has 683 instances each with 9 at-
tributes. For the extended space parameter ∆ and
the augmented space parameter ρ we choose the val-
ues ∆ = 1 and ρ = 10, respectively. This leads to
R =

√
917 and to a maximum margin γd ≃ 0.13033

with respect to zero-threshold hyperplanes in the ex-
tended (and augmented) space. Table 4 contains the
results of our comparative study. We observe that the
Perceptron shows again some difficulty in approaching
γd and that once again MICRA is the fastest.

To conclude our comparative study of PLAs we point
out that, from the experiments of (Tsampouka &
Shawe-Taylor, 2006) on the same datasets, MICRA
with ǫ≪ 1 and ζ ≃ 1 is much faster than CRAMMA.

Comparison with SVMs: A comparison of MICRA
with SVMs, unlike PLAs, could only involve the CPU-
time required to achieve a certain approximation of the
hyperplane giving rise to the maximum geometric mar-
gin γ in the feature space where the patterns are lin-
early separable. PLAs like MICRA become extremely
slow in the vicinity of the maximum directional margin
γd which is attainable only asymptotically. Moreover,

γd approaches γ only in the limit ρ → ∞. As a con-
sequence, MICRA could converge faster than SVMs
only to a solution with geometric margin γ′ slightly
lower than γ. We choose to compare red-MICRA with
SVMs at a margin larger than 99% of γ.

In our experiments SVMs are represented by al-
gorithms based on decomposition methods which
are many orders of magnitude faster than standard
SVMs. More specifically, red-MICRA is compared
with LIBSVM (Chang & Lin, 2001), an improved ver-
sion of SMO (Platt, 1998), and SVMlight (Joachims,
1999). For both algorithms we choose m = 400MB for
the memory parameter and C = 105 (approximating
C =∞) for the 1-norm soft margin parameter since we
are dealing with a hard margin problem in the appro-
priate feature space. Also, the working set size para-
meter q of SVMlight is fixed to the default value q = 10.
For each dataset we obtain values of the geometric
margin γ′ corresponding to two different values of the
accuracy parameter ǫ both for LIBSVM and SVMlight.
The larger value of the margin obtained by these al-
gorithms corresponds to ǫ = 0.001 and is regarded
as a good approximation to the maximum geometric
margin γ. We require that the margin γ′ achieved
by red-MICRA be larger than 99% of the larger mar-
gins (corresponding to ǫ = 0.001) and larger than the
lower margins (corresponding to ǫ > 0.001) obtained
by both LIBSVM and SVMlight. Unless otherwise
specified we take advantage of the sparsity in the at-
tributes of the initial space only if these attributes are
binary. Also, we always exploit the enormous spar-
sity in the attributes associated with the additional
dimensions of the extended instance space. The ex-
periments were conducted on a 1.8 GHz Intel Pentium
M processor with 504 MB RAM running Windows XP.
The codes written in C++ were run using Microsoft’s
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Table 5. Results of a comparative study of LIBSVM, SVMlight and red-MICRA on several UCI datasets.

data ∆
LIBSVM SVMlight red−MICRA0.05,0.9

set 102γ′ Secs 102γ′ Secs 102γ′ Secs 102γ′ Secs ρ η N 105 β
R

102γ′ Secs

sonar 0 0.8451 0.17 0.8405 0.10 0.8460 6.85 0.8388 4.84 1 45 80 462.2 0.8406 3.60⋆

ionosphere 1 10.554 0.06 10.389 0.05 10.551 0.30 10.448 0.19 1.5 10 10 2929 10.449 0.07

votes 1 16.846 0.02 16.708 0.02 16.841 0.18 16.690 0.11 1 5 20 6385 16.718 0.02

WBC 1 13.034 0.12 12.848 0.09 13.033 0.81 12.929 0.45 2 25 20 837.6 12.932 0.35

tic-tac-toe 1 10.300 0.47 10.183 0.27 10.295 3.35 10.185 1.35 0.5 8 20 5334 10.203 0.05

german 25 95.361 0.62 94.055 0.45 95.332 2.96 94.217 1.82 8 30 50 908.9 94.415 0.36

mushroom 0 36.551 0.58 35.988 0.33 36.538 0.17 36.103 0.11 0 4.5 50 12535 36.212 0.10

Table 6. Results of a comparative study of LIBSVM, SVMlight and red-MICRA on several subsets of the Adult dataset.

subset LIBSVM SVMlight red−MICRA0.05,0.9

size 102γ′ Secs 102γ′ Secs 102γ′ Secs 102γ′ Secs η N 102 β
R

102γ′ Secs

1605 3.9383 1.41 3.9022 1.07 3.9375 3.02 3.8877 1.58 20 100 1.918 3.9038 0.63

3185 2.7437 5.55 2.7187 4.29 2.7434 11.3 2.7093 6.23 25 100 1.400 2.7187 1.73

6414 1.9292 22.5 1.9094 17.6 1.9290 71.3 1.9097 37.7 45 300 1.025 1.9111 5.83

11220 1.4499 73.2 1.4348 58.6 1.4497 283.4 1.4342 141.7 65 300 0.798 1.4356 14.7

16100 1.2069 389.7 1.1927 312.3 1.2068 638.2 1.1923 318.6 80 500 0.673 1.1950 28.7

32561 0.8526 3902.3 0.8424 2484.5 0.8525 2733.8 0.8432 1439.4 105 600 0.492 0.8441 75.0

Visual C++ 5.0 compiler.

Table 5 contains the results of our comparative study
of LIBSVM, SVMlight and red-MICRA on several UCI
datasets with I/O excluded from the CPU-times re-
ported. The value of the accuracy parameter ǫ cor-
responding to the lower value of the margin is set to
ǫ = 0.03 for LIBSVM and ǫ = 0.015 for SVMlight. The
sonar and WBC datasets are described already. The
ionosphere dataset consists of 351 instances each with
34 attributes. The House votes dataset consists of 435
instances each with 16 attributes taking values from
the set {y,n, ?} represented here as {1,−1, 0}. The
tic-tac-toe dataset consists of 958 instances each with
9 attributes taking values from the set {x, o,b} rep-
resented as {1,−1, 0}. The german dataset consists
of 1000 instances each with 24 attributes. Finally,
the linearly separable mushroom dataset consists of
5644 instances after removing the ones with missing
attributes. Each instance has 22 categorical attributes
replaced here by 125 binary ones out of which exactly
22 are true. We believe that from Table 5 it is fair
to conclude that, roughly speaking, red-MICRA is of
speed comparable to that of decomposition SVMs.

We also analysed several subsets of the Adult (32561
instances, 123 binary attributes) and of the Web

∗Value obtained using the dual space formulation.

(49749 instances, 300 binary attributes) datasets in
the version of (Platt, 1998) with results presented in
Tables 6 and 7, respectively. Here ∆ = 1. Also, in
both tables the lower value of the margin for LIBSVM
corresponds to ǫ = 0.03. For the Adult dataset no aug-
mentation is required and the lower value of the margin
for SVMlight corresponds to ǫ = 0.025. For the Web
dataset, instead, we do perform an augmentation for
red-MICRA with parameter ρ = 0.25. Also, the lower
value of the margin for SVMlight in Table 7 is obtained
with ǫ = 0.02. We observe that the CPU-time required
for red-MICRA to converge is shorter and exhibits a
better scaling behaviour with the size of the dataset.
Moreover, the shortage of memory as the dataset size
grows apparently slows down LIBSVM. In contrast,
SVMlight and red-MICRA are not affected.

Finally, we conducted an experiment with the mul-
ticlass Covertype dataset (581012 instances, 54 at-
tributes) obtainable from UCI and studied the binary
classification problem of the first class versus all the
others using again the whole dataset for training. Due
to the memory difficulties encountered by LIBSVM we
compared red-MICRA only with SVMlight for which
we obtained only one margin value corresponding to
an accuracy parameter ǫ = 0.01. Such a value of ǫ is
sufficiently small to guarantee a margin γ′ larger than
0.99γ. The dataset was rescaled by multiplying all the
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Table 7. Results of a comparative study of LIBSVM, SVMlight and red-MICRA on several subsets of the Web dataset.

subset LIBSVM SVMlight red−MICRA0.05,0.9

size 102γ′ Secs 102γ′ Secs 102γ′ Secs 102γ′ Secs η N 102 β
R

102γ′ Secs

2477 10.448 0.57 10.292 0.51 10.445 0.30 10.312 0.18 25 10 1.681 10.344 0.07

4912 7.0079 2.07 6.8967 1.83 7.0067 1.10 6.8909 0.61 25 10 1.212 6.9393 0.20

9888 4.8784 8.95 4.7970 7.82 4.8772 5.45 4.8072 3.22 30 10 0.868 4.8316 0.86

24692 2.9555 115.5 2.9066 90.2 2.9549 66.9 2.9111 32.1 50 10 0.535 2.9265 4.82

49749 2.1094 725.0 2.0723 635.8 2.1089 360.2 2.0771 176.4 70 10 0.405 2.0894 18.3

Table 8. Results of a comparative study of SVMlight and
red-MICRA on the Covertype dataset.

data SVMlight red−MICRA0.05,0.9

size 103γ′ Secs η N 105 β
R

103γ′ Secs

581012 15.774 47987.7 70 400 336 15.789 4728.0

attributes with 0.001 and their sparsity was fully ex-
ploited. Moreover, for the rescaled data the parameter
values ∆ = 10 and ρ = 2 were chosen. From the re-
sults desplayed in Table 8 red-MICRA appears about
10 times faster.

Very recently SVM-Perf, a cutting-plane algorithm for
training linear SVMs, was presented and empirically
proved much faster than SVMlight (Joachims, 2006).
From the results reported, however, no direct mean-
ingful comparison with red-MICRA is possible since
SVM-Perf implements the 1-norm soft margin.

5. Conclusions

We presented MICRA, a family of Perceptron-like
large margin classifiers completely independent of the
length of the weight vector. Our theoretical approach
proved sufficiently powerful in establishing asymptotic
convergence to the optimal hyperplane for a whole
class of such algorithms in which the misclassification
condition and the effective learning rate ηeff t are en-
tirely controlled by rules involving arbitrary powers of
the number of mistakes. Moreover, we provided exper-
imental evidence in support of our theoretical analysis.
The experimental results also suggest that algorithms
belonging to the MICRA family with slow relaxation of
the misclassification condition and relatively fast sup-
pression of ηeff t with the number of mistakes are very
powerful tools in the hands of a skillful practitioner.
Of course, this does not diminish at all the value and
usefulness of established algorithms like LIBSVM or
SVMlight which only need fixing the accuracy parame-
ter ǫ. It is remarkable, however, that simple extensions
of the old Perceptron algorithm can be so competitive.

References

Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library
for support vector machines. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

Cristianini, N., & Shawe-Taylor, J. (2000). An in-
troduction to support vector machines. Cambridge
University Press.

Duda, R. O., & Hart, P. E. (1973). Pattern classsifi-
cation and scene analysis. Wiley.

Gentile, C. (2001). A new approximate maximal mar-
gin classification algorithm. Machine Learning Re-
search, 2, 213–242.

Joachims, T. (1999). Making large-scale svm learning
practical. In Advances in kernel methods-support
vector learning. MIT Press.

Joachims, T. (2006). Training linear svms in linear
time. KDD’06 (pp. 217–226). ACM Press.

Li, Y., & Long, Y. (2002). The relaxed online maxi-
mum margin algorithm. Machine Learning, 46, 361–
387.

Platt, J. C. (1998). Sequential minimal optimiza-
tion: A fast algorithm for training support vector
machines (Technical Report MSR-TR-98-14). Mi-
crosoft Research.

Rosenblatt, F. (1958). The perceptron: A probabilistic
model for information storage and organization in
the brain. Psychological Review, 65 (6), 386–408.

Tsampouka, P., & Shawe-Taylor, J. (2005). Analy-
sis of generic perceptron-like large margin classifiers.
ECML 2005 (pp. 750–758). Springer-Verlag.

Tsampouka, P., & Shawe-Taylor, J. (2006). Con-
stant rate approximate maximum margin algo-
rithms. ECML 2006 (pp. 437–448). Springer-Verlag.

Vapnik, V. (1998). Statistical learning theory. Wiley.


