
Learning from Interpretations:

A Rooted Kernel for Ordered Hypergraphs

Gabriel Wachman gwachm01@cs.tufts.edu

Roni Khardon roni@cs.tufts.edu

Department of Computer Science, Tufts University, Medford, MA 02155, USA

Abstract

The paper presents a kernel for learning from
ordered hypergraphs, a formalization that
captures relational data as used in Inductive
Logic Programming (ILP). The kernel gener-
alizes previous approaches to graph kernels
in calculating similarity based on walks in
the hypergraph. Experiments on challenging
chemical datasets demonstrate that the ker-
nel outperforms existing ILP methods, and is
competitive with state-of-the-art graph ker-
nels. The experiments also demonstrate that
the encoding of graph data can affect perfor-
mance dramatically, a fact that can be useful
beyond kernel methods.

1. Introduction

Recently there is increased interest in learning and
mining from graphs, where each example is natu-
rally described using a graph structure (Kramer &
De Raedt, 2001; Deshpande et al., 2003; Gärtner et al.,
2003; Fröhlich et al., 2005). A prime application of this
setting is learning to classify molecules. Here each
molecule is a separate example labeled according to
some property (e.g. carcinogenicity) and one would
like to predict the labels of new examples. The atom-
bond structure of the molecule is typically used as the
underlying graph structure of the example, and the
nodes and edges of the graph are annotated with atom
and bond types.

Learning from graphs is a special case of a prob-
lem commonly studied in Inductive Logic Program-
ming (ILP) under the name of Learning from In-
terpretations (De Raedt & Dzeroski, 1994). Here
each example is an interpretation from logic program-
ming, which can be seen as a labeled ordered hyper-

graph. For example, the hypergraph H1 with nodes

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

{n1, n2, n3, n4, n5}, hyperedge (n1, n2, n3) labeled p,
and hyperedge (n1, n3, n4) labeled q can be compactly
described as H1 = {p(n1, n2, n3), q(n1, n4, n5)}. This
generalizes the usual notion of a directed graph, in
that edges have more than two endpoints and the or-
der of nodes is important. Similarly hypergraphs H2 =
{p(n1, n2, n3), p(n1, n5, n6), q(n4, n3, n5)}, and H3 =
{p(n1, n2, n3), q(n1, n3, n4)} could be different exam-
ples in our problem domain. Typically ILP algorithms
(Muggleton, 1995; Quinlan, 1990) learn hypotheses
represented as sets of first order logic rules and these
are used to classify the interpretations. For exam-
ple, the rule R = [∃w, x, y, z, p(w, x, y)q(w, y, z) →
Positive] classifies H3 as positive and H1 or H2 as
negative. The search involved in ILP rule learning is
complex and the matching problem, that is, checking
whether a rule covers an example, is computationally
hard. As a result such systems are typically slow and
not easy to apply for large datasets.

The use of kernel methods over discrete structures,
and in our case ordered hypergraphs, offers an attrac-
tive alternative. Recall that a kernel function calcu-
lates an inner product over some implicit feature space,
and typically one uses a linear threshold function over
this space to classify examples (Cristianini & Shawe-
Taylor, 2000). A natural goal would be to capture
each first-order logic rule as one feature so that the
linear threshold function can combine the predictions
of different rules. Notice that each rule corresponds to
a potential sub-structure of the hypergraph. There-
fore features in the implicit space correspond directly
to substructures. Indeed, variants of this idea have
already been studied for the special case of graphs,
and are known as graph kernels (Gärtner et al., 2003;
Kashima et al., 2003).

In this paper we introduce a new kernel for ordered
hypergraphs. To our knowledge this is the first ker-
nel that applies to the general case of learning di-
rectly from interpretations, i.e., hypergraphs. The ker-
nel generalizes graph kernels in that its features are
based on walks in the hypergraph. Our kernel differs
in important ways from general graph kernel construc-

A Kernel for Learning from Interpretations

tions and induces a new kernel for data represented as
graphs. Comparing to ILP, one can see that the walk-
based feature space captures a large set of potential
rules. However, as we explain later, not all rules are
expressible by walks so there is some trade-off relative
to ILP methods.

We evaluate the hypergraph kernel using the Per-
ceptron Algorithm with Margins (Krauth & Mézard,
1987) that has been shown to be competitive with Sup-
port Vector Machines. We perform experiments us-
ing several challenging chemical datasets. The results
demonstrate that the kernel outperforms existing ILP
methods, and that it is competitive with state-of-the-
art graph kernels. In addition we give insight into two
important issues in applying kernel methods to chemi-
cal data. The first is the notion of discounting as used
in previous work. We present evidence that discount-
ing walks as a function of their length does not lead
to a significant difference in performance. The sec-
ond is that the choice of data encoding is critical in
this domain and can lead to a dramatic difference in
performance. In particular, the best encoding for these
datasets leads to features (corresponding to rules) that
are very specific, thus limiting the amount of general-
ization for any single rule.

To summarize, we contribute a new kernel suitable
for the general case of learning from interpretations.
Experimental results show that the kernel is effective
both in terms of run time and in terms of classification
performance. The experiments also highlight the cru-
cial role of data encoding and identify an encoding that
seems particularly suited to chemical applications.

2. Definitions and Notation

A labeled directed graph, G = (V,E), is a set of nodes
V , and a set of edges E ⊆ V × V . Every edge and
every vertex are annotated with a label from a fixed
set of labels L. Hypergraphs are normally defined as a
generalization of undirected graphs but here we define
them as a generalization of directed graphs as follows.
A labeled ordered hypergraph, G = (V,E) has a set of
vertices V and a set of edges E. Each edge e ∈ E is a
tuple of vertices, (v1, . . . , vn) where n ≥ 1 is the arity

of the edge. Every edge is labeled with a label from
L. We do not label vertices; instead we can use edges
of arity 1. Furthermore, we allow parallel edges, that
is, the same tuple can exist in E multiple times, but
with different labels. Example of ordered hypergraphs
are given in the previous section.

A walk in a directed graph is a sequence of ver-
tices and edges v1, e1, v2, . . . , en−1vn such that ei =

(vi, vi+1) ∈ E. We define a walk in an ordered hy-
pergraph as a sequence of hyperedges where every
two consecutive edges have at least one node in com-
mon, and no consecutive edges are identical (i.e. we
forbid self loops in the graph case). We represent
a walk by explicitly specifying indices of the nodes
shared by two edges. In particular, we use a string
P = p1i1j1p2i2j2p3 . . . in−1jn−1pn where pl ∈ E, ev-
ery ik represents the exit position of pk and every jk

represents the entry position of pk+1. For example,
P = p(n1, n2, n3), 1, 1, p(n1, n5, n6), 2, 3, q(n4, n3, n5)
represents a walk in H2. Notice that the ordering of
edge arguments is important since we track entry and
exit positions for the nodes.

A walk type is specified by a string w =
r1i1j1r2i2j2r3 . . . in−1jn−1rn where rl is an edge la-
bel. For example, the walk type of P given above is
w = p, 1, 1, p, 2, 3, q. Thus a walk identifies individual
edges, whereas a walk type generalizes the walk and
only includes edge labels. Although every walk in a
hypergraph is unique, walk types are not; two walks
are of the same type iff the strings representing them
are identical.

In the following we define a kernel whose features cor-
respond to walk types. Notice that walk types are
less expressive than rules in that they make fewer dis-
tinctions. For example, walk type w = p, 1, 1, q cap-
tures hypergraphs H1 and H3 from the introduction,
w = p, 3, 2, q captures H2 and H3, but there is no walk
type equivalent to the rule R from the introduction
which captures H3 but neither of H1,H2.

We need the following additional notation. For edge
pi in hypergraph G, rel(pi) denotes its label, and p

j
i

denotes the vertex at position j in the edge. The
string x.y denotes the string resulting from concate-
nating string y to x. Finally, edge pi in hypergraph G

and walk type w we define #(G, pi, w) to be the num-
ber of walks of type w starting at edge pi in G. Note
that if #(G, pi, w) > 0 then w begins with rel(pi).

3. A Hypergraph Kernel

We first define a kernel operating on graphs which are
“rooted” at particular edges. We then define a ker-
nel operating on graphs in general, and finally discuss
variants and extensions of these kernels.

3.1. A Kernel Rooted at Specific Edges

The following kernel Kn() operates on pairs of hy-
pergraphs and edges so it should be written as
Kn((G1, p1), (G2, p2)) but to simplify the presentation
we omit G1 and G2 from the equations. We also omit

A Kernel for Learning from Interpretations

the fact that p1 and p′1 are always in G1 and p2 and
p′2 are always in G2.

Definition 1 The kernel Kn() is defined recursively

as follows:

K1(p1, p2) = 1 iff rel(p1) = rel(p2)

K1(p1, p2) = 0 otherwise

Kn(p1, p2) = K1(p1, p2)
k

∑

i=1

max
arity
∑

j=1

∑

p′

1
:pi

1
=p

′j

1

∑

p′

2
:pi

2
=p

′j

2

Kn−1(p
′

1, p
′

2).

where in the sum above p′1 6= p1 and p′2 6= p2, k is the

arity of p1 and max arity refers to the maximum arity

of any edge in G1 or G2. The expression p′1 : pi
1 = p

′j
1

means “an edge p′1 such that the ith vertex of p1 is the

same as the jth vertex of p′1.”

The definition immediately gives a dynamic program-
ming algorithm to calculate the kernel by incremen-
tally calculating Kℓ() for ℓ = 2 to any desired n. It

may seem that we need (max arity)
2
|E|2 steps to cal-

culate each individual kernel value. One can do much
better, however, for sparse hypergraphs (where the
number of neighbors is small) by appropriately encod-
ing the neighbors of each node. We next prove that
Kn() is indeed a kernel by showing explicitly that it
is an inner product for a feature space indexed by all
walk types, and where the feature indexed by w takes
value #(G, p,w).

Theorem 2

Kn(p1, p2) =
∑

walk type w
of length n

#(G1, p1, w) · #(G2, p2, w).

Proof: By induction on n. Base case for n = 1. Note
that walk types of length 1 are simply edge labels.
Hence, we need to show that

K1(p1, p2) =
∑

edge
label w

#(G1, p1, w) · #(G2, p2, w).

The sum is zero unless p1 and p2 have the same edge
label and w is that label, in which case the sum is 1.
Assume the claim is true for n = ℓ − 1. Then

Kℓ(p1, p2) = K1(p1, p2)

k
∑

i=1

max
arity
∑

j=1
∑

p′

1
:pi

1
=p

′j

1

∑

p′

2
:pi

2
=p

′j

2

Kℓ−1(p
′

1, p
′

2)

and by the induction hypothesis this is equal to

K1(p1, p2)

k
∑

i=1

max
arity
∑

j=1

∑

p′

1
:pi

1
=p

′j

1

∑

p′

2
:pi

2
=p

′j

2

∑

w of
length ℓ−1

#(G1, p
′

1, w) · #(G2, p
′

2, w).

By re-ordering the summations we get

K1(p1, p2)

k
∑

i=1

max
arity
∑

j=1

∑

w of
length ℓ−1





∑

p′

1
:pi

1
=p

′j

1

#(G1, p
′

1, w)









∑

p′

2
:pi

2
=p

′j

2

#(G2, p
′

2, w)





and by the definition of #(., ., .) we get

K1(p1, p2)
k

∑

i=1

max
arity
∑

j=1

∑

w of
length ℓ−1

#(G1, p1, rel(p1).i.j.w) · #(G2, p2, rel(p2).i.j.w).

Consider a string w′ representing a walk type of length
ℓ − 1. By adding rel(p1).i1.j1 to the string we create
a new walk type w of length ℓ. Now if we consider an
arbitrary walk type w of length ℓ, if w does not start
with rel(p1) then #(G1, p1, w) is 0. We can therefore
replace the equation above with

K1(p1, p2)
∑

w of
length ℓ

#(G1, p1, w) · #(G2, p2, w).

Finally, note that if p1, p2 do not have the same edge
label then for every w at least one of #(G1, p1, w),
#(G2, p2, w) is 0 and therefore the sum is 0 so we can
omit K1 from the expression. Similarly, if p1, p2 do
have the same relation symbol K1 = 1 and we can
omit K1. Hence, as required, we have

∑

w of
length ℓ

#(G1, p1, w) · #(G2, p2, w).

3.2. A General Kernel for Hypergraphs

We next define another kernel K ′

n() that operates glob-
ally on the graphs:

Definition 3

K ′

n(G1, G2) =
∑

p1∈E1

∑

p2∈E2

Kn(p1, p2) (1)

A Kernel for Learning from Interpretations

One can show that (1) is a kernel by re-writing it as

∑

w of
length ℓ





∑

p1∈G1

#(G1, p1, w)









∑

p2∈G2

#(G2, p2, w)





The first inner sum is the total number of walks of type
w in G1 and likewise the second inner sum for G2. In
this representation it is easy to see that every element
of the outer sum is the total number of walks of type
w in G1 times the total number of walks of type w in
G2.

3.3. Other Kernel Variants

A general idea in string and graph kernels, where we
consider an infinite number of features, is to discount
the contribution of longer walks. Indeed, this discount
factor is necessary in order to achieve convergence
when summing contributions of all possible walks on
length 1 to ∞ (Gärtner et al., 2003). This is easily
implemented using our kernel as follows.

Definition 4 (Discounted Kernel)

KD
n (G1, G2) =

n
∑

i=1

γiK ′

i(G1, G2) (2)

K
′D
n (G1, G2) =

KD
n (G1, G2)

√

KD
n (G1, G1)KD

n (G2, G2)
(3)

It follows from standard properties that (2) and (3)
are kernels (Cristianini & Shawe-Taylor, 2000). Notice
that with γ < 1 we get discounting. However, for our
kernel γ is not restricted in this way. In fact, we can
emphasize the contribution of longer walks by using
γ > 1. This is intuitively appealing since longer walks
give more informative matches between the graphs.

Finally, another idea common in string kernels is to
count a match even for strings that have a few mis-
matches. The same idea, allowing a constant number
of mismatches, can be adapted to our setting by adding
another index to the kernel that counts the number of
edge labels on the walk that do not match and incorpo-
rating this into the dynamic programming calculation.

4. Discussion and Related Work

An important basic result for graph kernels shows
that it is computationally hard to calculate a kernel
whose feature space corresponds to all possible sub-
graphs unique up to isomorphism, where each feature
is binary-valued according to the existence of that par-
ticular subgraph (Gärtner et al., 2003). Therefore, one

must compromise and use a less expressive family of
subgraphs as features. On the positive side, recent
work on graph kernels uses various properties to create
a similarity measure between two graphs: the number
of labeled walks shared between graphs (Gärtner et al.,
2003); the probability of a random walk in both graphs
(Kashima et al., 2003); the number of a certain type
of pre-defined sub-structures present in both graphs
(Kramer & De Raedt, 2001; Deshpande et al., 2003;
Horváth et al., 2004; Ralaivola et al., 2005; Tsuda &
Kudo, 2006).

Our work is most closely related to the walk-based ker-
nels (Gärtner et al., 2003; Kashima et al., 2003). The
kernel of Gärtner et al. (2003) computes the number
of walks of any length (with identical label sequences)
that the two input graphs share. Kashima et al. (2003)
present a marginalized graph kernel that computes the
similarity of two graphs based on the probability that
a random walk occurs in both graphs. Both kernels
use walks of arbitrary length and sum their contribu-
tions so both have some form of discounting to guar-
antee that the kernel value is not infinite. Both kernels
are also expensive to compute; the kernel by Gärtner
et al. (2003) must invert or diagonalize a matrix that is
quadratic in the number of vertices of the direct prod-
uct graph, and that in Kashima et al. (2003) must
solve a system of linear equations described by a ma-
trix quadratic in the number of vertices in the direct
product graph. See (Vishwanathan et al., 2006) for
recent speedup of these kernels.

Although our kernel is similarly based on walks there
are several important differences. First, we focus on
a fixed finite length of walks. This helps avoid unin-
tuitive discounting of the weights of long walks. We
are not aware of a method for capturing kernels based
on arbitrary length walks with hypergraphs. Second,
we provide a dynamic programming algorithm to cal-
culate the kernel, that can be more efficient than the
algorithms mentioned above. Third, there are differ-
ences in the feature space that make our kernel more
compact than other walk-based kernels. This is il-
lustrated by the following example. Consider a pat-
tern capturing a star graph with one center v0 and 4
outer nodes where each edges has a different label, i.e.
{l1(v0, v1), l2(v0, v2), l3(v0, v3), l4(v0, v4)}. To capture
this pattern with a walk one must consider an edge in
each direction and go back and forth on each edge (ex-
cept the first and last) so we need a walk of length 6. In
our case, since we match positions but do not consider
the directionality of the edge this can be captured by
a walk of length 4 of type l1, 1, 1, l2, 1, 1, l3, 1, 1, l4 (so
we enter and exit the edge in the same node). Thus
our kernel can be more expressive, capturing complex

A Kernel for Learning from Interpretations

Dataset Examples # Atoms Majority Class
NCTRER 232 7-44 0.60
MUTAG 188 15-41 0.67
PTC(MM) 336 2-106 0.62
PTC(MR) 344 2-106 0.56
PTC(FM) 349 2-106 0.59
PTC(FR) 351 2-106 0.66
NCI-HIV 41606 2-438 0.99

Figure 1. Datasets Used in Experiments

sub-graphs using shorter walks.

It is also important to compare our features to rules
used in ILP. The example in Section 2 illustrates that
we do not account for multiple shared nodes between
adjacent edges on a walk, therefore a walk with mul-
tiple shared nodes will be represented in the features
of more than one walk type. In addition our walks are
only linking adjacent edges so they cannot make con-
nections between edges several hops away from each
other and this is again weaker than the rules in ILP.
Designing kernels that do capture such complexity is
an important open problem.

Finally, due to the above restriction (linking one node
at a time), one can translate the hypergraph into a
(quadratic size) directed graph by adding a new node
for each hyperedge and connecting the new node to
the nodes belonging to the hyperedge. Now a walk
in the new graph corresponds to a walk type in the
hypergraph. Hence we may be able to simulate the
hypergraph kernel through the graph though perhaps
at increased complexity since the graph is larger. This
may be interesting in terms of applying other graph
kernels to hypergraphs.

5. Experiments and Results

5.1. Datasets

We demonstrate the performance of the hypergraph
kernel on chemical datasets each of which contains
chemical descriptions along with a label based on the
chemical’s activity. The number of examples, num-
ber of hypergraph nodes in examples, and label dis-
tribution in these datasets are given in Figure 1. The
National Center for Toxicological Research Estrogen
Receptor Binding (NCTRER) dataset (Fang et al.,
2001; Blair et al., 2000; Branham et al., 2002) con-
tains chemicals that are labeled based on how well
they bind to estrogen receptors. In our experiments
we consider molecules labeled “active strong,” “ac-
tive medium,” and “active weak” to be positive, and
molecules labeled “slight binder,” and “inactive” to be

negative.1 The Mutagenesis (MUTAG) dataset (Srini-
vasan et al., 1996) contains chemicals that are labeled
based on their mutagenicity; we used the 188 example
“regression friendly” portion of the data. The Pre-
dictive Toxicology Challenge (PTC) dataset2 contains
417 chemical descriptions labeled according to their
carcinogenicity to rodents. Each chemical is evalu-
ated based on whether it was carcinogenic to female
rats, female mice, male rats and male mice. Fol-
lowing Kashima et al. (2003) and others, we treat
any molecule labeled “CE,” “SE,” or “P” as positive,
“NE” and “N” as negative, and ignore examples la-
beled “EE,” “IS,” and “E” as these labels indicate an
unsure classification. The National Cancer Institute’s
AIDS Anti-viral Screen Program (NCI-HIV) dataset3

contains chemical descriptions labeled based on the
ability of the chemical to inhibit HIV in a specific ex-
perimental context. Each chemical is labeled “con-
firmed active” (CA), “confirmed inactive” (CI), and
“moderately active” (CM). In our experiments we ig-
nore the moderately active chemicals since their label
is less reliable (these are compounds that yielded dif-
ferent results in multiple measurements). Notice that
this is a large dataset and its class distribution is very
skewed.

5.2. Dataset Encoding

Each molecule in the datasets is represented as a set
of predicates. As in previous studies (e.g. (Deshpande
et al., 2003; Horváth et al., 2004)), we eliminate hydro-
gen atoms since this reduces the size of examples and
hydrogens are implicit in the reduced representation.
We explore three methods of encoding the datasets.
In the first encoding, bonds and their types are rep-
resented by edges, e.g., bondtype1(x, y). Atom type
is encoded using unary edges with the type as the re-
lation name. Since bonds are not directed, we store
bond relations twice in this encoding, once with each
vertex ordering, as there is not enough information in
the edge labels to imply the order; for example, using
edges (v1, v2) and (v2, v3), both labeled bondtype1,
we find the walk type “bondtype1,2,1,bondtype1” to
be present. Two edges from another graph, (w2, w1)
and (w2, w3) should generate the same walk type, but
they will not unless we duplicate edges. In the sec-
ond encoding we eliminate the original “bondtype” la-
bels and create bondXtoY predicates, where X is the
type of the first atom in the bond, and Y is the type
of the second. To get a compact representation, we

1We used the version of the dataset entitled
NCTRER v3b 232 10Apr2006.sdf.

2http://www.predictive-toxicology.org/ptc/
3http://dtp.nci.nih.gov/docs/aids/aids data.html

A Kernel for Learning from Interpretations

impose an ordering on the bondXtoY relation such
that X is lexicographically smaller than Y . This en-
sures that bondXtoY and bondY toX will not appear
in the dataset together, avoiding the need to dupli-
cate links (except in the case of bondXtoX where we
do duplicate). The final encoding follows the work of
Gärtner (2005) and Mahé et al. (2004) and encodes
even more information about endpoints of bonds. In
particular each argument of the bond predicates en-
codes the types of its atom and the types of all its
neighbors. This technique is also similar to the neigh-

borhood kernel discussed by Fröhlich et al. (2005),
however we do not use as detailed information, and
we use the immediate neighborhood only. As in the
second encoding we lexicographically order the argu-
ments and duplicate the bond only if the arguments
are identical.

The following example illustrates the three encod-
ings. Consider a star graph similar to the one given
above with labels as follows {bond(v0, v1), bond(v0, v2),
bond(v0, v3), bond(v0, v4), A(v0), B(v1), B(v2), C(v3),
D(v4)} (in the chemical domain A,B,C,D would be
element names). Under encoding 1, the bond structure
of the graph would be encoded as

bond(v1, v0), bond(v0, v1), bond(v2, v0), bond(v0, v2),

bond(v3, v0), bond(v0, v3), bond(v4, v0), bond(v0, v4)

and we add the node types to this structure. Under
encoding 2 we get:

bondAtoB(v0, v1), bondAtoB(v0, v2),

bondAtoC(v0, v3), bondAtoD(v0, v4).

In encoding 3 for each argument we represent the atom
type first, followed by the node types of its neighbors.
Below we separate the node from its neighbors with a
vertical bar. This yields

bondA|BBCDtoB|A(v0, v1),

bondA|BBCDtoB|A(v0, v2),

bondA|BBCDtoC|A(v0, v3),

bondA|BBCDtoD|A(v0, v4).

Encoding 3 will result in fewer walk matches between
graphs, since a match requires both that the vertices
are of the same type, and that all of their neighbors
are of the same type. As a result the transfer be-
tween graphs is smaller and less generalization is pos-
sible from one feature. Another important property
of encoding 3 is that it makes for faster computation
since fewer matches mean fewer items added in the
dynamic programming formula.

Length Encoding 1 Encoding 2 Encoding 3
1 0.64 ± 0.08 0.67 ± 0.08 0.79 ± 0.08
2 0.64 ± 0.10 0.68 ± 0.10 0.83 ± 0.05
3 0.65 ± 0.10 0.67 ± 0.10 0.84 ± 0.07
4 0.66 ± 0.06 0.62 ± 0.06 0.85 ± 0.09
5 0.66 ± 0.10 0.64 ± 0.07 0.85 ± 0.06
6 0.64 ± 0.10 0.62 ± 0.10 0.83 ± 0.07
7 0.66 ± 0.08 0.62 ± 0.08 0.80 ± 0.08
8 0.66 ± 0.10 0.59 ± 0.10 0.75 ± 0.07
16 0.67 ± 0.09 0.66 ± 0.12 0.68 ± 0.11
nFOIL 0.78 ± 0.09

Figure 2. Accuracy on the NCTRER dataset varying walk
length and encoding.

5.3. Experiments and Results

In all of the experiments, we used the Perceptron with
Margins (Krauth & Mézard, 1987) as the learning al-
gorithm. Unlike the standard Perceptron (Rosenblatt,
1958), the Perceptron with Margins updates when an
example falls within a certain distance (margin) of the
current hyperplane. This algorithm has been shown to
perform similar to SVM often reducing run time (Li
et al., 2002). We did not optimize the margin param-
eter; instead as suggested in (Khardon & Wachman,
2007) we chose a small relative margin setting of 0.1.
We ran all experiments with 10-fold cross validation.
On Mutagenesis, NCTRER, and PTC we trained for
20 iterations, and on NCI-HIV we trained for 2 itera-
tions. In all our experiments we used the kernel from
Equation (3) with γ = 1 (i.e. no discounting) except
when explicitly stated otherwise.

In the first set of experiments we examined the role of
the data encoding by using our kernel on the NCTRER
dataset. Results are given in Figure 2. Notice that for
encoding 1 the kernel does not perform well but with
encoding 3 the results are significantly improved. En-
coding 3 illustrates the importance of a more varied
substructure than walks that may be needed. Fur-
thermore, the results suggest that very long walks do
not perform well. For comparison, we give the best re-
sult reported by Landwehr et al. (2006), who compare
state-of-the-art ILP solvers. The kernel method does
better when combined with encoding 3. It would be
interesting to test whether ILP methods can benefit
from similar encodings.

In the second set of experiments, we explored the ef-
fect of discounted and incremented walks on the NC-
TRER dataset using γ values of {0.1, 0.5, 0.9, 1, 2, 10}
and walk lengths of {2, 3, 4, 5, 6, 16}. The results are
given in Figure 3. While some performance variation
is noticeable it is statistically insignificant. Thus al-
though incrementing long paths is intuitively attrac-
tive, our experiments show that the effect of discount-

A Kernel for Learning from Interpretations

Length γ = 0.1 0.5 0.8 1 2 10
2 0.82 0.81 0.82 0.83 0.81 0.82
3 0.82 0.84 0.84 0.84 0.84 0.83
4 0.82 0.85 0.84 0.85 0.84 0.85
5 0.83 0.84 0.84 0.85 0.85 0.85
6 0.82 0.84 0.82 0.83 0.82 0.81
16 0.84 0.69 0.68 0.68 0.67 0.68

Figure 3. Accuracy on NCTRER varying walk length and
discount factor γ.

L AB AB+H AB+LC AB+H+LC
1 0.72± .11 0.83± .08 0.87± .06 0.88± .06
2 0.69± .13 0.85± .09 0.88± .08 0.85± .13
3 0.77± .09 0.86± .10 0.89± .07 0.87± .08
4 0.77± .09 0.85± .10 0.88± .08 0.88± .11
5 0.79± .08 0.84± .09 0.87± .09 0.86± .12

10 0.85± .11 0.81± .10 0.84± .10 0.83± .11

1 0.85± .09 0.88± .10 0.89± .10 0.91± .08
2 0.84± .10 0.86± .10 0.91± .08 0.89± .08
3 0.83± .08 0.85± .12 0.89± .09 0.90± .13
4 0.85± .10 0.85± .12 0.91± .06 0.87± .12
5 0.85± .09 0.85± .12 0.90± .06 0.85± .13

10 0.86± .08 0.78± .12 0.84± .09 0.77± .12

Figure 4. Accuracy on Mutagenesis Dataset. L denotes
walk length. Top: encoding 1. Bottom: encoding 3.

ing is minimal, and it can be avoided.

Through the third set of experiments we illustrate the
benefit of being able to process high-arity edges. We
ran over the Mutagenesis dataset using encoding 1
and 3, and with various combinations of binary edges
(atom-bond information), hyperedges (ring structures,
etc.), and discretized charge, lumo, and logp features
encoded as unary edges. Only binary edges are af-
fected by the encoding; we did not change hyperedges
or unary edges. Note that lumo and logp are global
properties of the molecule so they translate to isolated
nodes in the graph. Note also that our kernel gives
flexibility to use the hyperedges and multiple unary
predicates for the same node, that is, multiple labels.
We report the results in Figure 4; “AB” is atom-bond
information, “H” is hyperedge information, and “LC”
is lumo, logp and charge information. Our results are
competitive with the best reported graph kernel for
this dataset (Kashima et al., 2003). When using en-
coding 1, it is clear that adding the hyperedges to the
dataset gives a substantial gain in performance. Note
that the best length walk is shorter when using the
hyperedges. This may be due to the fact that larger
substructure may be captured in fewer edges. It may
also explain the fact that one can do without the ring
structures, since longer walks may be able to capture
them. When using encoding 3, the benefit of using
hyperedges is less pronounced; this is likely due to the

Dataset L HG OA MG
PTC(FM) 5 0.64± .10 0.64± .03 0.62± .03
PTC(FR) 16 0.67± .07 0.67± .02 0.67± .02
PTC(MM) 5 0.64± .07 0.68± .02 0.67± .02
PTC(MR) 16 0.60± .07 0.63± .02 0.58± .01

Dataset HG CPK GK
NCI-HIV 5 0.94± 0.02 0.91± 0.01 0.94± .01

Figure 5. Accuracy on PTC and area under ROC curve for
NCI-HIV. “HG” is the hypergraph kernel.

fact that because binary edges under encoding 3 con-
tain information about their neighbors, they perform
a similar function to that captured by rings as in our
hyperedges. Thus hyperedges (and multiple labels)
can be useful and they are easily incorporated by our
kernel. If hyperedges capture information that is not
derived from the graph structure one might expect to
attain significant improvements in performance.

In the final set of experiments we compared our ker-
nel to other work with graph kernels on the challeng-
ing datasets PTC and NCI-HIV. Given the conclu-
sions from previous experiments we used encoding 3
and no discount (γ = 1). On the PTC dataset, due
to its small size we were able to explore a short (2),
medium (5), and long (16) walk length and we report
the best result. The NCI-HIV dataset is relatively
large and it includes large molecules. To reduce learn-
ing time without altering dataset statistics, in each
fold we removed molecules with more than 200 atoms
from the training set but kept the test set unmodi-
fied. Overall this means we removed 4 positive and
79 negative molecules from the training data. The
results for walk lengths 2-5 are very similar and we
report only the result for length 5. Results are given
in Figure 5. On the PTC dataset, the results we give
are competitive with the best performance recorded in
Fröhlich et al. (2005), which is attained using their
optimal assignment kernel (OA) and the marginalized
graph kernel (Kashima et al., 2003) (MG). On the HIV
dataset, in order to compare with previous work we re-
port the area under the ROC curve (although precision
and recall may be more appropriate due to the skew in
labels). Our results outperform the frequent substruc-
ture propositionalization approach (Deshpande et al.,
2003) and are competitive with the Cyclic Pattern
Kernel (CPK) (Horváth et al., 2004) and the approxi-
mation of the infinite walk graph kernel (GK) reported
by Gärtner (2005).

On the NCTRER, PTC, and Mutagenesis datasets, a
typical run time for 10-fold cross validation was under
a minute, and often less than 20 seconds on a dual 2.8
GHz Intel Xeon machine with at most one other job
scheduled on it. On the NCI-HIV dataset, the runtime

A Kernel for Learning from Interpretations

varied significantly by the walk length: for a length 3
walk, the average run time per fold was about 11 hours,
while for a length 5 walk the average run time per fold
was about 18 hours.

To summarize, the experiments demonstrate that our
kernel can outperform ILP methods, that high arity
predicates are easily incorporated as hyperedges and
that this can be useful, and that the kernel is compet-
itive with graph kernels when used on graph data.

6. Conclusion

The paper introduced a kernel for learning from or-
dered hypergraphs that is suitable for learning from
ILP data. The new kernel generalizes previous work
on graph kernels but adds properties that make it in-
teresting even in the graph setting. The experimental
results demonstrate that the new kernel leads to good
performance on chemical datasets when used with a
data encoding leading to specific features. This raises
the question whether similar encodings can help boost
performance of rule based systems as well on such
datasets. Another major open question is whether
one can develop kernels whose feature spaces capture
more expressive sets of rules where variables are shared
among multiple predicates. Finally, our experimental
results show competitive performance with Fröhlich
et al. (2005) although we do not use any of the expert
knowledge used there or the improved optimal assign-
ment kernels. It is interesting to investigate whether
these features are equally useful with our kernel.

References

Blair, R., Fang, H., Branham, W., Hass, B., Dial, S.,
Moland, C., Tong, W., Shi, L., Perkins, R., & Shee-
han, D. (2000). The estrogen receptor relative binding
affinities of 188 natural and xenochemicals: Structural
diversity of ligands. Toxicol. Sci., 54, 138–153.

Branham, W., Dial, S., Moland, C., Hass, B., Blair, R.,
Fang, H., Shi, L., Tong, W., Perkins, R., & Sheehan, D.
(2002). Binding of phytoestrogens and mycoestrogens to
the rat uterine estrogen receptor. J. Nutr., 132, 658–664.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction
to support vector machines. Cambridge University Press.

De Raedt, L., & Dzeroski, S. (1994). First order jk-clausal
theories are PAC-learnable. Artificial Intelligence, 70,
375–392.

Deshpande, M., Kuramochi, M., & Karypis, G. (2003).
Frequent sub-structure-based approaches for classifying
chemical compounds. ICDM (pp. 35–42).

Fang, H., Tong, W., Shi, L., Blair, R., Perkins, R., Bran-
ham, W., Hass, B., Xie, Q., Dial, S., Moland, C., &
Sheehan, D. (2001). Structure-activity relationships for

a large diverse set of natural, synthetic, and environ-
mental estrogens. Chem. Res. Tox., 14, 280–294.

Fröhlich, H., Wegner, J. K., Sieker, F., & Zell, A. (2005).
Optimal assignment kernels for attributed molecular
graphs. ICML (pp. 225–232).

Gärtner, T. (2005). Predictive graph mining with kernel
methods. In Advanced methods for knowledge discovery
from complex data. Springer.

Gärtner, T., Flach, P. A., & Wrobel, S. (2003). On
graph kernels: Hardness results and efficient alterna-
tives. COLT (pp. 129–143).

Horváth, T., Gärtner, T., & Wrobel, S. (2004). Cyclic
pattern kernels for predictive graph mining. KDD (pp.
158–167).

Kashima, H., Tsuda, K., & Inokuchi, A. (2003). Marginal-
ized kernels between labeled graphs. ICML (pp. 321–
328).

Khardon, R., & Wachman, G. (2007). Noise tolerant vari-
ants of the perceptron algorithm. Journal of Machine
Learning Research, 8, 227–248.

Kramer, S., & De Raedt, L. (2001). Feature construction
with version spaces for biochemical applications. ICML
(pp. 258–265).

Krauth, W., & Mézard, M. (1987). Learning algorithms
with optimal stability in neural networks. Journal of
Physics A, 20, 745–752.

Landwehr, N., Passerini, A., De Raedt, L., & Frasconi, P.
(2006). kfoil: Learning simple relational kernels. AAAI.

Li, Y., Zaragoza, H., Herbrich, R., Shawe-Taylor, J., &
Kandola, J. (2002). The perceptron algorithm with
uneven margins. International Conference on Machine
Learning (pp. 379–386).

Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., & Vert, J.-P.
(2004). Extensions of marginalized graph kernels. ICML.

Muggleton, S. (1995). Inverse entailment and Progol. New
Generation Computing, 13, 245–286.

Quinlan, J. R. (1990). Learning logical definitions from
relations. Machine Learning, 5, 239–266.

Ralaivola, L., Swamidass, S. J., Saigo, H., & Baldi, P.
(2005). Graph kernels for chemical informatics. Neu-
ral Networks, 18, 1093–1110.

Rosenblatt, F. (1958). The perceptron: A probabilistic
model for information storage and organization in the
brain. Psychological Review, 65, 386–407.

Srinivasan, A., Muggleton, S., Sternberg, M., & King, R.
(1996). Theories for mutagenicity: A study in first-order
and feature-based induction. Artificial Intelligence, 85,
277–299.

Tsuda, K., & Kudo, T. (2006). Clustering graphs by
weighted substructure mining. ICML (pp. 953–960).

Vishwanathan, S. V. N., Borgwardt, K. M., & Schrau-
dolph, N. (2006). Fast computation of graph kernels.
NIPS 19.

