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Abstract 

In this paper we present recent developments in 
RAIL, a hierarchical road recognition system for 
high resolution images. We shall introduce a 
novel classification technique for segmenting 
remotely sensed images, based on cluster 
analysis and machine learning. Traditional 
segmentation techniques which use clustering 
require human interaction to fine-tune the 
clustering algorithm parameters and select good 
clusters. Our technique applies inductive 
learning techniques using C4.5 to learn the 
parameters and pick good clusters automatically. 
We will present the clustering results using this 
technique along with other classification 
algorithms implemented for level 1 of RAIL. 

1.  Introduction 

Road detection and recognition from remotely sensed 
imagery is an important process in the acquisition and 
update of Geographical Information Systems. A great deal 
of effort has been put into the development of automated 
feature extraction methods, mainly in the areas of expert 
systems and advanced image analysis. In our previous 
papers we described the RAIL/Recoil system (Singh, 
1998; Sowmya, 1999; Trinder, 1999; Teoh, 2000a; Teoh, 
2000b), which is a semi-automatic, multi-level, adaptive 
and trainable edge-based road recognition system 
intended to demonstrate the use of various Artificial 
Intelligence approaches in this area.  

Our goal is to implement several Artificial Intelligence 
algorithms to extract roads from remotely sensed images, 
thus demonstrating their viability for such problems. The 
system needs to exploit the relative strengths and 
weaknesses of different algorithms, and we have recently 
developed a new inductive clustering framework to help 
with selecting the right algorithm for a given image (Chen 
2002a). This uses inductive learning to improve the 

results obtained from clustering, by learning the optimal 
clustering parameters for any situation. We have also 
compared the result of the three different classification 
algorithms (Chen, 2002b) implemented in Level 1 of 
RAIL. For this workshop we will summarise this recent 
progress in RAIL. 

In section 2 we give the background of RAIL. Section 3 
explains the different classification techniques used in 
RAIL, whilst section 4 discusses the inductive clustering 
framework in detail. Finally, section 5 presents an 
evaluation of our techniques. 

2.  Background of RAIL 

Our research builds upon the existing RAIL (Road 
Recognition from Aerial Images using Inductive 
Learning) software, which is a road recognition system 
we are developing. Our previous papers give more details. 

Instead of a priori rules, RAIL uses supervised multi-
level learning to derive rules that may be applied during 
attribute extraction and recognition. The techniques are 
general, making few assumptions, and are applicable to 
images of different scales, content, complexity and 
quality. Starting with edges, complex structures are built 
from simpler ones in multiple stages, beginning with 
image pre-processing and edge extraction. The road 
detection is split into four levels, covering road segment 
detection, road segment linking, intersection detection and 
then connecting roads to intersections.  

Inductive learning and clustering techniques are used to 
recognise each of the road structures at the four levels, 
using information from similar images. The objects from 
one level become the input to the next level, until finally 
road-like objects are output from level 4. 

All the methods used (that is, inductive learning, kNN and 
KMeans clustering) have various disadvantages. We have 
attempted to overcome these problems by combining the 
methods, in a process we call Inductive Clustering 
(described in Section 4). Amongst other improvements, 



 

 

this quickly reduces the size of the data set, shortening 
processing time and allowing more automation. 

Our results only describe Level 1 of RAIL, since other 
levels have not been fully implemented yet. In level 1, we 
aim to join edges (produced by the Canny operator) into 
edge pairs, or road segments. A road segment is a pair of 
edges which are part of a road, and are opposite each 
other. The attributes, or properties, of such a road segment 
are: 

• Enclosed Intensity – The average grey-scale 
intensity inside road is generally high. 

• Parallel Separation – The average distance 
between edges usually falls within a certain range. 

• Difference in spatial direction between edges – 
Roads appear as pairs of parallel boundaries. 

• Difference in intensity gradient direction – Road 
boundaries often have opposite intensity gradients. 

• Intensity difference – A road typically appears 
brighter than its surroundings.  

Initial clustering tests with our data showed that the last 3 
attributes do not usefully distinguish between different 
road segments. This can have detrimental affects on the 
clustering, since clusters tend to distribute themselves 
along every dimension (or attribute). Hence these 
attributes were not used in further clustering experiments, 
but were still kept for the inductive learner. 

3.  Classification Techniques 

We have implemented three classifiers in RAIL, these 
being an inductive learner, KMeans clustering and kNN 
clustering. In this section we will briefly discuss these 
classifiers, and how each of them is applied in RAIL. For 
more details, please refer to our previous papers. 

3.1  Inductive Learning 

We use an inductive learner, C4.5 (Quinlan, 1996), to 
calculate the thresholds used for selecting edge pairs that 
match road segments. Traditionally these thresholds 
would be determined by human experts, but inductive 
learning can provide a more customized result.  

3.2  Clustering 

Clustering is an automated technique that involves sorting 
a set of data into groups, based on attributes of that data 
(Weiss, 1991). In RAIL’s level 1 road extraction, 
clustering is used to create groups of edge pairs that have 
similar shape, intensity, etc., some of which presumably 
form part of a road.  

The data set in RAIL is made up of points described by 
level 1 attributes, where each point represents an edge 

pair. This data set is to be partitioned into n clusters. 
Since the best value of n is different for every image, 
several values have to be tried and tested to obtain the 
best result. 

KMeans groups a new data point to its closest cluster as 
measured by the cluster centre. kNN looks at the k nearest 
neighbours (i.e. the closest points from existing clusters), 
and the data point is placed in the cluster containing the 
most neighbours.  

A large number of experiments need to be run with 
different parameters in order to find the setting that 
produces the best result for a given problem. This whole 
process requires a lot of hand tuning to find a suitable 
algorithm, select the associated parameters, and finally 
pick out the useful clusters. In the next section we will 
suggest ways to automate this laborious process by 
applying inductive learning techniques to each of the 
stages. 

4.  Inductive Clustering Framework 

Our inductive clustering framework has been designed to 
learn, from cluster descriptions, what constitutes a good 
road cluster, and to apply the learned knowledge to 
perform clustering automatically. The ultimate goal is to 
allow the system to take a new image, and deduce, from 
the characteristics of the image, the optimal algorithm and 
the parameters to use. This process will then 
automatically identify the road cluster for the user.  

This framework uses a multi-level learning strategy to 
tackle the process systematically in the following three 
stages (see Figure 1):  

Parameter Learning (see section 4.1 ): Learn the 
parameters that will give the best result for a given 
algorithm and image type. Parameters include n (the 
number of clusters) and k, in kNN clustering. 

Algorithm Learning (see section 4.2 ): Learn which 
algorithm is most suitable for a given image type. The 
previous stage determines the parameters to use for each 
algorithm.  

Cluster Learning (see section 4.3 ): Learn to identify the 
road clusters by comparing their characteristics to known 
road and non-road clusters. 

Inductive learning methods are used to derive rules at 
each level. These rules are combined at the end to allow a 
one-step clustering process for extracting road clusters. 

Our system requires a large number of experiments for 
training at each level. We used reference models 
(containing hand-picked edges, as shown in Figures 7 and 
8) for each data set, so that the evaluation of the results 
could be done automatically for each experiment. 



 

 

However, our reference format unfortunately models what 
the computer detects, not what is actually there in the real 
world. In consequence, our stated accuracies are mildly 
optimistic at best, and should be interpreted appropriately. 

 
Figure 1. Inductive Clustering Framework Overview. 

The measures we use to quantify our results are taken 
from (Harvey, 1999). They are percentage values, given 
by:  
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where  size = Number of edges in the relevant edge set. 

High completeness means that the cluster has covered the 
road edges well, whereas high correctness implies that the 
cluster does not contain many (incorrect) non-road edges. 
There is usually a trade off between the two measures, 
since a complete cluster is more likely to contain non-
road edges. 

It is computationally easier if there is only one criterion to 
distinguish between clusters. At Level 1 of RAIL 
completeness is more important than correctness, since 
we do not want to remove any information too early. A 
weighted linear combination of the values did not work 
experimentally, hence our filtering criterion is: 

 correctcompletecxc ×= 3  (2) 

 

Clearly, this measure is biased towards completeness. We 
also used a threshold (based upon empirical observation) 
to ensure that the cluster reached a minimum stage of 
completeness. These two tests (measured out of 1) can be 
expressed together as:  

 8.0≥complete and 95.0≥cxc  (3) 

4.1  Parameter Learning 

In the parameter learning stage we want to deduce rules 
for the value of n (the number of clusters) to use on a 
given algorithm and image.  

The attributes that we used to learn clustering parameters 
are described in Table 1. They include image 
characteristics, along with the clustering parameters we 
need to determine. Each set of attributes are classified as 
either good or bad. 

We used inductive learning to classify each setting as 
containing good or bad road clusters by evaluating the 
best cluster produced with this setting, using Equation (3).  

Table 1. Parameter learning attributes. 

NAME DESCRIPTION VALUE 

Size Number of edge pairs Continuous 
Algorithm Clustering algorithm used KMeans, 

kNN 
n Number of clusters [2, 30) 
CLASSES Whether attributes produce 

a good or bad road cluster 
Good, bad 

 

There are two phases in the parameter learning process, as 
shown in Figure 2. In the training phase, Level 1 RAIL 
attributes of the given image are calculated and used to 
cluster with different parameters. The clusters generated 
are evaluated against the reference model to determine 
which ones are "good". The inductive learner is then used 
to generate rules for choosing n in other, unseen, images. 

 
Figure 2.  Experiment Design for Parameter Learning 

The purpose of the Testing/Application phase is to apply 
the generated rules on a new image, and obtain the values 
of n to use for a given algorithm on that image.  
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4.2  Algorithm Learning 

The purpose of algorithm learning, as explained earlier, is 
to learn which algorithm to use for a given image type.  

The learning attributes here are image characteristics and 
the algorithm used (see Table 2). For each algorithm, the 
optimal n deduced from parameter learning was used.  

Table 2. Algorithm learning attributes. 

NAME DESCRIPTION VALUE 

Size Number of edge pairs Continuous 
Algorithm Clustering algorithm used KMeans, kNN 
CLASSES Whether the algorithm 

produces a good or bad 
road cluster 

Good, bad 

 

The two phases of inductive learning for algorithm 
learning is shown in Figure 3. First, level 1 RAIL 
attributes of the given image were calculated and used to 
cluster with different algorithms. The clusters generated 
were evaluated against the reference model, and the 
algorithm producing the best road cluster was classified as 
“good”, with the other algorithm being labeled as “bad”. 
The learning attributes (see Table 2) together with the 
classification of each run were used to generate a decision 
tree for application on new images. 

 

Figure 3.  Experiment Design for Algorithm Learning 

4.3  Cluster Learning 

In cluster learning we want to deduce rules for identifying 
the road cluster of each clustering experiment.  

The learning attributes we have identified in Table 3 are 
cluster characteristics and image characteristics.  

Table 3. Cluster learning attributes. 

NAME DESCRIPTION VALUE 

Size Number of edge pairs Continuous 

Aspect ratio 
(of cluster) maxmax HeightWidth

 
Continuous 

Area maxmax HeightWidth ×  Continuous 

Centroid Centre of the cluster Continuous 

CLASSES Whether the cluster 
contains road edges 

Good, bad 

 

Clustering experiments with different algorithms and 
parameters were run. All the clusters generated were 
evaluated against the reference model and classified based 
on the evaluation. The learning attributes from table 3 
together with the classification of each run were used in 
the inductive learner. This process is shown in Figure 4. 

 

Figure 4.  Experiment Design for Cluster Learning 

5.  Evaluation 

The evaluation was performed in two parts. The first part 
evaluated the inductive clustering framework, whilst the 
second part compared the performance of KMeans, kNN 
and inductive learning on level 1 of RAIL. We used 
inductive clustering to select the best parameters for each 
clustering algorithm in part one, and then used these 
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parameters in the second part when evaluating clustering 
algorithms. 

 
Figure 5. Image A. 

 
Figure 6. Image B. 

Each classification technique was initially tested on two 
digital aerial images of a rural area in France, which we 
shall call image A and image B. These images have a 
ground resolution of 0.45m/pixel. Image A contains 1956 
edges (Figure 5), and the other contains 6481 edges 
(Figure 6). These figures also show the initial edges 
generated for each image.  

Figures 7 and 8 show the reference model created 
manually for Image A and B. This reference model is 
used to evaluate different classification techniques, and 
also to automate the inductive clustering framework. The 
reference model does not actually include the entire road, 
due to limitations in our reference model format.  

5.1  Inductive Clustering 

Two images are not enough to learn from and test on for 
the inductive clustering framework, so we divided these 
images into 5 sub-images, giving us 10 sets of edge pairs 
in total to experiment on. This subdivision was 
implemented by forming all possible edge pairs in an 

image, and calculating the RAIL level 1 attributes for 
those edge pairs. The resultant attributes were randomly 
split into 5 subsets, which were treated as independent 
sets for the purpose of testing. 

 
Figure 7. Image A reference model. 

 
Figure 8. Image B reference models.  

Clustering experiments were then run on each subset. 
Unbiased error rates were calculated for each stage of the 
framework (see Section 5.1.2 ). 

5.1.1  INDUCTIVE CLUSTERING RULES 
Here we present the rules generated by inductive 
clustering on our two images. Note that the inductive 
clustering framework can be adapted to different 
applications and all sorts of images. However, the rules 
that we present below can only be applied to images with 
similar characteristics (e.g. resolution, complexity, etc.) to 
the ones used for learning. We include them here as an 
example output of inductive clustering. 

Each rule identifies a partition of data via its learning 
attributes and gives a classification for that partition (bear 
in mind that all of the properties have to be true). The 
percentage after the classification indicates the accuracy 



 

 

of this rule when it is applied to the training data (but note 
that this accuracy measure is optimistically biased). 

Parameter Learning1 

Rule 16: 
     size > 7023 
     size <= 7057 
     algorithm = kmeans 
     n > 10 
 ->  class good  [70.7%] 
Rule 13: 
     size > 6887 
     size <= 6969 
     algorithm = kmeans 
     n > 8 
 ->  class good  [61.2%] 
Rule 23: 
     algorithm = kmeans 
     size > 7146 
     n > 8 
 ->  class good  [61.2%] 
Default class: bad 

Summary:  For small images use n between 5 and 7 and 
any algorithm. Use n greater than 8 for larger images, 
along with the KMeans algorithm. 

Algorithm Learning 

Rule 1: 
     algorithm = knn 
 ->  class good  [68.7%] 
Rule 2: 
     algorithm = kmeans 
 ->  class bad  [68.7%] 
Default class: good 

Summary: kNN generally produces better results than 
KMeans. 

Cluster Learning 

Rule 4: 
     size > 8919 
     enclosed_intensity > 142.342 
     area > 1961.34 
 ->  class good  [80.9%] 
Default class: bad 

Summary: Road clusters have an enclosed intensity 
(measured in the range [0, 255]) greater than 142 and area 
(see Table 3) greater than 1961. 

5.1.2  INDUCTIVE CLUSTERING EVALUATION 
Table 4 shows the evaluation of the rules presented in the 
last section. We performed 5-fold cross validation (Weiss, 
1991) on our data to determine unbiased error rates. 

The number of data points for learning in each section are 
shown in Table 4. In algorithm learning we have one data 
points for each of the two algorithms available (see Table 
3), and 10 sub-images in total.  With parameter learning 
and cluster learning the number of data points is found 
from a combination of the attributes being tested (see 
Table 1 and Table 3).  

————— 
1 To make the results clearer, some rules in the parameter learning 
section that did not involve n have been omitted.  

Table 4. Evaluation of Inductive Clustering, showing accuracy 
rate of each fold for parameter, algorithm and cluster learning. 

LEARNING PARAM. ALGO. CLUSTER 

Data Size 521 52 4945 

Fold 1 96.8 % 70 % 99.5 % 

Fold 2 91.2 % 88.9 % 98.9 % 

Fold 3 94.1 % 75 % 99.6 % 

Fold 4 95.1 % 90 % 98.9 % 

Fold 5 93.6 % 63.3 % 98.9 % 

Avg Accuracy Rate 94 % 77% 99 % 

 

The rules induced for parameter learning, algorithm 
learning and cluster learning show 94%, 77% and 99% 
accuracy respectively.  

5.2  Evaluation of Classification Techniques 

Here we will present the results of different classification 
techniques in RAIL. The parameters of clustering 
algorithms were deduced from the results of the inductive 
clustering framework. We used Equation (1) to measure 
the performance of each classification techniques. 

5.2.1  OBTAINING OUTPUTS FROM CLASSIFIERS 
The output for inductive learning is obtained by filtering 
all the edge pairs of the image through the thresholds 
generated by C4.5 to get a set of road edge pairs. We 
strategically identified 32 positive and 493 negative 
examples of edge pairs from image A, and calculated the 
attributes of these edge pairs for C4.5. From this data the 
following rules were generated (the percentage shows the 
accuracy of the rules when applied to the training data 
set): 

Rule 4: 
        IntensityContrast > 29.7 
        EnclosedIntensity > 164 
        ParallelSeparation > 4.6 
        ParallelSeparation <= 20 
        ->  class true  [77.0%] 
Default class: false 

These thresholds are used to extract the road edge pairs 
from each image. 

The outputs of each clustering algorithm are defined by 
the single best cluster generated with the best value 
parameters of each particular algorithm in a given image.  
These are taken from the output of the inductive 
clustering framework. 



 

 

5.2.2  CLASSIFIER PERFORMANCE 
The output of each classifier was evaluated against the 
reference model, and the results are presented in Table 5. 

Table 5 shows that KMeans seems to be the best 
performer across both images, with kNN being almost as 
good.  Inductive learning performed poorly on Image B, 
because the rules were learnt on a small sample set from a 
different image (Image A). This is also why inductive 
learning performs perfectly on Image A. Correctness is 
quite low for all classifiers, which is acceptable for level 1 
of RAIL as we do not want to risk removing important 
information too early.  Tables 6 and 7 show a visual 
comparison of the output of these classifiers. 

Table 5. Comparison of different classification techniques. 

IMAGE MEASURE 
(%) 

INDUCTIVE
LEARNING 

KMEANS 
(N = 9) 

KNN 
(N = 9) 

Complete 100 88 93 
Image A 

Correct 8 16 15 

Complete 63 89 87 
Image B 

Correct 23 17 14 

 

The results are confirmed by a Tables 6 and 7, which 
show that the road edges are mostly covered for all 
methods, except for inductive learning on Image B. This 
is an accurate reflection of the completeness measures in 
Table 5. However, note that because of the pairing 
technique used, a road may appear to have complete 
coverage when it does not. The output of KMeans gives a 
cleaner image than the others, with less non-road edges, 
as indicated by its relatively high correctness measure in 
Table 5. 

6.  Conclusion and future work 

In this paper we have compared different classification 
techniques for low-level road extraction. Clustering with 
KMeans and kNN gives similar results. We have also 
introduced a way of automating clustering for road 
classification using inductive learning techniques. We 
have implemented and tested this concept on our RAIL 
system, and preliminary results are encouraging. 

However, the results of inductive learning could and 
should be improved with more training data.  We only 
used a small number of images because we do not have an 
extensive collection of images with similar resolution and 
coverage. Also, the creation of a reference model is a 
fairly labour-intensive task, as is the selection of positive 
and negative examples for learning. 

In the future we hope to improve the accuracy of our 
testing. One avenue for doing this is to develop a better 
reference model, addressing the inherent shortcomings of 
our current edge-based one. We plan to train our system 
using a larger set of images in order to generate better 
rules. This step requires a more complete set of image 
characteristics to usefully classify images with. 

The evaluation measures used (cxc and complete) are 
handpicked and their thresholds set empirically. 
Automation of this process is a future goal. We also plan 
to extend the clustering framework and these classifiers to 
the other levels of RAIL. 

Table 6. Image A Outputs 

INDUCTIVE LEARNING 

 
KMEANS 

 
KNN 
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