Timezone: »
Large Language models (LLMs) have shown remarkable success in assisting robot learning tasks, i.e., complex household planning.However, the performance of pretrained LLMs heavily relies on domain-specific templated text data, which may be infeasible in real-world robot learning tasks with image-based observations. Moreover, existing LLMs with text inputs lack the capability to evolve with non-expert interactions with environments.In this work, we introduce a novel learning paradigm that generates robots’ executable actions in the form of text, derived solely from visual observations, using language-based summarization of these observations as the connecting bridge between both domains. Our proposed paradigm stands apart from previous works, which utilized either language instructions or a combination of language and visual data as inputs. Moreover, our method does not require oracle text summarization of the scene, eliminating the need for human involvement in the learning loop, which makes it more practical for real-world robot learning tasks.Our proposed paradigm consists of two modules: the SUM module, which interprets the environment using visual observations and produces a text summary of the scene, and the APM module, which generates executable action policies based on the natural language descriptions provided by the SUM module. We demonstrate that our proposed method can employ two fine-tuning strategies, including imitation learning and reinforcement learning approaches, to adapt to the target testing tasks effectively.We conducted extensive experiments involving various SUM/APM model selections, environments, and tasks across 7 house layouts in the VirtualHome environment. Our experimental results demonstrate that our method surpasses existing baselines, confirming the effectiveness of this novel learning paradigm.
Author Information
Jielin Qiu (Carnegie Mellon University)
Mengdi Xu (Carnegie Mellon University)
William Han (Carnegie Mellon University; Safe AI Lab)
Bo Li (UIUC)

Dr. Bo Li is an assistant professor in the Department of Computer Science at the University of Illinois at Urbana–Champaign. She is the recipient of the IJCAI Computers and Thought Award, Alfred P. Sloan Research Fellowship, AI’s 10 to Watch, NSF CAREER Award, MIT Technology Review TR-35 Award, Dean's Award for Excellence in Research, C.W. Gear Outstanding Junior Faculty Award, Intel Rising Star award, Symantec Research Labs Fellowship, Rising Star Award, Research Awards from Tech companies such as Amazon, Facebook, Intel, IBM, and eBay, and best paper awards at several top machine learning and security conferences. Her research focuses on both theoretical and practical aspects of trustworthy machine learning, which is at the intersection of machine learning, security, privacy, and game theory. She has designed several scalable frameworks for trustworthy machine learning and privacy-preserving data publishing. Her work has been featured by major publications and media outlets such as Nature, Wired, Fortune, and New York Times.
Ding Zhao (Carnegie Mellon University)
More from the Same Authors
-
2022 : Group Distributionally Robust Reinforcement Learning with Hierarchical Latent Variables »
Mengdi Xu · Peide Huang · Visak Kumar · Jielin Qiu · Chao Fang · Kuan-Hui Lee · Xuewei Qi · Henry Lam · Bo Li · Ding Zhao -
2022 : Paper 2: SeasonDepth: Cross-Season Monocular Depth Prediction Dataset and Benchmark under Multiple Environments »
Ding Zhao · Hitesh Arora · Jiacheng Zhu · Zuxin Liu · Wenhao Ding -
2022 : Paper 10: CausalAF: Causal Autoregressive Flow for Safety-Critical Scenes Generation »
Wenhao Ding · Haohong Lin · Bo Li · Ding Zhao · Hitesh Arora -
2023 : DiffScene: Diffusion-Based Safety-Critical Scenario Generation for Autonomous Vehicles »
Chejian Xu · Ding Zhao · Alberto Sngiovanni Vincentelli · Bo Li -
2023 : Seeing is not Believing: Robust Reinforcement Learning against Spurious Correlation »
Wenhao Ding · Laixi Shi · Yuejie Chi · Ding Zhao -
2023 : Learning from Sparse Offline Datasets via Conservative Density Estimation »
Zhepeng Cen · Zuxin Liu · Zitong Wang · Yihang Yao · Henry Lam · Ding Zhao -
2023 : Offline Reinforcement Learning with Imbalanced Datasets »
Li Jiang · Sijie Cheng · Jielin Qiu · Victor Chan · Ding Zhao -
2023 : Semantically Adversarial Scene Generation with Explicit Knowledge Guidance for Autonomous Driving »
Wenhao Ding · Haohong Lin · Bo Li · Ding Zhao -
2023 : Can Public Large Language Models Help Private Cross-device Federated Learning? »
Boxin Wang · Yibo J. Zhang · Yuan Cao · Bo Li · Hugh B McMahan · Sewoong Oh · Zheng Xu · Manzil Zaheer -
2023 : Can Public Large Language Models Help Private Cross-device Federated Learning? »
Boxin Wang · Yibo J. Zhang · Yuan Cao · Bo Li · Hugh B McMahan · Sewoong Oh · Zheng Xu · Manzil Zaheer -
2023 : Learning Shared Safety Constraints from Multi-task Demonstrations »
Konwoo Kim · Gokul Swamy · Zuxin Liu · Ding Zhao · Sanjiban Choudhury · Steven Wu -
2023 : Can Brain Signals Reveal Inner Alignment with Human Languages? »
Jielin Qiu · William Han · Jiacheng Zhu · Mengdi Xu · Douglas Weber · Bo Li · Ding Zhao -
2023 : Multimodal Representation Learning of Cardiovascular Magnetic Resonance Imaging »
Jielin Qiu · Peide Huang · Makiya Nakashima · Jaehyun Lee · Jiacheng Zhu · Wilson Tang · Pohao Chen · Christopher Nguyen · Byung-Hak Kim · Debbie Kwon · Douglas Weber · Ding Zhao · David Chen -
2023 : Robustness Verification for Perception Models against Camera Motion Perturbations »
Hanjiang Hu · Changliu Liu · Ding Zhao -
2023 : Learning Shared Safety Constraints from Multi-task Demonstrations »
Konwoo Kim · Gokul Swamy · Zuxin Liu · Ding Zhao · Sanjiban Choudhury · Steven Wu -
2023 Workshop: Federated Learning and Analytics in Practice: Algorithms, Systems, Applications, and Opportunities »
Zheng Xu · Peter Kairouz · Bo Li · Tian Li · John Nguyen · Jianyu Wang · Shiqiang Wang · Ayfer Ozgur -
2023 Workshop: Knowledge and Logical Reasoning in the Era of Data-driven Learning »
Nezihe Merve Gürel · Bo Li · Theodoros Rekatsinas · Beliz Gunel · Alberto Sngiovanni Vincentelli · Paroma Varma -
2023 Poster: Constrained Decision Transformer for Offline Safe Reinforcement Learning »
Zuxin Liu · Zijian Guo · Yihang Yao · Zhepeng Cen · Wenhao Yu · Tingnan Zhang · Ding Zhao -
2023 Poster: UMD: Unsupervised Model Detection for X2X Backdoor Attacks »
Zhen Xiang · Zidi Xiong · Bo Li -
2023 Poster: Towards Robust and Safe Reinforcement Learning with Benign Off-policy Data »
Zuxin Liu · Zijian Guo · Zhepeng Cen · Huan Zhang · Yihang Yao · Hanjiang Hu · Ding Zhao -
2023 Poster: Bayesian Reparameterization of Reward-Conditioned Reinforcement Learning with Energy-based Models »
Wenhao Ding · Tong Che · Ding Zhao · Marco Pavone -
2023 Poster: Interpolation for Robust Learning: Data Augmentation on Wasserstein Geodesics »
Jiacheng Zhu · Jielin Qiu · Aritra Guha · Zhuolin Yang · XuanLong Nguyen · Bo Li · Ding Zhao -
2023 Poster: Reconstructive Neuron Pruning for Backdoor Defense »
Yige Li · XIXIANG LYU · Xingjun Ma · Nodens Koren · Lingjuan Lyu · Bo Li · Yu-Gang Jiang -
2022 : Paper 15: On the Robustness of Safe Reinforcement Learning under Observational Perturbations »
Zuxin Liu · Zhepeng Cen · Huan Zhang · Jie Tan · Bo Li · Ding Zhao -
2022 : Paper 16: Constrained Model-based Reinforcement Learning via Robust Planning »
Zuxin Liu · Ding Zhao -
2022 Poster: Constrained Variational Policy Optimization for Safe Reinforcement Learning »
Zuxin Liu · Zhepeng Cen · Vladislav Isenbaev · Wei Liu · Steven Wu · Bo Li · Ding Zhao -
2022 Poster: Provable Domain Generalization via Invariant-Feature Subspace Recovery »
Haoxiang Wang · Haozhe Si · Bo Li · Han Zhao -
2022 Spotlight: Constrained Variational Policy Optimization for Safe Reinforcement Learning »
Zuxin Liu · Zhepeng Cen · Vladislav Isenbaev · Wei Liu · Steven Wu · Bo Li · Ding Zhao -
2022 Spotlight: Provable Domain Generalization via Invariant-Feature Subspace Recovery »
Haoxiang Wang · Haozhe Si · Bo Li · Han Zhao -
2022 Poster: How to Steer Your Adversary: Targeted and Efficient Model Stealing Defenses with Gradient Redirection »
Mantas Mazeika · Bo Li · David Forsyth -
2022 Poster: Adversarially Robust Models may not Transfer Better: Sufficient Conditions for Domain Transferability from the View of Regularization »
Xiaojun Xu · Yibo Zhang · Evelyn Ma · Hyun Ho Son · Sanmi Koyejo · Bo Li -
2022 Poster: Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path and Beyond »
Haoxiang Wang · Bo Li · Han Zhao -
2022 Spotlight: How to Steer Your Adversary: Targeted and Efficient Model Stealing Defenses with Gradient Redirection »
Mantas Mazeika · Bo Li · David Forsyth -
2022 Spotlight: Adversarially Robust Models may not Transfer Better: Sufficient Conditions for Domain Transferability from the View of Regularization »
Xiaojun Xu · Yibo Zhang · Evelyn Ma · Hyun Ho Son · Sanmi Koyejo · Bo Li -
2022 Spotlight: Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path and Beyond »
Haoxiang Wang · Bo Li · Han Zhao -
2022 Poster: Certifying Out-of-Domain Generalization for Blackbox Functions »
Maurice Weber · Linyi Li · Boxin Wang · Zhikuan Zhao · Bo Li · Ce Zhang -
2022 Poster: Prompting Decision Transformer for Few-Shot Policy Generalization »
Mengdi Xu · Yikang Shen · Shun Zhang · Yuchen Lu · Ding Zhao · Josh Tenenbaum · Chuang Gan -
2022 Poster: Double Sampling Randomized Smoothing »
Linyi Li · Jiawei Zhang · Tao Xie · Bo Li -
2022 Poster: TPC: Transformation-Specific Smoothing for Point Cloud Models »
Wenda Chu · Linyi Li · Bo Li -
2022 Spotlight: TPC: Transformation-Specific Smoothing for Point Cloud Models »
Wenda Chu · Linyi Li · Bo Li -
2022 Spotlight: Double Sampling Randomized Smoothing »
Linyi Li · Jiawei Zhang · Tao Xie · Bo Li -
2022 Spotlight: Prompting Decision Transformer for Few-Shot Policy Generalization »
Mengdi Xu · Yikang Shen · Shun Zhang · Yuchen Lu · Ding Zhao · Josh Tenenbaum · Chuang Gan -
2022 Spotlight: Certifying Out-of-Domain Generalization for Blackbox Functions »
Maurice Weber · Linyi Li · Boxin Wang · Zhikuan Zhao · Bo Li · Ce Zhang -
2021 : Discussion Panel #2 »
Bo Li · Nicholas Carlini · Andrzej Banburski · Kamalika Chaudhuri · Will Xiao · Cihang Xie -
2021 Workshop: A Blessing in Disguise: The Prospects and Perils of Adversarial Machine Learning »
Hang Su · Yinpeng Dong · Tianyu Pang · Eric Wong · Zico Kolter · Shuo Feng · Bo Li · Henry Liu · Dan Hendrycks · Francesco Croce · Leslie Rice · Tian Tian -
2021 Poster: Uncovering the Connections Between Adversarial Transferability and Knowledge Transferability »
Kaizhao Liang · Yibo Zhang · Boxin Wang · Zhuolin Yang · Sanmi Koyejo · Bo Li -
2021 Poster: CRFL: Certifiably Robust Federated Learning against Backdoor Attacks »
Chulin Xie · Minghao Chen · Pin-Yu Chen · Bo Li -
2021 Poster: Progressive-Scale Boundary Blackbox Attack via Projective Gradient Estimation »
Jiawei Zhang · Linyi Li · Huichen Li · Xiaolu Zhang · Shuang Yang · Bo Li -
2021 Poster: Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation »
Haoxiang Wang · Han Zhao · Bo Li -
2021 Spotlight: Progressive-Scale Boundary Blackbox Attack via Projective Gradient Estimation »
Jiawei Zhang · Linyi Li · Huichen Li · Xiaolu Zhang · Shuang Yang · Bo Li -
2021 Spotlight: Uncovering the Connections Between Adversarial Transferability and Knowledge Transferability »
Kaizhao Liang · Yibo Zhang · Boxin Wang · Zhuolin Yang · Sanmi Koyejo · Bo Li -
2021 Spotlight: Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation »
Haoxiang Wang · Han Zhao · Bo Li -
2021 Spotlight: CRFL: Certifiably Robust Federated Learning against Backdoor Attacks »
Chulin Xie · Minghao Chen · Pin-Yu Chen · Bo Li -
2021 Poster: Knowledge Enhanced Machine Learning Pipeline against Diverse Adversarial Attacks »
Nezihe Merve Gürel · Xiangyu Qi · Luka Rimanic · Ce Zhang · Bo Li -
2021 Spotlight: Knowledge Enhanced Machine Learning Pipeline against Diverse Adversarial Attacks »
Nezihe Merve Gürel · Xiangyu Qi · Luka Rimanic · Ce Zhang · Bo Li -
2020 Poster: Improving Robustness of Deep-Learning-Based Image Reconstruction »
Ankit Raj · Yoram Bresler · Bo Li