Timezone: »
In this paper we study offline Reinforcement Learning with Human Feedback (RLHF) where we aim to learn the human's underlying reward and the MDP's optimal policy from a set of trajectories induced by human choices. We focus on the Dynamic Discrete Choice (DDC) model for modeling and understanding human choices, which is widely used to model a human decision-making process with forward-looking and bounded rationality. We propose a \underline{D}ynamic-\underline{C}hoice-\underline{P}essimistic-\underline{P}olicy-\underline{O}ptimization (DCPPO) method and prove that the suboptimality of DCPPO \textit{almost} matches the classical pessimistic offline RL algorithm in terms of suboptimality’s dependency on distribution shift and dimension. To the best of our knowledge, this paper presents the first theoretical guarantees for off-policy offline RLHF with dynamic discrete choice model.
Author Information
Zihao Li (Princeton University)
Zhuoran Yang (Yale University)
Mengdi Wang (Alibaba Group)
More from the Same Authors
-
2023 : Reinforcement Learning with Human Feedback: Learning Dynamic Choices via Pessimism »
Zihao Li -
2023 Poster: Local Optimization Achieves Global Optimality in Multi-Agent Reinforcement Learning »
Yulai Zhao · Zhuoran Yang · Zhaoran Wang · Jason Lee -
2023 Poster: Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement Learning in Unknown Stochastic Environments »
Yixuan Wang · Simon Zhan · Ruochen Jiao · Zhilu Wang · Wanxin Jin · Zhuoran Yang · Zhaoran Wang · Chao Huang · Qi Zhu -
2023 Poster: Provably Efficient Representation Learning with Tractable Planning in Low-Rank POMDP »
Jiacheng Guo · Zihao Li · Huazheng Wang · Mengdi Wang · Zhuoran Yang · Xuezhou Zhang -
2023 Poster: Learning to Incentivize Information Acquisition: Proper Scoring Rules Meet Principal-Agent Model »
Siyu Chen · Jibang Wu · Yifan Wu · Zhuoran Yang -
2022 Poster: Learning from Demonstration: Provably Efficient Adversarial Policy Imitation with Linear Function Approximation »
ZHIHAN LIU · Yufeng Zhang · Zuyue Fu · Zhuoran Yang · Zhaoran Wang -
2022 Poster: Provably Efficient Offline Reinforcement Learning for Partially Observable Markov Decision Processes »
Hongyi Guo · Qi Cai · Yufeng Zhang · Zhuoran Yang · Zhaoran Wang -
2022 Poster: Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium Learning from Offline Datasets »
Han Zhong · Wei Xiong · Jiyuan Tan · Liwei Wang · Tong Zhang · Zhaoran Wang · Zhuoran Yang -
2022 Spotlight: Provably Efficient Offline Reinforcement Learning for Partially Observable Markov Decision Processes »
Hongyi Guo · Qi Cai · Yufeng Zhang · Zhuoran Yang · Zhaoran Wang -
2022 Spotlight: Learning from Demonstration: Provably Efficient Adversarial Policy Imitation with Linear Function Approximation »
ZHIHAN LIU · Yufeng Zhang · Zuyue Fu · Zhuoran Yang · Zhaoran Wang -
2022 Spotlight: Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium Learning from Offline Datasets »
Han Zhong · Wei Xiong · Jiyuan Tan · Liwei Wang · Tong Zhang · Zhaoran Wang · Zhuoran Yang -
2022 Poster: Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency »
Qi Cai · Zhuoran Yang · Zhaoran Wang -
2022 Poster: Adaptive Model Design for Markov Decision Process »
Siyu Chen · Donglin Yang · Jiayang Li · Senmiao Wang · Zhuoran Yang · Zhaoran Wang -
2022 Spotlight: Adaptive Model Design for Markov Decision Process »
Siyu Chen · Donglin Yang · Jiayang Li · Senmiao Wang · Zhuoran Yang · Zhaoran Wang -
2022 Spotlight: Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency »
Qi Cai · Zhuoran Yang · Zhaoran Wang -
2022 Poster: Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline Reinforcement Learning »
Boxiang Lyu · Zhaoran Wang · Mladen Kolar · Zhuoran Yang -
2022 Poster: Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning »
Shuang Qiu · Lingxiao Wang · Chenjia Bai · Zhuoran Yang · Zhaoran Wang -
2022 Poster: Welfare Maximization in Competitive Equilibrium: Reinforcement Learning for Markov Exchange Economy »
ZHIHAN LIU · Lu Miao · Zhaoran Wang · Michael Jordan · Zhuoran Yang -
2022 Poster: Human-in-the-loop: Provably Efficient Preference-based Reinforcement Learning with General Function Approximation »
Xiaoyu Chen · Han Zhong · Zhuoran Yang · Zhaoran Wang · Liwei Wang -
2022 Spotlight: Welfare Maximization in Competitive Equilibrium: Reinforcement Learning for Markov Exchange Economy »
ZHIHAN LIU · Lu Miao · Zhaoran Wang · Michael Jordan · Zhuoran Yang -
2022 Spotlight: Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline Reinforcement Learning »
Boxiang Lyu · Zhaoran Wang · Mladen Kolar · Zhuoran Yang -
2022 Spotlight: Human-in-the-loop: Provably Efficient Preference-based Reinforcement Learning with General Function Approximation »
Xiaoyu Chen · Han Zhong · Zhuoran Yang · Zhaoran Wang · Liwei Wang -
2022 Spotlight: Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning »
Shuang Qiu · Lingxiao Wang · Chenjia Bai · Zhuoran Yang · Zhaoran Wang