Timezone: »
A typical way in which a machine acquires knowledge from humans is through programs -- sequences of executable commands that can be composed hierarchically. By building a library of programs, a machine can quickly learn how to perform complex tasks. However, as programs are typically created for specific situations, they become brittle when the contexts change, making it difficult compound knowledge learned from different teachers and contexts. We present natural programming, a library building procedure where each program is represented as a \emph{search problem} containing both a goal and linguistic hints on how to decompose it into sub-goals. A natural program is executed via search in a manner of hierarchical planning and guided by a large language model, effectively adapting learned programs to new contexts. After each successful execution, natural programming learns by improving search, rather than memorizing the solution sequence of commands. Simulated studies and a human experiment (n=360) on a simple crafting environment demonstrate that natural programming can robustly compose programs learned from different users and contexts, solving more complex tasks when compared to baselines that maintain libraries of command sequences.
Author Information
Leonardo Hernandez Cano (Massachusetts Institute of Technology)
Yewen Pu (Autodesk)
Robert Hawkins (Princeton University)
Josh Tenenbaum (MIT)
Joshua Brett Tenenbaum is Professor of Cognitive Science and Computation at the Massachusetts Institute of Technology. He is known for contributions to mathematical psychology and Bayesian cognitive science. He previously taught at Stanford University, where he was the Wasow Visiting Fellow from October 2010 to January 2011. Tenenbaum received his undergraduate degree in physics from Yale University in 1993, and his Ph.D. from MIT in 1999. His work primarily focuses on analyzing probabilistic inference as the engine of human cognition and as a means to develop machine learning.
Armando Solar-Lezama (MIT)
More from the Same Authors
-
2023 : Neuro-Symbolic Models of Human Moral Judgment: LLMs as Automatic Feature Extractors »
joseph kwon · Sydney Levine · Josh Tenenbaum -
2023 : Demystifying the Role of Feedback in GPT Self-Repair for Code Generation »
Theo X. Olausson · Jeevana Priya Inala · Chenglong Wang · Jianfeng Gao · Armando Solar-Lezama -
2023 : Neuro-Symbolic Models of Human Moral Judgment: LLMs as Automatic Feature Extractors »
joseph kwon · Sydney Levine · Josh Tenenbaum -
2023 : Neuro-Symbolic Models of Human Moral Judgment: LLMs as Automatic Feature Extractors »
joseph kwon · Sydney Levine · Josh Tenenbaum -
2023 : Prof. Armando Solar-Lezama (MIT): Neurosymbolic Learning as a Path to Learning with Guarantees »
Armando Solar-Lezama -
2023 : Inferring the Future by Imagining the Past »
Kartik Chandra · Tony Chen · Tzu-Mao Li · Jonathan Ragan-Kelley · Josh Tenenbaum -
2023 : Inferring the Goals of Communicating Agents from Actions and Instructions »
Lance Ying · Tan Zhi-Xuan · Vikash Mansinghka · Josh Tenenbaum -
2023 : The Neuro-Symbolic Inverse Planning Engine (NIPE): Modeling probabilistic social inferences from linguistic inputs »
Lance Ying · Katie Collins · Megan Wei · Cedegao Zhang · Tan Zhi-Xuan · Adrian Weller · Josh Tenenbaum · Catherine Wong -
2023 : Inferring the Future by Imagining the Past »
Kartik Chandra · Tony Chen · Tzu-Mao Li · Jonathan Ragan-Kelley · Josh Tenenbaum -
2023 Oral: Inferring Relational Potentials in Interacting Systems »
Armand Comas · Yilun Du · Christian Fernandez Lopez · Sandesh Ghimire · Mario Sznaier · Josh Tenenbaum · Octavia Camps -
2023 Poster: On the Complexity of Bayesian Generalization »
Yu-Zhe Shi · Manjie Xu · John Hopcroft · Kun He · Josh Tenenbaum · Song-Chun Zhu · Ying Nian Wu · Wenjuan Han · Yixin Zhu -
2023 Poster: Inferring Relational Potentials in Interacting Systems »
Armand Comas · Yilun Du · Christian Fernandez Lopez · Sandesh Ghimire · Mario Sznaier · Josh Tenenbaum · Octavia Camps -
2023 Poster: Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC »
Yilun Du · Conor Durkan · Robin Strudel · Josh Tenenbaum · Sander Dieleman · Rob Fergus · Jascha Sohl-Dickstein · Arnaud Doucet · Will Grathwohl -
2023 Poster: Learning Neural Constitutive Laws from Motion Observations for Generalizable PDE Dynamics »
Pingchuan Ma · Peter Yichen Chen · Bolei Deng · Josh Tenenbaum · Tao Du · Chuang Gan · Wojciech Matusik -
2022 : Session 3: New Computational Technologies for Reasoning »
Armando Solar-Lezama · Guy Van den Broeck · Jan-Willem van de Meent · Charles Sutton -
2022 : Session 1: New Reasoning Problems and Modes of Reasoning »
Robert Ness · Rosemary Nan Ke · Armando Solar-Lezama -
2022 Workshop: Beyond Bayes: Paths Towards Universal Reasoning Systems »
Zenna Tavares · Emily Mackevicius · Elias Bingham · Nan Rosemary Ke · Talia Ringer · Armando Solar-Lezama · Nada Amin · John Krakauer · Robert O Ness · Alexis Avedisian -
2022 Poster: Discovering Generalizable Spatial Goal Representations via Graph-based Active Reward Learning »
Aviv Netanyahu · Tianmin Shu · Josh Tenenbaum · Pulkit Agrawal -
2022 Spotlight: Discovering Generalizable Spatial Goal Representations via Graph-based Active Reward Learning »
Aviv Netanyahu · Tianmin Shu · Josh Tenenbaum · Pulkit Agrawal -
2022 Poster: Planning with Diffusion for Flexible Behavior Synthesis »
Michael Janner · Yilun Du · Josh Tenenbaum · Sergey Levine -
2022 Oral: Planning with Diffusion for Flexible Behavior Synthesis »
Michael Janner · Yilun Du · Josh Tenenbaum · Sergey Levine -
2022 Poster: Learning Iterative Reasoning through Energy Minimization »
Yilun Du · Shuang Li · Josh Tenenbaum · Igor Mordatch -
2022 Poster: Prompting Decision Transformer for Few-Shot Policy Generalization »
Mengdi Xu · Yikang Shen · Shun Zhang · Yuchen Lu · Ding Zhao · Josh Tenenbaum · Chuang Gan -
2022 Spotlight: Learning Iterative Reasoning through Energy Minimization »
Yilun Du · Shuang Li · Josh Tenenbaum · Igor Mordatch -
2022 Spotlight: Prompting Decision Transformer for Few-Shot Policy Generalization »
Mengdi Xu · Yikang Shen · Shun Zhang · Yuchen Lu · Ding Zhao · Josh Tenenbaum · Chuang Gan -
2021 Poster: A Language for Counterfactual Generative Models »
Zenna Tavares · James Koppel · Xin Zhang · Ria Das · Armando Solar-Lezama -
2021 Spotlight: A Language for Counterfactual Generative Models »
Zenna Tavares · James Koppel · Xin Zhang · Ria Das · Armando Solar-Lezama -
2021 Poster: A large-scale benchmark for few-shot program induction and synthesis »
Ferran Alet · Javier Lopez-Contreras · James Koppel · Maxwell Nye · Armando Solar-Lezama · Tomas Lozano-Perez · Leslie Kaelbling · Josh Tenenbaum -
2021 Spotlight: A large-scale benchmark for few-shot program induction and synthesis »
Ferran Alet · Javier Lopez-Contreras · James Koppel · Maxwell Nye · Armando Solar-Lezama · Tomas Lozano-Perez · Leslie Kaelbling · Josh Tenenbaum -
2021 Poster: AGENT: A Benchmark for Core Psychological Reasoning »
Tianmin Shu · Abhishek Bhandwaldar · Chuang Gan · Kevin Smith · Shari Liu · Dan Gutfreund · Elizabeth Spelke · Josh Tenenbaum · Tomer Ullman -
2021 Spotlight: AGENT: A Benchmark for Core Psychological Reasoning »
Tianmin Shu · Abhishek Bhandwaldar · Chuang Gan · Kevin Smith · Shari Liu · Dan Gutfreund · Elizabeth Spelke · Josh Tenenbaum · Tomer Ullman -
2021 Poster: Improved Contrastive Divergence Training of Energy-Based Models »
Yilun Du · Shuang Li · Josh Tenenbaum · Igor Mordatch -
2021 Poster: Leveraging Language to Learn Program Abstractions and Search Heuristics »
Catherine Wong · Kevin Ellis · Josh Tenenbaum · Jacob Andreas -
2021 Spotlight: Leveraging Language to Learn Program Abstractions and Search Heuristics »
Catherine Wong · Kevin Ellis · Josh Tenenbaum · Jacob Andreas -
2021 Spotlight: Improved Contrastive Divergence Training of Energy-Based Models »
Yilun Du · Shuang Li · Josh Tenenbaum · Igor Mordatch -
2020 Poster: Visual Grounding of Learned Physical Models »
Yunzhu Li · Toru Lin · Kexin Yi · Daniel Bear · Daniel Yamins · Jiajun Wu · Josh Tenenbaum · Antonio Torralba -
2019 Poster: Learning to Infer Program Sketches »
Maxwell Nye · Luke Hewitt · Josh Tenenbaum · Armando Solar-Lezama -
2019 Oral: Learning to Infer Program Sketches »
Maxwell Nye · Luke Hewitt · Josh Tenenbaum · Armando Solar-Lezama -
2019 Poster: Predicate Exchange: Inference with Declarative Knowledge »
Zenna Tavares · Javier Burroni · Edgar Minasyan · Armando Solar-Lezama · Rajesh Ranganath -
2019 Poster: Infinite Mixture Prototypes for Few-shot Learning »
Kelsey Allen · Evan Shelhamer · Hanul Shin · Josh Tenenbaum -
2019 Oral: Infinite Mixture Prototypes for Few-shot Learning »
Kelsey Allen · Evan Shelhamer · Hanul Shin · Josh Tenenbaum -
2019 Oral: Predicate Exchange: Inference with Declarative Knowledge »
Zenna Tavares · Javier Burroni · Edgar Minasyan · Armando Solar-Lezama · Rajesh Ranganath -
2019 Poster: Neurally-Guided Structure Inference »
Sidi Lu · Jiayuan Mao · Josh Tenenbaum · Jiajun Wu -
2019 Oral: Neurally-Guided Structure Inference »
Sidi Lu · Jiayuan Mao · Josh Tenenbaum · Jiajun Wu -
2018 Invited Talk: Building Machines that Learn and Think Like People »
Josh Tenenbaum -
2018 Poster: Selecting Representative Examples for Program Synthesis »
Yewen Pu · Zachery Miranda · Armando Solar-Lezama · Leslie Kaelbling -
2018 Oral: Selecting Representative Examples for Program Synthesis »
Yewen Pu · Zachery Miranda · Armando Solar-Lezama · Leslie Kaelbling