Timezone: »

A Generative Model for Text Control in Minecraft
Shalev Lifshitz · Keiran Paster · Harris Chan · Jimmy Ba · Sheila McIlraith
Event URL: https://openreview.net/forum?id=G1AU7D0owU »

Constructing AI models that respond to text instructions is challenging, especially for sequential decision-making tasks. This work introduces an instruction-tuned Video Pretraining (VPT) model for Minecraft called STEVE-1, demonstrating that the unCLIP approach, utilized in DALL-E 2, is also effective for creating instruction-following sequential decision-making agents. STEVE-1 is trained in two steps: adapting the pretrained VPT model to follow commands in MineCLIP's latent space, then training a prior to predict latent codes from text. This allows us to finetune VPT through self-supervised behavioral cloning and hindsight relabeling, bypassing the need for costly human text annotations. By leveraging pretrained models like VPT and MineCLIP and employing best practices from text-conditioned image generation, STEVE-1 costs just $60 to train and can follow a wide range of short-horizon open-ended text and visual instructions in Minecraft. STEVE-1 sets a new bar for open-ended instruction following in Minecraft with low-level controls (mouse and keyboard) and raw pixel inputs, far outperforming previous baselines. We provide experimental evidence highlighting key factors for downstream performance, including pretraining, classifier-free guidance, and data scaling. All resources, including our model weights, training scripts, and evaluation tools are made available for further research.

Author Information

Shalev Lifshitz (Department of Computer Science)
Keiran Paster (University of Toronto)
Harris Chan (University of Toronto, Vector Institute)
Jimmy Ba (University of Toronto / xAI)
Sheila McIlraith (University of Toronto and Vector Institute)

Sheila McIlraith is a Professor in the Department of Computer Science at the University of Toronto, a Canada CIFAR AI Chair (Vector Institute), and a Research Lead at the Schwartz Reisman Institute for Technology and Society. McIlraith's research is in the area of AI sequential decision making broadly construed, with a focus on human-compatible AI. McIlraith is a Fellow of the ACM and AAAI.

More from the Same Authors