Timezone: »
Primitive-based evolutionary AutoML discovers novel state-of-the-art ML components by searching over programs built from low-level building blocks. While very expressive, these spaces have sparsely distributed good performing candidates. This poses great challenges in efficient search. Performance predictors have proven successful in speeding up search in smaller and denser Neural Architecture Search (NAS) spaces, but they have not yet been tried on these larger primitive-based search spaces. Through a unified graph representation to encode a wide variety of ML components, we train a binary classifier online to predict which of two given candidates is better. We then present an adaptive mutation method that leverages the learned binary predictor and show how it improves local search. We empirically demonstrate our method speeds up end-to-end evolution across a set of diverse problems including a 3.7x speedup on the symbolic search for ML optimizers and a 4x speedup for RL loss functions.
Author Information
John Co-Reyes (UC Berkeley)
Yingjie Miao (Google)
George Tucker (Google Brain)
Aleksandra Faust (Google Brain)
Aleksandra Faust is a Staff Research Scientist at Google Brain Robotics, leading Task and Motion planning research group. Previously, Aleksandra led machine learning efforts for self-driving car planning and controls in Waymo, and was a researcher at Sandia National Laboratories. She earned a Ph.D. in Computer Science at the University of New Mexico, a Master's in Computer Science from the University of Illinois at Urbana-Champaign, and a Bachelors in Math with a minor in Computer Science from the University of Belgrade. Her research interests include machine learning for safe, scalable, and socially-aware motion planning, decision-making, and robot behavior. Aleksandra won the Tom L. Popejoy Award for the best doctoral dissertation at the University of New Mexico in STEM in the period of 2011-2014, and was named Distinguished Alumna by the University of New Mexico School of Engineering. Her work has been featured in the New York Times, PC Magazine, ZdNet, and was awarded Best Paper in Service Robotics at ICRA 2018.
Esteban Real (Google Research)
More from the Same Authors
-
2021 : Improved Estimator Selection for Off-Policy Evaluation »
George Tucker -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2021 : SparseDice: Imitation Learning for Temporally Sparse Data via Regularization »
Alberto Camacho · Izzeddin Gur · Marcin Moczulski · Ofir Nachum · Aleksandra Faust -
2021 : Intrinsic Control of Variational Beliefs in Dynamic Partially-Observed Visual Environments »
Nicholas Rhinehart · Jenny Wang · Glen Berseth · John Co-Reyes · Danijar Hafner · Chelsea Finn · Sergey Levine -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2023 Poster: CLUTR: Curriculum Learning via Unsupervised Task Representation Learning »
Abdus Salam Azad · Izzeddin Gur · Jasper Emhoff · Nathaniel Alexis · Aleksandra Faust · Pieter Abbeel · Ion Stoica -
2022 Poster: Model Selection in Batch Policy Optimization »
Jonathan Lee · George Tucker · Ofir Nachum · Bo Dai -
2022 Spotlight: Model Selection in Batch Policy Optimization »
Jonathan Lee · George Tucker · Ofir Nachum · Bo Dai -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2020 Poster: AutoML-Zero: Evolving Machine Learning Algorithms From Scratch »
Esteban Real · Chen Liang · David So · Quoc Le -
2019 : Poster Session 1 (all papers) »
Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel -
2019 Poster: Guided evolutionary strategies: augmenting random search with surrogate gradients »
Niru Maheswaranathan · Luke Metz · George Tucker · Dami Choi · Jascha Sohl-Dickstein -
2019 Poster: On Variational Bounds of Mutual Information »
Ben Poole · Sherjil Ozair · Aäron van den Oord · Alexander Alemi · George Tucker -
2019 Oral: Guided evolutionary strategies: augmenting random search with surrogate gradients »
Niru Maheswaranathan · Luke Metz · George Tucker · Dami Choi · Jascha Sohl-Dickstein -
2019 Oral: On Variational Bounds of Mutual Information »
Ben Poole · Sherjil Ozair · Aäron van den Oord · Alexander Alemi · George Tucker -
2019 Poster: NAS-Bench-101: Towards Reproducible Neural Architecture Search »
Chris Ying · Aaron Klein · Eric Christiansen · Esteban Real · Kevin Murphy · Frank Hutter -
2019 Oral: NAS-Bench-101: Towards Reproducible Neural Architecture Search »
Chris Ying · Aaron Klein · Eric Christiansen · Esteban Real · Kevin Murphy · Frank Hutter -
2018 Poster: Smoothed Action Value Functions for Learning Gaussian Policies »
Ofir Nachum · Mohammad Norouzi · George Tucker · Dale Schuurmans -
2018 Poster: The Mirage of Action-Dependent Baselines in Reinforcement Learning »
George Tucker · Surya Bhupatiraju · Shixiang Gu · Richard E Turner · Zoubin Ghahramani · Sergey Levine -
2018 Oral: Smoothed Action Value Functions for Learning Gaussian Policies »
Ofir Nachum · Mohammad Norouzi · George Tucker · Dale Schuurmans -
2018 Oral: The Mirage of Action-Dependent Baselines in Reinforcement Learning »
George Tucker · Surya Bhupatiraju · Shixiang Gu · Richard E Turner · Zoubin Ghahramani · Sergey Levine -
2018 Poster: Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings »
John Co-Reyes · Yu Xuan Liu · Abhishek Gupta · Benjamin Eysenbach · Pieter Abbeel · Sergey Levine -
2018 Oral: Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings »
John Co-Reyes · Yu Xuan Liu · Abhishek Gupta · Benjamin Eysenbach · Pieter Abbeel · Sergey Levine -
2017 Poster: Large-Scale Evolution of Image Classifiers »
Esteban Real · Sherry Moore · Andrew Selle · Saurabh Saxena · Yutaka Leon Suematsu · Jie Tan · Quoc Le · Alexey Kurakin -
2017 Talk: Large-Scale Evolution of Image Classifiers »
Esteban Real · Sherry Moore · Andrew Selle · Saurabh Saxena · Yutaka Leon Suematsu · Jie Tan · Quoc Le · Alexey Kurakin