Timezone: »
Combinatorial optimization (CO) is a widely-applied method for addressing a variety of real-world optimization problems. However, due to the NP-hard nature of these problems, complex problem-specific heuristics are often required to tackle them at real-world scales. Neural combinatorial optimization has emerged as an effective approach to tackle CO problems, but it often requires the pre-computed optimal solution or a hand-designed process to ensure the model to generate a feasible solution, which may not be available in many real-world CO problems. We propose the hierarchical combinatorial optimizer (HCO) that does not rely on such restrictive assumptions. HCO decomposes the given CO problem into multiple sub-problems on different scales with smaller search spaces, where each sub-problem can be optimized separately and their solutions can be combined to compose the entire solution. Our experiments demonstrate that this hierarchical decomposition facilitates more efficient learning and stronger generalization capabilities, outperforming traditional heuristic and mathematical optimization algorithms.
Author Information
Hanbum Ko (Ulsan National Institute of Science and Technology)
Minu Kim (KAIST)
Han-Seul Jeong (LG AI Research)
Sunghoon Hong (LG AI Research)
Deunsol Yoon (LG AI Research)
Youngjoon Park (LG AI Research)
Woohyung Lim (LG AI Research)
Honglak Lee (LG AI Research / U. Michigan)
Moontae Lee (University of Illinois at Chicago)
Kanghoon Lee (LG AI Research)
Sungbin Lim (Korea University)
Sungryull Sohn (LG AI research center, Ann Arbor)
More from the Same Authors
-
2021 : Learning Action Translator for Meta Reinforcement Learning on Sparse-Reward Tasks »
Yijie Guo · Qiucheng Wu · Honglak Lee -
2023 : Guide Your Agent with Adaptive Multimodal Rewards »
Changyeon Kim · Younggyo Seo · Hao Liu · Lisa Lee · Jinwoo Shin · Honglak Lee · Kimin Lee -
2023 : Learning Higher Order Skills that Efficiently Compose »
Anthony Liu · Dong Ki Kim · Sungryull Sohn · Honglak Lee -
2023 : Mixed-Curvature Transformers for Graph Representation Learning »
Sungjun Cho · Seunghyuk Cho · Sungwoo Park · Hankook Lee · Honglak Lee · Moontae Lee -
2023 Poster: QASA: Advanced Question Answering on Scientific Articles »
Yoonjoo Lee · Kyungjae Lee · Sunghyun Park · Dasol Hwang · Jaehyeon Kim · Hong-in Lee · Moontae Lee -
2023 Poster: Go Beyond Imagination: Maximizing Episodic Reachability with World Models »
Yao Fu · Run Peng · Honglak Lee -
2023 Poster: Exploring the Benefits of Training Expert Language Models over Instruction Tuning »
Joel Jang · Seungone Kim · Seonghyeon Ye · Doyoung Kim · Lajanugen Logeswaran · Moontae Lee · Kyungjae Lee · Minjoon Seo -
2023 Poster: Neural Stochastic Differential Games for Time-series Analysis »
Sungwoo Park · Byoungwoo Park · Moontae Lee · Changhee Lee -
2021 Poster: On-the-fly Rectification for Robust Large-Vocabulary Topic Inference »
Moontae Lee · Sungjun Cho · Kun Dong · David Mimno · David Bindel -
2021 Spotlight: On-the-fly Rectification for Robust Large-Vocabulary Topic Inference »
Moontae Lee · Sungjun Cho · Kun Dong · David Mimno · David Bindel -
2021 Poster: Learning to Weight Imperfect Demonstrations »
Yunke Wang · Chang Xu · Bo Du · Honglak Lee -
2021 Poster: Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks »
Sungryull Sohn · Sungtae Lee · Jongwook Choi · Harm van Seijen · Mehdi Fatemi · Honglak Lee -
2021 Poster: Variational Empowerment as Representation Learning for Goal-Conditioned Reinforcement Learning »
Jongwook Choi · Archit Sharma · Honglak Lee · Sergey Levine · Shixiang Gu -
2021 Spotlight: Variational Empowerment as Representation Learning for Goal-Conditioned Reinforcement Learning »
Jongwook Choi · Archit Sharma · Honglak Lee · Sergey Levine · Shixiang Gu -
2021 Spotlight: Learning to Weight Imperfect Demonstrations »
Yunke Wang · Chang Xu · Bo Du · Honglak Lee -
2021 Spotlight: Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks »
Sungryull Sohn · Sungtae Lee · Jongwook Choi · Harm van Seijen · Mehdi Fatemi · Honglak Lee -
2021 Poster: State Entropy Maximization with Random Encoders for Efficient Exploration »
Younggyo Seo · Lili Chen · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee -
2021 Spotlight: State Entropy Maximization with Random Encoders for Efficient Exploration »
Younggyo Seo · Lili Chen · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee -
2020 Poster: Context-aware Dynamics Model for Generalization in Model-Based Reinforcement Learning »
Kimin Lee · Younggyo Seo · Seunghyun Lee · Honglak Lee · Jinwoo Shin -
2019 Poster: Learning Latent Dynamics for Planning from Pixels »
Danijar Hafner · Timothy Lillicrap · Ian Fischer · Ruben Villegas · David Ha · Honglak Lee · James Davidson -
2019 Poster: Robust Inference via Generative Classifiers for Handling Noisy Labels »
Kimin Lee · Sukmin Yun · Kibok Lee · Honglak Lee · Bo Li · Jinwoo Shin -
2019 Poster: Similarity of Neural Network Representations Revisited »
Simon Kornblith · Mohammad Norouzi · Honglak Lee · Geoffrey Hinton -
2019 Oral: Similarity of Neural Network Representations Revisited »
Simon Kornblith · Mohammad Norouzi · Honglak Lee · Geoffrey Hinton -
2019 Oral: Robust Inference via Generative Classifiers for Handling Noisy Labels »
Kimin Lee · Sukmin Yun · Kibok Lee · Honglak Lee · Bo Li · Jinwoo Shin -
2019 Oral: Learning Latent Dynamics for Planning from Pixels »
Danijar Hafner · Timothy Lillicrap · Ian Fischer · Ruben Villegas · David Ha · Honglak Lee · James Davidson -
2018 Poster: Self-Imitation Learning »
Junhyuk Oh · Yijie Guo · Satinder Singh · Honglak Lee -
2018 Oral: Self-Imitation Learning »
Junhyuk Oh · Yijie Guo · Satinder Singh · Honglak Lee -
2018 Poster: Hierarchical Long-term Video Prediction without Supervision »
Nevan Wichers · Ruben Villegas · Dumitru Erhan · Honglak Lee -
2018 Oral: Hierarchical Long-term Video Prediction without Supervision »
Nevan Wichers · Ruben Villegas · Dumitru Erhan · Honglak Lee -
2017 Poster: Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning »
Junhyuk Oh · Satinder Singh · Honglak Lee · Pushmeet Kohli -
2017 Talk: Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning »
Junhyuk Oh · Satinder Singh · Honglak Lee · Pushmeet Kohli -
2017 Poster: Learning to Generate Long-term Future via Hierarchical Prediction »
Ruben Villegas · Jimei Yang · Yuliang Zou · Sungryull Sohn · Xunyu Lin · Honglak Lee -
2017 Talk: Learning to Generate Long-term Future via Hierarchical Prediction »
Ruben Villegas · Jimei Yang · Yuliang Zou · Sungryull Sohn · Xunyu Lin · Honglak Lee