Timezone: »
Practitioners frequently take multiple samples from large language models (LLMs) to explore the distribution of completions induced by a given prompt. While individual samples can give high-quality results for given tasks, collectively there are no guarantees of the distribution over these samples induced by the generating LLM. In this paper, we empirically evaluate LLMs’ capabilities as distributionsamplers. We identify core concepts and metrics underlying LLM-based sampling, including different sampling methodologies and prompting strategies. Using a set of controlled domains we evaluate the error and variance of the distributions induced by the LLM. We find that LLMs struggle to induce reasonable distributions over generated elements, suggesting that practitioners should more carefully consider the semantics and methodologies of sampling from LLMs.
Author Information
Aspen Hopkins (Massachusetts Institute of Technology)
Alex Renda (MIT)
Michael Carbin (MIT)
More from the Same Authors
-
2021 : Studying the Consistency and Composability of Lottery Ticket Pruning Masks »
Rajiv Movva · Michael Carbin · Jonathan Frankle -
2021 : On the Generalization Improvement from Neural Network Pruning »
Tian Jin · Gintare Karolina Dziugaite · Michael Carbin -
2023 : Designing Data: Proactive Data Collection and Iteration for Machine Learning Using Reflexive Planning, Monitoring, and Density Estimation »
Aspen Hopkins · Fred Hohman · Luca Zappella · Dominik Moritz · Xavi Suau -
2023 : Distributions for Compositionally Differentiating Parametric Discontinuities »
Jesse Michel · Kevin Mu · Xuanda Yang · Sai Praveen Bangaru · Elias Rojas Collins · Gilbert Bernstein · Jonathan Ragan-Kelley · Michael Carbin · Tzu-Mao Li -
2021 : On the Generalization Improvement from Neural Network Pruning »
Tian Jin · Gintare Karolina Dziugaite · Michael Carbin -
2021 Poster: On the Predictability of Pruning Across Scales »
Jonathan Rosenfeld · Jonathan Frankle · Michael Carbin · Nir Shavit -
2021 Spotlight: On the Predictability of Pruning Across Scales »
Jonathan Rosenfeld · Jonathan Frankle · Michael Carbin · Nir Shavit -
2020 Poster: Linear Mode Connectivity and the Lottery Ticket Hypothesis »
Jonathan Frankle · Gintare Karolina Dziugaite · Daniel Roy · Michael Carbin -
2019 Poster: Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using Deep Neural Networks »
Charith Mendis · Alex Renda · Dr.Saman Amarasinghe · Michael Carbin -
2019 Oral: Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using Deep Neural Networks »
Charith Mendis · Alex Renda · Dr.Saman Amarasinghe · Michael Carbin