Timezone: »
Leveraging Large Scale Models for Identifying and Fixing Deep Neural Networks Biases
Polina Kirichenko · Reyhane Askari Hemmat · Megan Richards
In this breakout session the leaders will discuss the following questions and challenges with attendees: ● What are the examples of systematic approaches for using generative and multi-modal models to evaluate and improve robustness of deep neural networks? ● What are the limitations of using generative models in terms of sample quality and diversity? ● What are the challenges with using generative modeling based tools in special domains (e.g. medical) where available data is more limited? ● How do we monitor the biases of generative and multi-modal models themselves?
Author Information
Polina Kirichenko (New York University)
Reyhane Askari Hemmat (Meta, Mila)
Megan Richards
More from the Same Authors
-
2020 : Poster #26 »
Reyhane Askari Hemmat -
2021 : Task-agnostic Continual Learning with Hybrid Probabilistic Models »
Polina Kirichenko -
2022 : Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations »
Polina Kirichenko · Polina Kirichenko · Pavel Izmailov · Andrew Wilson -
2022 : On Feature Learning in the Presence of Spurious Correlations »
Pavel Izmailov · Polina Kirichenko · Nate Gruver · Andrew Wilson -
2023 : Understanding the Detrimental Class-level Effects of Data Augmentation »
Polina Kirichenko · Mark Ibrahim · Randall Balestriero · Diane Bouchacourt · Ramakrishna Vedantam · Hamed Firooz · Andrew Wilson -
2022 : QReg: On Regularization Effects of Quantization »
MohammadHossein AskariHemmat · Reyhane Askari Hemmat · Alexander Hoffman · Ivan Lazarevich · Ehsan Saboori · Olivier Mastropietro · Sudhakar Sah · Yvon Savaria · Jean-Pierre David -
2022 : Spotlights »
Pratyush Maini · JIVAT NEET KAUR · Anil Palepu · Polina Kirichenko · Revant Teotia -
2021 : Invited Talk 5: Applications of normalizing flows: semi-supervised learning, anomaly detection, and continual learning »
Polina Kirichenko -
2020 Poster: Semi-Supervised Learning with Normalizing Flows »
Pavel Izmailov · Polina Kirichenko · Marc Finzi · Andrew Wilson -
2019 : poster session I »
Nicholas Rhinehart · Yunhao Tang · Vinay Prabhu · Dian Ang Yap · Alexander Wang · Marc Finzi · Manoj Kumar · You Lu · Abhishek Kumar · Qi Lei · Michael Przystupa · Nicola De Cao · Polina Kirichenko · Pavel Izmailov · Andrew Wilson · Jakob Kruse · Diego Mesquita · Mario Lezcano Casado · Thomas Müller · Keir Simmons · Andrei Atanov -
2019 : Subspace Inference for Bayesian Deep Learning »
Polina Kirichenko · Pavel Izmailov · Andrew Wilson -
2019 Poster: SWALP : Stochastic Weight Averaging in Low Precision Training »
Guandao Yang · Tianyi Zhang · Polina Kirichenko · Junwen Bai · Andrew Wilson · Christopher De Sa -
2019 Oral: SWALP : Stochastic Weight Averaging in Low Precision Training »
Guandao Yang · Tianyi Zhang · Polina Kirichenko · Junwen Bai · Andrew Wilson · Christopher De Sa